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D’Alamebrt and Hamiltonian principles and classical relativity in

Lagrangian mechanics

Božidar Jovanović

Abstract. In this note we present invariant formulation of the d’Alambert principle
and classical time-dependent Lagrangian mechanics with holonomic constraints from
the perspective of moving frames.

1. Introduction

We consider a classical mechanical Lagrangian system (Q,L), where Q is an n–dimen-
sional configuration space and L : TQ× R→ R is a time-dependent Lagrangian.

The d’Alambert principle or d’Alambert-Lagrange principle states that the trajectories
of a mechanical system can be obtained from the condition that the variational derivative
of the Lagrangian vanishes along virtual displacements [1–3]. It is one of the basic tools
in mechanics and is applied to both holonomic and nonholonomic systems. For holonomic
systems, the principle is equivalent to the Hamiltonian principle of least action. Motivated
by the notion of fixed and moving reference frames in rigid body dynamics [2,3], we consider
arbitrary time-dependent transformations between the configuration space Q (the fixed ref-
erence frame) and the manifold M diffeomorphic to Q (the moving reference frame) and
consider trajectories of a classical Lagrangian system in both reference frames (section 2).
In particular, we consider systems with time-dependent holonomic constraints (section 3).
All considerations are valid without the assumption that the Lagrangian is regular and are
derived without the use of Lagrange multipliers. For this reason, we do not discuss the
uniqueness of the solution.

In section 4 we apply the construction of moving reference frames for the invariant
formulation of classical Lagrangian mechanics in a space-time, (n+1)–dimensional manifold
Q fibred over R with fibers diffeomorphic to Q. The invariant formulation of time-dependent
classical Lagrangian mechanics is well studied (see e.g. [9,10] and references therein). Here
we have tried to present it with minimal technical requirements.

All considered objects in the note are assumed to be smooth.

2. D’Alambert principle and dynamics of relative motions

2.1. D’Alambert principle and Hamiltonian principle of least action. Let us
consider a Lagrangian system (Q,L), where Q is an n–dimensional configuration space and
L(q, q̇, t) is a Lagrangian, L : TQ×R→ R. Let q = (q1, . . . , qn) be local coordinates on Q. A
curve γ : q(t) = (q1(t), . . . , qn(t)) is a motion of the system if it satisfies the Euler–Lagrange
equations

(2.1)
d

dt

∂L

∂q̇i
=

∂L

∂qi
, i = 1, . . . , n.
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2 JOVANOVIĆ

The solutions of the Euler–Lagrange equations are exactly the critical points of the
action integral

(2.2) SL(γ) =

∫ b

a

L(γ, γ̇, t)dt

in a class of curves

(2.3) Ω = Ω(Q, q0, q1, a, b) = {γ : [a, b]→ Q, γ(a) = q0, γ(b) = q1}

with fixed endpoints (the Hamiltonian principle of least action (1834), see e.g. [2–4,12]).
Namely, let γ ∈ Ω, let γs ∈ Ω, s ∈ (−ǫ, ǫ) be a smooth variation of γ (γ0 = γ), and let

η =
d

ds
|s=0(γs)

be the corresponding vector field along the curve γ ⊂ Q. Then

(2.4) lim
s→0

1

s

(

S[γs]− S[γ]
)

=

∫ b

a

δL(η)|γdt,

where δL(η)|γ is a variational derivative of L along γ in a direction of η. Let ξ and γ be
arbitrary time-dependent vector fields and a curve on Q. The variational derivative of L
along γ in the direction of ξ is defined by

(2.5) δL(ξ)|γ =

n
∑

i=1

( ∂L

∂qi
−

d

dt

∂L

∂q̇i
)

ξi|γ ,

where ξ =
∑

i ξ
i(q, t)∂/∂qi and γ is given by q(t) = (q1(t), . . . , qn(t)) in a local coordinate

system q = (q1, . . . , qn). Therefore, γ(t) is an extremal of the action functional if and only
if it satisfies the Euler–Lagrange equations (2.1).

