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Abstract
Dynamic Searchable Encryption (DSE) has emerged as a so-
lution to efficiently handle and protect large-scale data storage
in encrypted databases (EDBs). Volume leakage poses a sig-
nificant threat, as it enables adversaries to reconstruct search
queries and potentially compromise the security and privacy
of data. Padding strategies are common countermeasures for
the leakage, but they significantly increase storage and com-
munication costs. In this work, we develop a new perspective
to handle volume leakage. We start with distinct search and
further explore a new concept called distinct DSE (d-DSE).

We also define new security notions, in particular Distinct
with Volume-Hiding security, as well as forward and back-
ward privacy, for the new concept. Based on d-DSE, we con-
struct the d-DSE designed EDB with related constructions for
distinct keyword (d-KW-dDSE), keyword (KW-dDSE), and
join queries (JOIN-dDSE) and update queries in encrypted
databases. We instantiate a concrete scheme BF-SRE, em-
ploying Symmetric Revocable Encryption. We conduct ex-
tensive experiments on real-world datasets, such as Crime,
Wikipedia, and Enron, for performance evaluation. The re-
sults demonstrate that our scheme is practical in data search
and with comparable computational performance to the SOTA
DSE scheme (MITRA*, AURA) and padding strategies (SEAL,
ShieldDB). Furthermore, our proposal sharply reduces the
communication cost as compared to padding strategies, with
roughly 6.36 to 53.14x advantage for search queries.

1 Introduction

Encrypted databases (EDBs) [46] have been developed to sup-
port privacy-preserving data storage and search services. They
allow clients to outsource sensitive encrypted data to a server
and then send search queries to the server who can return the
corresponding data. These databases can adopt Searchable
Symmetric Encryption (SE) [14, 51] and its Dynamic ver-
sion [32] (DSE) to offer various types of privacy-preserving
queries, such as keyword [17], range [18], SQL [28] queries,

and update. Note more related works for EDBs and DSE are
presented in Appendix B and D, respectively.

Although easily inheriting Forward Privacy and Backward
Privacy (FP&BP) guarantees from DSE [3,5], those EDBs are
still vulnerable to volumetric attacks [1, 64]. The adversary
can infer the underlying keywords from search queries [1, 37,
64] or even reconstruct the whole EDB [23, 33] by exploiting
volume leakage (i.e., the length of the response).

Padding strategies [4, 16, 55] are popularly applied to miti-
gate the impact of volume leakage in EDBs. They work by
adding "dummy" data to the original database to ensure uni-
form volume for each keyword. Thus, from the viewpoint of
adversaries, volume leakage with regard to queries is now
indistinguishable. This strategy, however, yields significant
costs (see Tab. 1). It requires extra storage and computational
resources to establish and update the EDB, but also consumes
huge communication bandwidth for query response. Note we
provide more details on padding in Appendix C.

A new perspective - starting from distinct search. In line
with the design of secure EDBs [19], we should minimize the
leakage during search queries. It is natural to see that the SQL
syntax ‘SELECT DISTINCT’1 can be used to eliminate du-
plicated search responses, which, to some extent, reduces the
volume leakage. But we cannot simply apply distinct search in
EDBs due to the fact that it still leaks information to the server.
In the context of SQL queries, a distinct search retrieves dis-
tinct (unique) values from the corresponding columns in a
database table, which allows us to eliminate "duplicate" val-
ues. The search process traverses only one copy of each value
and ignores its duplicates. However, if the number of those
"ignored" values (i.e., the number of duplicates) is leaked,
it can reveal information about the quantities of all relevant
values, leading to volume leakage. To mitigate this threat,
it is crucial to design a mechanism that prevents the server
from being aware of the repetition of values. We find that we
can use the dummy tags to group all relevant values into an

1In ISO/IEC 9075-2:2016, the ‘DISTINCT’ predicate can apply with
other syntax like ‘SELECT’, ‘JOIN’, ‘GROUP BY’ to retrieve distinct values
from a database table.
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Table 1: Comparison on related DSE, padding, and our scheme. N is the total number of keyword/value pairs. W and F are
the total number of keywords and files, respectively. In Column 5, ✓ indicates that padding strategies can be deployed in the
schemes. For keyword w, aw is the total number of update operations, nw is the current number of pairs, dw is the number of
deletion, dmax is the supported maximum number of deletions, and s′w is the number of legal search tokens. For SEAL, x means
the adjustable padding’s parameter, and n∗w denotes the number of the pairs currently containing w after padding. For ShieldDB,
nr and nb separately represent the real and padding pairs of the streamed keyword wi, |B| means the padding dataset length, and
fw and fwi represent the maximum frequency and the streamed keyword wi frequency, respectively. Backward privacy (BP)
contains type-1/2/3 level (I/II/ III), including the special case IIA, IIIR, IID extended from [5].

Schemes Distinct Computation Communication Client Storage BPSearch Search Update Padding Search Update Comm. Round
MONETA [5] % O

(
aw logN + log3 N

)
O
(
log2 N

)
✓ O

(
aw logN + log3 N

)
O
(
log3 N

)
3 O(1) I

DIANAdel [5] % O(aw) O(logaw) ✓ O(nw +dw logaw) O(1) 2 O(W logF) III
JANUS [5] % O(nw ·dw) O(1) ✓ O(nw) O(1) 1 O(W logF) III
JANUS++ [54] % O(nw ·dmax) O(dmax) ✓ O(nw) O(1) 1 O(W logF) III
AURA [53] % O(nw) O(1) ✓ O(nw) O(1) 1 O(W ·dmax) IIA

MITRA [21] % O(aw) O(1) ✓ O(aw) O(1) 2 O(W logF) II
SDa [15] % O(aw + logN) O(logN) ✓ O(aw + logN) O(logN) 2 O(1) II
SDd [15] % O(aw + logN) O

(
log3 N

)
✓ O(aw + logN) O

(
log3 N

)
2 O(1) II

ROSE [62] % O((nw + s′w +1)dw) O(1) ✓ O(nw) O(1) 2 O(W logF) IIIR

SEAL* [16] % O(x ·n∗w) % O(x ·N) O(x ·n∗w) % 1 O(x ·N) %

ShieldDB’s DSE⋆ [55] % O(nr +nb) O(nr +nb) O(|B|( fw− fwi)) O(nr +nb) O(nr +nb) 1 O(|B|) –

BF-SRE (Ours) ! O(nw) O(1) ✓ O(nw) O(1) 1 O(W ·dmax) IID

*: SEAL only focuses on static database (indicating it cannot support update operations) while providing values retrieval with keyword. In SEAL we store the client’s states locally.
⋆: ShieldDB is a dynamic document database. Its deletion is done through re-encryption, which does not clearly specify the backward privacy.

unsearchable dataset so that the server, in the Search stage,
can only "see" a single copy of results, thereby concealing
the volume of repetitive values and reducing the potential for
volume leakage.

A trivial solution to transform DSE for volume-hiding. Re-
call that DSE focuses on searching file-identifiers instead
of values. It may not be straightforward to replace the dis-
tinct identifiers with the unique/repeatable values. Here, we
attempt to provide a trivial transformation to make DSE sup-
port "distinct search."
• In the Setup or Update stage, the client maps each value to a
unique identifier and then initializes or updates the keyword-
value pairs by a DSE instance.
• To perform the distinct search, the client utilizes the query
protocol of the DSE to retrieve these identifiers. Afterward,
the client restores the values based on the mapping of the
identifiers and then extracts the distinct values locally.

We see that this transformation necessitates the client to
maintain a local mapping table for translation between identi-
fiers and values during each search. Furthermore, its security
and efficiency heavily rely on the underlying DSE instance.
We note that a regular DSE scheme could still be vulnerable
to volume leakage (e.g., [60]), or it applies expensive padding
strategies incurring significant bandwidth and storage costs
(e.g., [16, 55]). This observation indicates that a trivial trans-
formation could not be the best solution for both security and
efficiency.

In response to this, we propose the Distinct Dynamic
Searchable Symmetric Encryption (d-DSE) that enables
clients to securely search for distinct values with volume-
hiding. In this concept, we make use of the Distinct State, the
Distinct Classifier, and the Distinct Constraint to determine
distinct values and eliminate the volume difference. We in-

stantiate a d-DSE scheme BF-SRE for non-interactive deletion
and efficient search. We present a brief comparison between
BF-SRE and related (D)SE schemes in Tab. 1.

Extension from "distinct" to "diverse" search. We notice
that many works have demonstrated the feasibility of incor-
porating DSE to support secure queries in SQL syntax, such
as keyword [16], range [18], and join [25, 50]. Fortunately,
we find out that the distinct search can be integrated into se-
cure SQL as well. Our core idea is to process a query by
first obtaining the distinct values using the distinct search and
subsequently restoring the quantity of each distinct value (i.e.,
value’s quantity) by small client storage. Please see Sec. 4 for
more details.

The above descriptions briefly introduce our technical
roadmap from the beginning by distinct search, construct-
ing secure distinct search (i.e., d-DSE), and fulfilling SQL
search for EDBs. We summarize key contributions as follows.
• Definition and models of d-DSE. We underline the defini-
tion and models for secure distinct search. In particular, we
propose a so-called Distinct with Volume-Hiding (DwVH) se-
curity that captures how a secure distinct search can mitigate
volume leakage. We formalize the EDB context of distinct
search, analyze security risks, and define the advantage in the
models.
• d-DSE designed EDB. We leverage d-DSE to build EDBs
with volume-hiding property. We first illustrate the EDB sys-
tem enhanced by the d-DSE query model. Then we present
three new constructions: d-KW-dDSE (for distinct keyword
queries), KW-dDSE (for keyword queries), JOIN-dDSE (for
join queries), and the corresponding row addition and dele-
tion operations. We comprehensively expose the leakage func-
tions [7,27] under these constructions and interpret the pattern
leakage from the EDB perspective. Finally, our analysis clari-
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fies that they resist both SOTA passive [60] and active [64]
volumetric attacks.
• Concrete scheme for d-DSE. To handle the distinct fea-
ture in d-DSE designed EDB, we utilize the Bloom Filter
(BF) [53], producing Distinct State to control the tag gener-
ation for values. In this sense, we can effectively match the
distinct values in the search. Based on the above, we propose
our scheme, called BF-SRE, by applying Symmetric Revo-
cable Encryption (SRE). The scheme enables the client to
process the deletion locally, and thus, it is non-interactive and
flexible to row update in encrypted databases. We also pro-
vide formal security analysis to demonstrate that the scheme
satisfies the FP&BP as well as the DwVH security.
• Evaluations. We extensively perform evaluations on our
proposals and prior work under diverse real-world datasets,
including the Crime reports, Wikipedia, and the Enron email
datasets. Concretely, under equivalent security parameters, we
compare BF-SRE with the SOTA MITRA* [21], AURA [53],
SEAL [16], and ShieldDB [55] in terms of the time and com-
munication costs. Our evaluation demonstrates that BF-SRE
stands as a competitive solution compared to the aforemen-
tioned schemes. For example, on the Enron dataset, its costs
of time and communication for searching the highest-volume
keyword are 8.25s and 83.82KB, outperforming others by a
factor of approximately 29.27x and 30.54x, respectively.

2 Backgrounds

We first describe the encrypted database that supports record-
ing the keyword/value pairs. In this context, we introduce the
parties in distinct search with the corresponding interactions.
After that, we propose the threat in distinct search.

2.1 Encrypted Database Description
We use EDB to represent an encrypted database in the
context of DSE. This database stores repeatable key-
word/value pairs (w,v) (e.g., for relational table structure,
an attribute’s value in one column as a keyword with
a foreign-key in another as a value) in sequence and
supports secure addition, deletion, and search operations.
Specifically, the client can search keywords to retrieve the
matching values, add new keyword/value pairs, and delete
all specified repetitive (w,v) pairs. Note that the search oper-
ation incorporates the distinct search predicate TypeDB(w) ={

v1, ...,vn|v ∈ (w,v) and ∀ i, j ∈ [1,n] s.t. vi = v j ⇐⇒ i = j
}

to retrieve all matched distinct values given a keyword w.
We call the number of distinct values in TypeDB(w) as the
value’s type.

2.2 Parties
Two parties involve in the distinct search:
• Client: The client initializes the EDB by security parameter

and outsources it to the server. The client sends an update
token generated by the input (w,v,op = {add,del}) to add or
delete the keyword/value pairs (w,v) on the EDB. The client
sends the search token generated by the keyword w to find the
corresponding distinct values.
• Server: The server hosts the EDB outsourced by the client.
The server updates the EDB by the update token. In process-
ing a search token, the server searches the distinct values
corresponding to the keyword w and returns the result to the
client.

2.3 The Threat in Distinct Search

A scheme for secure distinct search should protect the client’s
outsourced EDB against the probabilistic polynomial time
(PPT) adversary from the passive [40, 41, 60] and active [64]
attacks. Akin to [13], we propose the adversaries’ observa-
tions during various client events that could reveal volumetric
information for the aforementioned attacks.

Table 2: The adversaries’ passive and active observations.
Client Event Passive observations Active observations
Setup:
1.Set up Secret Key;
2.Outsource the EDB.

1.The initial EDB.

1.Prior volume knowledge;

1.The deceptive set of
keyword/value pairs;
2. Partial queries volume
before injection.

Update:
1.Update ciphertexts
in the EDB.

1.The updated EDB.

1.Updated queries
in ciphertexts.

1. Updated queries
generated from
deceptive set.

Search:
1.Require distinct search.

1.Client search queries;
2.Search process;
3.The volume of search
queries.

1. The after-injection
volume of queries.

From Tab. 2, we state that the philosophy of volume-hiding
countermeasure is to decouple the volumetric relationship
speculated from the Setup and Search stage. The passive and
active adversaries first get the baseline of volume through
prior knowledge (e.g., outdated keyword frequency [40]) and
partial queries observed before injection, respectively. Then
they both consult the observation in the Update stage to
achieve maximum fit in the Search stage, such as minimiz-
ing objective functions [41, 60] and manufacturing binary
volume [64]. To mitigate the fitting, padding strategies pro-
duce uniform volume through dummy data at initialization.
Our perspective is to prevent the search leakage containing
predicable volume distribution, which is our security goal for
distinct search.

We also require Forward Privacy and Backward Privacy
(FP&BP) [3, 5] to protect the update and distinct search func-
tion from serious privacy disclosure. To capture the leakage
from distinct search, the security for volume leakage [42]
should be defined.
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3 Distinct DSE

We define Distinct Dynamic Searchable Symmetric Encryp-
tion (d-DSE), which includes its scheme definition and secu-
rity guarantees, to tackle the distinct search threat.

