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In this study, a new linear theory of tearing instability is shown, where the modified
LSC (Loureiro, Schekochihin, and Cowley) theory [36] developed from the original LSC
theory [8] is extended from inviscid-resistive MHD to viscous-resistive MHD. In contrast to
FKR [2] and original LSC theories, the upstream open boundary condition is implemented
at a finite point ξc, which is an additional control parameter to determine the solutions. This
paper firstly studies when the resistivity and viscosity are uniform in space. In addition, some
variations in the nonuniformity are studied. It is shown that the non-uniformity can enhance
the linear growth rate, rather than uniform case. Unexpectedly, this suggests that the forward
cascade process of plasmoid instability (PI) does not stop, i.e., the finite differential MHD
simulations fail. To stop the forward cascade, uniform viscosity is required not only in the
inner region of the current sheet but also in the outer region. In the uniform case, the critical
condition is predicted to be 2Pm/(S ξc) = 0.06, beyond which the tearing instability, i.e.,
the forward cascade, stops. Here, S is the Lundquist number, Pm is the magnetic Prandtl
number, and ξc is the distance between the upstream open boundary and neutral sheet, where
the current sheet thickness is fixed at ξ0 = 1.307. According to the critical condition, the
resistivity and viscosity employed in most MHD simulations of PI are too small to stop the
forward cascade. This critical condition may be also applicable for the trigger problem of the
current sheet destabilization in substorms and solar flares.
Keywords: MHD, magnetic reconnection, tearing instability, linear theory

1 Introduction

The magnetic reconnection process is an energy conversion mechanism to convert magnetic energy
to plasma kinetic energy. Regarding the explosive energy conversion observed in solar flares and
geomagnetic substorms, the magnetic reconnection process must be fast. The fast magnetic recon-
nection process has been studied during the past 60 years [1,2,3,4]. In basic plasma physics, it is
considered that the fast magnetic reconnection process starts from the collapse of the current sheet,
which is called tearing instability [2]. Hence, to attain fast magnetic reconnection, tearing instability
may be required to be quickly caused. Studying fast tearing instability is important to explore the fast
magnetic reconnection process.

FKR theory (Furth, Killeen, and Rosenbluth [2]) was proposed in the 1960s to explore the linear
growth stage of the tearing instability. Then, numerous linear studies of the tearing instability have
been reported until today. In most of those linear theories, the tearing instability was studied on the
basis of the ideal-MHD limit equilibrium, i.e., zero-resistivity limit [2,5,6,7]. In fact, the assumed
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equilibrium is satisfied only when the resistivity is zero. At this point, if the resistivity is zero, mag-
netic reconnection process does not occur, and hence, tearing instability does not occur. In other
words, since a finite resistivity violates the assumed equilibrium, the linear theory based on the inac-
curate equilibrium has delicate problems. At least, such linear theories will be inapplicable when the
magnetic diffusion speed based on the resistivity is close to the Alfven wave speed. Notably, when
the current sheet is thin, those speeds may be close, in which fast tearing instability may occur.

LSC theory (Loureiro, Schekochihin, and Cowley [8]) largely improved the equilibrium problem
in FKR theory, where the nonzero-flow equilibrium field was employed, by which the equilibrium is
exactly satisfied even when the resistivity is large. In this paper, we refer to this LSC theory as the
original LSC theory. Similar to FKR theory, the original LSC theory ”analytically” solves the linear
perturbation equations between the neutral sheet (ξ = 0) and the infinity upstream point (ξ = +∞).
In addition, the region outside the current sheet is simply assumed to be an ideal MHD, and hence,
a finite resistivity works only inside the current sheet. The assumption of the ideal MHD outside the
current sheet is often employed in linear studies of the tearing instability [2,5,6,8,9,10,11,12,13]. This
means that the resistivity is assumed to be non-uniform in space. It is believed that the case of non-
uniform resistivity is not essentially different from the case of uniform resistivity. Certainly, since the
magnetic reconnection process requires some form of resistivity inside the current sheet to reconnect
magnetic field lines, the outside area may not need to have a finite resistivity. However, it will be
worth rigorously studying whether the non-uniform case is exactly the same as the uniform case or
not.

In fact, in the numerical MHD simulations of the fast magnetic reconnection process, the se-
lection of a uniform resistivity or non-uniform resistivity has been a historically controversial topic.
As shown in many numerical MHD studies, non-uniform resistivity, such as anomalous resistivity,
results in a fast magnetic reconnection known as the Petschek (PK) model [3,14,15,16,17,18,19].
Meanwhile, when the resistivity is assumed to be uniform, generating the PK model is a delicate
problem [16,18,19,23]. If the uniform resistivity can reproduce the PK model, the non-uniformity of
the resistivity is not important to make the magnetic reconnection fast. Inversely, if the uniform resis-
tivity cannot reproduce the PK model, how non-uniform resistivity can reproduce it must be studied,
which may have to be extensively studied in kinematic plasma physics.

On the other hand, according to some MHD simulations [20,25,26,27,28,29,30,31,32,33], uni-
form resistivity results in a turbulent Sweet-Parker (SP) model [1], which may cause fast magnetic
reconnection. In such a case, we may again say that the nonuniformity of resistivity is not important to
make the magnetic reconnection fast. However, if the uniform resistivity cannot cause a fast magnetic
reconnection, issues similar to those of the PK model may occur.

Hence, in both the PK and PI models, it is important to determine whether fast magnetic recon-
nections can be achieved with ”uniform” resistivity or not. The fast magnetic reconnection should be
considered a nonlinear process that may have to be studied only in MHD simulations. At this point,
since only the linear process is considered in this paper, such a nonlinear fast magnetic reconnec-
tion process cannot be studied. However, the uniformity of resistivity in the linear process of tearing
instability is worthy of primary study.

To examine when the uniform resistivity is assumed not only inside of the current sheet but also
outside, Shimizu modified the original LSC theory. Then, he named it the modified LSC theory
[34,35,36, 37,38,39, 40,41]. The linear perturbation equations solved in the modified LSC theory are
basically the same as that of the original LSC theory [8], but the resistive MHD region was extended
from the inner region to the outer region. In addition, a kind of upstream open boundary condition
was assumed at a finite upstream point. Then, how the tearing instability is affected by the upstream
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open boundary was studied. In addition, between the modified and original LSC theories, there is
a difference in the normalizations of space and time. In fact, the linear growth rate λ examined in
the modified LSC theory is normalized by the wavelength lcs of the plasmoid chain. Meanwhile, the
linear growth rate γτA examined in the original LSC is normalized by the macroscopic Sweet-Parker
(SP) sheet length Lcs. As explained in Fig. 22 of Shimizu’s paper [36], γτA can largely exceed unity,
but λ does not exceed unity. This means that tearing instability essentially occurs in the sub-Alfvenic
time scale.

In contrast to FKR and the original LSC theories, the eigenvalue problem (EVP) solver, which is
widely employed in the boundary value problem, is not used in the modified LSC theory. Instead, the
modified LSC theory numerically solves initial value problems (IVPs). Since IVP is much simpler
than EVP, the solutions numerically obtained in IVP will have much higher numerical precision. For
example, the linear perturbation equations of IVP are discretized in 10000 ∼ 100000 elements, i.e.,
numerical grid size δξ = 0.0001 ∼ 0.00001 between the neutral sheet (ξ = 0) and upstream boundary
(ξ = ξc). In contrast, the number of elements in the EVP solver is generally much lower. Hence, using
IVP will be more advantageous than using EVP solvers.

The main theme of this paper is to introduce the viscosity in the modified LSC theory of tearing
instability in a simple slab geometry, where the critical condition is derived, below which the current
sheet is stabilized, i.e., tearing instability does not occur. Then, it is shown that the critical condition
depends on the location of the upstream open boundary, in addition to the resistivity, and viscosity.
There are many previous studies in which the viscosity was introduced in the linear theory of tearing
instability [5,6,9,11,12,13,21,22,24]. However, there is no study in which the upstream boundary
condition is examined and the critical condition is obtained. At the end of this paper, it is shown that
viscosity, which is uniformly assumed not only inside but also outside the current sheet, effectively
works to stabilize the current sheet, and hence can stop the tearing instability.

In Chapter 2, the linear perturbation equations to be solved in this paper are introduced. These
equations are derived from incompressible MHD equations. Five cases, in which the spatial non-
uniformities of the resistivity and viscosity are considered, are studied. In Chapter 3, the numerical
IVP techniques used to find the solutions are explained. In Chapter 4, the numerical results are shown,
and the critical conditions of λ = 0 are derived in each case. The results of Case 2 are similar to those
obtained with the FKR and original LSC theories. Rather, Case 3 is the highlight of this paper. In
Chapter 5, a discussion and applications are presented. Finally, in Chapter 6, a summary is provided.

2 Linearized MHD equations

2.1 2D equilibrium flow field in a 1D current sheet

In this chapter, some variations of the linear perturbation equations solved in this paper are derived
from the viscous-resistive and incompressible MHD equations shown below.

