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GLOBAL HÖLDER SOLVABILITY OF SECOND ORDER

ELLIPTIC EQUATIONS WITH LOCALLY INTEGRABLE

LOWER-ORDER COEFFICIENTS

TAKANOBU HARA

Abstract. We prove existence of globally Hölder continuous solutions to el-
liptic partial differential equations with lower-order terms. Our result is ap-
plicable to coefficients controlled by a negative power of the distance from the
boundary.

1. Introduction

This paper deals with the global Hölder solvability of the Dirichlet problem

(1.1)

{

− div(A∇u) + b · ∇u + µu = ν in Ω,

u = g on ∂Ω.

Here, Ω is a bounded domain in Rn (n ≥ 2), A ∈ L∞(Ω)n×n is a matrix valued
function satisfying the uniformly ellipticity condition

(1.2) |ξ|2 ≤ A(x)ξ · ξ ≤ L|ξ|2 ∀ξ ∈ Rn, ∀x ∈ Ω

with a fixed constant 1 ≤ L < ∞, g is a Hölder continuous function on the boundary
∂Ω of Ω. Assumptions on other coefficients to be explained later. We temporarily
assume that b ∈ L2

loc(Ω)
n, µ, ν ∈ M(Ω), where M(Ω) is the set of all measures on

Ω in the sense of Bourbaki. For Ω, we further assume that

(1.3) ∃γ > 0
cap(B(ξ, R) \ Ω, B(ξ, 2R))

cap(B(ξ, R), B(ξ, 2R))
≥ γ ∀R > 0, ∀ξ ∈ ∂Ω

where B(x, r) is a ball centered at x with radius r > 0, and cap(K,U) is the relative
capacity of an open set U ⊂ Rn and compact set K ⊂ U , which is defined by

cap(K,U) := inf

{
ˆ

Rn

|∇u|2 dx : u ∈ C∞
c (U), u ≥ 1 onK

}

.

There are many prior works for existence and regularity results of solutions to
(1.1) with various aspects. We treat (1.1) using its divergence structure and refer to
[23, 15] for basics of weak solutions. Sharp interior regularity estimates for solutions
to (1.1) studied extensively, especially since the 1980s. We refer to [2, 10, 8, 25]
for overview. Local Hölder estimates for equations with Morrey coefficients can be
found in e.g. [24, 11, 29, 12]. For recent developments in interior regularity theory,
see also [28, 30, 16, 17, 27]. There are not a few results on boundary regularity as
well, which will be discussed later.

Date: March 5, 2024.
2020 Mathematics Subject Classification. 35J25, 35J05, 35J08, 31B25.
Key words and phrases. potential theory, boundary value problem, boundary regularity.

1

http://arxiv.org/abs/2403.01104v1


2 TAKANOBU HARA

Let us recall known results for the global Hölder regularity of weak solutions to

(1.4)

{

− div(A∇u) = 0 in Ω,

u = g on ∂Ω.

It is well known that (1.3) is sufficient for the desired boundary estimate, although
there is no explicit reference (see [20, p.130] for related work). The proof of it (see
e.g. [26, 14, 15, 20]) consists of three major steps. (i) Prove an interior regularity
estimate. (ii) Prove a regularity estimate at each boundary point by using (1.3)
and the result of (i). (iii) If the result of (ii) holds at all boundary points, then the
desired global regularity follows. As a consequence, if (1.3) holds, then the operator

(1.5) Cβ0(∂Ω) ∋ g 7→ u ∈ Cβ0(Ω)

is bounded for some β0 ∈ (0, 1). Conversely, [1, Theorem 3] (see also [3, Lemma 3])
showed that the boundedness of (1.5) gives (1.3) if Ω has no irregular point.

For global regularity of solutions to (1.1), one approach is to directly repeat
the above three steps (e.g. [31, 14, 25, 15, 13, 6, 27]). However, this approach
has problems in local estimation at the boundary (ii). Indeed, the fact that the
condition (1.3) holds at all boundary points is not exploited. Also, since it requires
extending the equation out of the domain, this strategy cannot be applied to locally
integrable b, µ and ν.