3.1 Notations

λ ∈N is the security parameter. r $← R means randomly sam-
pling r from the space R . a||b is the concatenation between a
and b. {0,1}λ is a λ-bit length string. {0,1}∗ is an arbitrary-
bit length string. F is a secure Pseudo Random Function
(PRF). Σ is the Dynamic Searchable Symmetric Encryption
(DSE) scheme. The frequently used notations & concepts,
the symmetric encryption, Bloom Filter (BF) [53], and Sym-
metric Revocable Encryption (SRE) [53], are introduced in
Appendix A.

3.2 The d-DSE Scheme
Definition 1 (The Distinct DSE) A Distinct Dynamic
Searchable Encryption is a triple (Setup,Search,Update)
consisting of three protocols:

• Setup(λ) is a protocol that takes as input the security pa-
rameter λ. It invokes the DSE setup protocol Σ.setup and
generates the Distinct State σD, outputting K,st = {σ,σD}
for the client and outsourcing EDB for the server respec-
tively, where K is the master secret key, EDB is the en-
crypted database, and st is the client’s internal state.

• Search(K,st,w;EDB) is a protocol between the client with
inputs K, st, and a search query restricted to a keyword
w, and the server with input the EDB. It invokes the DSE
search protocol Σ.search with input modified by the Distinct
State σD. At the end, the client gets a search result set
included distinct values from the EDB.

• Update(K,st,op, in;EDB) is a protocol between the client
with K and st as above, and an operation op with its in-
put in, where op is from the set {add, del} (i.e. addition,
deletion) and in is parsed as the keyword/value pair (w,v);
and the server with input EDB. It invokes the DSE update
protocol Σ.update with input modified by the Distinct State
σD. At the end, the client updates its internal st′, and the
server renews the EDB.

Correctness. Except with negligible probability, the d-DSE
scheme is correct if the Search protocol returns (current)
correct results for the keyword being searched. For the for-
malism, we follow the case where the client should not delete
a keyword with a retrieval value that is not present in EDB.

Remark on the d-DSE search protocol. The retrieval
searched by d-DSE and DSE is different [5]. In DSE, the
client eventually needs to obtain the outsourced data through

the file-identifier, and the volume leakage is not considered
by Forward Privacy and Backward Privacy (FP&BP) [60]. In
our context, the client is allowed to search the EDB to retrieve
outsourced distinct values by a keyword. To this end, we must
refine the leakage on retrieving values.

3.3 Security Notions for Distinct Search
To address the leakage (LD) in d-DSE, we refer to the DSE
security. The security contains FP&BP [3, 5] under the Adap-
tive Security model [14], but it falls short in preventing vol-
ume leakage. Therefore, we define the Distinct with Volume-
Hiding (DwVH) security. Note that we introduce the Sim-
adaptive Security model instead of the Adaptive Security
model to perceive FP&BP and the DwVH security.

We assume that the client is honest and should prevent the
disclosure of sensitive information, e.g., underlying keywords
and encrypted data. The server, which is honest-but-curious,
should follow the protocols’ instructions yet passively exposes
some information. Similar to the Real and Ideal formulation
[5,8], the Sim-adaptive security notions of d-DSE are defined
as follows.

Definition 2 (Sim-adaptive Security of d-DSE) Assume a
d-DSE scheme is L-adaptively secure iff for all sufficiently
large security parameters λ ∈ N and PPT adversary A , there
is a set of efficient simulators S with a set of leakage functions
L that has:∣∣∣P[Reald−DSE

A (λ) = 1
]
−P

[
Ideald−DSE

A ,S ,L (λ) = 1
]∣∣∣= negl (λ) ,

where the games Reald−DSE
A (λ) and Ideald−DSE

A ,S ,L (λ) are:

• Game Reald−DSE
A (λ): the adversary controls the client to

run real protocols. Firstly, it triggers the protocol Setup and
gets the encrypted database EDB. Secondly, with the pa-
rameters of its choice, it adaptively triggers Update, Search,
and then obtains the real transcript list Q = (q1,q2, ..qn).
Finally, it outputs a bit b decided from the real sensitive
information (EDB,q1, ...qn).

• Game Ideald−DSE
A ,S ,L (λ): all of the real protocols are replaced

by the set of simulators S . The adversary first triggers
the simulator Ssetup and obtains the simulated database
EDBS . Secondly, with chosen parameters, it adaptively trig-
gers SUpdate, SSearch, and then gets the simulated transcript
QS = (qS

1 ,q
S
2 , ..q

S
n ). Finally, it outputs a bit b decided from

the simulated sensitive information (EDBS ,qS
1 ,q

S
2 , ..q

S
n ).

Common Leakage Functions. Akin to [5], we use the
sp(w) to represent the search pattern, i.e., which queries be-
long to the keyword w, and the UpHist(w) to represent the
history of all updates on keyword w.

Forward Privacy (FP). As d-DSE holds FP, adversaries
should not utilize the previous transcript to imply the newly
added information before executing the Search protocol.
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Based on FP in [3], d-DSE must further preserve the value’s
information. This requirement prevents adversaries from de-
ducing the equality among values, which will expose more
information than just the distinct values.

Definition 3 (Forward privacy) An L-adaptively-secure d-
DSE scheme has forward privacy if its Update leakage func-
tion LU pt

D can be written as:

LU pt
D (w,v,op) = L ′ (op) ,

where L ′ is a state-less function.

Backward Privacy (BP). As d-DSE holds BP, adversaries
should not use new transcripts to imply previous information
after executing Search.

To capture the BP in d-DSE, we first propose the leakage
function TimeDTS(w). TimeDTS(w) defines the list of all
encrypted values v matching keyword w, excluding the deleted
and repetitive ones, together with the timestamp u of when
they were added in the database:

TimeDTS(w) = {(u,v)|(u,w,v,add) ∈ Q and ∀ u′,(u′,w,v,del) /∈ Q

and ∀ (u,w,vi,add) ∈ Q,(u,w,v j,add) ∈ Q,

s.t. vi = v j ⇐⇒ i = j}.

Update(w) defines the leakage of which timestamps
have update queries on the keyword w. With the input w,
Update(w) returns the set of the timestamps, in which each
of them represents an update on w:

Update(w) = {u | (u,w,v,add) ∈ Q or (u,w,v,del) ∈ Q}.

With the above functions, we define the BP of d-DSE:

Definition 4 (Backward privacy) An L-adaptively-secure
d-DSE scheme has backward privacy if its Update, Search
leakage functions LU pt

D , LSrch
D can be written as:

LU pt
D (w,v,op) = L ′ (w,op)

LSrch
D (w) = L ′′ (sp(w),TimeDTS(w),Update(w)) ,

where L ′,L ′′ are state-less functions.

We say that the aforementioned backward privacy is ap-
propriate for d-DSE. That is inspired by the type-2 level of
DSE [5]. Besides, the type-3 level discloses that multiple
(w,v) additions can be associated with the corresponding
deletion operations, revealing the number of identical values
that may cause volume leakage.

3.4 Distinct with Volume-Hiding Security
We analyze the d-DSE leakage in consideration of volumet-
ric attacks from the server. Previous works [42, 57] assume
that the number of values associated with any single keyword
should not be revealed, excluding the maximum volume. Ac-
cordingly, the leakage in distinct search should only infer

the distinct values searched by keywords, and that cannot be
pairwised with prior and current volume knowledge.

Inspired by the volume-hiding [42], we define the DwVH
security, which aims to prevent adversaries from distinguish-
ing the "signatures" of EDB. We say that a signature is de-
fined as a sequence of uploaded keyword/value pairs S =
{w, l(w), t(w)}, where l(w) and t(w) denote the number of
distinct values (i.e., value’s type) and the sum of value’s quan-
tities associated with keyword w, respectively. Under our se-
curity notion, the adversary is allowed to make two signatures
S0,S1 for the challenger who randomly selects one of them
Sb,b ∈ {0,1} to generate the EDB. Afterward, the adversary
collects leakages from update and search operations. Finally,
it decides which signature is used to construct the EDB. We
say that a d-DSE scheme is DwVH secure if this signature
(chosen by the challenger) is indistinguishable from the adver-
saries, i.e., negligible advantages on the leakage from distinct
values and d-DSE operations to restore volume information.

We let n denote the initial total number of keyword/value
pairs in the EDB, and s represents the step s = 1,2, ...poly(λ).
The DwVH security is defined as follows.

Definition 5 (DwVH Security) An L-adaptive secure d-
DSE is called DwVH secure if for all n ≥ 1 and all adver-
sary A that execute at most s steps, the probability that A
outputs 1 in DwVHGameL

A ((n,s),0) is identical to that in
DwVHGameL

A ((n,s),1). The DwVHGameL
A ((n,s),b) is:

Game 1 DwVHGameL
A ((n,s),b):

Prepare :
1: A generates two signatures S0 = {w, l0(w), t0(w)}w∈W and

S1 = {w, l1(w), t1(w)}w∈W , such that:
l0(w)w∈W < t0(w)w∈W ≤ n; l1(w)w∈W < t1(w)w∈W ≤ n;
l0(w)w∈W = l1(w)w∈W ; Σw∈W tb(w) = n

2: A sends S0 and S1 to the challenger C .
3: C computes keyword/value pairs by choosing tb(w) values for each keyword w, and

each keyword w corresponds to lb(w) distinct values.
4: C updates all pairs and sends the corresponding leakages LU pt

D to the adversary A .
Queries :

1: A adaptively executes s step. In each step, it can perform:
• Update query: A adaptively performs the s-th update query about the step’s

keyword ws, C computes LU pt
D and sends it back.

• Search query: A adaptively performs the s-th search query about ws, and C
computes and returns LSrch

D .
Guess :

1: A guess the b input and outputs a bit b′ ∈ {0,1}.

Compared to the volume-hiding definitions [42], d-DSE
can fight against adversaries who enable challengers to adap-
tively perform update and search operations. The aim of the
DwVH security is to show that the leakages from the update
and distinct search do not reveal which signature is chosen to
establish the EDB. In other words, the adaptive adversaries
are consistent with our consideration in the FP&BP d-DSE
so that they just leverage the d-DSE leakage of update and
distinct search.
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4 High Level of d-DSE Designed EDB

This section illustrates the practical application of d-DSE in
bolstering foundational queries in EDB systems. We introduce
the d-DSE query model, which encompasses update, distinct
keyword, keyword, and join queries, effectively covering the
spectrum of fundamental queries pertinent to encrypted rela-
tional databases. Based on our d-DSE security model, we also
conduct a leakage analysis to identify potential volumetric
attacks for EDB. Note that we summarize the frequently used
notations in Tab. 3 (see Appendix A).

4.1 Apply to EDB system

Server

Proxy

EDB system

...EDB Storage

D-DSE query model

Insert Delete Distinct
Keyword Join 

   EDB Controller 
Process each token and 

return result

Translation Response Program

Row INS/DEL
Row Selection 

...

...

   Query Planner
Generate tokens from 

Syntax Sequence

Query  Result

Query q

Send 
t*||syn*

Forward 
t*||syn* 

Row 
operation

Result

Syntax 
SS=(syn*,m*)

Token t*

Client 

* syn*

Figure 1: The high-level of d-DSE design EDB. Σc
T1.x

(w1)

and Ec
T1.y

(v1) denote that the keyword w1 and value v1 in
table column T1.x and T1.y are encrypted by Σ and E with a
counter c, respectively.

Like [45, 46], Fig. 1 depicts that d-DSE based EDB lever-
ages the EDB-proxy architecture, including:

• EDB Storage (EDBS) organizes encrypted data into the
table collection T = {T1, ...TN} on disk. Each T∗ (e.g.,
T1.x) is represented by columns T∗.⋆ and their respec-
tive attribute types (e.g., constant-size string, integer, etc.).
Tables include rows, where each row corresponds to the en-
crypted record r = (Σc

T∗.⋆(w),E
c
T∗.⋆(v), ...) manufactured

by the d-DSE query model.

• d-DSE query model includes a series of d-DSE construc-
tions that support the following: (1) the translation from
the functional equivalent syntax SS = (syn∗,m∗) to the
token t∗, where syn∗ specifies the construction name, m∗
includes the message of T∗, T∗.⋆, and numeric or text
data, and t∗ contains the encrypted data generated from
SS; (2) the response program for the EDB controller to

perform the related construction operations (i.e., row in-
sertion/deletion and selection) on EDBS via the concate-
nation of the encrypted data and the name t∗||syn∗. We
construct update, (distinct) keyword, and join query for
the d-DSE query model (see the following subsections).

• Query Planner processes queries and forwards results.
For a query q, the planner does the following: 1⃝ extracts
it to SS (see the example in Fig. 1); 2⃝ forwards SS to the
translation; 3⃝ receives the t∗; 4⃝ forwards the t∗||syn∗ to
the EDB Controller and waits for response;

• EDB Controller processes the t∗||syn∗ and replies the
corresponding results. Specifically, it follows operations
from the response program to update rows in EDBS and
to copy encrypted data from EDBS to the controller’s
memory for selection. We call the replicated encrypted
data as EDBC. The EDB Controller works as: 5⃝ forwards
t∗||syn∗ to the response program; 6⃝ follows the operations
to update/select rows; 7⃝ returns the operation results.

We leverage the EDB-proxy architecture as described in
[45, 46] to map the original SQL syntax into a series of d-
DSE tokens. This approach enables us to thoroughly analyze
potential leakages within the N-size SS sequence (i.e., SS =
(SS1, ..,SSN)) through the d-DSE query model. Our d-DSE
query model can attain a one-for-all volume-hiding capability
within EDB systems. We note that hereafter, we omit the
subscript when describing a query in a table (e.g., T).

4.2 Update Queries

We start with the basic update queries on table T, e.g.

INSERT INTO T (T.x,T.y) VALUE (w,v)

↪→ SSins = (synins,(T,(T.x,w,T.y,v)))
DELETE FROM T WHERE T.x = w AND T.y = v

↪→ SSdel = (syndel ,(T,(T.x,w,T.y,v))).

We can convert this syntax SSins/SSdel to the d-DSE
Update protocol, which works for T (initialized by d-
DSE Setup protocol) and receives keyword, value, and ‘IN-
SERT’/‘DELETE’ command as the (w,v,op) input from the
Query Planner. We generate the update token through the
Update protocol to append/delete the encrypted keyword and
value in the corresponding row in T, i.e.,

(
ΣT.x(w),ET.y(v)

)
,

for subsequent distinct keyword queries. Note that we use
the client’s state st to mark deleted rows on EDBS and then
process deletion in batch for queries on EDBC.