∂tu + u · ∇u = −∇P + (∇ × B) × B + ν∇2u (1)

∂tB = −∇ × (u × B) + η∇2B (2)

In the 2D case of ∂z = 0, u and B can be translated to ϕ and ψ by (ux, uy, uz) = (−∂yϕ, ∂xϕ, 0) and
(Bx, By, Bz) = (−∂yψ, ∂xψ, 0). Here, ∇2 = ∂2

x + ∂
2
y . η and ν represent the resistivity and viscosity,

respectively, and they are basically uniform in space and constant in time. However, those values in
Cases 2, 4, and 5 are set to be non-uniform. Eqs. (1) and (2) can be translated as follows.
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∂t∇2ϕ + (∂xϕ)(∂y∇2ϕ) − (∂yϕ)(∂x∇2ϕ) = (∂xψ)(∂y∇2ψ) − (∂yψ)(∂x∇2ψ) + ν(∇2)2ϕ (3)

∂tψ + (∂xϕ)(∂yψ) − (∂yϕ)(∂xψ) = η∇2ψ + E0 (4)

First, we consider the equilibrium magnetic field of a 1D current sheet for (Bx, By, Bz) = (0, B0y(x), 0).
We assume that the outer edge of the current sheet is located at x = δcsξ0 and that the Alfven speed
at the point is VA, where δcs is the thickness of the current sheet. Hence, the outer edge of the current
sheet is not at x = δcs, where ξ0 = 1.307 is set through this paper. In addition, we assume the 2D
equilibrium flow field to be ϕ0 = Γ0xy, where Γ0 = 2VA/Lcs and Lcs is the current sheet length for
the Sweet-Parker steady-state model. In the model, δcs and Lcs are related with the Lundquist number
S = L2

cs/(2δ
2
cs) = VALcs/η. Furthermore, the equilibrium magnetic field satisfies the next equation.

η∂2
xψ0 + Γ0x∂xψ0 + E0 = 0 (5)

This equation is translated by x = δcsξ as follows:

ηψ′′0 + ξψ
′
0 + E0/Γ0 = 0 (6)

Hereafter, the prime is the derivative of ξ. This equation can be solved as follows:

ψ′0 = f (ξ) = (−E0/Γ0)e−ξ
2/2
∫ ξ

0
dzez2/2 (7)

Second, to normalize the current sheet configuration, we set ψ′0 = δcsB0y(x) = δcsVA = 1 and
ψ′′0 = 0 at ξ = ξ0, where the current density is zero. Then, we obtain E0 = −Γ0ξ0. Hereafter,
for the simplicity of expression, ψ′0 is replaced by f (ξ). To study the perturbation theory of tearing
instability, we employ ϕ0 and ψ0 as the rigorous equilibrium. Then, we set ϕ = ϕ0 + δϕ, ψ = ψ0 + δψ,
where δϕ(x, y, t) = ϕ1(x, t)eik(t)y and δψ(x, y, t) = ψ1(x, t)eik(t)y with k(t) = k0e−Γ0t. Moreover, we
set ϕ1 = −iΦ(x)eγt and ψ1 = Ψ(x)eγt. Then, we translate Eqs. (3) and (4) with x = δcsξ, κ =
k0VA/Γ0 = k0Lcs/2, ϵ = 2δcs/Lcs, and the linear growth rate λ = γ/(Γ0κ). In addition, we set
N = 2ν/(VALcs) = ν/Γ0. As a result, the resistivity η and viscosity ν are respectively translated to ϵ
and N. On the basis of the setup shown above, the perturbation equations to be solved in this paper
are derived. In the next section, five variations of the perturbation equations, as shown in Table 1, are
studied. The details of the derivations are shown in Appendix.

2.2 Case 1: Uniform Resistivity and No Viscosity

In this case, the resistivity ϵ(> 0) is uniform in space, and the viscosity N is also uniformly zero, i.e.,
inviscid. This case is similar to the previous study on the modified LSC [36] theory, but f (ξ) = 1 is
not employed in ξ > 1.307 in this paper. Instead, Eq. (7) is employed in 0 < ξ < ξc, where ξc is
the location of the upstream boundary point. Hence, the equilibrium is rigorously established in all
ranges of 0 < ξ < ξc. The linear perturbation equations to be solved are as follows.

λΦ′′ − λκ2ϵ2Φ = − f (ξ)(Ψ′′ − κ2ϵ2Ψ) + f ′′(ξ)Ψ (8)

Ψ′′ − κ2ϵ2Ψ = κλΨ − κ f (ξ)Φ. (9)

These equations have been derived by Loureiro et al. [8]. Solving these equations as IVP in 0 < ξ < ξc,
zero-crossing solutions that satisfy Φ = Ψ = 0 at ξc are obtained. Note that ξc changes, which is
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Case Inner region (ξ ≤ 1.307) Condition at ξ = 1.307 Outer region (1.307 < ξ) limit Type of Solution
Case1 (8) (9) — same as inner region — Zero-Crossing
Case1a (10) (11) — same as inner region λ = 0 Zero-Crossing
Case1b (12) (13) — same as inner region — Zero-Crossing
Case2 (8) (9) — (12) (13) — Zero-Crossing
Case2a (10) (11) — (11) (14) λ = 0 Zero-Crossing
Case3 (15) (16) — same as inner region — Zero-Contact
Case3a (17) (18) — same as inner region λ = 0 Zero-Contact
Case4 (15) (16) (19) (8) (9) — Zero-Crossing
Case4a (17) (18) (11) (20) (10) (11) λ = 0 Zero-Crossing
Case4b (16) (19) (8) (8) (9) N = +∞ Zero-Crossing
Case4c (18) (19) (11) (20) (10) (11) λ = 0 & N = +∞ Zero-Crossing
Case5 (15) (16) — (8) (9) — Zero-Contact
Case5a (17) (18) Φ(ξ0 − 0) = Φ(ξ0 + 0) (11) (18) λ = 0 Zero-Contact

Table 1 : Variations of the solutions. The linear perturbation equations to be solved and the basic conditions of
resistivity ϵ and viscosity N are summarized for each case.

Fig. 1 : Zero-crossing solution of Case 1 for κ = 1, ϵ = 0.1, N = 0, Φ′(0) = 3.0802, λ = 0.13, and ξc = 2.06.

indirectly a control parameter that can be used to explore the behaviors of the solutions. Fig. 1 shows
the typical profile of the solutions obtained for κ = 1, ϵ = 0.1, N = 0, λ = 0.13, and Φ′(0) = 3.0802.
This is a zero-crossing solution that satisfies Φ = Ψ = 0 at ξc = 2.06. Finding this solution is
explained in the next chapter.

2.2.1 Case 1a: λ = 0 solution

It is worth studying the case of λ = 0, which gives the critical condition of the instability. Taking
λ = 0, Eqs. (8) and (9) are changed as follows:

Ψ′′ = (κ2ϵ2 + f ′′(ξ)/ f (ξ))Ψ (10)

f ′′(ξ)Ψ = −κ f (ξ)2Φ. (11)

By solving Eq.(10) as an IVP in 0 < ξ < ξc, Ψ can be obtained. Note that Eq.(7) gives f (0) = 0
but f ′′(0)/ f (0) = −2 in the ξ = 0 limit. Then, Φ is directly obtained from Eq. (11) in ξ > 0 but
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Fig. 2 : Zero-crossing solution of Case 2 for κ = 1, ϵ = 0.1 in ξ < 1.307 (= 0 in ξ > 1.307), N = 0,
Φ′(0) = 3.0804, λ = 0.13, and ξc = 2.06.

diverges at ξ = 0. The divergence has been reported in the Appendix of Shimizu’s paper [36]. Then,
zero-crossing solutions are obtained. Eq.(10) means that Ψ depends only on κϵ. In other words, Ψ
does not depend separately on κ and ϵ. This κϵ dependence for λ = 0 is inapplicable for Φ but is
applied for κΦ and is also maintained in Cases 2a, 3a, 4a, and 5a shown below.

2.2.2 Case 1b: ϵ = 0 solution

This is a special case where ϵ = 0 is taken in Eqs. (8) and (9). The result in this case may be called
ideal tearing instability. In this case, zero-crossing solutions are found [36].

2.3 Case 2: Non-Uniform Resistivity and No Viscosity

In this case, the resistivity ϵ is uniform in ξ ≤ 1.307 , i.e., the inner region of the current sheet but
is zero in ξ > 1.307, i.e., the outer region. Hence, this case is close to the traditional setup of the
original LSC theory [8]. The viscosity N is uniformly zero, i.e., inviscid, in 0 < ξ < ξc. In this case,
in ξ ≤ 1.307, Eqs. (8) and (9) are solved. Then, in ξ > 1.307, since ϵ = 0 is set in Eqs. (8) and (9),
the next equations are solved.

0 = λΦ′′ + f (ξ)Ψ′′ − f ′′(ξ)Ψ (12)

Ψ′′ = κλΨ − κ f (ξ)Φ. (13)

Eventually, Eqs. (8), (9), (12), and (13) can be numerically solved as IVP. Then, zero-crossing solu-
tions are found. Fig. 2 shows the typical profile of the solutions, which are obtained for κ = 1, ϵ = 0.1
(for ϵ ≤ 1.307), N = 0, λ = 0.13, and Φ′(0) = 3.0804. This is a zero-crossing solution at ξc = 2.06.
Fig. 2 is almost the same as Fig. 1. However, as shown later, we cannot say that Cases 1 and 2 are
exactly the same. In contrast to Fig. 1, since ϵ discontinuously changes from a non-zero value to zero
at ξ = 1.307, Φ′′ and Ψ′′ generally have discontinuities at the point, but the discontinuity is invisible
in Fig. 2.
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Fig. 3 : Zero-contact solution of Case 3 for κ = 1, ϵ = 0.1, N = 0.05, Φ′(0) = 0.265, (0.255 and 0.275),
Φ′′′(0) = −0.2253415, λ = 0.13, and ξc = 10.28.