In classical mechanics, for a given curve γ, q(t) = (q1(t), . . . , qn(t)), a time-dependent
vector field η along γ is usually referred to as a vector field of virtual displacements. By using
the variational derivative, we can formulate the dynamics in terms of the d’Alambert prin-
ciple: a curve γ(t) is a motion of the Lagrangian system (Q,L) if the variational derivative
δL(η) is equal to zero,

δL(η)|γ =

n
∑

i=1

( ∂L

∂qi
−

d

dt

∂L

∂q̇i
)

ηi|γ = 0,

for all virtual displacements η along γ [1–4].
Although the statement of the principle is equivalent to the fact that an element of a

dual space of a vector space is zero if and only if its kernel is the entire vector space, it is
fundamental for the formulation of Lagrangian mechanical systems with constraints.

2.2. Dynamics in the moving frames. In analogy to rigid body dynamics, where we
consider the fixed and the moving frames defined by time-dependent isometries of Euclidean
space, we consider the moving reference frame in a general Lagrangian system (Q,L) as a
time-dependent diffeomorphism 1

gt : M → Q, q = gt(x).

Here M = Q, but we use different symbols to emphasise the domain and codomain of the
mapping: the variable q is in the fixed frame, while the variable x is in the moving reference
frame. Furthermore, in analogy to the angular velocity in the fixed and in the moving frame,
we define the time-dependent vector fields ωt ∈ X(Q) and Ωt ∈ X(M) by the identities

ωt(q) =
d

ds
|s=0

(

gt+s ◦ (gt)
−1(q)), Ωt(x) =

d

ds
|s=0

(

(gt)
−1 ◦ (gt+s)(x)).

1On the other hand, note that in [5] the rigid body dynamics is considered from the perspective of continuum
mechanics.
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Note that gt is a curve in the Lie group Diff(Q) and the vector fields ωt and Ωt are
elements of its Lie algebra X(Q) = Lie(Diff(Q))2 given by the right and left translation of
the velocity ġt. They are related by the adjoint mapping: ωt = Adgt(Ωt). Furthermore, as
in the case of the rigid body we have the following proposition.

Proposition 2.1. (i) The angular velocity vector fields are related as follows

dgt(Ωt)|x = ωt|q=gt(x).

(ii) The addition of velocities Let Γ(t) be a smooth curve on M and γ(t) = gt(Γ(t))
be the associated curve on Q. Then

γ̇ = dgt(Γ̇)) + ωt(gt(Γ(t))).

Conversely, for a given curve γ(t) and the associated curve Γ(t) = g−1
t (γ(t)), we have

Γ̇ = dg−1
t (γ̇))− Ωt(g

−1
t (γ(t))).

For a given Lagrangian L : TQ× R → R, we define the associated Lagrangian l in the
moving frame by

(2.6) l(x, ẋ, t) := L(q, q̇, t)|q=gt(x),q̇=dgt(ẋ)+ωt(gt(x)).

The following observation is of fundamental importance for the further explanations.

Proposition 2.2. Let Γ(t) and ξ be a smooth curve and a vector field in the moving
frame and γ(t) = gt(Γ(t)) and η = dgt(ξ) the associated curve and the vector field in the fixed
frame, t ∈ R. Then the variational derivative of L along γ in the direction of ξ coincides
with the variational derivative of l along Γ in the direction of η:

(2.7) δL(η)|γ = δl(ξ)|Γ.

Proof. Consider local coordinates q = (q1, . . . , qn) and x = (x1, . . . , xn) defined in the
domains U and V , neighborhoods of the points q0 = gt0(x0) ∈ Q and x0 ∈M . The mapping
gt is given by functions

(2.8) qi = Qi(x, t) = Qi(x1, . . . , xn, t), i = 1, . . . , n,

defined for some time interval I (t0 ∈ I),

gt(V ) ⊂ U, t ∈ I.

Then the angular velocity vector field in the fixed frame is given by

ωt(gt(x)) =

n
∑

i=1

∂Qi(x, t)

∂t

∂

∂qi
.

