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1 Introduction

Integrals of motion belong to very important part of classical and quantum mechanics. Just
the existence of the sufficient number of integrals of motion for a Hamiltonian system makes it
integrable or exactly solvable, and we are not supposed to calculate its approximate solutions
to describe its behavior. Moreover, sometimes it is possible to describe the main physical
properties of the mentioned system using its integrals of motion an d ignoring the motion
equations. A classical example of such situation was presented by Pauli who had calculated
the energy spectrum of the Hydrogen atom using its integrals of motion forming the Laplace-
Runge-Lentz vector [1]. Ad it was done before the discovery of Schrödinger equation!

The systematic search for integrals of motion admitted by the Schrödinger equation equa-
tions started with papers [2], [3] were all inequivalent second order integrals of motion for the
2d one particle quantum systems had been classified. And it needed 24 years to extend this
result to the 3d case [4], [5].

Papers [2] and [3] were indeed seminal. They were followed by a great number of research
works, see, e.g. survey [6]. In particular, integrable and superintegrable system with matrix
potentials have been classified for both spin-orbit [7, 8] and Pauli type interactions [9, 10]. One
of the modern trends is to search for the third and even arbitrary order integrals of motion [11],
see also [12] where the determining equations for such integrals were presented.

The higher (in particular, second) order integrals of motion are requested for description of
systems admitting solutions in separated variables [13] just such integrals of motion characterize
integrable and superintegrable systems [6]. Let us mention also the nice conjecture of Marquette
and Winternitz [14] which predicts a surprising connection of higher order superintegrability
with the soliton theory.

In any case the integrable and superintegrable systems of the standard quantum mechanics
belong to the well developed research field which, however, still have some white spots. Among
them is the classification of arbitrary order symmetry operators of generic form, which still are
described only at the level of determining equations [12].

One more important research field which is closely related to the mentioned one is the
classification of second order integrals of motion for quantum mechanical systems with position
dependent mass. Such systems are used in many branches of modern theoretical physics, whose
list can be found, e.g., in [15, 16]. Their symmetries and integrals of motion were studied much
less than those ones for the standard SE. However, the classification of Lie symmetries of the
PDM Schrödinger equations with scalar potentials have been obtained already [17, 18, 19].

Second order integrals of motion for 2d PDM SEs are perfectly classified [20, 21, 22, 23].
The majority of such systems admits also at least one continuous Lie symmetry. The two
dimensional second-order (maximally) superintegrable systems for Euclidean 2-space had been
classified even algebraic geometrically [24].

The situation with the 3d systems is still indefinite. At the best of my knowledge the
completed classification results were presented only for the maximally superintegrable (i.e.,
admitting the maximal possible number of integrals of motion) systems [25, 26], and (or) for
the system whose integrals of motion are supposed to satisfy some special conditions like the
functionally linearly dependence [27]. The nondegenerate systems, i.e, those ones which have
have 5 linearly independent, contained in 6 linearly independent (but functionally dependent)
2nd order integrals of motion are known [28], see also [29] for the contemporary trends in this
field. In addition, a certain progress can be recognized in the classification of the so called
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semidegenerate systems which admit five linearly independent integrals of motion and whose
potentials are linear combinations of three functionally independent terms [30].

Surely, the maximally superintegrable systems are very important and interesting. In par-
ticular, they admit solutions in multi separated coordinates [31, 32, 33, 34]. On the other hand,
there are no reasons to ignore the PDM systems which admit second order integrals of motion
but are not necessary maximally superintegrable. And just such systems are the subject of our
study.

In view of the complexity of the total classification of integrals of motion for 3d PDM
systems it is reasonable to separate this generic problem to well defined subproblems which can
have their own values. The set of such subproblems can be treated as optimal one if solving
them step by step we can obtain the complete classification of PDM systems admitting integrals
of motion. We choose the optimal set of subproblems in the following way.

The first subproblem consists in the classification of the PDM systems admitting the first
order integrals of motion. This problem is already solved, refer to [17].