2.3.1 Case 2a: λ = 0 solution

To study the case of λ = 0, we take the λ = 0 limit. In ξ ≤ 1.307, Eqs. (10) and (11) are solved. Then,
in ξ > 1.307, setting ϵ = 0, Eq. (10) is changed as follows:

Ψ′′ = ( f ′′(ξ)/ f (ξ))Ψ (14)

Hence, in ξ > 1.307, Eqs. (11) and (14) are solved. Then, zero-crossing solutions are found.

2.4 Case 3: Uniform Resistivity and Uniform Viscosity

This case is the most highlighted case in this paper. In contrast to Cases 1 and 2, the viscosity effect
is introduced. Both the resistivity ϵ and viscosity N are uniform in 0 < ξ < ξc. The equations to be
solved are as follows (the derivation is found in Appendix):

NΦ′′′′ = κϵ2((λ + 2κN)Φ′′ − (λ + κN)κ2ϵ2Φ + f (ξ)(Ψ′′ − κ2ϵ2Ψ) − f ′′(ξ)Ψ) (15)

Ψ′′ − κ2ϵ2Ψ = κλΨ − κ f (ξ)Φ (16)

Eq. (16) is exactly the same as Eq. (9). In contrast to Cases 1 and 2, the fourth-order derivative of
Φ appears because of the introduction of the viscosity. This results in the number of initial values in
the IVP increasing, and hence, the number of zero-crossing solutions found at a specified ξc becomes
infinite. To uniquely specify one from those zero-crossing solutions, we add another upstream open
boundary condition Φ′ = 0 at ξc. We define it as a zero-contact solution. In fact, such zero-contact
solutions are found. Fig. 3 shows the typical profiles of the solutions, which are obtained for κ = 1,
ϵ = 0.1, N = 0.05, λ = 0.13, Φ′(0) = (0.255, 0.265, 0.275), and Φ′′′(0) = −0.2253415. The profiles
of Φ and Ψ for Φ′(0) = 0.265 are zero-contact solutions at ξc = 10.28.
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2.4.1 Case 3a: λ = 0 solution

For λ = 0, Eqs. (15) and (16) are changed as follows:

NΦ′′′′ = κϵ2(2κNΦ′′ − κ3ϵ2NΦ − κ f (ξ)2Φ − f ′′(ξ)Ψ) (17)

Ψ′′ − κ2ϵ2Ψ = −κ f (ξ)Φ. (18)

By solving these equations, the zero-contact solutions can be obtained.

2.4.2 Case 3b: N = +∞ solution

This case is an extreme case. Taking the N = +∞ limit, Eq. (15) is changed as follows.

Φ′′′′ = 2κ2ϵ2Φ′′ − κ4ϵ4Φ (19)

In addition to this equation, Eq. (16) is solved. In this case, zero-contact solutions are not found. This
suggests that the tearing instability in Case 3 does not occur for N = +∞. In other words, it suggests
that sufficiently large viscosity can steadily stabilize the tearing instability, as extensively discussed in
Chapter 5.

2.5 Case 4: Uniform Resistivity and Non-Uniform Viscosity with continuous Φ′′

at ξ = 1.307

Cases 1 and 2 can be compared to explore how the non-uniformity of the resistivity affects the insta-
bility. Similarly, the non-uniformity of the viscosity may be studied. In this case, Eqs. (15) and (16)
are solved in ξ ≤ 1.307. Then, by setting N = 0 in those equations, Eqs. (8) and (9) are solved in
ξ > 1.307. The resistivity ϵ is uniform in 0 < ξ < ξc. To maintain the continuity of Φ′′ at ξ = 1.307,
Eqs. (8) and (15) must be simultaneously satisfied at ξ = 1.307. At the time, Eq. (19) must be satisfied
at ξ = 1.307 − 0, which is in the vicinity of ξ = 1.307 on the ξ < 1.307 side. Then, zero-crossing
solutions are found. Fig. 4 shows the typical profile of the solutions for κ = 1, ϵ = 0.1, N = 0.05 (for
ξ < 1.307), λ = 0.13, Φ′(0) = 0.04428, and Φ′′′(0) = −1.73538, which is a zero-crossing solution at
ξc = 2.806.

2.5.1 Case 4a: λ = 0 solution

For λ = 0, Eqs. (17) and (18) are solved in ξ ≤ 1.307. In ξ > 1.307, because of N = 0 and λ = 0,
Eqs. (10) and (11) are solved. Since Eqs. (10), (11), (17) and (18) must be simultaneously satisfied
at ξ = 1.307, Eq. (11) must be satisfied at ξ = 1.307 − 0, resulting in the continuity of Φ being
maintained at ξ = 1.307. In addition, since Φ in ξ > 1.307 is directly obtained from Ψ through Eq.
(11), Φ′ is not necessarily continuous at ξ = 1.307. To maintain the continuity of Φ′ at this point, the
next condition must be satisfied at ξ = ξ0 = 1.307.

Φ′(ξ0 − 0) = Φ′(ξ0 + 0), (20)

Eventually, by solving Eqs. (17), (18), (10) and (11) as IVP with additional conditions of Eqs. (11)
and (20) at ξ = 1.307, zero-crossing solutions are obtained.
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Fig. 4 : Zero-crossing solution of Case 4 for κ = 1, ϵ = 0.1, N = 0.05 in ξ < 1.307 (N = 0 in ξ > 1.307),
Φ′(0) = 0.04428, Φ′′′(0) = −1.73538, λ = 0.13, and ξc = 2.8.

2.5.2 Case 4b: N = ∞ solution

This case is an extreme case. By setting the limit as N = ∞, Eq. (15) is changed to Eq. (19). Hence,
in ξ ≤ 1.307, Eqs. (16) and (19) are solved. In ξ > 1.307, since N = 0 is set, Eqs. (8) and (9) are
solved. To maintain the continuity of Φ′′ at ξ = 1.307, Eq. (8) must be satisfied at ξ = 1.307 − 0.
Then, zero-crossing solutions are obtained.

2.5.3 Case 4c: N = ∞ and λ = 0 solution

This case is more extreme than Cases 4a and 4b. In ξ ≤ 1.307, because of λ = 0, Eqs. (18) and (19)
are solved. In ξ > 1.307, because of N = 0 and λ = 0, Eqs. (10) and (11) are solved. Eq. (11) must
be satisfied at ξ = 1.307 − 0, to maintain the continuity of Φ, i.e., Φ(1.307 − 0) = Φ(1.307 + 0). In
addition, to uniquely specify one of those zero-crossing solutions, we maintain the continuity of Φ′

at ξ = 1.307. To do so, Eq. (20) must be satisfied at ξ = 1.307. Then, zero-crossing solutions are
obtained.

2.6 Case 5: Uniform Resistivity and Non-Uniform Viscosity with Discontinuous
Φ′′ at ξ = 1.307

Case 4 is suitable for comparison with Case 1 because the upstream boundary condition at ξc is the
same, i.e., where zero-crossing solutions are obtained. However, Case 4 is not suitable for comparison
with Case 3 because the upstream boundary condition is different. To compare with Case 3, we study
when Eqs. (15), (16), (8), and (9) are solved without the connecting condition, i.e., Eq. (19), at
ξ = 1.307. In this case, zero-contact solutions can be found. Fig. 5 shows the typical profile of
the solutions for κ = 1, ϵ = 0.1, N = 0.05 (for ξ < 1.307), λ = 0.13, Φ′(0) = 0.69407987, and
Φ′′′(0) = −0.7857, which is a zero-contact solution at ξc = 3.5. In this case, Φ′′ is discontinuous at
ξ = 1.307. However,Φ′ andΦ remain continuous at this point. Hence, the constraint of the differential
discontinuity is looser than Case 4, instead of more rigid upstream boundary condition. Considering
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Fig. 5 : Zero-contact solution of Case 5 for κ = 1, ϵ = 0.1, N = 0.05 in ξ < 1.307 (= 0 in ξ > 1.307),
Φ′(0) = 0.69407987, Φ′′′(0) = −0.785715, λ = 0.13, and ξc = 3.5.

Eqs. (8) and (9) with Φ = Ψ = 0, Φ′′ = Ψ′′ = 0 is satisfied at ξc. This means that ξc is the inflection
point, as shown in Fig. 5.

2.6.1 Case 5a: λ = 0 solution

In this case, Eqs. (17) and (18) are solved in ξ ≤ 1.307. Then, Eqs. (11) and (18) are solved in
1.307 < ξ. In addition, to maintain the continuity of Φ at ξ = 1.307, Φ(1.307 − 0) = Φ(1.307 + 0) is
applied. In this case, the continuity of Φ′ is not maintained at ξ = 1.307. Then, zero-contact solutions
for ξc = 2.12 are found regardless of κ, ϵ, and N.

3 Methods of the Numerical Study

3.1 Initial Value Problem (IVP)

Traditionally, the equations shown in Chapter 2 are solved as eigenvalue problems (EVPs), where Φ
and Ψ are obtained in 0 < ξ < ∞. However, in this paper, those equations are solved as the IVPs of
0 < ξ < ξc, where ξc is a finite value, i.e., ξc < +∞. With increasing ξc, those solutions in 0 < ξ < +∞
may be indirectly deduced. In IVPs, a set of κ, ϵ, N, and λ is firstly given. Then, a set of the initial
values given at ξ = 0 consists of Φ(0), Ψ(0), Φ′(0), Φ′′(0), Φ′′′(0), and Ψ′(0). Notably, Φ′′(0) and
Φ′′′(0) are not needed in Cases 1 and 2. Then, through the parameter survey, zero-crossing solutions
or zero-contact solutions are numerically found by adjusting those initial values in the manners shown
below.

