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ABSTRACT

Background: The “Technical Debt Dataset” (TDD) is a comprehen-

sive dataset on technical debt (TD) in the main branches of more

than 30 Java projects. However, some TD items produced by Sonar-

Qube are not included for many commits, for instance because the

commits failed to compile. This has limited previous studies using

the dataset. Aims and Method: In this paper, we provide an addi-

tion to the dataset that includes an analysis of 278,320 commits of

all branches in a superset of 37 projects using Teamscale. We then

demonstrate the utility of the dataset by exploring the relationship

between developer personality by replicating a prior study. Results:

The new dataset allows us to use a larger sample than prior work

could, and we analyze the personality of 111 developers and 5,497

of their commits. The relationships we find between developer per-

sonality and the introduction and removal of TD differ from those

found in prior work. Conclusions: We offer a dataset that may en-

able future studies into the topic of TD and we provide additional

insights on how developer personality relates to TD.

CCS CONCEPTS

• Software and its engineering→Maintaining software;Risk

management; •Human-centered computing→ Open source

software; • Social and professional topics → Systems devel-

opment; Software maintenance; User characteristics; • Gen-

eral and reference→ Empirical studies;
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1 INTRODUCTION

1.1 Technical Debt

The metaphorical notion of technical debt (TD) was introduced

by Ward Cunningham more than 30 years ago [9]. Despite slight

variations in the exact definition of the term, there is a reasonable

consensus on TD being a “collection of design or implementation

constructs that are expedient in the short term, but set up a techni-

cal context that can make future changes more costly or impossi-

ble” [4, p. 112]. Over time, despite its inherent limitations [27], the

TD metaphor has gained acceptance and found widespread use in

both academic and practitioner circles [25].

Researchers have identified different types of TD and made ef-

forts to categorize them. Tom et al., for example, identify eight dif-

ferent dimensions of TD, comprising code, design and architecture,

operational processes, among others [29]. Relatedly, Alves et al. and

Rios et al. each distinguish between 15 different types of TD, in-

cluding, for example, design debt, code debt, test debt, and docu-

mentation debt [2, 26].

By definition, TD comeswith advantages and disadvantages. Re-

ported advantages lie particularly in increased short-term devel-

oper velocity [24]. Reported disadvantages [6] are decreased long-

term velocity [24], reduced developer morale and motivation [5,

10, 25], as well as lower code quality and increased uncertainty

and risk [29].

Beyond conceptual considerations [27], qualitative studies [10],

and surveys [6], researchers have increasingly become interested

in performing large-scale quantitative studies on TD using data

mined from software repositories [8, 18–20].

1.2 The Technical Debt Dataset and its
Limitations

To enable such studies of TD, Lenarduzzi et al. developed the “Tech-

nical Debt Dataset” (TDD) [21]. It is a dataset of TD (primarily code

debt) in various Apache Software Foundation (ASF) projects writ-

ten in Java. It has been used in a variety of studies on TD [8, 18–20].

In its most recent version 2.0, it contains a comprehensive analy-

sis of the main branches of 31 projects. Aside from data obtained

fromPyDriller, RefactoringMiner, Jira, and Ptidej, the dataset most

notably includes TD information generated using SonarQube.

Importantly, SonarQube requires the build of a commit to com-

plete before it can provide TD information. For various reasons

(e.g., deficient code or missing dependencies), however, builds may
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fail. Consequently, the TDD does not contain complete informa-

tion for such commits. According to our own analyses, the Sonar-

Qube analyses were incomplete for more than 60% of commits in

the covered projects.

Recent research has found that this is particularly problematic

in cases where differences in TD between commits are of interest,

because then missing information in either the focal commit or its

parent commit leads to missing data in the ultimate analysis. This

problem has been reported to reduce the size of samples dramati-

cally, potentially impacting the validity of analyses performed on

them. For instance, in the recent study on developer personality

and TD by Graf-Vlachy and Wagner, the authors collected person-

ality data for 121 developers whomade commits that are within the

scope of the TDD, but they could only use data from 19 developers

due to missing TD information in the TDD [13].

Further, it is well-known that TD detection tools may come to

different assessments of TD [17]. As the TDD only contains TD

items from SonarQube, it is thus naturally limited in this way, too.