Note that one should not separately analyze the
leakage from the N-size update sequence (i.e., opN=
((u1,op1)..(uN ,opN)), where u∗ is the timestamp) since it
is further refined by the leakage (Update(w), see Sec. 3.3)
from search queries in the EDB system (see Sec 4.3).
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4.3 Distinct Keyword Queries
A distinct keyword query retrieves distinct values from the
column T.y of table T that corresponds to keyword w in
column T.x, i.e:

SELECT DISTINCT T.y FROM T WHERE T.x = w

↪→ SSDsrch = (synDsrch,(T,(T.x,w,T.y))).

Like [16, 28], the d-DSE Search protocol can implement
SSDsrch by viewing w in T.x as keywords and data in T.y as
values. d-DSE should allocate a local memory as Distinct
State σD to control the Update and Search protocols. For gen-
erating tokens t∗ from SS, the Update and Search protocols
should separately employ the Distinct Classifier and Distinct
Constraint to pre-process SS in translation (Fig. 1):
• Distinct Classifier identifies whether the (w,v,op) from
update queries is represented as distinct in retrieval, and sub-
sequently, it tags the modified input.
• Distinct Constraint generates the constrained key for dis-
tinct search queries that limits the retrieval of distinct values
from T.y based on w in T.x.

We refer to this construction as d-KW-dDSE (distinct Key-
Word queries from d-DSE). 2

We notice that finding distinct values in a table requires a
huge storage cost to store their state (i.e., distinct or repetitive).
At the same time, the rows in a table do not support records
that represent delete operations (e.g., the addition & deletion
list of file-identifiers [21]). To this end, we apply the Bloom
Filter (BF) to minimize local storage costs and the Symmet-
ric Revocable Encryption (SRE) to enable non-interactive
deletion. Our scheme for d-KW-dDSE is elaborated in Sec. 5.

Leakage analysis on d-KW-dDSE. We represent a N-size
sequence of distinct keyword queries as qdis = (i,w), includ-
ing the sequence of table name i ∈ i for Ti and searched
keyword w∗ ∈ w, respectively. Akin to [25], in the EDB per-
spective, the leakage function [7, 9, 14] of d-KW-dDSE is:

L̂LLd−KW−dDSE (qdis) = [(i1, tw1 ,L
Srch
D (w1)...(iN , twN ,L

Srch
D (wN)],

where tw∗ represents the token from w∗.
Similar to [16], the replacement of the Search protocol

is carried out in a black-box manner. We gain the ability to
detect and examine all the leakages present in the EDB, which
stem from the search leakage in d-DSE.

To the best of our knowledge, passive [60] and active [64]
attacks both source patterns revealed from the leakage func-
tion. We propose volumetric information [60] for d-KW-
dDSE:

• Update length pattern, denoted as ulen(w) =
|Update(w)| in LSrch

D (w), outputs the number of up-
dates made on keyword w.

• Distinct response length pattern, denoted as drlen(w) =
|TimeDTS(w) |, outputs value’s type matching keyword w.

2We give a detailed design for the d-DSE construction in Appendix F.

• Query equality pattern (a.k.a search pattern), denoted as
qeq(wi,w j) = 1(wi = w j), indicates whether two queries
are targeting the same keyword. The predicate 1(∗) outputs
1 for wi = w j and 0 otherwise.

We state that d-KW-dDSE does not have the insert/delete
length pattern due to the type-2 BP of d-DSE. The file vol-
ume and response similarity pattern are both related to file
retrieval instead of the constant-size distinct values protected
by FP&BP.

Potential attacks on d-KW-dDSE. d-KW-dDSE does not
possess file volume (size) pattern leveraged by BVA [64] in
injection attacks. For LAA, we find it difficult to perform
similar volumetric attacks as in DSE [60]. Based on DwVH
security, the value’s quantity can express arbitrary distribution
and integrate into the ulen(w) of each keyword. Meanwhile,
drlen(w) does not reveal the sum of the value’s quantities
matching w, leading to the absence of the linear relationship
between drlen(w) and ulen(w) [60].

4.4 Keyword Queries

The most common keyword query retrieves values from col-
umn T.y for a keyword w in T.x:

SELECT T.y FROM T WHERE T.x = w

↪→ SSsrch = (synsrch,(T,(T.x,w,T.y))).

The SSsrch is implemented by d-KW-dDSE along with cer-
tain client computations. Specifically, the client allocates a
hash table to map the keyword w with the vector d con-
structed from (w,v,op) input. The dimensions of d record
the value’s quantities in the value’s numerical (or lexicograph-
ical for string) order. We can first obtain the encrypted dis-
tinct values on column T.y through d-KW-dDSE, decrypt
them, and finally restore each value’s quantity through d in
their aforementioned order. The order from d-KW-dDSE can
also help us to insert/auto-increment/delete a dimension in
d for new/repetitive/deleted (w,v) input when updating en-
crypted data. We call this construction as KW-dDSE (Key-
Word queries from d-DSE), which is a practical approach
with O(W ) local storage cost to clients [3, 5, 21]. Note that
this approach enables record recovery by treating duplicated
records copied from multiple columns’ data as values.

Leakage analysis on KW-dDSE. The KW-dDSE and d-
KW-dDSE are identical except for the hash map on the honest
client. For a keyword query sequence qkw =(i,w), the leakage
function of KW-dDSE is:

L̂LLKW−dDSE (qkw) = L̂LLd−KW−dDSE (qkw) .

Potential attacks on KW-dDSE. The potential attacks are
identical to those on d-KW-dDSE, as the equation captures
the same leakage function.
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4.5 Join Queries
We implement the join query [25] between the foreign-key
and primary-key, which is the fundamental query type for
relational databases. A simple join query of two tables T1/T2
on the foreign/primary key T1.z = T2.z returns all values on
T2.y from T1 and T2 that agree on T1.z = T2.z & T1.x = w,
i.e.,

SELECT T2.y FROM T1JOIN T2 ON T1.z = T2.z WHERE T1.x = w.

↪→ SS join = (syn join,(T1,T2,(T1.x,w,T1.z),(T2.z,0,T2.y))).

It is straightforward to use multi KW-dDSE to capture the
SS join. We encrypt T2 with one KW-dDSE T KW−dDSE

2 be-
tween column T2.y and T2.z and T1 with another T KW−dDSE

1
between T1.z and T1.x. For the join query, we first invoke
T KW−dDSE

1 to get values v in T1.z corresponding to w in T1.x.
Then we utilize T KW−dDSE

2 to search values on T2.y by results
from T KW−dDSE

1 . We call this construction as JOIN-dDSE
(JOIN queries from d-DSE).

Leakage analysis on JOIN-dDSE. We find that the leak-
age of JOIN-dDSE on the EDB is caused by the process
from T KW−dDSE

1 and T KW−dDSE
2 . Since a join query consists

of multi KW-dDSE processes (referred to the join equation),
the leakage function of JOIN-dDSE for a sequence of join
queries q join = (i, j,w) is:

L̂LLJOIN−dDSE
(
q join

)
= L̂LLKW−dDSE

(
(i,w)|||v|l (j,vl)

)
,

where vl is the value of l dimension in v, j is the sequence
of the second table name (i.e., T2), and |||v|l denotes concate-
nating the sequence of each value performing KW-dDSE on
Tj.

Different from L̂LLKW−dDSE , L̂LLJOIN−dDSE has an apparent
search sequence between Ti and Tj. To perform KW-dDSE
on Tj, the keyword w in L̂LLJOIN−dDSE can query the same v,
revealing that they have previously searched the same value
in Ti.

Potential attacks on JOIN-dDSE. Although JOIN-dDSE
resists volumetric attack inherited from KW-dDSE, it addi-
tionally leaks a ‘generalized’ access pattern [7] and reveals
the co-occurrence matrix [37, 39] in certain situations (e.g.,
the plain dataset is partially exposed). To reduce the leakage,
one could use the oblivious join [12,36] through indistinguish-
able join access, which heavily depends on Oblivious RAM
(ORAM) and Bitonic-Sorted Network.

5 The BF-SRE Scheme

We describe the d-DSE scheme BF-SRE based on the Bloom
Filter (BF), Symmetric Revocable Encryption (SRE), and the
Forward Private DSE (FP-DSE) scheme for d-KW-dDSE.
Inspired by AURA [53], the retrieval of BF-SRE is exactly
the encrypted distinct values, which brings benefits for sub-
sequent token execution. The security analysis depicts that

BF-SRE attains FP&BP and DwVH security. The scheme also
achieves non-interactive deletion and the sub-linear search.

Symmetric Revocable Encryption (SRE) [53]: (1)
SRE.KGen(λ) outputs the master secret key msk = (sk,D)
from the security parameter λ, where sk and D are the secret
key and revoke structure, respectively; (2) SRE.Enc(msk,s, t)
outputs the ciphertext ct from msk, message s, and the tag t;
(3) SRE.Comp(D, t) compresses t into the revoke structure D
and outputs the new one D′; (4) SRE.ckRev(sk,D) takes as in-
put sk and D and outputs skR; (5) SRE.Dec(skR,ct) decrypts
ct via skR if the related tag is not in D for skR.

Update
Updated ciphertexts with the
DSE update tokens Σ+

addT?∗
(w1)

in the EDB 1.DEL (w1, v2) by SRE.ckRev 
2.Search w1

Search

The retrieval, deleted, and
repetitive results

Result
Decrypt
D locally

Outputs

v1
Table T Table T

X(Keywords) Y(Values)
Σ1

addT.x
(w1) SRE.Enc(ET

1
.y (v1) , t1)

Σ2
addT.x

(w1) SRE.Enc(ET
1
.y (v2) , t2)

Σ3
addT.x

(w1) SRE.Enc(ET
2
.y (v1) , t3)

Σ4
addT.x

(w1) SRE.Enc(ET
2
.y (v2) , t4)

X(Keywords) Y(Values)
Σ1

addT.x
(w1) ET

1
.y (v1)

Σ2
addT.x

(w1) SRE.Enc(ET
1
.y (v2) , t2)

Σ3
addT.x

(w1) SRE.Enc(ET
2
.y (v1) , t3)

Σ4
addT.x

(w1) SRE.Enc(ET
2
.y (v2) , t4)

Figure 2: BF-SRE: the scheme overview. We use the blue
color to represent the same revocation.

Fig. 2 shows the Update and Search protocol of BF-SRE.
BF-SRE uses BF for storing the Distinct State and the FP-DSE
Σadd to upload modified keyword/value pairs, while the SRE
is used to revoke tags associated with deleted or repetitive
values in the EDB. In Update protocol, the BF determines the
real or dummy tag generation for SRE ciphertexts based on
the first or repetitive inputs, respectively. The SRE ciphertext
is uploaded with real tags if the BF outputs "false." Other-
wise, BF-SRE uploads the SRE ciphertext with a dummy tag
manufactured by revoking the corresponding SRE key. In the
Search stage, if the SRE ciphertext is unrevoked, it will be
decrypted by the constrained sub-key from SRE. Finally, the
returned symmetric ciphertexts are decrypted locally.

The combination of BF and SRE can sufficiently deal with
large-scale datasets, even for those with table structures. Ac-
cording the BF required bit size b =−n ln p/(ln2)2, where n
and p are the maximum count and the tolerated false-positive
probability, BF can expense a small storage cost to record
whether keyword/value/op pairs appear (e.g., for n = 220 and
p = 10−5, b size is just 3MB [53]).

5.1 BF-SRE Description

Protocol 1 BF-SRE: Setup, bold lines 2-3 are Distinct State.
Setup(λ):
1: Initialize the DSE scheme (EDB,σ,KΣ)← Σadd .Setup(λ)
2: Initialize the Bloom Filter H,B←Φ.Gen(λ)
3: Initialize empty maps MSK, UpCnt, C, D, EDBcache

4: Randomly generate keys Ks,Kt ,Kc
$←{0,1}λ

5: Send EDB and the cache EDBcache to the server

Setup. The Setup protocol generates the encrypted
database EDB, its internal state σ, secret key Kσ from a FP-
DSE scheme Σadd , and constructs secret keys Ks,Kt ,Kc, the
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BF hash collection H, the BF bit array B, and four empty maps
MSK, UpCnt, C, D. The Kc is used to encrypt values. The Ks
generates the cache token tkn to get previous search results
from the cache EDB (EDBcache). The Kt is used to generate
tags from inputs and UpCnt. The C counts the search on each
w. The MSK and D are used to store each master key and
revoked key structure associated keyword w, respectively.

Protocol 2 BF-SRE: Update, bold lines 11-19 are the Distinct
Classifier.
Update(KΣ,st,op,(w,v) ;EDB):
Client:
1: Read msk, D, i, and cnt from MSK [w], D [w], C [w], and UpCnt[w], respectively.
2: if msk is not initialized then
3: Set msk← SRE.KGen(λ), where msk = (sk,D)
4: Set MSK[w]← msk, D[w]← D
5: Set UpCnt [w]← 0, C[w]← 0
6: Set cnt← 1, UpCnt[w]← cnt
7: end if
8: Gen. the real/dummy tags t← F (Kt ,w||v||0), l← F (Kt ,w||v||cnt)
9: Gen. the retrieval s← E (Kc,v||cnt)

10: if op == add then
11: if Φ.Check (H,B, t) is false then
12: Update BF Φ.U pd (H,B, t)
13: ct← SRE.Enc(msk,s, t)
14: Insert the EDB Σadd .U pdate (KΣ,add,w||i,(ct, t) ;EDB)
15: else
16: ct← SRE.Enc(msk,s, l)
17: Insert the EDB Σadd .U pdate (KΣ,add,w||i,(ct, l) ;EDB)
18: Puncture the dummy tag D′← SRE.Comp(D, l), D [w]← D′

19: end if
20: else
21: Puncture the real tag D′← SRE.Comp(D, t), D [w]← D′

22: end if
23: UpCnt[w]← cnt +1

Update. This protocol updates the EDB with the new in-
ternal state. At lines 1-7, the client loads the internal state on
keyword w. At line 8, the client uses PRF to generate tags t
and l. The t is the real tag for the first input of the w||v. The l
is the dummy tag for the repetitive input. At line 9, the client
uses the symmetric encryption to generate the retrieval s from
the value v and the unique count cnt. At lines 10 and 22, the
client chooses to generate ciphertext or revoke the SRE key
according to the input operation (’add’ or ’del’). For addition,
at line 11, the client executes the Distinct Classifier program
to check whether the w||v input appears for the first time. If so,
the client updates the BF, generates SRE ciphertexts ct tagged
t as the encrypted ciphertexts, and uploads it by the instance
of DSE. Otherwise, the client generates dummy SRE cipher-
texts, revokes the corresponding revoked key structure D, and
uploads the dummy encrypted ciphertexts. For deletion, at
line 21, the client revokes the SRE key structure correspond-
ing to the tag t of the first input w||v. At line 23, the client
updates the count UpCnt[w] for keyword w.