We consider the symmetric configuration of tearing instability at ξ = 0. In that case, since Φ and
Ψ are odd and even functions, respectively, Φ(0) = Φ′′(0) = 0 and Ψ′(0) = 0 are set. In addition,
Ψ(0) = 1 can be set without the lack of generality of solutions. Eventually, Φ′(0) and Φ′′′(0) are the
control parameters to uniquely determine a solution in the IVP.

To numerically solve Φ and Ψ as IVPs, the primitive forward Euler method is employed through-
out this paper. The numerical resolution is mainly set in ∆ξ = 0.001. Some of the following results
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are extremely sensitive to changing those initial values. For much higher numerical resolutions, i.e.,
0.001 > ∆ξ, the convergence test of the numerical results has been carefully checked.

3.2 Obtaining the Solutions

3.2.1 Parameter Survey of IVPs

In this chapter, we explain how to find the zero-contact solutions in Case 3. The application to the
other cases is similar or much easier. The actual numerical results for Cases 1-5 are reported in the
next chapter. In Case 3, the IVP starts from Φ(0) = Φ′′(0) = 0, Ψ(0) = 1 and Ψ′(0) = 0, where κ, ϵ,
and N are initially given. In addition, λ, Φ′(0) and Φ′′′(0) are the adjustable control parameters. Once
these three parameters are given, a set of Φ(ξ) and Ψ(ξ) is uniquely determined by solving the IVP.
By adjusting λ, Φ′(0) and Φ′′′(0), the IVP can be repeatedly solved. Then, we can find a set of Φ and
Ψ that satisfy Φ = Ψ = Φ′ = 0 at ξc, if it exists. That is, a zero-contact solution can be obtained.
Since this is a numerical study of IVPs, we cannot confirm the uniqueness of the solution for a set of
κ, ϵ, and N. At this point, our interest is to find the solution that provides the highest growth rate but
it is unclear whether the obtained solution has the highest rate. However, if the solution is found for
λ > 0, tearing instability can, at least, occur at the λ rate.

3.2.2 Profiles of Φ and Ψ

Fig. 3 shows how the numerically obtained profiles of Φ and Ψ change, depending on the value of
Φ′(0), where κ = 1, ϵ = 0.1, N = 0.05, λ = 0.13, and Φ′′′(0) = −0.2253415. The purple lines
indicate the profiles of Φ. The green lines indicate the profiles of Ψ. The equilibrium magnetic field
function f (ξ) is indicated by the orange line, which is fixed throughout this paper. As Φ′(0) increases
from 0.255 to 0.275, the profile of Φ tends to gradually shift upward, and the profile of Ψ tends to
gradually shift downward. For Φ′(0) = 0.255, the zero-crossing point of Φ, i.e., Φ = 0, is observed
around ξ = 7. However, the zero-crossing point of Ψ, i.e., Ψ = 0, is not observed in this figure.
Conversely, in the case of Φ′(0) = 0.275, the zero-crossing point of Ψ is observed at approximately
ξ = 6.5. However, the zero-crossing point of Φ is not observed in this figure. Finally, in the case of
Φ′(0) = 0.265, the zero-crossing points of Φ and Ψ almost coincide around ξc = 10.3. In addition,
it seems that Φ′ = 0 is established at this point. Hence, Φ and Ψ for Φ′(0) = 0.265 seem to be a
zero-contact solution. However, Fig. 3 does not indicate that Φ and Ψ for Φ′(0) = 0.265 are exactly
the zero-contact solution. More exact observations are required to confirm this hypothesis. To do so,
the next two strategies, i.e., status map and trajectory of the crossing points, are proposed.

3.2.3 Status Map

To rigorously specify the existence of the zero-contact solution, we focus on the movements of the
zero-crossing points of Φ and Ψ and local minimum point of Φ. we define those locations as ξ1,
ξ2 and ξ3, respectively. Table 2 shows the classification list of solutions for ξ1, ξ2, and ξ3, which
are numerically detected in the parameter survey of IVPs. Then, the zero-contact solution satisfies
ξ1 = ξ2 = ξ3, which is ξc.

Fig. 6(a) shows a typical status map of the numerically obtained solutions, where the types of
solutions are classified by the colors listed in Table 2. The vertical axis indicates the change in Φ′(0),
and the horizontal axis indicates the change in Φ′′′(0), where κ = 1, ϵ = 0.1, N = 0.05, and λ = 0.13
are fixed. Fig. 6(a) is drawn by stepwisely changing Φ′(0) and Φ′′′(0) in each axis range, where the
IVPs are repeatedly solved.
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Condition(Color) Cross Pt. of Φ = 0, Cross Pt. of Ψ = 0, Local Minimum of Φ′ = 0, Order of Locations

Condition 1 (Pink) ξ1 > 0 not detected not detected
Condition 1 (Pink) ξ1 > 0 not detected ξ3 > 0

Condition 2 (Yellow) ξ1 > 0 ξ2 > 0 not detected ξ1 < ξ2

Condition 2 (Yellow) ξ1 > 0 ξ2 > 0 ξ3 > 0 ξ1 < ξ2 < ξ3

Condition 3 (Cyan) ξ1 > 0 ξ2 > 0 not detected ξ2 ≤ ξ1

Condition 4 (Light-Green) ξ1 > 0 ξ2 > 0 ξ3 > 0 ξ1 < ξ3 ≤ ξ2

Condition 5 (Dark-Green) ξ1 > 0 ξ2 > 0 ξ3 > 0 ξ2 ≤ ξ1 < ξ3

Condition 6 (Black) not detected ξ2 > 0 not detected
Condition 7 (Orange) not detected not detected ξ3 > 0

Condition 8 (Red) not detected ξ2 > 0 ξ3 > 0 ξ3 ≤ ξ2

Condition 9 (Blue) not detected ξ2 > 0 ξ3 > 0 ξ2 < ξ3

Table 2 : Types of solutions in the status maps of Figs.6(a) and (b). Each type is related to the colors in the
map. Cyan and black, which are listed here, are not observed in this paper because the conditions are not
matched.

Fig. 6(a): Status map of Case 3 in the wide range, i.e., 0.255 < Φ′(0) < 0.275 and −0.2260 < Φ′′′(0) < −0.2245,
for κ = 1, ϵ = 0.1, N = 0.05, and λ = 0.13.

Fig. 6(b): Status map of Case 3 in the narrow range, i.e., 0.2650 < Φ′(0) < 0.2652 and −0.22537 < Φ′′′(0) <
−0.22531, for κ = 1, ϵ = 0.1, N = 0.05, and λ = 0.13.
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The case of Φ′(0) = 0.265 in Fig. 3 corresponds to Point A in Fig. 6(a). Then, the cases of
Φ′(0) = 0.255 and 0.275 are respectively located at Points a1 and a2 in Fig. 6(a). As referred in
Table 2, Line B-A-C indicates the boundary line of whether ξ2 < ξ3 or not. Line D-A-E indicates
the boundary line of whether Φ(ξ3) > 0 or not. Line D-A-F indicates the boundary line of whether
ξ1 < ξ2 or not. Since the zero-contact solution should be exactly located on these three lines, Point A
exactly indicates the location of the zero-contact solution.

In this discussion, we assumed that the profiles of Φ and Ψ smoothly change for every parameter
change, such as λ, Φ′(0) and Φ′′′(0). Inversely speaking, if those profiles discontinuously change, we
cannot say that the zero-contact solution exists at Point A. This assumption can be a serious concern.
At this point, as shown in Fig. 6(b), the enlargement of the status map around Point A indicates that
the profiles smoothly change. Fig. 6(b) shows the status map near Point A. The figure format is the
same as that of Fig. 6(a). In comparison with Fig. 6(a), the parameter survey range of Φ′(0) and
Φ′′′(0) in Fig. 6(b) is much narrower, and Point A can still be observed on the three lines. Hence, we
conclude that a zero-contact solution exists at Point A.

3.2.4 Trajectory of the Crossing Points

In this section, another method is proposed to steadily find zero-contact solutions. Certainly, Fig. 6
can be used to conveniently find zero-contact solutions. However, this method is not perfect. For
example, when those three boundary lines observed in the status maps almost merge to a line around
A, it is impossible to exactly specify the location of Point A. In fact, such situations often occur. As
another problem, the zero-contact solutions for the second and third zero-crossing points can appear,
as later shown in Fig. 9(c). In such cases, Table 2 and the status map must be largely improved.
Rather, Fig. 7 is more helpful to find the zero-contact solutions.

Fig. 7 shows how the zero-crossing points of Φ and Ψ move in the ξ space, depending on the
value ofΦ′(0) for a fixedΦ′′′(0). Figs. 7(a), (b), and (c) are plotted forΦ′′′(0) = −0.22532, −0.22537,
and −0.2253415, respectively. In these figures, the row of circles indicates the trajectory of the zero-
crossing points of Ψ, i.e., where Ψ = 0 is satisfied. Similarly, the row of the cross-points indicates
that of Φ, i.e., where Φ = 0 is satisfied.