The curves Γ(t) and γ(t) = gt(Γ(t)), t ∈ I, are given locally by the functions xi = xi(t)
and qi = Qi(x(t), t). The law of addition of the velocities is

(2.9) q̇i =

n
∑

j=1

∂Qi(x, t)

∂xj
ẋj +

∂Qi(x, t)

∂t
.

By plugging (2.8) and (2.9) into (2.6), after straightforward computations, we get that
along Γ(t) we have (see e.g. [13])

∂l

∂xi
−

d

dt

∂l

∂ẋi
=

n
∑

j=1

( ∂L

∂qj
−

d

dt

∂L

∂q̇j
)∂Qj

∂xi
, i = 1, . . . , n,

which together with the definitions of η,

ηj |q=gt(x) =

n
∑

k=1

∂Qj

∂xk
ξk|x, j = 1, . . . , n,

and the variational derivative (2.5), imply the statement of the proposition. �

2Here we are not interested in the smooth structures of these infinite-dimensional objects
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Remark 2.1. If we consider the functions Qi that do not depend on time (ωt ≡ 0), the
proof of Proposition 2.2 is actually the proof that the variational derivative (2.5) does not
depend on the coordinate system of the configuration space Q.

By setting both sides of the equality (2.7) to zero, Proposition 2.2 can be interpreted
as: If a motion satisfies the d’Alambert principle in one reference frame, then it satisfies the
principle in arbitrary reference frame

As a direct consequence, we also obtain the invariance of the Hamitonian principle of
least action.

Theorem 2.1. Let x0 = g−1
a (q0) and x1 = g−1

b (q1). A curve γ(t) in fixed space Q is
the critical point of the action integral (2.2) in the class of curves (2.3) if and only if the
curve Γ(t) = g−1

t (γ(t)) in the moving frame M the critical point of the action integral

Sl(Γ) =

∫ b

a

l(Γ, Γ̇, t)dt

in a class of curves

Ω(M,x0, x1, a, b) = {Γ: [a, b]→M, Γ(a) = x0,Γ(b) = x1}.

Remark 2.2. Let us recall on the Galilean principle of relativity (see [2,11]):

• All laws of nature are the same at all times in all inertial coordinate systems.
• A coordinate system that is in uniform rectilinear motion with respect to an inertial

frame is also inertial.

Depending on the geometric structure of the 4-dimensional affine space-time, we obtain
two different mechanics: classical and special relativity, which have the same principle of
relativity (see e.g. [6]). On the other hand, d’Alambert’s principle satisfies the following
general variant of the principle of relativity, which does not include any notion of inertial
frames:

• All laws of nature are the same at all times in all reference systems

Again, with suitable geometric structures on space-time manifolds, we can obtain both
the general theory of relativity and classical mechanics. The invariant formulation of classical
Lagrangian mechanics on a space-time manifold is well known (see e.g. [9,10] and references
therein). Here, in section 4, we have tried to present it with minimal technical requirements.

3. D’Alambert principle for systems with holonomic constraints

3.1. Time-dependent holonomic constraints. We now consider the Lagrangian
system (Q,L,Υt) in which a motion γ(t) is restricted to time-dependent m–dimensional
immersed submanifolds Υt = gt(Σ),

gt : Σ→ Υt ⊂ Q, t ∈ R,

without selfintersections. The curves γ : R → Q that satisfy γ(t) ∈ Υt (t ∈ R) are called
admissible.

Typically, we have a situation like in the previous section, where Σ is a fixed m–
dimensional immersed submanifold of M = Q without selfintersections. In mechanics,
the above restrictions on a motion of the system are usually called time-dependent (or
rheonomic) holonomic constraints.