Search. The Search protocol finds the ciphertexts by key-
word w and returns the distinct values. At lines 1-4, the client
reads internal state, computes the Distinct Constraint program
to get the SRE revoked key skR and the cache token tkn, and
sends them to the server. At lines 5-6, the client renews the
internal state for the next search on w. At line 7, the client and
server run the Search protocol of Σadd , and then the server

Protocol 3 BF-SRE: Search, bold lines 3-4 are the Distinct
Constraint.
Search(KΣ,w,st;EDB):

Client:
1: Read i, sk, and D from C [w], MSK[w], and D[w], respectively.
2: if i is not valid, then ⊥.
3: skR← SRE.ckRev(sk,D)
4: Send (skR,D) and tkn = F(Ks,w) to the server
5: msk = (sk,D)← SRE.KGen(λ)
6: Renew C [w]← i+1, MSK[w]← msk, D[w]← D

Client and Server:
7: Run Σadd .Search(KΣ,w||i,σ;EDB), and the server gets the list L =

((ct1, t1) ,(ct2, t2) ...,(ctl , tl))
Server:

8: Set the new value list NV ← /0
9: for j ∈ [1, l] do

10: Get the encrypted value Vj ← SRE.Dec((skR,D) ,ct j , t j)
11: if Vj is valid then
12: Update NV ← NV

⋃
Vj

13: else
14: Delete this ciphertext in EDB
15: end if
16: end for
17: Retrieve cache OV ← EDBcache[tkn]
18: Return S← NV

⋃
OV , and update EDBcache[tkn]← S

Client:
19: Extract each symmetric cipher s from S, and decrypt the s to get the value v from

v||cnt ← D (Kc,s) as the search result

gets the search list L. At lines 8-16, the server uses the skR
to decrypt each ct in list L and remains the symmetric ci-
phertexts from the unrevoked SRE ciphertext. At line 17, the
server retrieves previous results from the encrypted database
cache EDBcache by tkn. At lines 18-19, the client obtains the
search result S from the server and decrypts all symmetric
ciphertexts to get the distinct values.

Remark on BF-SRE. To simplify the explanation, we
illustrate the situation of retrieving distinct values from the
specified column T.y based on the searched keyword in T.x.
To retrieve distinct values on other columns in T, we do the
following: (1) extend the value input as a vector (i.e., v to v);
(2) expand the dimension of B (i.e., B[w] to B[w].⋆) to record
more state on other columns; (3) expand the dimension of D
(i.e., D[w].⋆) for their corresponding revoked key structure;
and (4) finally extend ct. After that, we switch to the right
column’s revoked key structure in D[w].⋆ for distinct values
on arbitrary columns in T. More functional extensions for BF-
SRE are possible through replacing Σadd with other FP-DSE
schemes like range search [67].

5.2 Analysis on BF-SRE

Correctness. The BF-SRE scheme uses the FP-DSE to up-
load the modified keyword/value pairs in encrypted databases.
With the polynomial-time algorithm of the PRF F , it always
outputs a tkn from Ks. The BF’s possibility of losing correct-
ness is false positive and acceptable [53]. Hence, our scheme
can correctly update and search distinct values.

Security Analysis. BF-SRE securely generates the cipher-
texts, search tokens attached to the FP-DSE, the SRE, the PRF,
and the symmetric encryption. As for the Update stage, the
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client modifies the input by UpCnt and the Distinct State, and
the ciphertext is uploaded by the FP-DSE Σadd . With regard
to the Search stage, the client uploads the revoked SRE key
to exactly retrieve the values attached to the real tags, which
does not show auxiliary information about the volume.

Theorem 1 (Adaptive Security of BF-SRE) Let F (the
PRF) with a specific key be modelled as the random oracle
HF , LD =

(
LU pt

D ,LSrch
D

)
is defined as:

LU pt
D (w,v,op) = add

LSrch
D (w) = sp(w),TimeDTS(w),Update(w),

BF-SRE is LD-adaptively-secure.

Proof Sketch. The proof is conducted in the game hop like
AURA [53]. We gradually replace the real cryptographic tools
used in the BF-SRE scheme with the bookkeeping tables or the
corresponding simulators and obtain the BF-SRE simulator.
The addition list Ladd and the deletion set D are used in the
LSrch

D leakage function to retrieve the search result. We note
that the BF determines the workflow of the simulator and does
not affect the indistinguishability between each game hop.

Theorem 2 (DwVH Security of BF-SRE) The leakage
function of BF-SRE LD = (LU pt

D ,LSrch
D ) is Distinct with

Volume-Hiding.

Proof Sketch. The proof is analyzed from the leakage in
the BF-SRE forward and backward privacy. To prove that
LD is Distinct with Volume-Hiding, we need to construct
two signatures with the same size and the upper bound of
maximum volume. Note that LU pt

D consists the addition op-
erations, and LSrch

D includes value’s type and timestamps of
updates. The LSrch

D is independent of the input keyword/value
pairs because the real and dummy tags generation can always
maintain identical response on value’s type under the two
signatures. Therefore, the leakage function reveals nothing
about the volume. Both proofs are given in Appendix E.

Complexity. In the Setup stage, BF-SRE spends a constant
time initializing Σadd , internal state, and secret keys. In the
Update stage, it consumes a constant time to update the inter-
nal state, execute Σadd , test the BF, and generate ciphertexts.
Hence, the Update protocol computation complexity is O (1)
with a one-way interaction and an O (1) length ciphertext. In
the Search stage, BF-SRE spends a constant time perform-
ing Σadd and spends O (aw) time on search results, where aw
denotes all ciphertexts found by Σadd . Hence, the Search pro-
tocol computation complexity is set as O (nw) with a one-way
interaction, where nw denotes the number of returned distinct
values.

5.3 Optimization
In BF-SRE, the cryptographic tools determine the actual com-
putation and communication costs. Recall that in the Search

protocol, BF-SRE uses the DSE scheme to find all matched
ciphertexts. A possible solution to improve the efficiency
of the Search is to leverage the parallel Forward Private
DSE [31, 34].

On the other hand, the SRE decryption affects the efficiency
of finding the distinct values. In practice, SRE requires sig-
nificant computational cost to determine the derived sub-key
corresponding to SRE ciphertext. Fortunately, we can identify
and implement the Greedy and Default optimization for the
SRE decryption:
• Greedy: Temporarily store the sub-keys that are not applied
in the previous SRE decryption and try using them in sub-
sequent decryption. In practice, we can use a stack to store
unused sub-keys, enabling a systematic approach to ejecting
the keys one by one for the decryption of SRE ciphertexts.
After decryption, the used sub-keys are discarded, while the
(new) derivatives are added to the stack.
• Default: Pre-compute the sub-key space size of SRE de-
cryption through the keyword frequency in the target dataset.
In practice, we can utilize the estimated keyword frequencies,
which are close to the real ones [55], to set the appropriate
limitation of revoke operation corresponding to each keyword.
After that, SRE decryption reduces the total computation of
sub-keys, thereby achieving faster decryption speed.
Note we combine the two optimizations for BF-SRE.

6 Evaluation

We first introduce datasets with different keyword/value dis-
tributions and experimental setup. Then, we evaluate the
comparison between BF-SRE and MITRA* [21], AURA [53],
SEAL [16], and ShieldDB [55]. Our scheme, under equivalent
security parameters, exhibits comparable time costs and sig-
nificant communication improvement. Our codes are publicly
available in https://github.com/jd89j12dsa/ddse.

6.1 Dataset
Chicago Crimes Reports3. The Crime dataset is suitable for
keyword/value pairs (in the context of SQL and EDB) [10,16].
It includes 7,989,987 keyword/value pairs extracted from
the reports (spanning from 1-1-1999 to 2-4-2024). We use
street names and the corresponding IUCR codes as keywords
and values in the Crime table, respectively. For testing join
queries, we extract the whole IUCR table to search the PRI-
MARY_DESCRIPTION by IUCR codes from the Crime re-
sults.
Wikipedia4. This is a large-scale document dataset for DSE
evaluation [13, 34]. Through the Wikipedia extractor and
Python NLTK package [34], we collect 4,565,948 pairs in
our table structure, and we aim to find the distinct words by
document names.

3This dataset is available at: https://data.cityofchicago.org/
4The Wikipedia: https://dumps.wikimedia.org/
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Figure 3: The number of keyword/value pairs associated with each keyword on Crime, Wikipedia and Enron dataset. The blue
and red nodes represent the number of all and distinct keyword/value pairs, respectively.
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Figure 4: Comparison of the total search time and communication costs of BF-SRE, AURAP, and MITRAP without deletion.

Enron5. Enron email dataset [34, 65] stores the texts con-
verted from its email system. We use NLTK package and
Porterstemmer [47] to extract 5,190,199 pairs, aiming to iden-
tify distinct words through email names.

Fig. 3 illustrates the number of keyword/value pairs
associated with each keyword in descending order. We
count the number of all keyword/value pairs as Keyword
Volume. The repetitive-percentage/keyword-space/highest-
keyword-volume of the Crime, Wikipedia, and Enron
dataset are 80.15%/63,659/16,644, 42.04%/10,000/9,738, and
45.53%/16,241/26,946, respectively.

6.2 Experimental Setup
Our test platform is Intel® Xeon Gold 5120 CPU @ 2.20GHz,
128GB, Dell RERC H730 Adp SCSI Disk Device, Windows
Server 2016 Standard. In our Python (v3.60) code, we utilize
the PYmysql package to perform at most 100 parallel queries
on MySQL (Ver 14.14 Distrib 5.7.33).

We first compare the performance of BF-SRE with MITRAP

and AURAP. Note BF-SRE uses DIANA [5] as the Forward Pri-
vate DSE implementation. Our implementation makes Python
modules from the SRE [53] source code with the greedy and
default optimization mentioned in Sec. 5.3. We also imple-
ment MITRAP and AURAP from MITRA* [21] and AURA [53],
along with the SEAL’s adjustable padding strategy [16] for fair
comparisons. Specifically, when initializing the EDB, we en-
sure that MITRAP and AURAP pad each keyword with dummy
pairs until the volume of each keyword reaches the exponen-
tiation of x = 4, respectively. For correctness, we prepare a

5Enron email dataset:https://www.cs.cmu.edu/~enron/.

translation map between keyword/value pairs and keyword/id
pairs to restore search results mentioned in Sec. 1.

Then, we test the time and communication costs of BF-
SRE, SEAL, and ShieldDB when processing queries in SQL
syntax. SEAL is implemented through the tree-based ORAM
[21]6 with the factor a = 20,x = 4. For ShieldDB in NL mode
(α = 256), we transform keyword/value datasets to the related
file dataset and further compose keyword clusters uploading
the stream data. We say that they can perform the queries
via our basic Query Planner established from the PYmysql
package and the transformation in Sec. 1.

6.3 Compare with DSE

For BF-SRE, AURAP, and MITRAP, we document total/client
search time, communication, and highest-volume keyword
search time costs in deletion. Based on the equation in Sec.
5, the BF’s size reaches an appropriate setting to delete on
the highest-volume keyword, preserving the correctness of
BF-SRE and AURAP.

6.3.1 Search performance

Total search time and communication costs. Fig. 4 illus-
trates that BF-SRE significantly outperforms AURAP and MI-
TRAP in time and communication costs when the Keyword
Volume > 103. Particularly, with regards to time costs, in Fig.
4c, BF-SRE exhibits a slower increase in cost, extending up to
8.25 seconds. This is more efficient, with a 4.12x and 29.27x

6The tree-based ORAM: https://github.com/jgharehchamani/SSE
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reduction in time compared to AURAP and MITRAP. Mean-
while, the communication costs for BF-SRE are 83.82 KB
with 15.27x and 30.54x advantage over AURAP and MITRAP.
Both compared DSE schemes display significant ladder like
mutations (of SEAL) in communication cost. All trends of Fig.
4a,4b,4c have similar increments. This result shows that the
padding strategy requires AURAP to initialize the large size
BF to log the deletion of dummy pairs, while MITRAP has to
perform more "clean-up" operations (i.e., removing deleted
pairs and re-encrypting the remaining pairs).
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Figure 5: Comparison of search time costs of BF-SRE,
AURAP, and MITRAP on client without deletion.

Search time cost on client. Fig. 5 shows that BF-SRE
outperforms MITRAP and presents a small advantage over
AURAP. For example, in Fig. 5a, the cost gap between BF-SRE
and AURAP is roughly 0.64-0.03s. We state that BF-SRE does
not process dummy data while searching, thereby improving
the client’s performance.
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Figure 6: Comparison of search time costs of BF-SRE,
AURAP, and MITRAP on the highest-volume (HV) keyword
with deletion percentage (namely, delete 0-90% pairs).

Highest-Volume (HV) Search time costs. Fig. 6 provides
the fact that BF-SRE is well-perform across all datasets. We
notice that the costs associated with BF-SRE exhibit a slight
increase in correlation with the rise in the deletion percentage.
In Fig. 6b,6c, the costs slowly increase from 2.96s and 8.14s to
4.97s and 10.02s, respectively. The costs of MITRAP climb up
abruptly as its deletion requires traversing and re-encrypting
all dummy data (under padding). AURAP presents a declining
cost trend on the costs but still cannot outperform BF-SRE. In
Fig. 6c, the cost of AURAP decreases from 34.31s to 15.33s
since the deletion operations indirectly reduce its cost on
decryption key generation.

6.3.2 Update performance

We compare update time costs for BF-SRE, AURAP, and MI-
TRAP. Due to AURAP and MITRAP inheriting the batch update
of padding strategies, we record the costs based on Keyword
Volume. For BF-SRE, we record the average addition cost of
all pairs associated with the keyword at a specific Keyword
Volume. We also record the client storage cost when adding
keyword/value pairs in the sequence of Keyword No. In other
words, for the Crime dataset, we add the corresponding pairs
in the order of Keyword No.1 to No.63659 shown in Fig. 3a.
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Figure 7: Comparison of update time costs of BF-SRE,
AURAP, and MITRAP.