Point A shown in Figs. 7(a), (b), and (c) indicates the local minimum point of Φ, i.e., where
Φ′ = 0 is satisfied. Point B indicates the zero-crossing solution, i.e., when Φ = Ψ = 0 is satisfied.
In Fig. 7(a), Point A is located on the upper side of Point B. In Fig. 7(b), Point A is located on the
lower side of Point B. As Φ′′′(0) changes from Fig. 7(a) to (b), we assume that the trajectories shown
in these figures smoothly change. In that case, a zero-contact solution should be located between
Figs. 7(a) and (b). Fig. 7(c) is plotted for the value of Φ′′′(0) located between Figs. 7(a) and (b).
In Fig. 7(c), since Points A and B coincide, they are considered a zero-contact solution. Eventually,
we found the zero-contact solution for κ = 1, ϵ = 0.1, N = 0.05, λ = 0.13, Φ′(0) = 0.2650997, and
Φ′′′(0) = −0.2253415, which coincides with Point A in Fig. 6(b).

4 Numerical results

4.1 Overview of the relation of λ and ξc

By using the status maps and trajectories of the crossing points, a set of κ, ϵ, N, λ, and Φ′(0), Φ′′′(0)
yields a zero-contact solution for a ξc value in Cases 3 and 5. In addition, it yields a zero-crossing
solution for a ξc value in Cases 1, 2, and 4. Then, we can know the relation of λ and ξc in each case.
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Fig. 7(a): Trajectories of zero-crossing points of Φ and Ψ in the range of 0.2650 < Φ′(0) < 0.2652 for κ = 1,
ϵ = 0.1, N = 0.05, λ = 0.13, and Φ′′′(0) = −0.22532.

Fig. 7(b): The case of Φ′′′(0) = −0.22537. The others are the same as (a).

Fig. 7(c): The case of Φ′′′(0) = −0.2253415. The others are the same as (a).
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Fig. 8 : Linear growth rate λ with respect to ξc for κ = 1 and ϵ = 0.1. Cases 1 and 2 are plotted for N = 0. Cases
3 and 5 are plotted for N = 0.05. Case 4b is plotted for N = +∞.

Fig. 8 shows how λ depends on ξc, where κ = 1 and ϵ = 0.1, except for Case 1b, where ϵ = 0.
The lines of Cases 1, 1b and 2 are plotted for N = 0, i.e., inviscid. The lines of Cases 3 and 5 are
plotted for N = 0.05. The line of Case 4b is for N = +∞. First, it is remarkable that every case
plotted in Fig. 8 shows that as ξc increases, λ monotonically increases. This monotonical increase is
commonly observed through this paper, i.e., any case and any condition. Second, λ of Case 1b takes
the highest λ value in the entire range of ξc, which is the case of ϵ = N = 0, i.e., the ideal-MHD
limit. The existence of the solutions in the ideal-MHD limit has been reported [35,36]. Subsequently,
the order of Cases 2 > 1 > 4b > 5 > 3 is observed for the height of λ. The lines of Cases 3 and
5 disappear in ξc > 9.8 and ξc > 4.9, respectively. These disappearances originate from the lack of
numerical precision in the IVPs In general, it is harder to find solutions for larger ξc. Third, λ of Cases
1, 1b, and 2 almost coincide. In fact, the difference is below approximately a few %. Regarding this
point, Figs. 1 and 2 are almost the same. This suggests that λ obtained in the modified LSC theory is
close to that of the original LSC theory. However, as shown in Fig. 9(a), the difference between Cases
1 and 2 becomes larger for larger κϵ. Fourth, the line of Case 4b is plotted in N = +∞, as discussed
in Fig. 13(b), later.

4.2 Cases 1, 2, and 3

Fig. 9(a) shows the relation of κϵ and ξc for λ = 0 of Cases 1a, 2a, and 3a, which is the critical
condition of the tearing instability, i.e., beyond which instability occurs. In fact, above these lines,
instability occurs, and stability occurs below. Because, the solutions of λ > 0 are found only above
those lines. What is shown in this figure coincides with the foot points, i.e., λ = 0, of each line shown
in Fig. 8. In this figure, since ϵ = 0.1 is fixed, the horizontal scale of this figure directly indicates that
0.1κ. At this point, as mentioned in the preceding chapter, the solutions of λ = 0 depend on κϵ and
does not separately depend on κ and ϵ. Hence, this figure is applicable in 0 < ϵ < +∞.

Lines A and B in Fig. 9(a) are for Cases 1a and 2a and stay around κϵ = 1.1 and 1.3, respectively,
in ξc > 5. Hence, the right region of those lines is stable, and the left is unstable. Since Case 2 is
close to FKR theory [2], κϵ = 1.3 on Line B may correspond to the critical condition of ∆′ = 0 in the
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Fig. 9(a): Critical conditions of Cases 1, 2, and 3. Cases 1 and 2 are plotted for N = 0. Case 3 is plotted for
0.0005(c1-d1), 0.002(c2-d2), 0.05(c3-d3), and N = 0.1(c4-d4). The red circles indicate the change point
of the solution types. The black cross points indicate the minimum point of ξc, beyond which the unstable
range appears.

theory. In fact, the value of κϵ = 1.3 is roughly close to the predicted αc = 1.0 and 0.64, respectively,
in Eqs. (28) and (30) in FKR theory. Lines c1-d1, c2-d2, c3-d3, and c4-d4 are obtained for Case
3a, which represent N = 0.0005, 0.002, 0.05 and 0.1, respectively. In contrast to Cases 1a and 2a,
when κϵ approaches zero, these lines of Case 3a diverge toward ξc = +∞. This means that the stable
region appears in the low κϵ region by the introduction of viscosity. This important characteristic is
extensively discussed later.

The six red circles in Fig. 9(a) indicate when the crossing point of Φ = 0 switches from the first
point to the second, as shown in the change from Figs. 9(b) to (c). Figs. 9(b) and (c) are zero-contact
solutions at λ = 0, i.e., Case 3a. The solution shown in Fig. 9(b) is located at Point E in Fig. 9(a),
which is to the left of the red circle. This solution takes the first zero-crossing point of Φ = Ψ = 0
at ξc = 3.65. Moreover, the solution shown in Fig. 9(c) is located at Point F in Fig. 9(a), which
is to the right (exactly upside) of the red circle. As shown in Fig. 9(c), this solution takes the first
zero-crossing point of Φ = 0 at ξ = 3.069, where Ψ , 0. The zero-crossing point of Ψ = 0 is located
at ξc = 6.91, where Φ = 0. Then, the zero-contact solution is established at ξc = 6.91. As shown in
Fig. 9(a), the zero-contact point ξc tends to change from the first zero-crossing point to the second
zero-crossing point as κϵ increases. In fact, every line of Fig. 9(a) has a circle.

Fig. 10(a) shows how λ changes for N for ϵ = 0.1 and ξc = 3.6 for Cases 1 and 3. In this figure,
λ at N = 0 (i.e., on the vertical axis) is obtained in Case 1. Then, N at λ = 0 (i.e., horizontal axis) is
obtained in Case 3a, i.e., the λ = 0 limit. The N value at λ = 0 is also observed in Fig. 9(a). As shown
in this figure, λ always takes the maximum value at N = 0. Then, as N increases, λ monotonically
decreases to zero.

Fig. 10(b) shows the relation of λ and ξc for Cases 1 and 3. The figure format is the same as
that of Fig. 8. The two lines for N = 0.05 are much lower than each corresponding line for N = 0.
Hence, the viscosity effect tends to steadily slow the tearing instability. Then, focusing only on the
two lines of N = 0, the line of ϵ = 0.1 is found to be higher than that of ϵ = 0.2. This means that, as
the resistivity ϵ is close to zero, the linear growth rate λ is higher. Inversely, focusing on the two lines
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Fig. 9(b): Zero-contact solution of Case 3a for κ = 5.0, ϵ = 0.1, N = 0.05, λ = 0, Φ′(0) = 0.212044, and
Φ′′′(0) = −0.512955.

Fig. 9(c): Zero-contact solution of Case 3a for κ = 5.58, ϵ = 0.1, N = 0.05, λ = 0, Φ′(0) = 0.212156, and
Φ′′′(0) = −0.538406.
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Fig. 10(a): Linear growth rate λ with respect to N in Case 3 for κ = 0.2, 0.5, 1, 2, 4 and ϵ = 0.1, where λ at N = 0
is Case 1.

Fig. 10(b): Linear growth rate λ with respect to ξc in Case 3 for κ = 1, ϵ = 0.1, 0.2 and N = 0, 0.05.
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Fig. 10(c): 3D image of linear growth rate λ with respect to ξc and κ in Case 1 for ϵ = 0.1 and N = 0 and Case 3
for ϵ = 0.1 and N = 0.05.

of N = 0.05, the line of ϵ = 0.1 is lower than that of ϵ = 0.2. This inversion will be discussed in Fig.
10(d), later.

Fig. 10(c) shows the 3D image of Figs. 9(a) and 10(b), where the bottom plane of κ− ξc is drawn
for Cases 1a and 3a (Line c3-d3) in Fig. 9(a). Because, since ϵ = 0.1 is set in this figure, the κ axis
scale corresponds to the κϵ axis scale in Fig. 9(a). This figure shows that λ > 0 is established in the
unstable region of Fig. 9(a).