The first order integrals of motion are nothing but generators of Lie symmetries. The
important aspect of the results presented in [17] is the complete description of possible Lie
symmetry groups which can be admitted by the stationary PDM Schrödinger equation. And
this property, i.e., the presence of Lie symmetry, can be effectively used to separate the the
problem of the classification of the PDM systems admitting second order integrals of motion
for PDM systems to a well defined subproblems corresponding to the fixed symmetries.

It was shown in [17] the PDM Schrödinger equation can admit six, four, three, two or one
parametric Lie symmetry groups. In addition, there are also such equations which have no Lie
symmetry. In other words, there are six well defined classes of such equations which admit
n-parametric Lie groups with n = 6, 4, 3, 2, 1 or do not have any Lie symmetry. And it is a
natural idea to search for second order integrals of motion consequently for all these classes.

The systems admitting six- or four-parametric Lie groups are not too interesting since the
related Hamiltonians cannot include non-trivial potentials. That is why we started our research
with the case of three-parametric groups. The classification of the corresponding PDM systems
admitting second order integrals of motion was obtained in [35]. There were specified 38
inequivalent PDM systems together with their integrals of motion. The majority of them are
new systems which are not not maximally superintagrable.

Notice that the superintegrable 3d PDM systems invariant with respect to the 3d rotations
have been classified a bit earlier in paper [36] where their supersymmetric aspects were discussed
also. For relativistic aspects of superintegrability see [37], [38].

The systems admitting two-parametric Lie groups and second order integrals of motion
have been classified in [39]. We again find a number of new systems in addition to the known
maximally superintegrable ones.

The natural next step is to classify the systems which admit one parametric Lie groups and
second order integrals of motion. As it is shown in [17], up to equivalence these groups are
reduced to dilatations, shifts along the fixed coordinate axis, rotations around this axis and
some specific combinations of the mentioned transformations. We will conventionally call them
the natural and combined symmetries respectively.

In the present paper we start the systematic search for integrable and superintegrable PDM
systems admitting one parametric Lie symmetry groups. Namely, we present the classification
of the mentioned systems which are invariant w.r.t. the rotations around the fixed coordinate
axis. The number of such systems appears to be rather extended, and to keep the reasonable
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size of paper we restrict ourselves to this particular symmetry, while the systems with the other
Lie symmetries will be presented in the following papers. Notice that the number of inequivalent
systems which admit the other one parametric symmetry groups is much less extended than in
the case of the cylindric symmetry.

In spite of the fact that the usual strategy in studying of superintegrable systems with PDM
is to start with the classical Hamiltonian systems an then quantize them if necessary, we deal
directly with quantum mechanical systems. This way is more complicated but it guaranties
obtaining of all integrals of motion including those ones which can disappear in the classical
limit [40].

The main result of the present paper consist in the complete classification of integrable,
superintegrable and maximally superintegrable PDM systems with cylindric symmetry. In
addition, we optimise the algorithm of solution of the related determining equations which can
be used for a classification of other PDM systems.

2 Formulation of the problem

We are studying the stationary Schrödinger equations with position dependent mass of the
following generic form:

Hψ = Eψ, (1)

where

H = paf(x)pa + V (x), (2)

x = (x1, x2, x3), pa = −i∂a, V (x) and f(x) = 1
2m(x)

are functions associated with the potential
and inverse PDM, and summation from 1 to 3 is imposed over the repeating index a.

The particular form (2) of the hamiltonian is convenient for study of its symmetries and
integrals of motion. Moreover, more generic formulations including the arbitrary ambiguity
parameters (refer, e.g. to [16]) are mathematically equivalent to (2).

In paper [17] all equations (1) admitting at least one first order integral of motion was
found. Such integrals of motion generate Lie groups which leave the equations invariant. In
accordance with [17] there are six inequivalent Lie symmetry groups which can be accepted
by the PDM Schrödinger equations. They include three ”natural” groups, rotation around the
third coordinate axis, shift along this axis and dilatation groups. In addition, we can fix three
combined symmetries which are superpositions of rotations and shifts, rotations and dilatations,
and shifts, rotations and conformal transformations.