Update time costs. Fig. 7 depicts that the costs of BF-SRE
are at the same magnitude in all datasets. BF-SRE yields linear
costs that grow in proportion to the Keyword Volume, while
the AURAP and MITRAP both experience step-wise increases.
In detail, for Fig. 7a, the costs of BF-SRE, AURAP, and MI-
TRAP climb from 1.52·10−4s, 2.72·10−4s, and 8.8·10−5s to
7.62s, 29.24s, and 1.94s, respectively. Both AURAP and MI-
TRAP have the mutation at the Keyword Volume of 4096 and
15868, which is due to the use of SEAL’s adjustable padding.
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Figure 8: Comparison of client storage costs of BF-SRE,
AURAP, and MITRAP for update.

Client storage costs. Fig. 8 illustrates that the costs for BF-
SRE fall between those of AURAP and MITRAP in all datasets.
Due to the De f ault optimization, the BF-SRE costs eventu-
ally trend toward MITRAP, roughly 1.47x less than AURAP

in Fig. 8a, 8b, 8c, respectively. In Fig. 8a, AURAP exhibits
noticeable inflections when the sequence of Keyword No.
reaches 899, 9192, and 23351 (corresponding to Keyword
Volumes of 1023, 255 and 63) due to the SEAL’s adjustable
padding.

6.4 Compare with Padding Strategy
We test the time and communication costs for keyword and
join queries in SQL syntax. As mentioned in Sec. 4, we first
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Figure 9: Comparison of the SQL time cost for keyword queries on BF-SRE, SEAL, and ShieldDB.
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Figure 10: Comparison of the SQL communication cost for keyword queries on BF-SRE, SEAL, and ShieldDB.

set up the constructions of BF-SRE, SEAL, and ShieldDB, re-
spectively. Then, we use the Query Planner to extract original
queries for each construction to retrieve values from the EDB.

For join queries, we use the Crime dataset to test time and
communication costs about its Keyword Volume. We use
Query Planner to request retrieving the relevant IUCR code
through keyword (street name, see Sec. 6.1) in the Crime
table, and then leverage each IUCR code result to find the
PRIMARY_DESCRIPTION in the IUCR table. Finally, we
let the planner restore the query combined from the two-stage
results and log the related costs.

Keyword query time cost. Fig. 9 presents the costs of
BF-SRE, SEAL, and ShieldDB. From the query results cover-
ing the entire keyword space, we see that BF-SRE provides
advantage, nearly 10.89-180x, for SEAL when the Keyword
Volume > 103. Its cost slightly exceeds that of ShieldDB when
the Keyword Volume is greater than 4728, 4219, and 2712 in
the Crime, Wikipedia, and Enron dataset, respectively. From
our analyze, the numbers of keywords below these thresholds
are accounted for approximately 95.0%, 96.5%, and 98.5%,
revealing that the BF-SRE’s cost is competitive among large
keyword spaces. Note that some ‘spikes’ come from batch
read operations [21] and cache retrieval [55] in SEAL and
ShieldDB, respectively.

Keyword query communication costs. In Fig. 10, BF-
SRE consumes much less communication costs than the
padding strategies. Specifically, it reduces the highest-volume
keyword cost up to 53.14x, 6.36x, and 15.27x on the Crime,
Wikipedia, and Enron dataset, respectively. We recall that BF-
SRE mainly concentrates on the retrieval of the values, while
the padding has to deal with the dummy data.

Join query cost. Fig. 11 shows that BF-SRE performs the
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Figure 11: Comparison of time and communication costs
for SQL join queries on Crime.

best in the Crime dataset. Compared to executing SQL key-
word queries, BF-SRE does not require a significant rise in
the metrics. In contrast, SEAL and ShieldDB repeatedly elim-
inate the dummy data from the IUCR table locally, thereby
sharply increasing their costs. The costs associated with BF-
SRE are roughly 26.6x lower than those of ShieldDB w.r.t. the
highest-volume keyword.

When considering overall costs, BF-SRE stands as a com-
petitive performer in comparison to trivial-transformed in-
stances from DSE. Moreover, it provides comparable time
costs to the padding strategies while delivering significant
advantages. It demonstrates the ability to efficiently handle
various search queries and offers practical communication
costs under the tested security parameters.

7 Discussions
Dataset. We notice that there are still a few datasets that have
been used for DSE evaluations, e.g., Apache Lucene [64]. We
can apply them to locate distinct words by document names,
similar to the approach used in Wikipedia or Enron. We argue
that using these datasets will not seriously affect the per-
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formance of our proposals because Crime/Wikipedia/Enron
has a familiar data distribution to other table/document/email
datasets [34].

Highest-volume keyword search in deletion. One may
argue that using "highest-volume keyword" may not yield
extensive results. It is important to note that the search results
obtained from representative keywords exhibit minimal fluc-
tuation. This is because the search process for these keywords
consumes sufficient time and ensures accurate results. These
keywords are more frequently used in practical databases
and we use them to clearly highlight the advantage of our
proposal. We note that interested readers may choose to use
less-frequent keywords in the evaluation.

Other SQL databases. We use MySQL to store the ci-
phertexts of the EDB. We say that interested readers may
use other SQL databases, such as PostgreSQL and Microsoft
SQL Server, to implement the d-DSE schemes via the Python
interfaces. The parallel capability of SQL databases is not
a crucial aspect to consider when choosing among them, as
their performance is largely dependent on disk storage.

The d-DSE storage cost. BF-SRE needs more client stor-
age than MITRAP, which is required by the underlying SRE
revoke structure. We can apply other DSE schemes as build-
ing blocks consuming lower client storage. 7

Threat from access pattern. Similarly to JOIN-dDSE,
d-KW-dDSE could potentially be vulnerable to access pat-
tern leakage [1], which is a concern associated with practical
DSE constructions [13, 15, 43, 53]. In certain scenarios, the
retrieval process could involve accessing memory, such as
acquiring a constant-size file-identifier from a column, which
could inadvertently reveal access patterns. One straightfor-
ward strategy to mitigate this issue is to combine d-KW-dDSE
with ORAM [21] to obscure memory access, albeit at extra
costs of time and storage. Specifically, we can first retrieve
identifiers via d-KW-dDSE and then employ ORAM to re-
trieve each identifier’s data. When processing queries in batch,
we leverage the multi-path ORAM (e.g., OBI [59]) to mitigate
the high throughput.

Against frequency attacks. Although we mainly focus on
volume leakage, a recent research [60] alerts the frequency(-
matching) attack. The success of the attack hinges on the
diversity of the query frequency that is exposed in BF-SRE
and prior FP&BP DSE schemes [21, 53] through persistent
frequency detection. To mitigate the attack, we can apply a
general countermeasure - frequency-smoothing - also used
in PANCAKE [22], on the top of d-DSE. It is compatible
for combining d-DSE and frequency smoothing as: 1) they
both leverage keyword/value pairs (KV pairs in their descrip-
tion); 2) their contexts (i.e., static and dynamic frequency
distributions) are consistent.

Ciphertext de-duplication. Recall that ciphertext de-

7In Appendix G, we provide an example based on MITRA and the In-
ner Product Encryption [35], obtaining distinct values via the distinct inner
products between ciphertexts and search tokens.

duplication [6, 38, 49, 63] is to eliminate the repetitive cipher-
texts. In particular, this approach, inherited from convergent
encryption [38], emphasizes the elimination of ciphertexts
with identical contents across multiple clients in order to min-
imize storage costs. But this technique does not focus on
ensuring secure value searches.

8 Conclusion

We explore the distinct search and propose d-DSE. Following
the concept and definition of d-DSE, we propose the d-DSE
designed EDB and develop BF-SRE, which satisfies the for-
ward and backward privacy and DwVH security. We conduct
extensive experiments to highlight the practical performance
of our designs in run time, communication, storage, and ef-
fectiveness on volume leakage.

References
[1] Laura Blackstone, Seny Kamara, and Tarik Moataz. Revisiting leakage

abuse attacks. In NDSS, 2020.

[2] Lenore Blum, Manuel Blum, and Mike Shub. A simple unpredictable
pseudo-random number generator. SIAM Journal on computing,
15(2):364–383, 1986.

[3] Raphael Bost. Sophos: Forward secure searchable encryption. In CCS,
pages 1143–1154, 2016.

[4] Raphael Bost and Pierre-Alain Fouque. Thwarting leakage abuse at-
tacks against searchable encryption–a formal approach and applications
to database padding. Cryptology ePrint Archive, 2017.

[5] Raphael Bost, Brice Minaud, and Olga Ohrimenko. Forward and back-
ward private searchable encryption from constrained cryptographic
primitives. In CCS, pages 1465–1482, 2017.

[6] Jan Camenisch, Angelo De Caro, Esha Ghosh, and Alessandro Sorniotti.
Oblivious prf on committed vector inputs and application to deduplica-
tion of encrypted data. In FC, pages 337–356, 2019.

[7] David Cash, Paul Grubbs, Jason Perry, and Thomas Ristenpart.
Leakage-abuse attacks against searchable encryption. In CCS, pages
668–679, 2015.

[8] David Cash, Joseph Jaeger, Stanislaw Jarecki, Charanjit S Jutla, Hugo
Krawczyk, Marcel-Catalin Rosu, and Michael Steiner. Dynamic search-
able encryption in very-large databases: data structures and implemen-
tation. In NDSS, 2014.

[9] David Cash, Stanislaw Jarecki, Charanjit Jutla, Hugo Krawczyk,
Marcel-Catalin Rosu, and Michael Steiner. Highly-scalable searchable
symmetric encryption with support for boolean queries. In CRYPTO,
pages 353–373, 2013.

[10] David Cash, Ruth Ng, and Adam Rivkin. Improved structured encryp-
tion for sql databases via hybrid indexing. In ACNS, pages 480–510,
2021.

[11] Javad Ghareh Chamani, Dimitrios Papadopoulos, Mohammadamin Kar-
basforushan, and Ioannis Demertzis. Dynamic searchable encryption
with optimal search in the presence of deletions. In USENIX Security,
pages 2425–2442, 2022.

[12] Zhao Chang, Dong Xie, Sheng Wang, and Feifei Li. Towards practical
oblivious join. In SIGMOD, pages 803–817, 2022.

[13] Tianyang Chen, Peng Xu, Stjepan Picek, Bo Luo, Willy Susilo, Hai
Jin, and Kaitai Liang. The power of bamboo: On the post-compromise
security for searchable symmetric encryption. In NDSS, 2023.

14



[14] Reza Curtmola, Juan Garay, Seny Kamara, and Rafail Ostrovsky.
Searchable symmetric encryption: improved definitions and efficient
constructions. Journal of Computer Security, 19(5):895–934, 2011.

[15] Ioannis Demertzis, Javad Ghareh Chamani, Dimitrios Papadopoulos,
and Charalampos Papamanthou. Dynamic searchable encryption with
small client storage. In NDSS, 2020.

[16] Ioannis Demertzis, Dimitrios Papadopoulos, Charalampos Papaman-
thou, and Saurabh Shintre. Seal: Attack mitigation for encrypted
databases via adjustable leakage. In USENIX Security, pages 2433–
2450, 2020.

[17] Ioannis Demertzis, Rajdeep Talapatra, and Charalampos Papamanthou.
Efficient searchable encryption through compression. Proceedings of
the VLDB Endowment, 11(11):1729–1741, 2018.

[18] Sky Faber, Stanislaw Jarecki, Hugo Krawczyk, Quan Nguyen, Marcel
Rosu, and Michael Steiner. Rich queries on encrypted data: Beyond
exact matches. In ESORICS, pages 123–145, 2015.

[19] Benjamin Fuller, Mayank Varia, Arkady Yerukhimovich, Emily Shen,
Ariel Hamlin, Vijay Gadepally, Richard Shay, John Darby Mitchell, and
Robert K. Cunningham. Sok: Cryptographically protected database
search. In IEEE S&P, pages 172–191, 2017.

[20] Marilyn George, Seny Kamara, and Tarik Moataz. Structured encryp-
tion and dynamic leakage suppression. In EUROCRYPT, pages 370–
396, 2021.

[21] Javad Ghareh Chamani, Dimitrios Papadopoulos, Charalampos Pa-
pamanthou, and Rasool Jalili. New constructions for forward and
backward private symmetric searchable encryption. In CCS, pages
1038–1055, 2018.

[22] Paul Grubbs, Anurag Khandelwal, Marie-Sarah Lacharité, Lloyd
Brown, Lucy Li, Rachit Agarwal, and Thomas Ristenpart. Pancake:
Frequency smoothing for encrypted data stores. In USENIX Security,
pages 2451–2468, 2020.

[23] Paul Grubbs, Marie-Sarah Lacharité, Brice Minaud, and Kenneth G
Paterson. Pump up the volume: Practical database reconstruction from
volume leakage on range queries. In CCS, pages 315–331, 2018.

[24] Florian Hahn and Florian Kerschbaum. Searchable encryption with
secure and efficient updates. In CCS, pages 310–320, 2014.

[25] Florian Hahn, Nicolas Loza, and Florian Kerschbaum. Joins over
encrypted data with fine granular security. In IEEE ICDE, pages 674–
685, 2019.

[26] Yanxue Jia, Shi-Feng Sun, Hong-Sheng Zhou, Jiajun Du, and Dawu Gu.
Shuffle-based private set union: Faster and more secure. In USENIX
Security, pages 2947–2964, 2022.

[27] Charanjit Jutla and Sikhar Patranabis. Efficient searchable symmetric
encryption for join queries. In ASIACRYPT, pages 304–333, 2022.

[28] Seny Kamara and Tarik Moataz. Sql on structurally-encrypted
databases. In ASIACRYPT, pages 149–180, 2018.

[29] Seny Kamara and Tarik Moataz. Computationally volume-hiding struc-
tured encryption. In EUROCRYPT, pages 183–213, 2019.

[30] Seny Kamara, Tarik Moataz, and Olya Ohrimenko. Structured encryp-
tion and leakage suppression. In CRYPTO, pages 339–370, 2018.

[31] Seny Kamara and Charalampos Papamanthou. Parallel and dynamic
searchable symmetric encryption. In FC, pages 258–274, 2013.

[32] Seny Kamara, Charalampos Papamanthou, and Tom Roeder. Dynamic
searchable symmetric encryption. In CCS, pages 965–976, 2012.

[33] Georgios Kellaris, George Kollios, Kobbi Nissim, and Adam O’neill.
Generic attacks on secure outsourced databases. In CCS, pages 1329–
1340, 2016.

[34] Kee Sung Kim, Minkyu Kim, Dongsoo Lee, Je Hong Park, and Woo-
Hwan Kim. Forward secure dynamic searchable symmetric encryption
with efficient updates. In CCS, pages 1449–1463, 2017.