Another popular approach to (1.1) is to construct the Green function of (1.4)
and regard the lower-order terms as a perturbation. This approach is often used in
the context of potential theory (e.g. [9, 7, 4, 21, 22]). The problems in (ii) above
do not occur in this method because the Green function is a global concept. As a
results, under smoothness assumptions on ∂Ω, it is possible to deal with coefficients
that diverge by negative powers of δ(x) := dist(x, ∂Ω), as in

(1.6) δ(x)1−β |b(x)| ∈ L∞(Ω),

(1.7) µ = c(x)m and δ(x)2−βc(x) ∈ L∞(Ω),

where β ∈ (0, 1) and m is the Lebesgue measure. Unfortunately, it is difficult to
give explicit estimates of Green functions for domains with complexity boundaries.
However, [3] treated such domains without giving explicit formulas for them. This
strategy seems good for obtaining Hölder continuous solutions, but there is no
known literature dedicated to this direction.

We construct globally Hölder continuous solutions to (1.1) using the Fredholm
alternative and a Hölder estimate in [19]. The estimate is a refinement of results
in [3, 18]. We control b, µ and ν using a Morrey space and apply the the Fredholm
alternative to it. For the sake of simplicity, we use slightly different notation from
[19].

Definition 1.1. For q ≥ 1, define

M
q(Ω) :=

{

ν ∈ M(Ω): |||ν|||q,Ω < ∞
}

,

where

(1.8) |||ν|||q,Ω := diam(Ω)2−n/q sup
x∈Ω

0<r<δ(x)/2

rn/q−n|ν|(B(x, r)).
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Also, for a function u on E ⊂ Rn and β ∈ (0, 1], we define

‖u‖Cβ(E) := sup
E

|u|+ diam(E)β sup
x,y∈E
x 6=y

|u(x)− u(y)|

|x− y|β
.

Our main result is as follows.

Theorem 1.2. Assume (1.2) and (1.3). Suppose that

(1.9) |b|2m ∈ M
n/(2−2β)(Ω),

(1.10) µ ∈ M
n/(2−β)(Ω),

where β ∈ (0, 1) and that µ ≥ 0. Then, for each ν ∈ M
n/(2−β)(Ω) and g ∈ Cβ(∂Ω),

there exists a unique weak solution u ∈ H1
loc(Ω) ∩ C(Ω) to (1.1). Moreover, there

exists a positive constant β⋆ depending only on n, L, β and γ such that

(1.11) ‖u‖Cβ⋆(Ω) ≤ C
(

|||ν|||n/(2−β),Ω + ‖g‖Cβ(∂Ω)

)

,

where C is a positive constant independent of ν and g.

Remark 1.3. The solution u in Theorem 1.2 may not have finite energy. Note that
we do not assume that ν ∈ H−1(Ω) or that g is the trace of an H1(Ω) function.

Remark 1.4. We give some remarks to the conditions on b and µ.

(1) Local Hölder estimates under (1.9) and (1.10) are well-known. We prove
(1.11) under the same conditions.

(2) The conditions (1.6) and (1.7) imply (1.9) and (1.10), respectively. Similar
known result in [3] used weighted Lebesgue spaces, which are more general,
but still tighter than our results.

(3) There is no size restriction of
∣

∣

∣

∣

∣

∣|b|2m
∣

∣

∣

∣

∣

∣

n/(2−2β),Ω
. This existence result

holds even if the problem is not coercive in the sense of bilinear form on
H1

0 (Ω).

We note here limitations of Theorem 1.2. First, we have no information of
the optimal value of β⋆. Second, we do not know sharp conditions for existence
of globally continuous solutions. Finally, cancellation of the coefficients or the
regularizing effect of the zeroth-order term µu are not used. These are topics for
future work.

Organization of the paper. In Section 2, we discuss properties of Mq(Ω). In
Section 3, we show compactness of lower-order perturbations and prove Theorem
1.2 for the homogeneous boundary data g = 0. In Section 4, we complete the proof
of Theorem 1.2.

Notation. Throughout below, Ω ( Rn is a bounded open set. We denote by δ(x)
the distance from the boundary Ω.