2 AN ADDITION TO THE TECHNICAL DEBT
DATASET

To address these limitations, we develop an addition to the TDD

that includes information on TD for essentially all commits. The

following describes the used tools, the process of constructing the

dataset, and the resulting dataset itself.

2.1 Teamscale

We develop our addition to the TDD using Teamscale in version

9.1.2. Teamscale is a tool for analyzing code quality and tests [14,

16]. For the Java language, such analyses can be performed directly

on the source code without the need for compiled bytecode. Team-

scale can be run locally and allows the user to access its analyses

through a web interface or a REST API. It has been previously used

in research on empirical software engineering [23]. Teamscale is

commercial in nature but CQSE, the company developing it, offers

free licenses for open-source projects and academic users.

Notably, the philosophy of the company behind Teamscale dis-

courages the use of single-indicator metrics to assess the maintain-

ability of, and thus the TD in, software projects [22]. Consequently,

Teamscale does not provide a singular metric of TD comparable to

SonarQube’s “technical debt” metric (variable sqale_index) that

has been used in prior work [13]. Instead, Teamscale provides var-

ious detailed measures related to TD. These include, for instance,

excessive nesting depth, cyclomatic complexity, malformed com-

ments, name shadowing, hard-coded credentials, or unused code.

2.2 Construction of the Dataset

We constructed the dataset in the following way. First, we identi-

fied the projects included in the TDD. Although version 2 of the

TDD only includes 31 projects, we opted to additionally include all

projects listed in the original TDD paper (Accumulo, Ambari, Atlas,

Aurora, Beam, MINA SSHD) [21]. Similarly, we decided not to re-

strict our analyses to the projects’ main branches as TDD version 2

did but to analyze all branches.We then implemented a Python tool

that performs several steps. First, it clones the repositories locally.

It then imports these local copies into Teamscale, which is also run-

ning locally. Once a project is successfully imported, Teamscale be-

gins to perform an analysis of all commits in the background. To

ensure complete data availability, our tool waits until data process-

ing within Teamscale is completed. The tool then uses Teamscale’s

REST API to request all available relevant datapoints for each com-

mit in each branch of each project. Finally, the tool writes these

datapoints out to the local disk.

We only analyzed Java code. We used Teamscale’s default set-

tings except for two cases. First, we ensured that Teamscale would

not only analyze the main branch but all branches by enabling

“Branch support”. Second, we switched on the “Preserve empty

commits” commits option to ensure that Teamscale would retain

all commits.

Data analysis took multiple weeks on a dedicated Windows vir-

tual server with eight cores and 192 GB RAM. The analysis script,

the Teamscale configuration file, and the resulting dataset are avail-

able at https://doi.org/10.6084/m9.figshare.24550840.

The dataset and all code are licensed under Apache License 2.0.

2.3 Description of the Dataset

There are two key elements which constitute our new dataset. For

one, there is a folder for each project with JSON files for each

commit in the project that includes all information Teamscale has

about the respective commit. This is provided only for advanced

use cases. The filenames include each commit’s hash for easy iden-

tification. In the further analyses of this paper, these files will not

be used.

For another, there is a set of CSV files that comprise selected

TD information on each commit in the projects. Specifically, there

are three types of CSV files. First, there is a “report” file. This file

contains various aggregated pieces of information that Teamscale

provides for each commit. This includes, for instance, the number

of parent commits, the number of files in the commit, the lines of

code in the commit, the number of findings added and removed in

the focal commit, and the number of findings above a certain sever-

ity level so Teamscale flags them as “yellow” or “red”, respectively.

Several of these data points are provided as an absolute value for

the focal commit and as a difference to the parent commit. (Note

that Teamscale provides difference data even when the parent is

on a different branch. Although the behavior in the case of merge

commits is not specifically documented, our investigations lead us

to believe that Teamscale compares a focal commit’s data to its

oldest parent commit.) Table 1 describes the “report” file further.