[35] Sam Kim, Kevin Lewi, Avradip Mandal, Hart Montgomery, Arnab Roy,
and David J Wu. Function-hiding inner product encryption is practical.
In SCN, pages 544–562, 2018.

[36] Simeon Krastnikov, Florian Kerschbaum, and Douglas Stebila. Effi-
cient oblivious database joins. Proceedings of the VLDB Endowment,
13(12):2132–2145, 2020.

[37] Steven Lambregts, Huanhuan Chen, Jianting Ning, and Kaitai Liang.
Val: Volume and access pattern leakage-abuse attack with leaked docu-
ments. In ESORICS, pages 653–676, 2022.

[38] Jian Liu, Nadarajah Asokan, and Benny Pinkas. Secure deduplication
of encrypted data without additional independent servers. In CCS,
pages 874–885, 2015.

[39] Jianting Ning, Xinyi Huang, Geong Sen Poh, Jiaming Yuan, Yingjiu
Li, Jian Weng, and Robert H Deng. Leap: leakage-abuse attack on
efficiently deployable, efficiently searchable encryption with partially
known dataset. In CCS, pages 2307–2320, 2021.

[40] Simon Oya and Florian Kerschbaum. Hiding the access pattern is not
enough: Exploiting search pattern leakage in searchable encryption. In
USENIX Security, pages 127–142, 2021.

[41] Simon Oya and Florian Kerschbaum. Ihop: Improved statistical query
recovery against searchable symmetric encryption through quadratic
optimization. In USENIX Security, pages 2407–2424, 2022.

[42] Sarvar Patel, Giuseppe Persiano, Kevin Yeo, and Moti Yung. Mitigating
leakage in secure cloud-hosted data structures: Volume-hiding for multi-
maps via hashing. In CCS, pages 79–93, 2019.

[43] Sikhar Patranabis and Debdeep Mukhopadhyay. Forward and backward
private conjunctive searchable symmetric encryption. In NDSS, 2021.

[44] Benny Pinkas, Thomas Schneider, and Michael Zohner. Faster private
set intersection based on ot extension. In USENIX Security, pages
797–812, 2014.

[45] Rishabh Poddar, Tobias Boelter, and Raluca Ada Popa. Arx: An en-
crypted database using semantically secure encryption. Proceedings of
the VLDB Endowment, 12(11):1664–1678, 2019.

[46] Raluca Ada Popa, Catherine M. S. Redfield, Nickolai Zeldovich, and
Hari Balakrishnan. Cryptdb: protecting confidentiality with encrypted
query processing. In SOSP, pages 85–100, 2011.

[47] Martin F. Porter. An algorithm for suffix stripping. Program, 14(3):130–
137, 1980.

[48] Christian Priebe, Kapil Vaswani, and Manuel Costa. Enclavedb: A
secure database using sgx. In IEEE S&P, pages 264–278, 2018.

[49] Yanjing Ren, Jingwei Li, Zuoru Yang, Patrick P. C. Lee, and Xiaosong
Zhang. Accelerating encrypted deduplication via sgx. In USENIX ATC,
pages 957–971, 2021.

[50] Masoumeh Shafieinejad, Suraj Gupta, Jin Yang Liu, Koray Karabina,
and Florian Kerschbaum. Equi-joins over encrypted data for series of
queries. In IEEE ICDE, pages 1635–1648, 2022.

[51] Dawn Xiaodong Song, David A. Wagner, and Adrian Perrig. Practical
techniques for searches on encrypted data. In IEEE S&P, pages 44–55,
2000.

[52] Emil Stefanov, Charalampos Papamanthou, and Elaine Shi. Practical
dynamic searchable encryption with small leakage. In NDSS, 2014.

[53] Shi-Feng Sun, Ron Steinfeld, Shangqi Lai, Xingliang Yuan, Amin
Sakzad, Joseph Liu, Surya Nepal, and Dawu Gu. Practical non-
interactive searchable encryption with forward and backward privacy.
In NDSS, 2021.

[54] Shi-Feng Sun, Xingliang Yuan, Joseph K Liu, Ron Steinfeld, Amin
Sakzad, Viet Vo, and Surya Nepal. Practical backward-secure search-
able encryption from symmetric puncturable encryption. In CCS, pages
763–780, 2018.

15



[55] Viet Vo, Xingliang Yuan, Shi-Feng Sun, Joseph K. Liu, Surya Nepal,
and Cong Wang. Shielddb: An encrypted document database with
padding countermeasures. IEEE TKDE, 35(4):4236–4252, 2023.

[56] Jiafan Wang and Sherman S. M. Chow. Omnes pro uno: Practical Multi-
Writer encrypted database. In USENIX Security, pages 2371–2388,
2022.

[57] Jianfeng Wang, Shi-Feng Sun, Tianci Li, Saiyu Qi, and Xiaofeng Chen.
Practical volume-hiding encrypted multi-maps with optimal overhead
and beyond. In CCS, pages 2825–2839, 2022.

[58] Xingchen Wang and Yunlei Zhao. Order-revealing encryption: file-
injection attack and forward security. In ESORICS, pages 101–121,
2018.

[59] Zhiqiang Wu and Rui Li. Obi: a multi-path oblivious ram for forward-
and-backward-secure searchable encryption. In NDSS, 2023.

[60] Lei Xu, Leqian Zheng, Chengzhi Xu, Xingliang Yuan, and Cong Wang.
Leakage-abuse attacks against forward and backward private searchable
symmetric encryption. In CCS, pages 3003–3017, 2023.

[61] Min Xu, Armin Namavari, David Cash, and Thomas Ristenpart. Search-
ing encrypted data with size-locked indexes. In USENIX Security, pages
4025–4042, 2021.

[62] Peng Xu, Willy Susilo, Wei Wang, Tianyang Chen, Qianhong Wu,
Kaitai Liang, and Hai Jin. Rose: Robust searchable encryption with
forward and backward security. IEEE TIFS, 17:1115–1130, 2022.

[63] Zuoru Yang, Jingwei Li, and Patrick P. C. Lee. Secure and lightweight
deduplicated storage via shielded Deduplication-Before-Encryption. In
USENIX ATC, pages 37–52, 2022.

[64] Xianglong Zhang, Wei Wang, Peng Xu, Laurence T. Yang, and Kaitai
Liang. High recovery with fewer injections: Practical binary volumetric
injection attacks against dynamic searchable encryption. In USENIX
Security, pages 5953–5970, 2023.

[65] Yupeng Zhang, Jonathan Katz, and Charalampos Papamanthou. All
your queries are belong to us: The power of file-injection attacks on
searchable encryption. In USENIX Security, pages 707–720, 2016.

[66] Yongjun Zhao, Huaxiong Wang, and Kwok-Yan Lam. Volume-hiding
dynamic searchable symmetric encryption with forward and backward
privacy. Cryptology ePrint Archive, Paper 2021/786, 2021.

[67] Cong Zuo, Shifeng Sun, Joseph K. Liu, Jun Shao, and Josef Pieprzyk.
Dynamic searchable symmetric encryption schemes supporting range
queries with forward (and backward) security. In ESORICS, pages
228–246, 2018.

A Summary of Notations & Concepts
Symmetric encryption. Given a security parameter λ ∈ N,
message space M = {0,1}∗, ciphertext space C = {0,1}∗ and
the key space K = {0,1}λ, a symmetric encryption scheme
consists of two algorithm (E ,D) under the following syntax:
• E (k,m): Input a symmetric key k ∈K and a message m ∈
M , output a ciphertext c ∈ C .
• D (k,c): Input a symmetric key k ∈ K and a ciphertext
c ∈ C , recover a message m ∈M .

For correctness, with each message m ∈M and secret key
k ∈K , the equation c← E (k,m) should always make sense,
and m←D (k,c) can always recover the message m from c
using the secret key k. In the security definitions, a popular
requirement of symmetric encryption is the INDistinguisha-
bility against Chosen Plaintext Attack (IND-CPA).

Table 3: Notations for d-DSE.
d-DSE designed EDB Description
EDBS The collection of encrypted tables stored on disk
EDBC The replicated encrypted data from EDBS on memory
q The query
q∗ The query sequence
SS The functionally equivalent syntax
t∗ The encrypted data generated from SS for queries
syn∗ The specific d-DSE construction name
T The table collection in EDB storage
T∗ The table name
T∗.⋆ The table column
L̂∗ The leakage function of constructions
d The vector containing value’s quantities
ulen(w) The update length pattern
drlen(w) The distinct response length pattern
qeq(w) The query equality pattern

BF-SRE Description
EDB The encrypted database
EDBcache The cache encrypted database
C[w] The map counts the number of search on keyword w
MSK[w] The map records the master secret key about w
UpCnt[w] The map counts the update on w
D[w] The map records revoked key structure about w
Kc The encryption key for values
Ks The encryption key for EDBcache
Kt The encryption key for tag
t The real tag
l The dummy tag
H The Bloom Filter hash collection and bit array
B The Bloom Filter bit array
Σadd The Forward Private DSE scheme
Φ The Bloom Filter scheme
E&D The encryption and decryption algorithm of the symmetric

encryption

Bloom Filter [53]. A Bloom Filter (BF) Φ is a probabilistic
data structure, which can rapidly and space-efficiently per-
form set membership test. A BF consists of three polynomial-
time algorithms:
• Gen(λ): It takes λ parsed as two integers b,h ∈N, and sam-
ples a collection of universal hash functions H =

{
H j

}
j∈[h],

where H j : {0,1}∗ → [b], [b] denotes a finite set. Finally, it
outputs H and an initial b-bit array B = 0b with each bit B [i]
for i ∈ [b] set to 0.
• U pd (H,B,x): It takes H =

{
H j

}
j∈[h], B ∈ {0,1}b and

an element x ∈ X , updates the current array B by setting
B [H j (x)]← 1 for all j ∈ [h] and finally outputs the updated
B. We use BS←U pd (H,B,S) to denote the final array after
inserting all elements in the set S one-by-one.
•Check (H,B,x): It takes H,B and an element x, and checks
if B [H j (x)] = 1 for all j ∈ [h]. If true, it outputs 1 and 0
otherwise.

For correctness, a BF is perfectly complete if for all integers
b,h ∈ N, any set S ∈ X , and (H,B)← Gen(λ) as well as
BS←U pd (H,B,S), it holds:

P [Check(H,BS,x) = 1] = 1.

Symmetric Revocable Encryption [53]. Symmetric Re-
vocable Encryption (SRE) is a primitive resembled from
Symmetric Puncturable Encryption (SPE). With key space
KSRE , message space M and tag space T , SRE includes four
polynomial-time algorithms:
• KGen(λ): It takes a security parameter λ as input and out-
puts a master secret key sk ∈KSRE .
• Enc(sk,m,T ): It takes as input a sk and a message m ∈M
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with a list of tags T ⊆ T , and outputs a ciphertext ct for m
under tags T .
• KRev(sk,R): It takes as input sk and a revocation list
R = {t1, ti, ..., tτ} ⊆ T , and outputs a revoked secret key
skR, which can be used to decrypt only the ciphertext that
has no tag belonging to R. For compress revocation, it
takes D′←Comp(D, ti) to renew revoked key structure D and
skR←ckRev(sk,D) to make the revoked secret key skR.
• Dec(skR,ct,T ): It takes as input skR and ct encrypted under
tags T , and outputs m or a failure symbol ⊥.

For correctness, an SRE scheme is correct if the decrypt al-
gorithm returns the correct result for every input of skR,ct,T ,
except with negligible probability. For security, SRE should
provide the adaptive security of IND-REV-CPA and the selec-
tive security of IND-sREV-CPA [53].

B DSE
We notice that the majority of DSE schemes fail to consider
the search and retrieval of the distinct values (which is a funda-
mental feature in relational databases). And none of existing
works adequately address distinct search with well-defined
security notions. DSE is commonly used for retrieving file-
identifiers by keywords [14], and it is assumed that the client
does not query the addition of the same pair of keyword and
identifier [8,52]. Kamara et al. [32] conceptualized a database
as a collection of files, each represented by a unique identi-
fier. This assumption has been adopted by subsequent works,
e.g., [24]. Stefanov et al. [52] used DSE to search the in-
verted index data structure for keyword/identifier pairs, while
Cash et al. [8] revisited definitions from [14] to facilitate
the storage of document-type data into databases using DSE.
This philosophy has been widely embraced by subsequent
works [3, 5, 11, 15, 53, 54, 61]. Xu et al. [62] proposed a ro-
bust DSE with an extension of backward security. Chen et
al. [13] introduced a solution against key compromise in the
context of DSE. Wang et al. [56] proposed a solution for key-
word search on multi-writer encrypted databases. Recently,
a volume-hiding DSE construction [66] was built on top of
a padding strategy called dprfMM [42] (involving a dummy
dataset). But its search complexity is proportional to the max-
imum response length [64].

C Padding Strategies
The padding strategy leverages false positive information as
a means of performing obfuscation. Cash et al. [7] initially
proposed padding for keyword search to counter volume leak-
age. It is important to note that this technique relies on the
distribution of the input dataset, making it susceptible to po-
tential leakage even before a search query is initiated. Many
works have been proposed to refine the padding [4, 29, 30].
SEAL [16] introduces an adjustable searchable encryption
scheme that provides control over the amount of leaked access
pattern information. This control is implemented through fine-

tuning padding parameters to adjust leakage level. But SEAL
does not support update operations, which is impractical in
the EDB scenarios. ShieldDB [55] introduces a padding strat-
egy that is explicitly tailored to accommodate a more realistic
adversarial model, particularly within the context of databases
undergoing continuous updates. This solution requires a large
amount of dummy files to perform the padding on the batched
data. We highlight that padding strategies, while effectively
mitigating volume leakage, come with extra costs, impacting
search efficiency and response time of queries. For example,
during the initialization stage, they generate dummy data for
the encrypted database, which can be computationally inten-
sive, especially for large-scale databases. Padding strategies
also tend to increase the amount of data transferred during
search operations, thereby raising communication cost.

D Encrypted Databases
Over the past few years, notable efforts have been made in
enhancing the security of search operations within encrypted
databases. These advancements span a spectrum of dimen-
sions, including bolstering data security, refining security
schemes tailored to diverse functionalities, and optimizing
the overall design of encrypted databases [19]. Encrypted
databases have demonstrated capacity to execute a spectrum
of secure functionalities, such as conjunctive search [43], key-
word range search [67], and order-revealing encryption [58].
Researchers have leveraged structural encryption (e.g., [28]
and [20]), private set intersection [44], private set union [26],
and secure hardware [48] to delve into the realm of universal
search within encrypted databases.