• Cc(Ω) := the set of all continuous functions with compact support in Ω.
• C∞

c (Ω) := Cc(Ω) ∩ C∞(Ω).

We denote by M(Ω) the set of all measures on Ω in the sense in [5]. Using the
Riesz representation theorem, we identify them with continuous linear functional
functionals on Cc(Ω). When the Lebesgue measure must be indicate clearly, we use
the letterm. For a function u on B, we use the notation

ffl

B u dx := m(B)−1
´

B u dx.
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For a function u, we define oscu := supu − inf u. The letter C denotes various
constants.

2. Morrey spaces and elliptic regularity

We first consider properties of the Morrey space Mq(Ω). Since Ω is bounded, for
any 1 ≤ q1 ≤ q2, we have |||ν|||q1,Ω ≤ |||ν|||q2,Ω. In particular, for q > n/2, we have

(2.1) |||ν|||n/2,Ω ≤ |||ν|||q,Ω.

If f ∈ Lq(Ω), then fm ∈ M
q(Ω). On the other hand, this space is significantly

larger than Lq(Ω) in the sense of boundary behavior. In fact, for a locally integrable
function c in (1.7), we have cm ∈ M

n/(2−β)(Ω) (see [19, Proposition 6.1]).

Theorem 2.1. The space
(

M
q(Ω), |||·|||q,Ω

)

is a Banach space.

Proof. We can check that |||·|||q,Ω is a norm onM
q(Ω). Let us prove the completeness

of it. For the sake of simplicity, we assume that diam(Ω) = 1 without loss of
generality. Let {µj} be a Cauchy sequence in M

q(Ω). Then, for any ǫ > 0, there
exists jǫ such that

|µj − µi|(B) ≤ ǫ diam(B)n−n/q

whenever j, i ≥ jǫ and 2B ⊂ Ω. Then, we have
∣

∣

∣

∣

ˆ

Ω

ϕd(µj − µi)

∣

∣

∣

∣

≤ ǫ diam(B)n−n/q

for all

(2.2) ϕ ∈ Cc(B), ‖ϕ‖L∞(Ω) ≤ 1.

If K ⊂ Ω is compact, then, we can choose finitely many balls {Bk} such that
2Bk ⊂ Ω and K ⊂

⋃

k Bk. Using (2.2) and a partition of unity, we find that {µj}
is bounded in the sense of the dual of Cc(Ω). Therefore, there exists a subsequence
{µjk} of {µj} and µ ∈ M(Ω) such that µjk converges to µ vaguely.

Fix a ball B and ϕ satisfying (2.2) again. Taking the limit i → ∞ along the
above subsequence, we obtain

(2.3)

∣

∣

∣

∣

ˆ

Ω

ϕd(µj − µ)

∣

∣

∣

∣

≤ ǫ diam(B)n−n/q

and
∣

∣

∣

∣

ˆ

Ω

ϕdµ

∣

∣

∣

∣

≤ (|||µj |||q,Ω + ǫ)diam(B)n−n/q.

It follows from assumption on ϕ that

|µ|(B) ≤ (|||µj |||q,Ω + ǫ)diam(B)n−n/q.

Therefore, µ ∈ M
q(Ω). Using (2.3) again, we obtain

|||µj − µ|||q,Ω ≤ ǫ.

Consequently, µj → µ in M
q(Ω). The uniqueness of µ and the convergence of the

whole sequence follows from the usual manner. �

We understand (1.1) in the sense of distributions.
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Definition 2.2. Let b ∈ L2
loc(Ω), and let µ, ν ∈ M(Ω). We say that a function

u ∈ H1
loc(Ω) ∩ C(Ω) is a weak solution to (1.1) if

ˆ

Ω

A∇u · ∇ϕ+ b · ∇uϕdx+

ˆ

Ω

uϕdµ =

ˆ

Ω

ϕdν

for all ϕ ∈ C∞
c (Ω).

The following weak Harnack inequality can be found in e.g. [25, Theorem 3.13].