Second, there is a “findings” file. It contains the non-aggregated

information on all Teamscale findings per commit (as identified by

commit hash). This includes 57 different types of findings, catego-

rized into architecture, comprehensibility, correctness, documen-

tation, efficiency, error handling, redundancy, security, structure,

testing, and others. The data is separated out by whether the find-

ingwas added or removed in the focal commit, or found in changed

code, as well as by finding severity (either “yellow” or “red”).

Third, there is a file on “findings_messages”, which provides the

detailed Teamscale messages for all findings per commit (as iden-

tified by commit hash).

https://doi.org/10.6084/m9.figshare.24550840
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All types of files include the project name, the branch name,

and the commit hash as identifiers that allow the data to be linked

to each other as well as to the TDD. (Note that some projects—

e.g., Accumulo and Batik—have renamed their main branches from

“master” to “main” between the release of the TDD and our analy-

ses.)

The “report” output also includes the first commit of the reposi-

tory. For these commits, Teamscale lists the Author Name as “Team-

scale import” but reports no further data through the API although

the web interface shows analysis reports. However, due to the par-

ticular characteristics of these initial orphan commits, it is likely

best to discard these commits in analyses anyway. The “findings”

output does not include any information on these commits.

Each CSV file exists once for each specific project and once in

a combined form that covers all projects. Further information and

statistics on the dataset are available in a separate document in the

data package at https://doi.org/10.6084/m9.figshare.24550840.

Note that our dataset is more extensive than the TDD in at

least three dimensions regarding TD. It covers more projects, more

branches, and it spans a timeframe until the end of October 2023.

Insofar as the two datasets overlap, they can be readily linked

using the commit hashes.

Table 1: Contents of “report” CSV file

Category Variable Notes

Identifiers
Project Project name
Branch Branch name
Commit Hash Commit hash

Commit data

Num Parent Commits Number of parent commits (0 for or-
phans, 1 for regular commits, >1 for
merge commits)

Timestamp Teamscale timestamp of commit
Author Name Name of author
Author Email Email address of author

Analysis results

Files_<val>

• <val> can be “abs” or “diff”
• <color> can be “g” (green),
“y” (yellow), or “r” (red)
• “cnt” = “count”
• “assm” = “assessment”

Lines of Code_<val>

Source Lines of Code_<val>

Longest Method Length_<val>

Maximum Nesting Depth_<val>

Change cnt_<val>

Close Coverage_<val>

Line Coverage_<val>

Num Findings Red_<val>

Num Findings Yellow_<val>

Maximum Cyclomatic Complexity_<val>

File Size assm_<color>_<val>

Method Length assm_<color>_<val>

Nesting Depth assm_<color>_<val>

Comment Completeness assm_<color>_<val>

Cyclomatic Complexity assm_<color>_<val>

Added Findings cnt

Removed Findings cnt

Findings in Changed Code cnt

3 DEVELOPER PERSONALITY AND
TECHNICAL DEBT REDUX

We demonstrate the utility of our dataset in an exploration of the

relationship between developer personality and TD. To do so, we

replicate an analysis of developer personality and TD that was

hampered by the limitations of the TDD [13].

3.1 Description of Original Study

In their recent study, Graf-Vlachy and Wagner used the TDD to

explore developer personality [13] in the context of TD. Specifi-

cally, they studied the relationship between three broad personal-

ity constructs and the introduction and removal of TD. The three

personality constructs are the five traits of the Five Factor Model

(extraversion, agreeableness, conscientiousness, emotional stabil-

ity, and openness to experience), the personality characteristic of

regulatory focus (comprising promotion focus and prevention fo-

cus), and narcissism. They propose that incurring TD is a form of

risk-taking (also see [12]), and they argue that different personality

characteristics relate, through their relationship with risk-taking,

to TD. They find that conscientiousness, emotional stability, open-

ness to experience, and prevention focus are negatively linked to

TD. They find no significant results for extraversion, agreeableness,

promotion focus, or narcissism.

To gather developer personality data, Graf-Vlachy and Wagner

surveyed all 1,555 developers having made any commits that are

part of the TDD version 2. Importantly, they measured all vari-

ables using validated scales [30]. The five-factor model personal-

ity traits were captured using the Ten-Item Personality Measure

(TIPI) [11]. Regulatory focus was measured using six items (three

for promotion focus and three for prevention focus) from the Reg-

ulatory Focus Composite Scale (RF-COMP) [15]. Narcissism was

captured using the short version of the Narcissistic Personality In-

ventory (NPI-16) [3]. Reliability metrics like Cronbach’s U were

sufficiently high.