The generic form of the corresponding inverse masses f and potentials V can be represented
by the following formulae [17]:

f = F (r̃, x3), V = G(r̃, x3), (3)

f = F (x1, x2), V = V (x1, x2), (4)

f = r2F (ϕ, θ), V = V (ϕ, θ) (5)

where F (.) and V (.) are arbitrary functions whose arguments are fixed in the brackets,

r = (x21 + x22 + x23)
1

2 , r̃ = (x21 + x22)
1

2 , ϕ = arctan

(

x2

x1

)

, θ = arctan

(

r̃

x3

)

.
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In the present paper we classify the PDM systems which admit one of the mentioned natural
symmetries, namely the rotations around the third coordinate axis, and, in addition, have at
least one second order integral of motion. The generic form of the corresponding inverse masses
f and potentials V are represented in (3).

Equations (1), (2) with arbitrary parameters presented in (3) admit the following first order
integrals of motion

L3 = x1p2 − x2p1 (6)

which is nothing but the third component of the orbital momentum.
Our goal is to fix such systems (1), (3) which, in addition to their Lie symmetries, admit

second order integrals of motion whose generic form is:

Q = ∂aµ
ab∂b + η (7)

where µab = µba and η are unknown functions of x and summation from 1 to 3 is imposed over
all repeating indices.

Operators (7) are formally hermitian. In addition, just representation (7) leads to the most
compact and simple systems of determining equations for unknown parameters µab and η.

By definition, operators Q should commute with H :

[H,Q] ≡ HQ−QH = 0. (8)

Evaluating the commutator in (8) and equating to zero the coefficients for the linearly inde-
pendent differential operators ∂a∂b∂c and ∂a we come to the following determining equations

5
(

µab
c + µac

b + µbc
a

)

= δab (µnn
c + 2µcn

n ) + δbc (µnn
a + 2µan

n ) + δac
(

µnn
b + 2µbn

n

)

, (9)

(µnn
a + 2µna

n ) f − 5µanfn = 0, (10)

µabVb − fηa = 0 (11)

where δbc is the Kronecker delta, fn = ∂f

∂xn

, µan
n = ∂µan

∂xn

, etc., and summation is imposed over
the repeating indices n over the values n = 1, 2, 3.

Equations (9) , (10) and (11) give the necessary and sufficient conditions for commutativity
of operators H (2) and Q (7) [39].

3 Evolution of the determining equations

A particular solution of equations (9) is µab = µab
0 where

µab
0 = δabg(r) (12)

with arbitrary function g(r).
Whenever tensor µab

0 is nontrivial, the determining equations (10) represent the coupled
system of three nonlinear partial differential equation equations for two unknowns g(x) and
f(x). Fortunately, this system can be linearizing by introduction of the new dependent variables

M =
1

f
, N =

g

f
(13)
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which reduces (10) to the following form:

(µnn
a + 2µna

n )M + 5µanMn +Na = 0. (14)

We see that for variables (13) the determining equation (10) is linear. Equation (11) in its
turn can be effectively linearised by introducing the following new dependent variables M̃ and
R:

M̃ =MV, R =
NM̃

M
− η (15)

which reduce (11) to the following equation:

(µnn
a + 2µna

n ) M̃ + 5µanM̃n +Ra = 0 (16)

which simple coincides with (14). Surely, it does not mean that M and N coincide with M̃

and Ñ respectively, since these functions can include different arbitrary elements, say, different
integration constants. In accordance with (13) and (15) the related inverse mass potential have
the form:

f =
2

M
, V =

M̃

M
(17)

where M̃ andM are different solutions of the same equation, while the corresponding functions
g and η are expressed via M and M̃ in the following manner:

g =
N

M
, η = −NM̃

M
− R. (18)

We see that to find the admissible inverse mass and potential it is sufficient to solve the
only linear equation (14) and then find the desired functions f, V, g and η using definitions (17)
and (18).

Just linearised determining equation (13) together with the mentioned definitions will be
used in the following to solve our classification problem.