Remark 3.1. Usually one considers embedded submanifolds Υt = gt(Σ), t ∈ R. How-
ever, we can assume a non-holonomic system on Q with integrable constraints. As a result,
Q is foliated on integral immersed submanifolds without selfintersections and we can con-
sider a motion on a single integral leaf. For example, let us consider a system describing a
rolling without sliding of a disk of radius r over a disk of radius R. The configuration space
is a torus T2. It is known that the corresponding nonholonomic constraint is integrable.
If r/R /∈ Q, the configuration space is foliated on everywhere dense integral curves of the
distribution.
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Consider local coordinates q = (q1, . . . , qn) and x = (x1, . . . , xm), defined in the domains
U and V , neighborhoods of the points q0 = gt0(x0) ∈ Q and x0 ∈ Σ. The mapping gt is
given locally by functions

(3.1) qi = Qi(x, t) = Qi(x1, . . . , xm, t), i = 1, . . . , n,

defined for some time interval I (t0 ∈ I),

gt(V ) ⊂ U ⊂ Q, t ∈ I.

Locally, the submanifolds gt(V ) ⊂ Υt can be given by equations

(3.2) fα(q
1, . . . , qn, t) = 0, α = 1, . . . , n−m,

where the rank of the matrix ∂fα/∂q
j is equal to n−m and

fα(Q
1(x1, . . . , xm, t), . . . , Qn(x1, . . . , xm, t), t) ≡ 0, x ∈ V ⊂ Σ, t ∈ I.

Now we can only define the time-dependent angular velocity vector field ωt as a section
of TΥt

Q:

ωt(q) =
d

ds
|s=0

(

gt+s ◦ (gt)
−1(q)), q = gt(x), x ∈ Σ,

i.e,

ωt(gt(x)) =
n
∑

i=1

∂Qi(x, t)

∂t

∂

∂qi
, x ∈ Σ.

Let Γ be a smooth curve on Σ and let γ(t) = gt(Γ(t)) be the associated curve on Q.
Then, as in the case of moving frames considered above, we have

γ̇ = dgt(Γ̇) + ωt(gt(Γ(t))),

or locally,

(3.3) q̇i =
m
∑

j=1

∂Qi(x, t)

∂xj
ẋj +

∂Qi(x, t)

∂t
.

In other words, the admissible velocities (velocities allowed by holonomic constraints)
at the point q = gt(x) ∈ Υt belong to the affine subspace of the tangent bundle TΥt

Q:

Aq,t = ωt(gt(Γ(t))) + dgt(TxΣ)) = ωt(gt(Γ(t))) + TqΥt ⊂ TqQ.

The vectors that are tangent to the constraint submanifolds η ∈ TqΥt ⊂ TqQ and
ξ ∈ TxΣ ⊂ TxM are called virtual displacements :

Vq,t = TqΥt = dgt(Vx), Vx = TxΣ.

Note that in the “moving frame” Σ ⊂ M the space of admissible velocities coincides with
the space of virtual displacements: Ax = Vx = TxΣ.

By using the constraint (3.2), the spaces of admissible velocities and virtual displace-
ments are usually described by the equations

∂fα
∂t

+

n
∑

i=1

∂fα
∂qi

ξi = 0, and

n
∑

i=1

∂fα
∂qi

ξi = 0, α = 1, . . . , n−m,

respectively.
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3.2. External description of the dynamics: d’Alembert principle. In classical
mechanics, dynamics in the case of ideal holonomic constraints is defined by the d’Alembert
principle: a curve γ(t) ∈ Υt is a motion of the constrained Lagrangian system (Q,L,Υt) if
the variational derivative δL(η)|γ vanishes for all virtual displacements η along γ:

(3.4) δL(η)|γ =

n
∑

i=1

( ∂L

∂qi
−

d

dt

∂L

∂q̇i
)

ηi|γ = 0, η|γ(t) ∈ Vγ(t) = Tγ(t)Υt.

In the case of ideal holonomic constraints, the d’Alambert principle is equivalent to
the Hamiltonian principle of least action: the constrained motions are critical points of the
action integral (2.2) in a class of curves

(3.5) Ω = Ω(Υt, q0, q1, a, b) = {γ : [a, b]→ Q, γ(t) ∈ Υt, γ(a) = q0, γ(b) = q1}.