Lemma 2.3. Suppose that (1.2), (1.9) and (1.10) hold for some β ∈ (0, 1). Let u
be a nonnegative weak supersolution to − div(A∇u) + b · ∇u+ µu = 0 in Ω. Then,
we have

 

B(x,r)

u dx ≤ C inf
B(x,r)

u

whenever B(x, 2r) ⊂ Ω, where C is a constant depending only on n, L, β,
∣

∣

∣

∣

∣

∣|b|2m
∣

∣

∣

∣

∣

∣

n/(2−2β),Ω

and |||µ|||n/(2−β),Ω.

Proposition 2.4. Suppose that (1.2), (1.9) and (1.10) hold for some β ∈ (0, 1).
Assume further that µ ≥ 0. Let u ∈ H1

loc(Ω) ∩ C(Ω) be a weak solution to

(2.4)

{

− div(A∇u) + b · ∇u+ µu = 0 in Ω,

u = 0 on ∂Ω.

Then, u = 0.

Proof. This follows from the strong maximum principle. Let M = supΩ u ≥ 0. We
note that

− div(A∇(M − u)) + b · ∇(M − u) + µ(M − u) = Mµ ≥ 0 in Ω.

Assume that M > 0, and consider the set E := {x ∈ Ω: u(x) = M}. Take x ∈ E
such that δ(x) = dist(E, ∂Ω) > 0. By Lemma 2.3, we have

 

B(x,δ(x/2))

(M − u) dx ≤ C inf
B(x,δ(x)/2)

(M − u) = 0.

Since B(x, δ(x)/2) ⊂ E, it follows from an elementary geometrical consideration
that dist(E, ∂Ω) ≤ δ(x)/2. This contradicts to the definition of x. Therefore,
M = 0. By the same way, infΩ u = 0. �

For b = 0, µ = 0 and g = 0, we have the following existence theorem.

Lemma 2.5 ([19, Theorem 1.3]). Assume that (1.2) and (1.3) hold. Suppose
that ν ∈ M

q(Ω) for some q > n/2. Then, there exists a unique weak solution
u ∈ H1

loc(Ω) ∩ C(Ω) to

(2.5)

{

− div(A∇u) = ν in Ω,

u = 0 on ∂Ω.

Moreover, there exist positive constants C1 and β1 depending only on n, L, q and
γ such that

(2.6) ‖u‖Cβ1(Ω) ≤ C1|||ν|||q,Ω.

We use the following notation.

Definition 2.6. Let ν ∈ M
q(Ω) with q > n/2. We denote byG0ν the weak solution

u ∈ H1
loc(Ω) ∩ C(Ω) to (2.5).
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3. Lower-order terms

Let us recall the Fredholm alternative.

Lemma 3.1 ([15, Theorem 5.3]). Let X be a normed space, and let T be a compact
linear operator from X into itself. Then, either (i) the homogeneous equation

x− Tx = 0

has a nontrivial solution x ∈ X, or (ii) for each y ∈ X, the equation

x− Tx = y

has a unique solution x ∈ X. Moreover, in case (ii), the operator (I − T )−1 exists
and is bounded.

We apply the above theorem to the operator

(3.1) T : Mq(Ω) ∋ ν 7→ Tν := − (b · ∇+ µ)G0ν ∈ M
q(Ω).

Lemma 3.2. Assume that (1.9) and (1.10) hold. Let q = n/(2 − β). Then, the
operator T in (3.1) is a compact operator from M

q(Ω) into itself. Moreover, we
have

(3.2) |||Tν|||q,Ω ≤ C2

(

∣

∣

∣

∣

∣

∣|b|2m
∣

∣

∣

∣

∣

∣

1/2

n/(2−2β),Ω
+ |||µ|||n/(2−β),Ω

)

|||ν|||q,Ω

for all ν ∈ M
q(Ω).

Proof. Let u = G0ν. By (2.5), we have

(3.3) ‖u‖L∞(Ω) ≤ C1|||ν|||q,Ω.