Let us represent generic integral of motion (7) in terms of new dependent variablesM,N, M̃

and Ñ (refer to (13) and (15))

Q = Paµ
abPb + (N ·H)−R (19)

where we denote

(N ·H) = Pa(Nf)Pa +NV. (20)

The latter definition includes a Hermitized product of function N with Hamiltonian (2).
It is necessary to note than whenever function g(r) is equal to zero, i.e., tensor µab

0 is
trivial, the above presented speculations are forbidden. We still can deal with the determining
equations (14), but we are supposed to deal with the initial determining equations (11) instead
of (16).
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4 Equivalence relations

An important step of our classification problem is the definition of equivalence relations which
will be presented in this section.

Non degenerated changes of dependent and independent variables of equations (1), (2) are
called equivalence transformations provided they keep their generic form up to the explicit
expressions for the arbitrary elements f and V . They have the structure of a continuous group
which however can be extended by some discrete elements. Let us remind that a particular
subset of the equivalence transformations are invariance transformation which by definition
keep the mentioned arbitrary elements uncharged.

It was shown in [17] that the maximal continuous equivalence group of equation (1) is the
group of conformal transformations of the 3d Euclidean space which we denote as C(3). The
corresponding Lie algebra is a linear span of the following first order differential operators [17]:

P a = pa = −i ∂
∂xa

, La = εabcxbpc,

D = xnp
n − 3i

2
, Ka = r2pa − 2xaD,

(21)

where r2 = x21+x
2
2+x

2
3 and pa = −i ∂

∂xa

. Operators P a, La, D and Ka generate shifts, rotations,
dilatations and pure conformal transformations respectively.

In addition, equation (1) is form invariant with respect to the following discrete transfor-
mations:

xa → x̃a =
xa

r2
, ψ(x) → x̃3ψ(x̃) (22)

where x̃ =
√

x̃21 + x̃22 + x̃23.

Notice that the related Lie algebra c(3) is isomorphic to the algebra so(1,4) whose basic
elements Sµν can be expressed via generators (21) as:

Sab = εabcLc, S4a =
1

2
(Ka − Pa), S0a =

1

2
(Ka + Pa), S04 = D (23)

where a, b = 1, 2, 3. The related Lie group SO(1,4) is the Lorentz group in (1+4)-dimensional
space. The discrete transformation (22) anticommutes with S4a and S40 but commutes with
the remaining generators (23). Thus its action on operators (23) can be represented as follows:

S4a → −S4a, S04 → −S04, S0a → S0a, Sab → Sab. (24)

The presented speculations are valid for an abstract system (1) which is free of any addi-
tional constrains. However, for the systems whose arbitrary elements satisfy condition (3) the
equivalence group is reduced since it is supposed that it does not change the invariance groups
of these equations. It means that the set of generators (23) should be reduced to such ones
which commute with L3. There are four the generators satisfying this condition, namely:

P3, L3, K3, D. (25)

They generate the reduced equivalence algebra so(2,1)⊕e(1) where e(1) includes the only basis
element L3.
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Thus, in comparison with the generic case, for special arbitrary elements presented in (3)
the admissible continuous equivalence transformations are reduced to group SO(2,1) extended
by rotations w.r.t. the third coordinate axis. However, the admissible discrete transformations
are extended by the reflection of one out of two the independent variables x1 and x2, i.e.,

x1 → −x1, x2 → x2, x3 → x3 (26)

or

x1 → x1, x2 → −x2, x3 → x3 (27)

which keep the related equation (1) invariant. These discrete transformations can be added to
the universal discrete transformation (22).

The presented equivalence relations will be used in the following to simplify calculations
and and to optimize the representation of the classification results.

5 Identities in the extended enveloping algebra of c(3)

It was noted in [39] that integrals of motion (7) where µab Killing tensors, i.e., solutions of
equations can be represented as bilinear combinations of the basic elements of algebra c(3) (21)
added by the special term with µab = δabg(x) and potential term η. In other words they admit
the following representation:

Q = cµν,λσ{Sµν , Sλσ}+ Pag(x)Pa + η (28)

where Sµν are generators (23) and cµν,λσ are numeric parameters.
In accordance with (28) the second order integrals of motion of the PDM Schrödinger

equation belong to the enveloping algebra of their equivalence algebra, i.e., c(3), extended by
special terms pag(x)pa. Notice that the same is true for the any order integrals of motion with
the appropriate generalization of the extending term.