Namely, let γs ∈ Ω, s ∈ (−ǫ, ǫ) be a smooth variation of γ ∈ Ω, γ0 = γ. Then

η(t) =
d

ds
|s=0(γs) ∈ Vγ(t) = Tγ(t)Υt,

and the statements follow from the identity (2.4).
On the other hand the Hamiltonian principle of least action is not equivalent to the

d’Alambert principle in the case of non-holonomic cost constraints. One of the attempts
to formulate non-holonomic dynamics from the variational principle is given by Kozlov (see
e.g. [3]). We will discuss the non-holonomic constraints in a separate paper.

3.3. Intrinsical formulation of the dynamics. As in the cases of moving frames,
for a given Lagrangian L : TQ×R→ R we define the Lagrangian lΣ by

(3.6) lΣ(x, ẋ, t) := L(q, q̇, t)|q=gt(x),q̇=dgt(ẋ)+ωt(gt(x)).

Instead of solving the system (3.4) in redundant variables (q1, . . . , qn) using the method
of Lagrange multipliers, it is more convenient to consider a standard Lagrangian system
(Σ, lΣ). We can reduce the problem using the following analogue of Proposition 2.2.

Proposition 3.1. Let Γ(t) and ξ be a smooth curve and a vector field of virtual dis-
placements along Γ in Σ and let γ(t) = gt(Γ(t)) and η = dgt(ξ) be the associated curve and
the vector field of virtual displacements in Q. Then

(3.7) δL(η)|γ = δl(ξ)|Γ.

Proof. The proof is the same as in the case of Proposition 2.2. By setting (3.1) and
(3.3) into (3.6), after straightforward computations, along Γ(t) we obtain

∂l

∂xi
−

d

dt

∂l

∂ẋi
=

n
∑

j=1

( ∂L

∂qj
−

d

dt

∂L

∂q̇j
)∂Qj

∂xi
, i = 1, . . . ,m,

which together with the definitions of η,

ηj |q=gt(x) =

m
∑

k=1

∂Qj

∂xk
ξk|x, j = 1, . . . , n,

and the variational derivative (2.5), imply (3.7). �

Since Tgt(x)Υt = dgt(TxΣ), we get.

Theorem 3.1. A curve γ(t) ∈ Υt is a motion of the constrained Lagrangian system
(Q,L,Υt) if and only if Γ(t) = g−1

t (γ(t)) is a motion of the Lagrangian system (Σ, lΣ). This
means that in local coordinates (x1, . . . , xm) on Σ a curve Γ: x(t) = (x1(t), . . . , xm(t)) is a
solution of the Euler–Lagrange equations

d

dt

∂lΣ
∂ẋi

=
∂lΣ
∂xi

, i = 1, . . . ,m.

Furthermore, for systems with constraints we also have
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Theorem 3.2. Let x0 = g−1
a (q0) and x1 = g−1

b (q1). A curve γ(t) in fixed space Q is
the critical point of the action integral (2.2) in a class of curves satisfying the constraints
(3.5) if and only if the curve Γ(t) = g−1

t (γ(t)) is the critical point of the action integral

SlΣ(Γ) =

∫ b

a

lΣ(Γ, Γ̇, t)dt

in a class of curves Ω(Σ,x0,x1, a, b) = {Γ: [a, b]→ Σ, Γ(a) = x0,Γ(b) = x1}.

In particular, we can consider the time-independent constraints,

gt ≡ ı,

where ı : Σ →֒ Q is the inclusion of the submanifold Σ in Q. Then

lΣ = L|TΣ

and Theorem 3.1 becomes the standard statement for systems with holonomic constraints
that do not depend on time [2,3].

Remark 3.2. All considerations are valid without the assumption that the Lagrangian
is regular and are derived without the use of Lagrange multipliers. Therefore, the uniqueness
of the solution is not considered (see [9]). In the case where the Lagrangian is regular, we
can apply the Legendre transformation and proceed to the Hamiltonian description of the
time-dependent mechanical systems. In this case, we have studied Noether symmetries and
integrability in contact and cosymplectic frameworks [7,8].