Let B(x, r) be a ball such that B(x, 4r) ⊂ Ω. Take η ∈ C∞
c (B(x, 2r)) such that

η = 1 on B(x, r) and |∇η| ≤ C/r. Testing (2.5) with uη2, we obtain
ˆ

B(x,r)

|∇u|2 dx ≤ C

(

1

r2

ˆ

B(x,2r)

|u|2 dx+

ˆ

B(x,2r)

|u| d|ν|

)

.

By (2.1), we also get
ˆ

B(x,r)

|∇u|2 dx ≤ C
(

‖u‖2L∞(Ω) + ‖u‖L∞(Ω)|||ν|||q

)

rn−2.(3.4)

The right-hand side is estimated by (3.3). Meanwhile, by Hölder’s inequality, we
have

ˆ

B(x,r)

|b · ∇u| dx ≤

(

ˆ

B(x,r)

|b|2 dx

)1/2(
ˆ

B(x,r)

|∇u|2 dx

)1/2

.

Combining these inequalities with (1.9), we obtain

(3.5)

ˆ

B(x,r)

|b · ∇u| dx ≤ C
∣

∣

∣

∣

∣

∣|b|2m
∣

∣

∣

∣

∣

∣

1/2

n/(2−2β),Ω
|||ν|||q,Ωr

n−2+β .

Meanwhile, by (1.10) and (3.3), we have
ˆ

B(x,r)

|u| d|µ| ≤ C|||µ|||n/(2−β),Ω|||ν|||q,Ωr
n−2+β .

By a simple covering argument, we find that (3.2) holds.
Let us prove the compactness of T . Let {νj} be a bounded sequence in M

q(Ω)
and assume that |||νj |||q,Ω ≤ M < ∞. Set uj = G0νj . Since {uj} is bounded
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in Cβ0(Ω), by the Ascoli-Arzelà theorem, we can take a subsequence of {uj} and

u ∈ C(Ω) such that uj → u uniformly in Ω. Meanwhile, by (3.4), we have
ˆ

B(x,r)

|∇(uj − ui)|
2 dx

≤ C
(

‖uj − ui‖
2
L∞(Ω) + 2‖uj − ui‖L∞(Ω)M

)

rn−2

for all i, j ≥ 1. It follows from (1.9) that {(b · ∇uj)m} is a Cauchy sequence in
M

q(Ω). By the same way, {µuj} is a Cauchy sequence in M
q(Ω). By Theorem 2.1,

T is compact. �

Corollary 3.3. Assume that (1.9) and (1.10) hold. Let q = n/(2−β). Then, either
(i) the homogeneous equation (2.4) has a nontrivial solution u ∈ H1

loc(Ω) ∩ C(Ω),
or (ii) for each ν ∈ M

q(Ω), the equation

(3.6)

{

− div(A∇u) + b · ∇u+ µu = ν in Ω,

u = 0 on ∂Ω.

has a unique solution u ∈ H1
loc(Ω) ∩ Cβ1(Ω). Moreover, in case (ii), the operator

(3.7) GT : Mq(Ω) ∋ ν 7→ GT ν := u ∈ H1
loc(Ω) ∩ Cβ1(Ω)

exists and is bounded.

Proof. If there is a non-trivial solution σ ∈ M
q(Ω) to

(3.8) σ − Tσ = 0,

then, u := G0σ ∈ H1
loc(Ω)∩Cβ1(Ω) is a non-trivial solution to (2.4). We prove the

converse statement. Assume the existence of a non-trivial solution u ∈ H1
loc(Ω) ∩

C(Ω) to (2.4). Take a ball B(x, 4r) ⊂ Ω and η ∈ C∞
c (B(x, 2r)) such that η = 1 on

B(x, r) and |∇η| ≤ C/r. Testing (2.4) with uη2, we get
ˆ

B(x,2r)

|∇u|2η2 dx ≤
C

r2

ˆ

B(x,2r)

u2 dx

+

∣

∣

∣

∣

∣

ˆ

B(x,2r)

b · ∇uuη2 dx +

ˆ

B(x,2r)

u2η2 dµ

∣

∣

∣

∣

∣

.