Representation (28) is very important. Being combined with the equivalence relations dis-
cussed in the previous section it enables essentially simplify both the calculations and the
representation of their results. In addition to the equivalence relations we will use numerous
identities in the enveloping algebra of algebra c(3) which take place for its particular realization
(21). These identities are presented in the following formulae:

{Pa, D}+ εabc{Pb, Lc} = 2PcxaPc, (29)

L2
1 + L2

2 + L2
3 +D2 = Par

2Pa, (30)

{La, Lb}+ {Pa, Kb} − δab(L2
1 + L2

2 + L2
3) = 2Qab (31)

P 2
1 + P 2

2 + P 2
3 = PaPa,

{Pa, Kb} − {Pb, Ka} = 2εabcLcD,

P1L1 + P2L2 + P3L3 = 0

(32)

where Qab = −PcxaxbPc.

The message given by relations (29)-(32) is that the terms in the l.h.s. can be treated as
linearly dependent whenever they are included into second order integral of motion (28) since
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the latter one includes a yet indefinite term of the kind presented in the r.h.s. of equations
(29)-(32).

We will use relations (29)-(32) to produce maximally compact presentations for the integrals
of motion.

6 Solution of determining equations

The autonomous subsystem (9) defines the conformal Killing tensor which is the fourth order
polynomial in variables xa and includes an arbitrary function which multiplies the Kronecker
delta. The explicit expression for this polynomial are presented in (12) and in the following
formulae (see, e.g., [41]) :

µab
1 = λab1 , (33)

µab
2 = λa2x

b + λb2x
a − 2δabλc2x

c, (34)

µab
3 = (εacdλcb3 + εbcdλca3 )xd, (35)

µab
4 = (xaεbcd + xbεacd)xcλd4, (36)

µab
5 = δabr2 + k(xaxb − δabr2), (37)

µab
6 = λab6 r

2 − (xaλbc6 + xbλac5 )xc − δabλcd6 x
cxd, (38)

µab
7 = (xaλb7 + xbλa7)r

2 − 4xaxbλc7x
c + δabλc7x

cr2, (39)

µab
8 = 2(xaεbcd + xbεacd)λdn8 x

cxn − (εackλbk8 + εbckλak8 )xcr2, (40)

µab
9 = λab9 r

4 − 2(xaλbc9 + xbλac9 )xcr2 + (4xaxb + δabr2)λcd9 x
cxd + δabλcd9 x

cxdr2 (41)

where r =
√

x21 + x22 + x23, λ
a
n and λabn are arbitrary parameters, satisfying the conditions λabn =

λban , λ
bb
n = 0.

Thus we have to search for solutions of the determining equations (10) where µab are linear
combinations of tensors (12), (33)-(41).

Formulae (12) and (33)-(41) include an arbitrary function g(x) and 35 arbitrary parameters
λan and λabn , a, b = 1, 2, ..., 9. In addition, we have eight coefficients which appear in an arbitrary
linear combination of tensors (12), and three more unknown function, i.e., f , V and η. Thus the
problem of the complete classification of the 3d PDM systems admitting second order integrals
of motion looks to be huge. However, our strategy is to solve it step by step for the systems
admitting three, two and one parametric Lie groups, and, finally, for the systems which do not
admit any Lie symmetry. The first two steps have been already done in papers [35] and [39].
The third step is the subject of the current paper.

We are studying the PDM systems which are invariant with respect to rotations around the
fixed axis (say, the third one). In accordance with (3) the corresponding Hamiltonian (2) is
reduced to the following form:

H = paf(r̃, x3)pa + V (r̃, x3) (42)

where r̃ =
√

x21 + x22.
As it was noted in Section 3 the equivalence group of equation (1) is reduced to SO(2,1)⊗E(1)

provided the related Hamiltonian (2) has the reduced form (42). The corresponding infinitesi-
mal operators are presented in (25). In addition, there is the discrete equivalence transforma-
tions (22), (26) and (27).
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However, the symmetry fixed above makes it possible to decouple the second order integrals
of motion to the following three subclasses: scalars, vectors and second rank tensors with
respect to rotations around the third coordinate axis. We will consider them consequently.