4. Space-time formulation of Lagrangian mechanics

4.1. Space-time and reference frames. A space-time manifold in classical La-
grangian mechanics is an (n+ 1)–dimensional fiber manifold over real numbers

(4.1) τ : Q −→ R,

where the fibers are diffeomorphic to an n–dimensional configuration space Q.
The points q in Q are called events and the fibers τ−1(a), a ∈ R, are called spaces of

simultaneous events. We say that the event q0 occurred before the event q1 if τ(q0) < τ(q1).
A time line (or world line) is a smooth curve s(t), a section of the fibration (4.1), τ(s(t)) = t.
A time line s(t), t ∈ [a, b] is between (or connects) the events q0 and q1 if s(a) = q0 and
s(b) = q1.

The space of virtual displacements is a subbundle of TQ, the vertical distribution of the
fibration (4.1), defined by

V = ∪q∈QVq, Vq = kerdτ |q = {ξ ∈ TqQ, dτ |q(ξ) = 0}.

Since for time lines we have dτ(ṡ(t)) = 1, we also consider the affine subbundle of TQ
(the first jet bundle [10]),

J = ∪q∈QJq, Jq = {ξ ∈ TqQ, dτ |q(ξ) = 1}.

It is clear that J is diffeomorphic to V .
The (global) reference frame is a trivialization

ϕα : Q −→ Qα × R, Qα
∼= Q,

ϕα(q) = (qα, tα),

such that

τ(ϕ−1
α (qα, tα)) = tα + cα, cα ∈ R.

In other words: In the reference frame ϕα we set the time tα to zero at the space of
simultaneous events τ−1(cα).

The vertical space V at q in the frame ϕα can be naturally identified with TqQα × R

η ∈ Vq ←→ ηα ∈ TqαQα × {tα}, (ηα, 0) = dϕα|q(η), (qα, tα) = ϕα(q).
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If we have two reference frames ϕα and ϕβ , the transition function is defined by

φαβ = ϕα ◦ ϕ
−1
β : Qβ × R −→ Qβ × R

is of the form (qα, tα) = φαβ(qβ , tβ) =
(

gαβ(qβ , tβ), tβ + (cβ − cα)
)

.

4.2. Dynamics. The Lagrangian L is a smooth function

L : J −→ R.

Let γα(tα) be a curve in Qα. To γα we associate the time curve

s(t) = ϕ−1
α ((γα(tα), tα))|t=tα+cα ,

and vice versa. Since V and J are diffeomorphic, J can be identified with TQα×R. In the
context of this identification, the Lagrangian L in the reference frame ϕα is given by

Lα : TQα × R −→ R,

Lα(qα, q̇α, tα)|qα=γα(tα) := L(q, q̇)|
q=s(t)=ϕ

−1
α ((γα(tα),tα))|t=tα+cα

.

With the above notation, the variational derivative of the Lagrangian L in the direction
of the vector field of the virtual displacement η along the time line s is defined by

δL(η)|s := δLα(ηα)|γα
.

Theorem 4.1. The variation derivative does not depend on the reference frame ϕα.

Proof. Let ϕβ be another reference frame. Without loss of generality, we can assume
cα = cβ = 0 and tα = tβ = t (we have translation in time between the reference frames ϕα

and ϕβ). Then we have a situation as in section 2, where

Qα, qα, γα, Lα, ηα, Qβ , qβ, γβ , Lβ, ηβ , and qα = gαβ(qβ , t), ηα = dgαβ(ηβ)

corresponds to

Q, q, γ, L, η, M, x,Γ, l, ξ, and q = gt(x), η = dgt(ξ)

respectively. Therefore, the statement follows from Proposition 2.2. �

We thus have an invariant formulation of classical Lagrangian dynamics on the space-
time Q in the form of the d’Alambert principle: a time curve s is a motion of the mechanical
system defined by the Lagrangian L : J → R if the Lagrangian derivative of L is zero,

δL(η)|s = 0,

for all virtual displacements η along s.

Theorem 4.2. The Hamiltonian principle of least action A time line s(t)
between the events q0 and q1 is a motion of the mechanical system defined by the Lagrangian
L : J → R if and only if it is a critical point of the action integral

SL(s) =

∫ τ(q1)

τ(q0)

L(s(t), ṡ(t))dt

in a class of time lines connecting the events q0 and q1.
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