Graf-Vlachy and Wagner also identified developers’ age at the

time of each commit by capturing developers’ age in years and then

subtracting the difference between 2022 and the year in which the

focal commit was made from the provided age.

After accounting for missing data and implausible values, they

obtained complete data on the characteristics of 121 developers.

3.2 Demonstration Using Our Dataset

In the following, we describe our analysis using our new dataset.

Importantly, we do not theorize ex ante about any individual rela-

tionships between personality and TD. Instead, we simply explore

the data to see if we find patterns similar to the ones reported by

Graf-Vlachy and Wagner [13].

Note that, in contrast to their analysis (which only used the net

amount of TD created or removed by a commit), we study the num-

ber of TD items (Teamscale “findings”) thatwere added in a commit

and those that were removed in a commit separately. For compa-

rability, we additionally use the difference between the two values

(i.e., the net change) as a third dependent variable.

3.2.1 Sample. Our sample is the result of a merge between the

TDD and our dataset by commit hash. It is thus restricted to com-

mits made to the main branches of the projects, which also alle-

viates concerns over the potentially experimental nature of non-

main branches. We only consider normal commits and drop merge

and orphan commits [1] based on information from the TDD.Merge

commits do not allow a sensible calculation of changes in TD (due

to multiple parent commits) and orphan commits likely have par-

ticular characteristics that may distort the analyses. We further ob-

tained the developer personality data collectedbyGraf-Vlachy and Wagner

and linked it to our newly developed dataset. Overall, our sample

comprises 5,497 commits from 111 developers. This is substantially

larger than the sample of Graf-Vlachy and Wagner, who analyzed

2,145 commits from only 19 developers [13]. Notably, we still can-

not analyze all commits because even Teamscale does not provide

https://doi.org/10.6084/m9.figshare.24550840
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data for all. This is the case, for instance, for cross-repository com-

mits.

3.2.2 Analysis Strategy. We follow themethodused byGraf-Vlachy and Wagner [13].

This means that we used panel regressions because each devel-

oper is observed repeatedly, once for each commit they made. We

clustered standard errors at the developer to account for the fact

that such multiple commits from the same developer are not sta-

tistically independent. In our model, we controlled for developer

age at time of commit (from [13]) and lines of code (LOC) added

and LOC removed (from the TDD as Teamscale does not provide

these metrics). To account for unobserved time-invariant aspects

of each project (for instance, specific coding conventions), we in-

cluded dummy variables (fixed effects) for each project.

Notably, for the analyses of the number of added and removed

findings, a Poisson estimator would be econometrically appropri-

ate because these dependent variables are counts [31]. However,

because this estimator did not converge when analyzing our dataset,

we report the results of a random effects panel model instead. Such

a model is the appropriate choice for our third dependent variable,

the net change in findings. We will focus our interpretation of the

results on this dependent variable, also because it allows for a di-

rect comparison with the original study [13].

All analyses were performed in Stata 17.0. All analysis scripts

are available at https://doi.org/10.6084/m9.figshare.24550840.

3.2.3 Findings. As is evident in Table 2, we find that LOC added

and LOC removed are related to the number of added and removed

findings in the way one would expect.We further find a positive ef-

fect of extraversion on added findings and net change, negative ef-

fects of promotion focus and narcissism on removed findings, and

a negative effect of age at commit on net change. Surprisingly, only

the finding on age at commit is in line with the prior research from

Graf-Vlachy and Wagner [13]. All findings regarding personality

differ. Specifically,we do not reproduce any ofGraf-Vlachy and Wagner’s

significant findings, and all our significant findings were not present

in their work [13].

4 DISCUSSION

4.1 Threats to validity

4.1.1 Construct validity. Our measures of TD relies on automated

analyses that may not produce perfectly accurate results. Team-

scale can be configured extensively, but we use the default set-

tings since we do not have grounds to make a different choice. In

particular, to remain consistent across projects, we do not make

use of Teamscale’s feature to allow for manually identified “toler-

ated” or “false positive” findings. Different configurations might

lead to different results. We also use a simple count of findings

as our dependent variables, implicitly assuming that every indi-

vidual finding represents the same amount of TD. Future research

might wish to weigh different types of findings differently. Further,

Teamscale largely captures only code debt, but not other types of

TD [2, 26, 29].