6.1 Scalar integrals of motion

Since the searched integrals of motion include bilinear combinations of the generators Sµν of
the extended Lorentz group SO(1,4), it is relatively easy to select such of them which commute
with S12 = L3 and so are scalars with respect to the rotations. First, all Sµν with µ, ν 6= 1 and
2 commute with S12 and so their bilinear combinations are scalars. There exactly three such
Sµν , namely, S04, S03 and S43. Surely, this list can be added by S12. Thus we have indicated
the following scalars:

S2
04, S

2
03, S

2
34, S12S04, S12S03, S12S34,

S34S04 + S04S34, S03S04 + S04S03, S43S03 + S03S43.
(43)

The above presented list does not include the squared generator S12 which commutes with all
the considered Hamiltonians by definition.

One more collection of scalars which includes the sums w.r.t. the repeating indices n = 1, 2
and m = 1, 2 is presented in the following formulae:

SnaSnb + SnbSna (44)

and

ε3nm(SnaSmb + SmbSna) (45)

where a, b = 0, 3, 4.
Equation (1) including arbitrary parameters (3) is transparently invariant with respect the

inversion of variables x1 or x2. The consequence of this observation is that its scalar integrals of
motion can be decoupled to two linearly independent parts including proper scalars and pseudo
scalars. The proper scalars are collected in (43) and (44) while the pseudo scalars are present
in (45).

The generic scalar integral of motion is a linear combination of operators (43), (44), and the
term Pag(r̃, x3)Pa (refer to (28)). The pseudo scalar ones are the linear spans of operators (45)
added by the same term. Moreover, many terms of this linear combination should be omitted
in view of relations (23) and (29)-(32). As a result we will obtain the reduced set of scalars
which we write in terms of operators (21):

P3L3, DL3, {L3, K3}, (46)

P 2
3 , {P3, K3}, D2, K2

3 , {P3, D}, {K3, D}. (47)

Notice that equation (44) collects the pseudo scalars while the proper scalars are presented in
(47).

One more way to specify the scalar integrals of motion is to use the formal expressions for
Killing tensors given by relations (12)-(41). Such integrals are generated by the mentioned
tensors in two cases: when the only nonzero parameters λan and λabn correspond to a = 3 and
a = b = 3. One more possibility is λ11 = λ22 6= 0, but it is reduced to the previous one in
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view to the traceless condition for constant tensors λabn . Going over the mentioned values of
arbitrary parameters we recover relations (46) and (47).

Let us specify the inequivalent linear combinations of pseudo scalars (46). First we note
that all of them are products of operator L3 and linear combinations of the following operators:

S04 = D, S03 =
1

2
(K3 + P3), S43 =

1

2
(K3 − P3) (48)

which satisfy the following relations

[S04, S03] = −iS43, [S04, S43] = −iS03, [S04, S43] = −iS04 (49)

and so form a basis of Lie algebra so(1,2). Moreover, operators (48) commute with L3. It
means that the number of inequivalent pseudoscalars which are nothing but the products of
linear combinations of operators (48) with operator L3 is equal to the number of inequivalent
subalgebras of algebra so(1,2), since just these subalgebras generate our integrals of motion.

The inequivalent subalgebras of algebra so(1, 2) are one dimensional and include the follow-
ing basis elements:

S03, S43, S03 ± S43. (50)

Moreover, up to discrete transformation (22) which changes the sign of S03 we can restrict
ourselves to the positive sign in the last term in (50). As a result we obtain the following
inequivalent symmetries (28) which we present together with the related Killing tensors (33)-
(41):

Q̂1 = P3L3 + Paq̃1(r̃, x3)Pa, µ
ab = µab

3 (51)

and

Q̂2 = (K3 + P3)L3 + Paq̃2(r̃, x3)Pa, µ
ab = µab

3 + µab
8 , (52)

Q̂3 = (K3 − P3)L3 + Paq̃3(r̃, x3)Pa, µ
ab = µab

3 − µab
8 (53)

we remind that the only nonzero parameters in tensors µab
3 and µab

8 are λ333 and λ338 .
Let us specify one more pseudo scalar operator

Q̂4 = {D,L3}+ Paq̃4(r̃, x3)Pa, µ
ab = µab

4 , λ
1
4 6= 0. (54)

Operator (54) is equivalent to (52) and can be ignored in the analysis of integrable PDM
systems. However, we cannot ignore it in the case of superintegrable systems.