By the Young inequality ab ≤ (ǫ/2)a2 + (2ǫ)−1b2 (a, b, ǫ ≥ 0), we have
∣

∣

∣

∣

∣

ˆ

B(x,2r)

b · ∇uuη2 dx

∣

∣

∣

∣

∣

≤
ǫ

2

ˆ

B(x,2r)

|∇u|2η2 dx+
1

2ǫ

ˆ

B(x,2r)

|b|2u2η2 dx.

Combining these inequalities with (1.9), (1.10) and (2.1), we obtain
ˆ

B(x,r)

|∇u|2 dx ≤ C‖u‖2L∞(Ω)r
n−2.

It follows from (1.9) that (b · ∇u)m ∈ M
q(Ω). Meanwhile, µu ∈ M

q(Ω) because u
is bounded and (1.10) holds. Therefore, σ := − div(A∇u) belongs to M

q(Ω). It is
also a non-trivial solution to (3.8).

Assume that there is no non-trivial solution to (3.8). By Lemmas 3.1 and 3.2,
for each ν ∈ M

q(Ω), there exists a unique solution σ ∈ M
q(Ω) to σ−Tσ = ν. Then,

u := G0σ ∈ H1
loc(Ω) ∩ Cβ1(Ω) satisfies

− div(A∇u) = ν + Tσ = ν − (b · ∇+ µ)u.
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Let us prove the uniqueness of u. If there are two different solutions u1 and u2 to
(3.6), then v = u1 − u2 is a non-trivial solution to (2.4). Since σ := − div(A∇v)
belongs to M

q(Ω), this contradicts to assumption. �

Remark 3.4. Assume further that
∣

∣

∣

∣

∣

∣|b|2m
∣

∣

∣

∣

∣

∣

1/2

n/(2−2β),Ω
+|||µ|||n/(2−β),Ω ≤ (2C1C2)

−1,

where C1 and C2 are constants in Lemmas 2.5 and 3.2, respectively. Then, we can
get an explicit bound of (3.7) by the contractive mapping theorem.

4. Inhomogeneous boundary data

Lemma 4.1. Let g ∈ Cβ(∂Ω). Then, there exists a unique weak solution w ∈
H1

loc(Ω) ∩ C(Ω) to (1.4). Moreover, there exists a positive constants C and 0 <
β0 ≤ β such that

‖w‖Cβ0(Ω) ≤ C‖g‖Cβ(∂Ω).

Assume further that (1.9) and (1.10) hold. Then, b · ∇w + µw ∈ M
n/(2−β)(Ω) and

(4.1) |||b · ∇w + µw|||n/(2−β),Ω ≤ C‖w‖L∞(Ω).

Proof. As mentioned in Section 1, the existence of w and its Hölder estimate are
well-known (see e.g. [20, Theorem 6.44]). By the comparison principle, we have

osc
Ω

w ≤ osc
∂Ω

g.

As the proof of (3.4), we have
ˆ

B(x,r)

|∇w|2 dx ≤ C
(

osc
Ω

w
)2

rn−2

whenever B(x, 4r) ⊂ Ω. By (1.9) and (1.10), we obtain (4.1). �

Theorem 4.2. Suppose that (1.2), (1.3), (1.9) and (1.10) hold. Assume further
that there is no non-trivial solution to (2.4). Then, for each ν ∈ M

n/(2−β)(Ω) and
g ∈ Cβ(∂Ω), there exists a unique weak solution u ∈ H1

loc(Ω) ∩ C(Ω) to (1.1).
Moreover, there exists a positive constant β⋆ depending only on n, L, β and γ
satisfying (1.11), where C is a positive constant independent of ν and g.

Proof. Let w be a weak solution in Lemma 4.1. Consider the problem

(4.2)

{

− div(A∇v) + b · ∇v + µv = ν − b · ∇w − µw in Ω,

v = 0 on ∂Ω.

Since the right-hand side is in M
q(Ω), this equation has a unique solution v ∈

H1
loc(Ω) ∩ Cβ1(Ω). Then, u = v + w ∈ Cβ⋆(Ω) satisfies (1.11), where β⋆ =

min{β1, β0}. �

Proof of Theorem 1.2. Combine Theorem 4.2 and Proposition 2.4. �
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