The used personality data may not be perfectly reliable since it

is based on self-reports using short scales [28]. Finally, developers’

Table 2: Results of panel regression analyses

Added

findings

Removed

findings

Net

change

Extraversion 5.85∗ 2.97 2.88∗

(2.27) (1.85) (1.42)

Agreeableness -4.23 -2.37 -1.86

(3.34) (2.12) (3.62)

Conscientiousness -1.82 -0.24 -1.58

(3.43) (3.40) (2.54)

Emotional stability -0.62 -2.48 1.87

(2.59) (1.97) (2.51)

Openness to experience -3.32 -2.02 -1.30

(3.30) (3.14) (2.48)

Promotion focus 0.63 -1.91∗ 2.54

(1.56) (0.87) (1.73)

Prevention focus -0.46 -0.43 -0.03

(0.67) (0.56) (0.56)

Narcissism -2.12 -2.28∗ 0.15

(1.32) (0.94) (1.42)

Age at commit -0.27 0.63 -0.89∗

(0.50) (0.34) (0.41)

LOC added 0.05∗∗ -0.02∗∗∗ 0.07∗∗∗

(0.02) (0.00) (0.02)

LOC removed -0.02∗ 0.05∗∗ -0.07∗∗∗

(0.01) (0.02) (0.02)

Constant 48.50 47.65 0.85

(52.25) (46.49) (33.72)

Project fixed effects Yes Yes Yes

Observations 5,497 5,497 5,497

Clusters 111 111 111

Dependent variable indicated in top row.

Table reports coefficients, clustered standard errors in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

personality data was collected after they made the analyzed com-

mits. This time gap might potentially affect the accuracy of the

personality data in case personality would change over time [7].

4.1.2 Internal validity. Despite following prior work in our selec-

tion of control variables, our regressions might suffer from omit-

ted confounding variables, thus limiting the internal validity of

our study. Since we use control variables from the TDD, we can

also only analyze commits that are from the main branches of the

projects. Developers’ characteristicsmay also be related towhether

their code is incorporated into the main branch in the first place,

which might affect our results.

4.1.3 External validity. As amatter of course, our study is restricted

to developers of large ASF projects. This limits the generalizability

of our results to other contexts, such as smaller or closed-source

projects. Further, although our analyzed sample is much larger

https://doi.org/10.6084/m9.figshare.24550840
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than that of prior work [13], the overall response rate of devel-

opers in the survey capturing personality information is still low,

potentially creating sample selection issues.

4.1.4 Reliability. Reliability is likely of limited concern. All used

personality scales are well-established in psychology. We provide

the script to re-run the Teamscale analyses as well as the dataset.

Unfortunately, we cannot share the dataset that includes personal-

ity data for obvious privacy reasons.

4.2 Implications and Conclusion

First and foremost, our research provides a fine-grained dataset for

future studies of TD. Since we also provide the scripts to generate

the dataset, future researchers can recreate it with other Teamscale

settings however they see fit. In particular, as our dataset fully in-

tegrates with the TDD (by linking via commit hash), we enable

extensions of prior studies conducted with it.

In terms of practical implications, the findings from our demon-

stration using the dataset caution practitioners to not overweight

results from any single study, such as the original study using the

TDD. In fact, we show how an enlarged sample and different mea-

sures of TD may yield very different results. In sum, we hope that

our empirical findings and dataset spur further research into the

link between developer characteristics and TD.

ACKNOWLEDGMENTS

We thankDavide Taibi for information on The Technical Debt Dataset

and Colin Kolbe for development support. We thank CQSE GmbH

for a Teamscale license and for support with setting up the analy-

sis, and Tobias Röhm for helpful hints.

REFERENCES
[1] Reem Alfayez, Pooyan Behnamghader, Kamonphop Srisopha, and Barry Boehm.