The specific arguments of functions q(.) in (70) are caused by the requested symmetry of
(70) with respect to rotations around the third coordinate axis.

The next task is to specify all inequivalent proper scalars. In accordance with (46 ) and (49
they belong to the enveloping algebra of algebra so(1,2). Moreover, it follows from the first of
equations (30) that the related Casimir operator of algebra so(1,2) takes the following form:

S2
03 + S2

04 − S2
43 = Par̃

2Pa − L2
3. (55)

Thus the considered integrals of motion are linear combination of basic elements of the
mentioned enveloping algebra:

Q =
∑

cαQα (56)
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where α = 1, ..., 6,

Q1 = (S2
03 − S2

43), Q2 = (S2
03 + S2

43), Q3 = {S03, S43},
Q4 = {S03, S04}, Q5 = {S04, S43}, Q6 = S2

04 − S2
03

(57)

and c1, ..., c6 are real constants.
Notice that relation (55) can be rewritten in terms of operators Q1, Q2 and Q6 in the

following way:

Q1 + 3Q2 + 2Q6 = 2(Par̃
2Pa − L2

3). (58)

The l.h.s. of relation (58) includes the symmetry operator L2
3 which commutes with Hamil-

tonian (2) by definition and the term Par̃
2Pa which can be included to the last term of the

generic integral of motion (28). It means that operators Q1, Q2 and Q6 can be treated as
linearly dependent and so one of the coefficients c1, c2 and c3 can be nullified without loss of
generality.

The next step in the simplification of expression (56) can be made using the equivalence
transformations generated by the Lie group whose Lie algebra is a linear span of base elements
(48). The transformations generated by S04 are the Lorentz transformations which look as:

Q2 → Q2 cosh(2λ) +Q3 sinh(2λ),

Q3 → Q3 cosh(2λ) +Q2 sinh(2λ),
(59)

Q4 → Q4 cosh(λ) +Q5 sinh(λ)

Q5 → Q4 cosh(λ) +Q5 sinh(λ).
(60)

In addition, Q6 and Q2 are transformed to their linear combinations, but such transformations
can be ignored in view of relation (58).

Let us use transformations (59) to specify the inequivalent versions of coefficients c2 and c3
present in formula (56). For c22 > c23 or c22 < c23 we can nullify c3 or c2 correspondingly, while
for the special case c4 = ±c5 we can restrict ourselves to the case c4 = −c5 up to the discrete
equivalence transformations (22). So the inequivalent versions of the pairs (c4, c5) are:

c2 6= 0, c3 = 0; c2 = 0, c3 6= 0; c2 = −c3. (61)

Whenever the last version presented in (61) is true we can use transformations (60) to specify
the inequivalent versions of constants c4 and c5 which are analogous to the ones presented in
(61):

c4 6= 0, c5 = 0; c4 = 0, c5 6= 0; c4 = −c5 (62)

provided c2 = −c3.
The next step is to use the rotation like transformation generated by S43 which look as

follows:

Q3 → Q3 cos(ω)−Q5 sin(ω),

Q5 → Q5 cos(ω) +Q3 sin(ω),
(63)

Q6 → Q6 cos(2ω)−Q4 sin(2ω),

Q4 → Q4 cos(2ω) +Q6 sin(2ω)
(64)
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Let at least one of the constants c3, c3 is nontrivial than transformations (63) can be used
to transform them to the following form:

c5 = 0 c3 6= 0. (65)

Alternatively, both c5 and c3 can be equal to zero.
Summarising the results presented in (61), (62) and (65) and taking into account that in

view of relation (58) coefficients c1, c2, c3 can be treated as linearly dependent we come to the
following inequivalent versions of operators (56) which we present together with the related
Killing tensors:

Q1 = P 2
3 + Paq1(r̃, x3)Pa + η1, µab = µab

1 , (66)

Q2 = {P3, D}+ Paq2(r̃, x3)Pa + η2, µab = µab
2 , (67)