Table 4: Comparison of related EDBs.
EDB Volume leakage Tools for Security Query mode

CryptDB [46] ! SQL aware Encryption SQL
Arx [45] ! DSE SQL

EnclaveDB [48] ! SGX SQL
ShieldDB [55] × DSE + Padding Keyword based

The SQL aware encryption used in CryptDB [46] is de-
terministic, which makes the EDB vulnerable to volumetric
attacks. At present, researchers have used trusted hardware
(SGX) [48] and DSE [45, 55] to safeguard the EDBs. Tab. 4
shows that current EDBs either overlook volume leakage or
strongly rely on padding strategies (with significant storage
and communication costs).

E Security analysis for BF-SRE
Theorem 1 (Adaptive Security of BF-SRE) We define
LD =

(
LU pt

D ,LSrch
D

)
as:

LU pt
D (w,v,op) = op

LSrch
D (w) = sp(w),TimeDTS(w),Update(w),

BF-SRE is LD-adaptively-secure.
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Proof 1 We analyze the indistinguishability between BF-SRE
and simulator SBF−SRE , and we use the game hop method to
analyze indistinguishability.

Game G0. This game is identical with the real BF-SRE:
P
[
RealBF−SRE

A ,S ,L (λ) = 1
]
= P [G0 = 1].

Game G1. We replace the calls of F with random strings.
When each time a previous unseen call is input, we select
a random output from this range space, and record it in ta-
bles Tokens, Tags, and Counts for F (Ks,w), F (Kt ,w||v), and
F (Kt ,cnt), respectively. Whenever F is recalled on the same
input, the output value is retrieved directly from these tables.
The distinguishing advantage between G0 and G1 is equal to
that of PRF against an adversary making at most N calls to
F: P [G1 = 1]−P [G0 = 1]≤ 3Advpr f

F,B1
(λ).

Game G2. We replace the Forward Private DSE instance
Σadd with the associate simulator S DSE

add . To construct this
simulator, we use some bookkeeping to keep track of all the
Update queries as they come, and postpone all addition and
deletion operations to the subsequent Search query. This
variant can be done because the additions leak nothing about
their contents guaranteed by the forward privacy of Σadd and
the obliviousness of deletions to server.

Moreover, a list Uphist is initialized and used in this game.
The list Uphist in fact corresponds to the update history
on w for the scheme Σadd and will be taken as the input
of the simulator. The distinguishing advantage between G1
and G2 is reduced to the LFS-adaptive forward privacy of
Σadd . Therefor, there exists a PPT adversary B2 such that:
P [G2 = 1]−P [G1 = 1]≤ AdvLF S

Σadd ,SDSE
add ,B2

(λ).
Game G3. We only modify the generation of the cipher-

text deletion. More precisely, we replace the values that were
inserted previously and punctured later with constant 0.

Since the modification above works only on the ciphertexts
with revoked tags, we can see that the distinguishing advan-
tage between G2 and G3 is the IND-sREV-CPA security of
the SRE scheme. The selective security is sufficient for the
application here, because the reduction algorithm B3 can
obtain the revoked tags from Uphist(w) and simulate the en-
crypting process of non-deleted values with the revoked secret
key. There for, there exists a reduction algorithm B3 such that:
P [G3 = 1]−P [G2 = 1]≤ AdvIND−sREV−CPA

SRE,B3
(λ).

Game G4. We modify the way of constructing addition
list Ladd and the way of updating the compressed data struc-
ture D. Ladd contains the addition entries and corresponds
to the update history Uphist on w for the scheme Σadd and is
taken as the input of the simulator S DSE

add . In detail, we first
compute the leakage information TimeDTS and Update from
the table Uphist, and then base the information to construct
Ladd and update D. This has no influence to the distribution
of G3: P [G4 = 1] = P [G3 = 1].

Game G5. We modify the generation of tags in a different
way. In detail, we replace the tags with random strings di-
rectly, instead of computing them from keyword-value pairs

and storing them in the table Tags. The distinguish between
G4 and G5 is whether the tags will repeat. It is sufficient be-
cause each keyword/value/count pair was inserted/deleted
at most once during the updates. We do not need to record
every distinct tag for keeping consistence. Therefor, we have:
P [G5 = 1] = P [G4 = 1].

Game G6. We replace the outputs from symmetric en-
cryption to random strings on retrievals. The difference be-
tween G5 and G6 comes from the advantage: P [G6 = 1]−
P [G5 = 1]≤ AdvIND−CPA

E ,B4
(λ).

Simulator. When building a simulator from G6, we need
to avoid directly using the keyword w as the protocols input.
This can be done by replacing the input w with min sp(w).
To construct Ladd and collection D, we can properly take the
leakage TimeDTS and Update as the input of Search, and
the simulator does not need to keep the track of the updates
anymore. In this condition, G6 can be efficiently simulated
by the simulator with the leakage function L , so we have:
P [G6 = 1] = P

[
IdealBF−SRE

A ,S ,L (λ) = 1
]
.

Conclusion. By combining all contributions from all
games, there exists the adversary such that:

|P
[
RealBF−SRE

A (λ) = 1
]
−P

[
IdealBF−SRE

A ,S ,L (λ) = 1
]
| ≤

3Advpr f
F,B1

(λ)+Adv
LF S
Σadd ,SDSE

add ,B2
(λ)+AdvIND−sREV−CPA

SRE,B3
(λ)+AdvIND−CPA

E ,B4
(λ) .

Theorem 2 (BF-SRE’s DwVH Security) The leakage func-
tion of BF-SRE LD = (LU pt

D ,LSrch
D ) is Distinct with Volume-

Hiding.

Proof 2 Suppose an adversary AD who can the distinguish
signature from LD and win the DwVH game with advantage
AdvDwV H

BF−SRE,AD
. Then there exist a PPT algorithm BD effi-

ciently breaking all security guarantees from PRF F, Σadd ,
SRE, and the symmetric encryption E , i.e.:

MIN(Advpr f
F,BD

,AdvLF S
Σadd ,S DSE

add ,BD
,AdvIND−sREV−CPA

SRE,BD
,AdvIND−CPA

E ,BD
)≥

AdvDwV H
BF−SRE,AD

.

Note that BD should perform like the simulator S with
LD that AD can access in the DwVH game. Specifically, it
contains four sub-program B1

D, B2
D, B3

D, and B4
D to break the

secure primitives from F, Σadd , SRE, and E , respectively. With
the guess from AD, the sub-programs leverage bookkeeping
and embed the challenge message to break the above security
primitives. We describe the process of B1

D, B2
D, B3

D, and B4
D

as follow.
B1

D gets information from the DwVH game and try to break
the PRF. It separately records three lists ls1, ls2, ls3 for tuple
⟨ipF/iqF ,rsw,rs⟩, ⟨ipF/iqF ,rsw||rsv,rs⟩, and ⟨iqF ,rsw,rs⟩,
where ipF /iqF represent the invoke times of PRF in the
Prepare/Queries stage, rs represent the random output string,
and rsw and rsv represent the random keyword strings and
random value strings.
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At the point of AD guess the signature Sb∗ with probability
ε. B1

D checks the lists to find the input for the challenged rs∗ in
PRF game. In this case, B1

D has (1+ε)|ipF |+(2+ε)|iqF |
2|ipF |+3|iqF | probabil-

ity to break the PRF like B1, where |ipF | and |iqF | denotes the
number of invoke times of PRF in the Prepare and Queries

stages. Therefore we have: Advpr f
F,BD
≥ AdvDwV H

BF−SRE,AD
.

B2
D inherits B2 in G2 and additionally receives the guessed

signature Sb∗ to break the forward privacy. At this point,
B2

D can split the Uphist list as follow: 1) Resize records
in each Uphist(rsw) until its length equals tb∗(w); 2) Ran-
domly select tb∗(w) values containing lb∗(w) distinct val-
ues for Uphist(rsw); 3) append the values in tuples of each
Uphist(rsw) and output the result.

Assume AD has ε probability to guess Sb∗ in the DwVH
game. We see that B2

D has ε probability to break the state-
less leakage of forward privacy in S DSE

add from the guess
occurred at the 1-st step of the Queries stage. Therefore:

AdvLF S
Σadd ,SDSE

add ,BD
≥ AdvDwV H

BF−SRE,AD
.

B3
D inherits B3 and additionally record some operation

times (i.e., ips, iqs) of the encryption and revocation list (i.e.,
⟨ips/iqs,rsv, tags⟩ and ⟨ips/iqs,revoke_tags⟩ ) in the DwVH
game. In the Prepare stage, B3

D probabilistically embeds one

IND-sREV-CPA challenge message mµ,µ
$← {0,1} in the

tb(w)− lb(w) repetitive values of keyword w. When B3
D re-

ceives the Sb∗ from AD, B3
D output 1 if b∗ = b.

We assume for the sake of contradiction that AD can dis-
tinguish the outputs from BD containing challenge with non-
negligible advantage. Meanwhile, B3

D leverages the AD’s dis-
tinguish on the embedding position of the tb(w)− lb(w) repet-
itive values sequence to break the IND-sREV-CPA security.
Therefore: AdvIND−sREV−CPA

SRE,BD
≥ AdvDwV H

BF−SRE,AD
.

B4
D. Like the embedding in B3

D, we can also bookkeeping
the invoke times and embed the challenge message in the
DwVH game. In the Prepare stage, B4

D will probabilistically

embed one IND-CPA challenge message mµ′ ,µ′
$←{0,1} in

the tb(w)− lb(w) repetitive values of keyword w. When B4
D

receives the Sb∗ from AD, B4
D output 1 if b∗ = b.

We see that B4
D leverages AD to break the IND-CPA se-

curity of the underling symmetric encryption. Therefore:
AdvIND−CPA

E ,BD
≥ AdvDwV H

BF−SRE,AD
.

Conclusion. By combining all contributions from all sub-
programs of BD, we conclude:

MIN(Advpr f
F,BD

,AdvLF S
Σadd ,S DSE

add ,BD
,AdvIND−sREV−CPA

SRE,BD
,AdvIND−CPA

E ,BD
)≥

AdvDwV H
BF−SRE,AD

.

F High-level design for d-DSE
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Figure 12: The high-level design of d-DSE construction.

Fig. 12 shows a high-level design for the d-DSE construc-
tion. The concrete construction should provide the compo-
nents of Distinct Classifier, Distinct State, and Distinct Con-
straint in the Setup, Update, and Search protocols, respec-
tively. The core of achieving secure distinct search is to:
promptly update the state of (w,v,op) inputs at the initial oc-
currence, and subsequently conceal the repetitive (w,v,op)
inputs.

F.1 Store the state of distinct inputs
The Setup protocol allocates local memory as Distinct State to
record the state of whether the input has appeared. In previous
work, the state is commonly used to achieve the forward
and backward privacy and special properties such as non-
interactivity [53] and robustness [62]. To clarify whether the
input is distinct, Distinct State should efficiently store all
updates that include distinct (w,v,op) pairs.

We find that the BF [53] can satisfy the requirement. It
can expense a small amount of storage overhead to record
whether a large number of keyword/value/op pairs appear. We
initialize BF with the parameters b,h,n, which represent the
size of BF (in bits), the number of different hash functions,
and the number of distinct inputs, respectively. Given the
input count n = 220, to achieve the tolerated false-positive
probability p = 10−5, we can maintain the BF with just 3MB
of local storage according to the requirement of the BF size
b =−n ln p/(ln2)2. This shows that a small local storage is
sufficient for BF even dealing with a large-scale dataset.

F.2 Tag distinct values
The Update protocol employs a program called Distinct Clas-
sifier to generate real or dummy tags for each input. The tags
are used to identify whether the matched value is represented
as distinct in the Search protocol. Based on the Distinct State,
the inputs attach the real tag as the distinct. The repetitive in-
puts are replaced with bogus keyword/value pairs and tagged
the dummy tag. The processed data will be updated to the
EDB system.

We state that traditional dummy data generation like that
in [16,55] is applicable to our requirement. The inputs marked
by dummy tags will not affect the results of distinct values.
Based on the Distinct State, the repetitive inputs can be re-
placed with random duplicated pairs to construct the arbitrary
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volume distribution on the EDB system.

F.3 Retrieve distinct values
The Search protocol employs the Distinct Constraint pro-
gram to generate the constrained key and retrieves the distinct
values. Under the requirement from the d-DSE security def-
initions, the tag can only reveal whether the corresponding
value is distinct in the Search protocol.

Below, we conduct an analysis on the Search protocols of
SEAL [16] and ShieldDB [55]. SEAL designs the SE-based
queries with its adjustable Searchable Encryption construc-
tion to support conditions (point, range) and join queries.
ShieldDB develops an independent search method for search-
ing the keyword cluster to achieve high search efficiency. Both
of them require the padding strategy to ensure a uniform vol-
ume for search results. Thus, they need to retrieve dummy
data for every query, consistently increasing the communica-
tion cost of the Search protocol. Furthermore, they do not
provide a delete operation because this can definitely incur
the uneven volume from the Search protocol, which brings
an advantage to the adversary in distinguishing the volume.

Since there are drawbacks of the above techniques, we
turn to another construction roadmap - using SRE [53] and
Function-hiding Inner Product Encryption (IPE) [35]. The
SRE scheme can pre-compute the tag’s authenticity offline
and use the Distinct State to generate related search tokens.
This offline method can minimize ciphertext storage for the
server because tags can be checked offline based on the re-
voked key. The IPE scheme can use auxiliary ciphertext to
represent all tags’ relationships and classify the real tag on-
line. This stores more ciphertexts to obtain the corresponding
distinct value in the searched sequence. But it can reduce the
pre-computation overheads and achieve lower client storage
cost than the offline approach.

G Example: The BF-IPE scheme

We construct BF-IPE from MITRA [21], the BF, the IPE,
and the Forward Private DSE scheme. The scheme uploads
auxiliary ciphertexts and helps the server to clarify the dis-
tinct values. It is also able to maintain forward and backward
security and DwVH security, and obtain the sub-linear search
efficiency with low client storage.
G.1 Inner Product Encryption
Inner product encryption is a type of functional encryption
and computes the inner products ⟨x,y⟩ of a ciphertext for a
vector x and a secret key for a vector y. It reveals no additional
information about both x and y beyond the inner product. We
adopt the formalism and definitions as follows.