2018. An exploratory study on the influence of developers in techni-
cal debt. In Proceedings of the 2018 International Conference on Technical
Debt (ACM Conferences), Robert L. Nord (Ed.). ACM, New York, NY, 1–10.
https://doi.org/10.1145/3194164.3194165

[2] Nicolli S.R. Alves, Thiago S. Mendes, Manoel G. de Mendonça, Rodrigo O.
Spínola, Forrest Shull, and Carolyn Seaman. 2016. Identification and manage-
ment of technical debt: A systematic mapping study. Information and Software
Technology 70 (2016), 100–121. https://doi.org/10.1016/j.infsof.2015.10.008

[3] Daniel R. Ames, Paul Rose, and Cameron P. Anderson. 2006. The NPI-16 as
a short measure of narcissism. Journal of Research in Personality 40, 4 (2006),
440–450. https://doi.org/10.1016/j.jrp.2005.03.002

[4] Paris Avgeriou, Philippe Kruchten, Ipek Ozkaya, and Carolyn Seaman. 2016.
Managing Technical Debt in Software Engineering (Dagstuhl Seminar 16162).
Dagstuhl Reports 6, 4 (2016), 110–138.

[5] Terese Besker, Hadi Ghanbari, Antonio Martini, and Jan Bosch. 2020. The influ-
ence of Technical Debt on software developer morale. Journal of Systems and
Software 167 (2020), 110586. https://doi.org/10.1016/j.jss.2020.110586

[6] Terese Besker, Antonio Martini, and Jan Bosch. 2017. The PriceyBill of Technical
Debt: When and by Whom will it be Paid?. In ICSME 2017, IEEE International
Conference on Software Maintenance and Evolution (Ed.). IEEE, Piscataway, NJ,
13–23. https://doi.org/10.1109/ICSME.2017.42

[7] Fabio Calefato, Filippo Lanubile, and Bogdan Vasilescu. 2019. A large-
scale, in-depth analysis of developers’ personalities in the Apache
ecosystem. Information and Software Technology 114 (2019), 1–20.
https://doi.org/10.1016/j.infsof.2019.05.012

[8] Zadia Codabux and Christopher Dutchyn. 2020. Profiling Developers Through
the Lens of Technical Debt. In Proceedings of the 14th ACM / IEEE International
Symposium on Empirical Software Engineering and Measurement (ESEM). ACM,
New York, NY, USA, 1–6. https://doi.org/10.1145/3382494.3422172

[9] Ward Cunningham. 1992. The WyCash Portfolio Mangement System. In Adden-
dum to the Proceedings of OOPSLA 1992. 29–30.

[10] Hadi Ghanbari, Terese Besker, Antonio Martini, and Jan Bosch. 2017. Looking for
Peace of Mind? Manage Your (Technical) Debt: An Exploratory Field Study. In

2017 ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement (ESEM). IEEE, 384–393. https://doi.org/10.1109/ESEM.2017.53

[11] Samuel D. Gosling, Peter J. Rentfrow, and William B. Swann. 2003. A very brief
measure of the Big-Five personality domains. Journal of Research in Personality
37, 6 (2003), 504–528. https://doi.org/10.1016/S0092-6566(03)00046-1

[12] Lorenz Graf-Vlachy. 2023. The Risk-Taking Software Engineer: A Framed
Portrait. In 2023 IEEE/ACM 45th International Conference on Software
Engineering: New Ideas and Emerging Results (ICSE-NIER). IEEE, 25–30.
https://doi.org/10.1109/ICSE-NIER58687.2023.00011

[13] Lorenz Graf-Vlachy and Stefan Wagner. 2023. The Type to Take Out
a Loan? A Study of Developer Personality and Technical Debt. In 2023
ACM/IEEE International Conference on Technical Debt (TechDebt). IEEE, 27–36.
https://doi.org/10.1109/TechDebt59074.2023.00010

[14] Roman Haas, Rainer Niedermayr, and Elmar Juergens. 2019. Teamscale:
Tackle Technical Debt and Control the Quality of Your Software. In
2019 IEEE/ACM International Conference on Technical Debt (TechDebt). 55–56.
https://doi.org/10.1109/TechDebt.2019.00016