Fig. 10(d) shows how λ in Case 3 depends on κ and ϵ, where N = 0.05 and ξc = 6. The line of
ϵ = 0.1 is also observed on the back plane of Fig. 10(c), which is drawn at ξc = 6. As ϵ increases from
0.05 to 0.2, the λ peak becomes higher, and the κ value at the maximum λ shifts toward κ = 0, i.e., the
left side of this figure. Observing more carefully the line of ϵ = 0.1, the unstable region, i.e., λ > 0,
is located in 0.75 < κ < 5.6. Observing similarly the line of ϵ = 0.2, the unstable region is located in
0.37 < κ < 2.8. Hence, when the unstable region shifts for increasing ϵ from 0.05 to 0.2, the critical
κϵ value at λ = 0 is exactly maintained, as mentioned above. In addition, regarding the shift, when ϵ
increases from 0.1 to 0.2, λ at κ = 1 increases in Fig. 10(d). Meanwhile, λ in Case 1 always decreases
as ϵ increases (e.g., Figs. 10(a) and (b) of Shimizu’s paper [36]). Hence, the inversion of the λ change
discussed in Fig. 10(b) is explained by the κ shift of the unstable region in Case 3, i.e., viscosity effect.

Fig. 11 shows how the local maximum points of Φ and Ψ move for λ in Cases 1 and 3, where
four cases are studied with the combinations for N = 0 and 0.05 and for ϵ = 0.1 and 0.2, where κ = 1
is fixed. The red lines indicate the movement of the local maximum points of Φ, and the black lines
indicate that of Ψ. The locations of those local maximum points may be convenient for this linear
theory to be applied to MHD simulations, rather than ξc [36]. As shown in Fig. 11, as those local
maximum points are separated from ξ = 0, λ monotonically increases. In the case of N = 0, i.e., Case
1, it seems that those local maximum points do not exceed ξ = 1.307, which is the outer edge of the
current sheet, i.e., where the increase in λ stops. In contrast, in the case of N = 0.05, i.e., Case 3,
those points can exceed ξ = 1.307. In addition, independent of ϵ, as N increases from zero to 0.05, λ
tends to drastically decrease. It is remarkable that , as ϵ increases from 0.1 to 0.2, the local maximum
point for N = 0 slightly shifts to the right but the local maximum point for N = 0.05 largely shifts to
the left. This inversion of the movements of the local maximum points may be related to Fig. 10(d).



Linear Theory of Visco-Resistive Tearing Instability (20xx)

Fig. 10(d): Linear growth rate λ with respect to κ in Case 3 for ϵ = 0.05, 0.1, 0.2, N = 0.05, and ξc = 6.

Fig. 11 : Linear growth rate λ with respect to the movements of the local maximum points of Φ and Ψ in Case 3
for κ = 1 with ϵ = 0.1, 0.2 and N = 0, 0.05.



Linear Theory of Visco-Resistive Tearing Instability (20xx)

Fig. 12 : Critical conditions of Cases 1, 4, and 5. Case 1 is also plotted in Fig.9(a). Case 4 is for 0.0005(c1-d1),
0.002(c2-d2), 0.05(c3-d3), and N = +∞(c4-d4). Red circles indicate the change point of the solution
types defined in Fig. 9(a). Case 5 is independent of N.

4.3 Cases 4 and 5

Fig. 12 shows the relation of κϵ and ξc for λ = 0 of Cases 1a, 4a, and 5a. Hence, the format of Fig. 12
is exactly the same as that of Fig. 9(a), and what are shown in this figure coincide with the foot points
of Cases 1 and 4 in Fig. 8. Case 1 in Fig. 12 is the same as that of Fig. 9(a). Above each line is the
unstable region of the tearing instability, and below is the stable region. Remarkably, the stable region
observed in κϵ < 0.2 and ξc > 2.12 of Fig. 9(a) is not observed in Fig. 12. In other words, the parts
of d1, d2, d3, and d4 observed in Fig. 9(a) seem to converge to Point d in Fig. 12. This means that
the current sheet is not stabilized in ξc > 2.12 even in N = +∞, because the unstable region steadily
exists in 0 < κϵ < 0.6. Another remarkable aspect is that Case 5 observed in Fig. 12 has no stable
region in ξc > 2.12, regardless of κϵ and N.

Fig. 13(a) shows how λ changes for N in various κ for Case 4, where some cases of ξc = 3.6
and 4.8 are studied. Hence, this figure format is almost the same as that of Fig. 10(a). The λ value in
N = 0 is obtained in Case 1. As N increases, λ monotonically decreases but does not reach zero. This
is evidently different from Fig. 10(a). This means that the zero-crossing solutions exist in N = +∞.
In N > 0.006, λ in every line is almost saturated.

Fig. 13(b) shows how λ changes for ξc with regards to some ϵ values for Cases 4b and 4c. Hence,
this figure format is the same as that of Figs. 8 and 10(b). As ϵ approaches zero, λ monotonically
increases and seems to saturate at a value below unity. The λ value in every case studied in this paper
does not exceed unity, which is consistent with previous works [36]. This means that the tearing
instability always grows at a sub-Alfvenic speed, i.e., λ < 1.
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Fig. 13(a): Linear growth rate λ with respect to N in Case 4 for κ = 0.2, 0.5, 1, 1.5, ϵ = 0.1, and ξc = 3.6, 4.8.

Fig. 13(b): Linear growth rate λ with respect to ξc in Case 4 for κ = 1, ϵ = 0.02, 0.1, 0.2, 0.3, and N = +∞.
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5 Discussions

5.1 Cases 1 vs 2: Non-uniformity of the Resistivity

First, we compare Cases 1 and 2, in which the linear growth rate λ is affected by the non-uniformity
of the resistivity. These cases are inviscid. Case 2 is close to the FKR and original LSC theories
because the resistivity is ignored in the outer region. In those two theories, the resistivity in the outer
region is considered not important to determine the linear growth rate. Hence, it is expected that λ
in Cases 1 and 2 are the same. As expected, Fig. 8 shows that the λ’s in Cases 1, 1b and 2 almost
coincides. However, Fig. 9(a) shows that the critical condition in ξc > 3 is separated between Cases
1 and 2. This means that the non-uniformity of the resistivity assists in causing tearing instability.
The non-uniformity in Case 2 is just an example. There are a lot of variations for the non-uniformity,
such as an anomalous resistivity. This paper suggests that, regarding the speed at which the tearing
instability grows, more variations in the non-uniformity of the resistivity must be studied.

5.2 Cases 1 vs 3: Introduction of the Viscosity

The viscosity will slowly cause tearing instability. The slowing seems to originate from the change in
the upstream open boundary by the introduction of the viscosity. In fact, in Case 1, Φ′(ξc) = uy < 0
is possible at the upstream boundary, resulting in zero-crossing solutions. It means that the plasma
flow uy along the upstream boundary is non-zero, where uy < 0 generates the plasma convection
around the boundary, which promotes the plasma inflow toward the X-point. In contrast, in Case 3,
Φ′(ξc) = uy = 0 is maintained, resulting in zero-contact solutions. Hence, λ in Case 1 is much higher
than that of Case 3, as shown in Fig. 8.

Rather, the most remarkable point found in this paper is that, as shown in d1∼d4 of Fig. 9(a),
the stable region in Case 3 appears in κϵ < 0.2 and κϵ > 0.45 ∼ 0.9, while the region in Case 1
appears only in κϵ > 1.1. This difference between Cases 1 and 3 is important. This means that the
current sheet in Case 1 is not stabilized in ξc > 1.1, where tearing instability occurs in any resistivity.
Meanwhile, the current sheet in Case 3 is stabilized below a critical ξc value that depends on N. The
critical ξc is indicated as the cross points in Fig. 9(a), which are defined as ξcrit and later applied to
the MHD simulations.

5.3 Case 3 vs 4 and 5: Non-uniformity of the Viscosity

In this section, the non-uniformity of the viscosity is discussed. As shown in Fig. 8, λ in Case 3
is much lower than those in Cases 4 and 5. This means that the uniformity of the viscosity steadily
suppresses the tearing instability. As mentioned in Section 5.1, regarding the speed at which the
tearing instability grows, more variations in the nonuniformity of the viscosity must be studied .

In every finite differential MHD simulation, numerical viscosity and resistivity are implicitly
employed to prevent numerical explosions, which are designated to effectively work in an extremely
thin current sheet. Such numerical viscosity and resistivity may be non-uniform, which are similar
to Cases 2, 4 and 5. In particular, in the MHD simulations of plasmoid instability (PI) for high
S , as tearing instability is repeated, the current sheet gradually becomes thinner. Then, the tearing
instability in the thin current sheet may be artificially faster by the numerical viscosity and resistivity.
Since such MHD simulations assume uniform resisitivity, the effect of the numerical non-uniform
viscosity and resistivity, i.e., numerical dissipations, must be carefully checked.
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5.4 Cases 4 and 5: Variations in Non-uniform Viscosities

Regardless of whether the non-uniform viscosity is physical or numerical, when non-uniform viscosity
is employed in MHD simulations, either Case 4 or 5 will occur. Otherwise, those cases and Case 3
may mixedly appear. The appearance will depend on the selection of the numerical schemes and the
type of boundary conditions in the MHD simulation. In particular, the difference between Cases 4
and 5 is related to whether the differential discontinuity appears at ξ = 1.307 or not. In Case 5, the
differential discontinuity appears, which may be classified into a mathematically weak solution. In
Case 4, it does not appear, which may be classified into a strong solution. Fig. 8 shows that λ in Case
4 tends to be higher than those in Cases 3 and 5. That may originate in the difference of the upstream
boundary conditions, as mentioned in Section 5.2.