An IPE scheme includes four algorithms:
• IPE.Setup

(
1λ,n

)
: It inputs a security parameters 1λ, a vec-

tor lenghth n and outputs a master secret key Imsk and public

parameters pp.
• IPE.Enc(Imsk, pp,x): It inputs the Imsk, the pp, a vector x
and outputs a ciphertext ctx.
• IPE.KeyGen(Imsk,y): It inputs the Imsk, a vector y and
outputs a secret key cty.
• IPE.Dec(pp,ctx,cty): It inputs the pp, the ciphertext ctx, the
secret key cty and outputs either a value ⟨x,y⟩ or the dedicated
symbol ⊥.

The correctness requires that IPE.Dec(pp,ctx,cty) is sure
to output ⟨x,y⟩ and not ⊥ when ⟨x,y⟩ is from a fixed polyno-
mial range of values. The SIM-security captures the security
of IPE [35].

G.2 Overview

Keyword Values

Σadd (w1)

Σadd (w1)

Σadd (w1)

Σadd (w1)

IPE.Enc(B1) , E (v1||add)

IPE.Enc(B2) , E (v2||add)

IPE.Enc(B2) , E (v1||add)

IPE.Enc(B3) , E (v1||del)

Update
Updated ciphertexts with up-
date tokens Σadd (w1) in the
EDB

1.Search w1

with IPE.
KeyGen(B3)

Keyword Values

Σadd (w1)

Σadd (w1)

Σadd (w1)

Σadd (w1)

B1 ·B3, E (v1||add)

B2 ·B3, E (v2||add)

B2 ·B3, E (v1||add)

B3 ·B3, E (v1||del)

Search
The retrieval results and results
with the repetitive inner prod-
uct value

ResultResult
Decrypt
D locally

Outputs

v1||add
v2||add
v1||del

Figure 13: BF-IPE: the scheme overview.

Fig. 13 shows the construction of BF-IPE in the Update and
Search protocol. BF-IPE uploads modified keyword/value
pairs in EDB by a Forward Private DSE scheme Σadd . To
retrieve the distinct values, it leverages the IPE decryption
to find the distinct inner products from the past and current
vectors’ form of the BF, which regards the BF’s bit array as
the dimensions8.

In the Update protocol, BF-IPE updates B with the inputs
(w,v,op), gets the corresponding tag by the IPE encryption,
and uploads the tag with the symmetric ciphertext of v||op.
Note that the BF only renews its value when the input is never
seen before, so the new corresponding inner product value
can represent the new distinct values. For example, in Fig.
13, BF-IPE inputs (w1,v2,add) and gets B2 from B1, and the
repetitive input (w1,v1,add) does not change B2.

In the Search protocol, BF-IPE sends the IPE sub-key for
the current vector form of the BF (e.g., B3) to the server,
and the server decrypts the tags to get a result list of inner
products. The first occurrence of the specific inner product
values reveals the position of the distinct values. Finally, the
retrieval is decrypted by the symmetric encryption locally.

The repetitive values cannot be inferred as equal to the
values returned in retrieval. To this end, BF-IPE performs a
dummy addition for the first addition. In practice, we can
update the first distinct value in batch so that the dummy
values can be eliminated in retrieval.

8If the value of the BF’s bit array is 0011, it can be represented by the
vector (0,0,1,1).
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G.3 BF-IPE Description

Protocol 4 BF-IPE: Setup, bold lines 3-4 are the Distinct
State.
Setup

(
1λ):

//H and B denote the collection of hash functions in BF and the BF bit array, respectively.
1: Initialize the DSE scheme (EDB,σ,KΣ)← Σadd .Setup

(
1λ)

2: Kt ,Kc,Kh
$←{0,1}λ

3: Initialize the Bloom Filter H,B←Φ.Setup
(
1λ)

4: UpCnt←MAP
5: Initialize the IPE scheme (Imsk, pp)← IPE.Setup

(
1λ)

6: Send EDB and pp to the server.

Setup. This protocol initializes the encrypted database
EDB, internal state σ, secret key Kσ from a Forward Private
DSE Σadd . It also generates secret keys Kt and Kc, the BF hash
collection H, the bit array B, and the empty map UpCnt. The
Kc is used to encrypt values. The Kt is used to generate tags
for the hash of the BF inputs. Finally, the protocol initializes
the IPE scheme and sends the EDB and public parameters pp
to the server.

Protocol 5 BF-IPE: Update, bold lines 2-9 are the Distinct
Classifier.
Update(KΣ,st,op,(w,v) ;EDB):

//
→· denotes the vector representing each bit of the data in each dimension.

Client:
1: cnt← UpCnt[w]
2: if cnt == ⊥ then
3: cnt← 0, UpCnt[w]← cnt
4: Update a dummy addition along with the first update on a keyword w.
5: end if
6: t← F(Kt,w||v||op)
7: Update the BF Φ.U pd (H,B, t)

8: Random r $← R, get the ctx as tag ctx← IPE.Enc(Imsk,
−−−−→
B||r||0λ)

9: cts← E (Kc,v||op||cnt) ,ct← (ctx,cts)
10: Update the EDB Σadd .U pdate(KΣ,add,w,ct;EDB)
11: UpCnt[w]← cnt +1

Update. The protocol updates the EDB. At lines 1-5, the
client reads the internal state and performs the dummy addi-
tion for the first input on the keyword w. At lines 6-7, the client
uses PRF to generate the BF’s input t and updates the BF. The
IPE encrypts the vector form of the BF concatenated with
r||0λ (line 8). To generate the retrieval, the client encrypts the
concatenation v||op||cnt by the symmetric encryption (line
9). At line 10, the client uses the DSE scheme to upload the
ciphertexts (ctx,cts) in the EDB. Finally, the client updates
the UpCnt of w (line 11).

Search. The protocol identifies the ciphertexts by a key-
word w and returns the distinct values. First, the client gener-
ates the IPE decryption key cty from the current vector form
of the B concatenated with 0λ||r and sends it to the server
(lines 1-2). At line 3, the client and server perform the DSE
search protocol, and then the server gets the list L. The server
decrypts IPE ciphertexts and retains cts j when the new in-
ner product result appears in the list (lines 5-11). Finally, the
client decrypts the symmetric ciphertexts returned from the
server and retains the undeleted distinct values (lines 12-13).

Protocol 6 BF-IPE: Search, bold lines 1-2 are the Distinct
Constraint.
Search(KΣ,w,st;EDB):

Client:

1: r $← R, cty← IPE.KeyGen(Imsk,
−−−−→
B||0λ||r)

2: Send cty to the server

Client and Server:
3: Run Σadd .Search(KΣ,w;EDB), and the server gets the list L = (ct1,ct2...,ctl)

Server:
4: Set a list L′← /0 and a set S← /0
5: for j ∈ [1, l] do
6: parse ct j =

(
ctx j ,cts j

)
from the list L

7: if the first q j ← IPE.Dec
(

pp,ctx j ,cty
)

not in the list L′ then
8: Insert q j into the list L′ and cts j into the set S
9: end if

10: end for
11: Return S to client

Client:
12: Get plaintexts V = (v1||op1||cnt, ...,vn||opn||cnt) from D (Kc,s), where s ∈ S
13: Get undeleted V ′ = {v j | v j ||add||cnt ∈V and v j ||del||cnt /∈V}

G.4 Analysis on BF-IPE
Correctness. The construction uses the Forward Private DSE
to upload the modified keyword/value pairs in encrypted
databases. With the F , it always outputs a tag t from Ks.
A probability of losing correctness probability comes from
the false positive property of the BF, which is acceptable in
practice [53]. Hence, the BF-IPE can correctly update and
search distinct values.

Security Analysis. BF-IPE securely generates ciphertexts,
search tokens attached to the Forward Private DSE, IPE, PRF,
and the symmetric encryption. The simulator in Σadd and the
simulator in IPE capture the forward and backward privacy.
The server only knows the number of update and distinct
values on the searched keyword through the Search protocol.

Theorem 3 (Adaptive Security of BF-IPE) Let F with a
specific key be modelled as the random oracle HF , we de-
fine LD =

(
LU pt

D ,LSrch
D

)
as:

LU pt
D (w,v,op) = op

LSrch
D (w) = sp(w),TimeDTS(w),Update(w),

BF-IPE is LD-adaptively-secure.

Proof Sketch. The proof is similar to that in Theorem 1.
We gradually replace the real cryptographic tools used in the
BF-IPE construction with the bookkeeping tables or the corre-
sponding simulators and obtain the BF-IPE simulator. We first
replace the outputs of PRF and the symmetric encryption with
random strings and the IPE scheme with the simulator SIPE .
Then the input of the Search protocol is replaced with the
LSrch

D leakage function. Finally, we use the leakage function
UpHist(w), sp(w) as the input of the simulator. The proof is
given in Appendix H.

Theorem 4 (DwVH Security of BF-IPE) The leakage func-
tion of BF-IPE L = (LU pt

D ,LSrch
D ) is Distinct with Volume-

Hiding.
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Proof Sketch. Similar to Theorem 2. The LSrch
D is also inde-

pendent of the input keyword/value pairs because the update
for real and dummy IPE tags keep identical distinct response
lengths. Therefore, the leakage function reveals nothing about
the volume.

Complexity. The complexity is identical to that of BF-SRE
except that the client storage is O(W ) based on the keyword
counter map (i.e. UpCnt).

G.5 Improve the Performance
The IPE entails significant computational overhead and war-
rants efforts to enhance its efficiency. We have optimized
the randomness via the auxiliary input (line 8 in Protocol 5
and line 1 in Protocol 6) and the key generation to accelerate
the comparison of the inner product values. The optimized
key only decrypts IPE ciphertexts and obtains the related ele-
ment on cyclic group, without affecting the feasibility of the
comparison.

The BF bit array 0010110111100111011 ... 00001

The hashed value 124D 6BC2 ... 4BDA

The vector represented in
memory

(v0 , v1 , v2 , v3, f(v1, v2, v3, v4) )

IPE.Enc

Figure 14: The dimension optimization for IPE.

We reduce the encrypted vector’s dimension as a further
optimization for the IPE. As shown in Fig. 14, we use the hash
function to map the arbitrary-length BF’s bit array to the fixed-
length hash value. Then, we divide the hash value into small
fixed-length bit arrays representing the corresponding vector’s
dimension. To ensure comparability between inner products,
we use a polynomial to represent the order of these small
bit arrays. In practice, one may turn to the Pseudo Random
Number Generator [2] (PRNG) that uses the hash value as the
seed to generate the ‘checksum’ of the order.

H Security analysis for BF-IPE

Theorem 5 (Adaptive Security of BF-IPE) Let F with a
specific key be modelled as the random oracle HF . LD =(

LU pt
D ,LSrch

D

)
is defined as:

LU pt
D (w,v,op) = op

LSrch
D (w) = sp(w),TimeDTS(w),Update(w),

BF-IPE is LD-adaptively-secure.

Proof 3 We analyze the indistinguishability between BF-IPE
and simulator SBF−IPE , and we use the game hop to analyze
indistinguishability.

Game G0. This game is identical with the real BF-IPE, so
that: P

[
RealBF−IPE

A ,S ,L (λ) = 1
]
= P [G0 = 1].

Game G1. We replace the calls of PRF F with random
strings picked from F’s range space. When each time a previ-
ous unseen call is input, we select a random output from this
range space, and record it in tables Tokens, Tags, and Counts
for F (Ks,w), F (Kt ,w||v), and F (Kt ,cnt), respectively. When-
ever F is recalled on the same input, the output value is
retrieved directly from these tables. The distinguishing advan-
tage between G0 and G1 is equal to that of PRF against an
adversary making at most N calls to F. Therefor, we have:
P [G0 = 1]−P [G1 = 1]≤ Advpr f

F,B1
(λ).

Game G2. We replace the Forward Private DSE instance
Σadd with the associate simulator S DSE

add . To construct this
simulator, we use some bookkeeping to keep track of all the
Update queries as they come, and postpone all addition and
deletion operations to the subsequent Search query. This
variant can be done because the additions leak nothing about
their contents guaranteed by the forward privacy of Σadd and
the obliviousness of deletions to server.

Moreover, a list Uphist is initialized and used in this game.
The list Uphist contains the encryption of the inserted indices
for the subsequent search on w, their associated tags and the
addition timestamps, which in fact corresponds to the update
history on w for the scheme Σadd and will be taken as the
input of the simulator. The distinguishing advantage between
G1 and G2 is reduced to the LFS-adaptive forward privacy
of Σadd . Therefor, there exists a PPT adversary B2 such that:
P [G1 = 1]−P [G2 = 1]≤ AdvLF S

Σadd ,SDSE
add ,B2

(λ).
Game G3. We modify the generation of the symmetric ci-

phertexts. More precisely, we replace the encrypted values
as random strings from the range of E . Since the modifi-
cation above works only on the symmetric ciphertexts, we
can see that the distinguishing advantage between G2 and
G3 is the IND-CPA security of the symmetric encryption
scheme. There exists a reduction algorithm B3 such that:
P [G2 = 1]−P [G3 = 1]≤ AdvIND−CPA

E ,B3
(λ).

Game G4. We replace the real IPE scheme with the IPE
simulator SIPE . Since the modification above works only on
the IPE scheme, the distinguishing advantage between G3
and G4 is the SIM security of the IPE scheme. There is a
reduction algorithm B4 such that: P [G3 = 1]−P [G4 = 1]≤
AdvSIM−security

IPE,B4
(λ).

Game G5. We modify the way of constructing addition
list Ladd from the SSE simulator S DSE

add . In detail, we first
compute the leakage information TimeDTS and Update from
the update history table Uphist, and then base the information
to construct Ladd . This has no influence to the distribution of
G3, so that: P [G4 = 1] = P [G5 = 1].

Simulator. To build a simulator from G5, we need to avoid
directly using the keyword w as the protocols input. This
can be done by replacing the input w with minsp(w). To
construct Ladd , we can properly take the leakage TimeDTS
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and DelTime as the input of Search, and the simulator does
not need to keep the track of the updates anymore. In this
condition, G5 can be efficiently simulated by the simula-
tor with the leakage function L , so we have: P [G5 = 1] =
P
[
IdealBF−IPE

A ,S ,L (λ) = 1
]
.

Conclusion. By combining all contributions from all games,
there exists the adversary such that:

P
[
RealBF−IPE

A ,S ,L (λ) = 1
]
−P

[
IdealBF−IPE

A ,S ,L (λ) = 1
]
≤

Advpr f
F,B1

(λ)+AdvLF S
Σadd ,S DSE

add ,B2
(λ)+AdvIND−CPA

E ,B3
(λ)+

AdvSIM−security
IPE,B4

(λ) .
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