[15] Kelly L. Haws, Utpal M. Dholakia, and William O. Bearden. 2010. An Assess-
ment of Chronic Regulatory Focus Measures. Journal of Marketing Research 47,
5 (2010), 967–982. https://doi.org/10.1509/jmkr.47.5.967

[16] Lars Heinemann, Benjamin Hummel, and Daniela Steidl. 2014. Team-
scale: software quality control in real-time. In Companion Proceedings of the
36th International Conference on Software Engineering, Pankaj Jalote, Lionel
Briand, and André van der Hoek (Eds.). ACM, New York, NY, USA, 592–595.
https://doi.org/10.1145/2591062.2591068

[17] Jason Lefever, Yuanfang Cai, Humberto Cervantes, Rick Kazman, andHongzhou
Fang. 2021. On the Lack of Consensus Among Technical Debt Detec-
tion Tools. In 2021 IEEE/ACM 43rd International Conference on Software
Engineering: Software Engineering in Practice (ICSE-SEIP). IEEE, 121–130.
https://doi.org/10.1109/ICSE-SEIP52600.2021.00021

[18] Valentina Lenarduzzi, Francesco Lomio, Heikki Huttunen, and Davide Taibi.
2020. Are SonarQube Rules Inducing Bugs?. In 2020 IEEE 27th International Con-
ference on Software Analysis, Evolution and Reengineering (SANER). IEEE, 501–
511. https://doi.org/10.1109/SANER48275.2020.9054821

[19] Valentina Lenarduzzi, Antonio Martini, Davide Taibi, and Damian Andrew Tam-
burri. 2019. Towards surgically-precise technical debt estimation: early re-
sults and research roadmap. In Proceedings of the 3rd ACM SIGSOFT Interna-
tional Workshop on Machine Learning Techniques for Software Quality Evalua-
tion - MaLTeSQuE 2019, Francesca Arcelli Fontana, Bartosz Walter, Apostolos
Ampatzoglou, Fabio Palomba, Gilles Perrouin, Mathieu Acher, Maxime Cordy,
and Xavier Devroey (Eds.). ACM Press, New York, New York, USA, 37–42.
https://doi.org/10.1145/3340482.3342747

[20] Valentina Lenarduzzi, Nyyti Saarimaki, and Davide Taibi. 2019. On the Diffuse-
ness of Code Technical Debt in Java Projects of the Apache Ecosystem. In 2019
IEEE/ACM International Conference on Technical Debt (TechDebt). IEEE, 98–107.
https://doi.org/10.1109/TechDebt.2019.00028

[21] Valentina Lenarduzzi, Nyyti Saarimäki, and Davide Taibi. 2019. The Tech-
nical Debt Dataset. In Proceedings of the Fifteenth International Conference
on Predictive Models and Data Analytics in Software Engineering, Leandro
Minku, Foutse Khomh, and Jean Petrić (Eds.). ACM, New York, NY, USA, 2–11.
https://doi.org/10.1145/3345629.3345630

[22] Rainer Niedermayr. 2016. Why we don’t use the Software Maintainability Index.
https://www.cqse.eu/en/news/blog/maintainability-index/

[23] Rainer Niedermayr, Tobias Röhm, and Stefan Wagner. 2019. Too trivial to test?
An inverse view on defect prediction to identify methods with low fault risk.
PeerJ. Computer science 5 (2019), e187. https://doi.org/10.7717/peerj-cs.187

[24] Ken Power. 2013. Understanding the impact of technical debt on the capacity and
velocity of teams and organizations: Viewing team and organization capacity
as a portfolio of real options. In 2013 4th International Workshop on Managing
Technical Debt (MTD 2013), Philippe Kruchten (Ed.). IEEE, Piscataway, NJ, 28–
31. https://doi.org/10.1109/MTD.2013.6608675

[25] Robert Ramač, Vladimir Mandić, Nebojša Taušan, Nicolli Rios, Sávio Freire,
Boris Pérez, Camilo Castellanos, Darío Correal, Alexia Pacheco, Gustavo Lopez,
Clemente Izurieta, Carolyn Seaman, and Rodrigo Spinola. 2022. Prevalence,
common causes and effects of technical debt: Results from a family of sur-
veys with the IT industry. Journal of Systems and Software 184 (2022), 111114.
https://doi.org/10.1016/j.jss.2021.111114