5.5 Summary of the Comparisons of Cases 1-5

Eventually, through the comparisons of Cases 1-5, we conclude that the linear growth of the tearing
instability is significantly affected by the non-uniformity of the viscosity and the upstream boundary
conditions.

5.6 Applications

5.6.1 Critical Condition N/ξcrit = 0.06 of Case 3

This section is the highlight of this paper. Before the applications, we derive the critical condition for
Case 3, beyond which the tearing instability occurs and below which the current sheet is stabilized.
The cross points in Fig. 9(a) indicate the locations of the critical ξc beyond which the unstable κϵ
range appears. We define the critical ξc as ξcrit. When ξc > ξcrit, tearing instability occurs at the
largest growth rate in the unstable κϵ range. Inversely, when ξc < ξcrit, since an unstable κϵ range does
not appear, the current sheet is stable for the tearing mode. As shown in Fig. 9(a), ξcrit depends on N.
Fig. 14(a) shows how N and dN/dξcrit depend on ξcrit, where N monotonically increases with respect
to ξcrit. For larger ξcrit, dN/dξcrit seems to be almost saturated at 0.06. We assume that the increase in
N is linear. In that case, as shown by the dashed line in Fig. 14(a), the linear increase is approximately
measured as N = 0.06(ξcrit − 2.65), which may be simplified to N = 0.06ξcrit for sufficiently large
ξcrit. As a result, tearing instability occurs in N/ξcrit = 0.06 > N/ξc, and the current sheet is stable
in N/ξc > 0.06. It is remarkable that since ξcrit in Cases 1 and 2 is fixed at 1.1 and those in Cases
4 and 5 are fixed at 2.1, the current sheet is not stabilized at larger ξc. This means that the uniform
viscosity assumed in Case 3 is important to stabilize the current sheet. Next, we discuss the meaning
of N/ξcrit = 0.06 in the MHD simulations of PI.

5.6.2 Measurement of ξc and N in MHD simulations

Simply, ξc is the location of the upstream open boundary which will be close to the open boundary
often employed in MHD simulations. We define the location in the MHD simulations as Lx, which
is the size of the simulation box in the normal direction to the current sheet [36,54]. Then, it results
in ξc = 1.307Lx/δcs, where the outer edge of the current sheet in the modified LSC theory is fixed
at ξ0 = 1.307 and the outer edge in the MHD simulations is δcs. In most MHD simulations, Lx

is fixed throughout the execution of the simulation. However, δcs may change, depending on each
single event of the tearing instability repeated in PI. Hence, ξc = 1.307Lx/δcs may change in PI and
is interpreted to be the inversion of δcs, which is related to the resistivity. On the other hand, in most
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Fig. 14(a): Relation of N and ξcrit in Case 3, which is obtained from Fig. 9(a). This figure shows when the current
sheet is stabilized, i.e., the critical condition.

MHD simulations of PI, the resistivity η and viscosity ν are maintained as constant throughout the
execution of the simulation. These values are translated to ϵ and N, respectively, via ϵ2/2 = η/(VALcs)
and N = 2ν/(VALcs), where ϵ = 2δcs/Lcs. In most MHD simulations of PI, VA almost does not
change throughout the execution, but Lcs may change in each single event of the tearing instability
[36]. Hence, the viscosity N = 2ν/(VALcs) is interpreted to be the inversion of Lcs, which is related to
the viscosity. As a result, Fig. 14(a) shows how δcs and Lcs change in the critical condition.

Eventually, the linear critical condition N/ξc = 0.06 is translated to ην/(1.307V2
ALxδcs) = 0.06

in the MHD simulation. In addition, by defining the Lundquist number S = VALcs/η and magnetic
Prandtl number Pm = ν/η, N/ξc = 2Pm/(S ξc) is obtained. Since 1.307/ξc is the ratio of the current
sheet thickness and the distance between the upstream open boundary and the neutral sheet, 2Pm/(S ξc)
consists of those three dimensionless parameters.

5.6.3 Forward and Inverse Cascade Processes of PI

There are many MHD numerical studies on the cascade process observed in PI, where the tearing
instability is intermittently repeated and the size is gradually changed from a large scale to a small
scale [20,22,25,26,27,28,29,30,42,43, 44]. The scale change is caused by the forward cascade pro-
cess. If the forward cascade is sufficiently developed, the current sheet will become a turbulent state.
Those studies expect that a few large-scale (monster) plasmoids are formed at a fairly high magnetic
reconnection rate [31,32,33,45,46]. To generate such large-scale plasmoids, the forward cascade pro-
cess must be stopped or sufficiently suppressed. Because, the forward cascade cannot generate such
large-scale plasmoids. Once the forward cascade occurs, the formation of large-scale plasmoids will
require the inverse cascade process by which the magnetic energy is converted from a small scale to
a large scale [47,48]. However, it is still unclear how the forward cascade process observed in PI is
stopped [7,29,49] or suppressed in the extremely thin current sheet.
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5.6.4 Limit of the Forward Cascade

Since the cascade process is essentially non-linear, the application of the modified LSC theory, which
is linear, must be limited. In this section, we focus only on how the forward cascade stops in PI, for
which linear theory will be applicable. When the forward cascade sufficiently proceeds, the tearing
instability will eventually occur at an extremely small scale. Many people will expect that such an
extremely small-scale tearing instability somehow stops, i.e., is stabilized. It should certainly stop,
but it is unclear how the forward cascade stops in the MHD simulations of PI. The issue must be
considered.

First, the tearing instability on a smaller scale than the numerical grid size cannot be correctly
studied in finite differential MHD simulations. In that case, numerical explosions will occur, because
of numerical errors. To prevent the numerical explosion, numerical dissipations may be effectively
implemented, in which any artificial resistivity and viscosity should be included. In such cases, the
numerical result will depend on the selection of the numerical scheme, such as HLLD or 2-step Lax-
Wendroff, where the resistivity and viscosity will no longer be uniform. If so, PI activated by ”uni-
form” resistivity cannot be exactly studied in such simulations. To focus on the uniform resistivity
and viscosity, the forward cascade must stop with the uniform dissipations before the scale reaches
the numerical grid size.

Second, if the forward cascade does not stop, an inverse cascade may not occur. In that case, very
large plasmoids will not be generated, which is expected for PI to be a fast magnetic reconnection
process. Hence, it should be worth studying how the forward cascade stops in PI.

5.6.5 Critical Condition in the MHD Simulations of PI

In this section, we select two previous MHD simulations [36,54] and apply the critical condition
ην/(1.307V2

ALxδcs) = 0.06 to them.
The MHD simulation [54] executed by HLLD scheme is for inviscid-resistive MHD, i.e., the case

of ν = 0. Similarly, there are many numerical MHD studies of PI in which the viscosity [7,36,50,53]
is incorporated. In those cases, since ην/(1.307V2

ALxδcs) = 0.0, the forward cascade does not stop, as
shown in Fig. 9(a). In fact, the numerical dissipations implicitly included in the numerical scheme will
effectively work to stop the forward cascade and prevent numerical explosion. Since such numerical
dissipation will have a non-uniform resistivity, fully developed PI activated by uniform resistivity
cannot be correctly explored. Fortunately, the MHD simulation executed by Shimizu [54] was only
aimed at exploring how the forward cascade starts. Hence, how the forward cascade stops was not
explored.

The MHD simulation [36] executed by 2-step Lax-Wendroff scheme is for viscous-resistive
MHD, where η = 0.016, ν = 0.008, VA = 5.5, and Lx = 200. Rigorously, since the upstream
open boundary at x = Lx has a finite magnetic field intensity, the boundary is different from that of the
modified LSC theory. In fact, the magnetic field intensity f (ξ) is close to zero at large ξc, as shown
in Figs. 1-5. The difference may be problematic. However, let us show an application as an example.
We directly obtain ην/(1.307V2

ALxδcs) = 1.6 × 10−8/δcs. In the simulation, the thickness δcs of the
current sheet is initially 1.0. As PI proceeds, δcs gradually decreases from 1.0. For example, δcs = 0.5
is observed in the secondary tearing instability. Finally, we stopped the simulation when the fourth
tearing instability started. Hence, the simulation was not executed until the forward cascade stops,
where the inverse cascade and monster plasmoids were not observed. If the simulation were contin-
ued, the smallest δcs may reach the numerical grid size ∆x = 0.02, where the current sheet can no
longer be treated in the simulation, i.e., the simulation fails. In the extreme case of δcs = ∆x = 0.02,
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Fig. 14(b): Relation of N and ξcrit in Case 3. The blue solid line is extrapolated from Fig. 14(a), where the axis
scales are changed by 107 times. Hence, Fig. 14(a) is localized around the origin of this figure. Dash line
SP shows the relation of ξc and N in the SP model.

since ην/(1.307V2
ALxδcs) = 8.1 × 10−7 << 0.06, the forward cascade does not yet stop. This means

that the resistivity η or viscosity ν is too small to stop it. By downsizing the simulation box, Lx may
be largely reduced from 200 to 2. Even in that case, it does not stop. To steadily stop it, ην must be
roughly increased by 105 times. Otherwise, ∆x must be largely reduced., i.e., a much higher numerical
resolution is required to observe when the forward cascade stops.