[26] Nicolli Rios, Manoel Gomes de Mendonça Neto, and Rodrigo Oliveira Spínola.
2018. A tertiary study on technical debt: Types, management strategies, research
trends, and base information for practitioners. Information and Software Tech-
nology 102 (2018), 117–145. https://doi.org/10.1016/j.infsof.2018.05.010

[27] Klaus Schmid. 2013. On the limits of the technical debt metaphor some guid-
ance on going beyond. In 2013 4th International Workshop on Managing Tech-
nical Debt (MTD 2013), Philippe Kruchten (Ed.). IEEE, Piscataway, NJ, 63–66.
https://doi.org/10.1109/MTD.2013.6608681

[28] Frank L. Schmidt and John E. Hunter. 1996. Measurement error in psychological
research: Lessons from 26 research scenarios. Psychological Methods 1, 2 (1996),
199–223. https://doi.org/10.1037/1082-989X.1.2.199

https://doi.org/10.1145/3194164.3194165
https://doi.org/10.1016/j.infsof.2015.10.008
https://doi.org/10.1016/j.jrp.2005.03.002
https://doi.org/10.1016/j.jss.2020.110586
https://doi.org/10.1109/ICSME.2017.42
https://doi.org/10.1016/j.infsof.2019.05.012
https://doi.org/10.1145/3382494.3422172
https://doi.org/10.1109/ESEM.2017.53
https://doi.org/10.1016/S0092-6566(03)00046-1
https://doi.org/10.1109/ICSE-NIER58687.2023.00011
https://doi.org/10.1109/TechDebt59074.2023.00010
https://doi.org/10.1109/TechDebt.2019.00016
https://doi.org/10.1509/jmkr.47.5.967
https://doi.org/10.1145/2591062.2591068
https://doi.org/10.1109/ICSE-SEIP52600.2021.00021
https://doi.org/10.1109/SANER48275.2020.9054821
https://doi.org/10.1145/3340482.3342747
https://doi.org/10.1109/TechDebt.2019.00028
https://doi.org/10.1145/3345629.3345630
https://www.cqse.eu/en/news/blog/maintainability-index/
https://doi.org/10.7717/peerj-cs.187
https://doi.org/10.1109/MTD.2013.6608675
https://doi.org/10.1016/j.jss.2021.111114
https://doi.org/10.1016/j.infsof.2018.05.010
https://doi.org/10.1109/MTD.2013.6608681
https://doi.org/10.1037/1082-989X.1.2.199


TechDebt ’24, April 14–15, 2024, Lisbon, Portugal Lorenz Graf-Vlachy and Stefan Wagner

[29] Edith Tom, Aybüke Aurum, and Richard Vidgen. 2013. An exploration of
technical debt. Journal of Systems and Software 86, 6 (2013), 1498–1516.
https://doi.org/10.1016/j.jss.2012.12.052

[30] Stefan Wagner, Daniel Mendez, Michael Felderer, Daniel Graziotin, and Mar-
cos Kalinowski. 2020. Challenges in Survey Research. In Contempo-
rary Empirical Methods in Software Engineering, Michael Felderer and Guil-
herme Horta Travassos (Eds.). Springer International Publishing, Cham, 93–125.

https://doi.org/10.1007/978-3-030-32489-6{_}4
[31] Jeffrey M. Wooldridge. 2010. Econometric analysis of cross section and panel data

(2nd ed. ed.). MIT Press, Cambridge.

https://doi.org/10.1016/j.jss.2012.12.052
https://doi.org/10.1007/978-3-030-32489-6{_}4

	Abstract
	1 Introduction
	1.1 Technical Debt
	1.2 The Technical Debt Dataset and its Limitations

	2 An Addition to the Technical Debt Dataset
	2.1 Teamscale
	2.2 Construction of the Dataset
	2.3 Description of the Dataset

	3 Developer Personality and Technical Debt Redux
	3.1 Description of Original Study
	3.2 Demonstration Using Our Dataset

	4 Discussion
	4.1 Threats to validity
	4.2 Implications and Conclusion

	Acknowledgments
	References