Fig. 14(b) shows the physical meaning of what was discussed here. The range of Fig. 14(a) is
extremely localized at the origin of Fig. 14(b). In fact, the oblique straight line shows the critical
condition N = 0.06(ξcrit − 2.65) ∼ 0.06ξcrit predicted from Fig. 14(a). Then, the quadratic curve
is based on the SP model, i.e., ηLcs = 2VAδ

2
cs. This means that when VA and η are constant, Lcs

is proportional to δ2
cs. Note that Fig. 14 shows the critical relation of 1/Lcs and 1/δcs. Hence, the

quadratic curve shows that when 1/δcs slowly becomes larger in the progress of the forward cascade,
1/Lcs rapidly becomes larger. Hence, the straight line of N = 0.06(ξcrit − 2.65) will cross the curve at
a ξcrit value, i.e., around the upper-right corner of Fig. 14(b), where the forward cascade stops.

The discussions in this section may have some problems to be solved in the future. First, the
modified LSC theory is based on incompressible MHD while those MHD simulations are on com-
pressible MHD. Hence, this discussion in this section may be affected by the compressibility. Second,
as will be mentioned in Section 5.8, the modified LSC theory in the small κ range may be modified
by the improvement of the WKB approximation. Third, in the extension from Fig. 14(a) to (b), the
linearity of N − ξcrit was assumed.

5.7 Application for Real Plasma Physics

It will be important to discuss the trigger problem of the tearing instability observed in real plasma
observations, such as substorms and solar flares. In general, we may expect that, as the current sheet
becomes thin, the tearing instability is initiated at a certain time. As discussed in the preceding section,
the thinning increases ξc. If N is assumed to be constant in the thinning, the operating point (N, ξc)
located in Figs. 14(a) and (b) moves horizontally from left to right. If the operating point moves from
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the stable region to the unstable region, the tearing instability is initiated there.
Unfortunately, it is difficult to measure N and ξc in a real current sheet. The largest problem

is that the equilibrium in the modified LSC theory is 2D but that in real plasma phenomena will be
established in any 3D structure, e.g., the magnetosphere and magnetic flux tube. Since the 3D structure
in real plasma will always have a finite size, a finite ξc value will actually exist at an upstream point
in the 3D structure. Hence, Figs. 14(a) and (b) show the applicability of the trigger problem in real
plasma observations.

5.8 Comparison with previous linear theories

There are many studies on the linear theory of tearing instabilities, where the viscosity was studied
[5,6,9,11,12,13,21, 22,24, 51,55]. In most of these studies, the traditional FKR analysis style, in
which the outer region is assumed to be an ideal MHD and is connected to the resistive MHD inner
region with the ∆′ index, is implemented. Hence, they may be close to Cases 4 and 5. In addition,
except for the employment of a periodic boundary, the upstream boundary is set at the infinity point
ξc = +∞. In this paper, we suggest that the forward cascade does not stop in those cases. In other
words, tearing instability occurs even in the unlimitedly thin current sheet. This may be consistent
with Porcelli’s study [6], where it was reported that the viscosity slows the tearing instability but does
not remove it. In other words, it may have a delicate problem of the double limit of ξc = +∞ and
N = +∞. At least, Case 3 in this paper showed that the viscosity in the outer region is required to
stop it. On the other hand, Loureiro’s study [21] may be similar to Case 3. In fact, in their study, the
open boundary condition of Φ′′(ξc) = 0 was employed at a finite ξc < +∞. However, it seems that the
critical condition of λ = 0, such as those shown in Figs. 9(a), and hence, 14(a), was not obtained in
their paper.

5.9 WKB Approximation

The modified LSC theory developed in this paper is based on the linear perturbation equations studied
in the original LSC theory [8]. When the equations were introduced in the original LSC theory, the
lowest order of the WKB approximation was taken. For that reason, the modified LSC theory shown
in this paper is inapplicable for the low κ range, i.e., κ ∼ 0. To explore the tearing instability in
the low κ range, a higher-order WKB approximation must be made. The improvement of the WKB
approximation will be the next work to be studied (Eqs. (23) and (24) in Appendix, and [41]).

6 Summary

In this paper, the linear theory of the tearing instability in inviscid-resistive MHD was extended to
viscous-resistive MHD. The largest difference from previous studies of linear theory is the introduc-
tion of the upstream open boundary at a finite point. As listed in Table 1. in addition to when the
resistivity and viscosity are uniform, some variations in the non-uniformity were also studied. When
the non-uniformity is introduced in the resistivity and viscosity, i.e., Cases 2, 4, and 5, it was shown
that the linear growth rate λ can be enhanced, rather than the uniform case. This also means that the
tearing instability can be caused in an unlimitedly thin current sheet. It is remarkable that, even in the
infinite viscosity N = +∞, Cases 4 and 5 are not stabilized. Hence, in those non-uniform cases, the
forward cascade of plasmoid instability (PI) does not stop. This suggests that the MHD equation for
those non-uniform cases fails to fully describe the end of the forward cascade. Such an MHD equa-
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tion cannot be exactly solved in finite differential numerical simulations because instability occurs on
a smaller scale than the numerical grid sizes, i.e., ∆x.

In addition, in Case 3, it was also shown that, in N/ξc = ην/(1.307V2
ALxδcs) > 0.06, the current

sheet is stabilized for the tearing mode, i.e., the forward cascade stops. Then, the critical condition
was applied to two MHD simulations [36,54]. It suggests that the viscosity ν and resistivity η assumed
in the high-S MHD simulations of PI is too small to stop the forward cascade before the thickness of
the current sheet reaches the numerical grid size.
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8 Appendix

In this section, following Loureiro’s notation [8], we introduce viscosity to the inviscid perturbation
equations proposed by Loureiro. First, we employ the equilibrium of ϕ0 and ψ0 derived in Chapter 2.
Then, we set ϕ = ϕ0 + δϕ, ψ = ψ0 + δψ, where δϕ(x, y, t) = ϕ1(x, t)eik(t)y and δψ(x, y, t) = ψ1(x, t)eik(t)y

with k(t) = k0e−Γ0t. The perturbation equations for Eqs. (3) and (4) are translated as follows:

(∂2
x − k2)∂tϕ1 − Γ0x∂x(∂2

x − k2)ϕ1 + 2Γ0k2ϕ1

= [B0y(x)(∂2
x − k2) − ∂2

xB0y(x)]ikψ1 + ν(∂4
x − 2k2∂2

x + k4)ϕ1 (21)

∂ψ1 − Γ0x∂xψ1 − B0yikϕ1 = η(∂2
x − k2)ψ1 (22)

Except for the viscosity term, these equations are exactly the same as Eqs. (6) and (7) that were
derived from the original LSC theory [8]. Furthermore, we set ϕ1 = −iΦ(x)eγt and ψ1 = Ψ(x)eγt. In
the same manner as the derivation of the equilibrium, we translate Eqs. (21) and (22) with x = δcsξ,
κ = k0VA/Γ0 = k0Lcs/2, ϵ = 2δcs/Lcs, λ = γ/(Γ0κ) and N = 2ν/(VALcs) = ν/Γ0.

NΦ′′′′ = κϵ2((λ + 2κN)Φ′′ − (λ + κN)κ2ϵ2Φ + f (ξ)(Ψ′′ − κ2ϵ2Ψ) − f ′′(ξ)Ψ

−ξΦ′′′/κ + κϵ2ξΦ′ + 2κϵ2Φ) (23)

Ψ′′ − κ2ϵ2Ψ = κλΨ − κ f (ξ)Φ − ξΨ′ (24)

where f (ξ) = B0y/VA. Regarding the tearing instability, Φ > 0 and Ψ > 0 must be required for
ξ > 0. The prime of Φ and Ψ indicates the derivative with respect to ξ, which is normalized by the
characteristic width δcs of the current sheet, as ξ = x/δcs. Following the LSC notation, λ is the growth
rate normalized by lcs/VA, where lcs is the wavelength of the plasmoid chain and VA is the Alfven
speed measured in the upstream magnetic field region. κ = πLcs/lcs is the wavenumber along the
current sheet, where Lcs is the total length of the steady-state SP sheet. As mentioned in Shimizu’s
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paper [36], Lcs is related to the spatial gradient of the outflow velocity uy0 measured at the X-point, as
duy0/dy = 2VA/Lcs.

In fact, Eqs.(23) and (24) can be numerically solved by the IVP technique but it is fairly difficult.
As mentioned in Section 5.8, this will be examined in future works. For simplicity, in this paper,
γ >> Γ0, i.e., k(t) = k0, is assumed. This simplification is the same as that in the original LSC theory
[8]. Then, Eqs. (23) and (24) are transferred as follows.

NΦ′′′′ = κϵ2((λ + 2κN)Φ′′ − (λ + κN)κ2ϵ2Φ + f (ξ)(Ψ′′ − κ2ϵ2Ψ) − f ′′(ξ)Ψ) (25)

Ψ′′ − κ2ϵ2Ψ = κλΨ − κ f (ξ)Φ (26)

These equations are solved in Cases 3, 4, and 5. These equations with N=0 are solved in Cases
1 and 2. Here, the assumption of γ >> Γ0 means that k(t) slowly changes in the linear growth time.
Notably, as y increases, since the plasma outflow speed u0y = ∂xϕ0 = Γ0y unlimitedly increases, k(t)
quickly changes over time. Hence, this assumption is applicable in y ∼ 0 and k >> 0.
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