Q3 = {P3, K3}+ Paq3(r̃, x3)Pa, µ
ab = µab

6 + η3, (68)

Q4 = P 2
3 ±K2

3 + Paq4(r̃, x3)Pa + η4, µab = µab
1 ± µab

9 , (69)

Q5 = (K3 ± P3)
2 + Paq5(r̃, x3)Pa + η5, µab = µab

1 ± 2µab
6 + µab

9 , (70)

Q6 = {P3, K3 ± P3}+ Paq6(r̃, x3)Pa + η6, µab = µab
6 ± µab

1 , (71)

Q7 = K2
3 ± P 2

3 + 2n{K3, P3}+ Paq7(r̃, x3)Pa + η7, µab = µab
9 − µab

1 + 2nµab
6 , (72)

Q8 = {D, (K3 ± P3)}+ Paq8(r̃, x3)Pa + η8, µab = µab
7 ± µab

1 (73)

and nonzero parameters in tensors µab
1 , µ

ab
2 , µ

ab
6 , µ

ab
7 and µab

9 are λ331 , λ
33
2 , λ

33
6 , λ

3
7 and λ339 .

Thus to classify the scalar integrals of motion it is sufficient to solve the determining equa-
tions (10) and (11) where µab are the Killing tensors fixed in (66) - (73).

6.2 Pseudo scalar integrals of motion

Let us search for solutions of the above defined determining equations for pseudo scalar integrals
of motion.

Let us start which the pseudo scalar integrals of motion fixed in (51). The related deter-
mining equations (14) are reduced to the following form:

x2∂3M = ∂1N, x1∂3M = −∂2N, ∂3N = 0 (74)

and are solved by the following functions:

M =
νx3 + F (r̃)

r̃2
, N =

ν

2
ϕ (75)

where ϕ = arctan
(

x2

x1

)

is the Euler angle, ν is the integration constant, and F (r̃) is an arbitrary

function of r̃ =
√

x21 + x22. The corresponding functions M̃ and Ñ which generate potential V
and function η are solutions of the same equation and so have the same generic forms as given
in (75), but in general with different parameter ν and different function F (r̃). Substituting the
obtained results into equations (18) we come to functions f and V presented in Item 1 of Table
1.
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The next pseudoscalar operator which we consider is fixed by relations (52) and (53). The
corresponding determining equations (14) for M = M(r̃2, x3) and N = N(r̃2, x3) are reduced
to the form:

∂3N = 0, ∂4N = 0, (76)

∂ϕN = r̃2(2x3r̃
2∂4M + 2x3M)− 1

2
(r̃2 − x23 ± 1)∂3M (77)

where ∂3 =
∂

∂x3
, ∂4 =

∂
∂x4
, x4 = r̃2.

In accordance with (76) function N depends on ϕ only. Since M by definition does not
depend on this variable, to solve equation (77) N should be a linear function, i.e., N = cϕ.

Then equation (77) is reduced to the following one:

2x3r̃
2∂4M + 2x3M − 1

2
((r̃2 − x23 ± 1)∂3M = c. (78)

Equation (78) is easily integrable. Its solutions are presented in Items 2 and 3 of Table 1.
Notice that these solutions are qualitative different for different sighs before 1 in the formulae
presented above. And these signs are the same as signs for P3 in equations (52) and (53).

Let us fix also the PDM system admitting symmetry DL3 + ... which is generated by the
Killing tensor (37) with the only nonzero parameter λ34.. This symmetry is equivalent to the
symmetry L3(P3 + K3) + ... considered above, see equation (51). However, its presentation
will be useful in searching for the systems admitting more than one second order integrals of
motion. We will not present the calculation details but give the corresponding equations (14):

x4x3∂3M + 2x4∂4M + 2M + ∂ϕN = 0,
∂3N = 0, ∂4N = 0, ∂ϕϕN = 0

(79)

and their solutions:

M =
F (θ)− 2ν ln(r̃)

r̃2
(80)

where F (θ) and G(θ) are arbitrary functions, ϕ and θ are the Euler angle, µ and ν are arbitrary
parameters.

Just these functions together with the corresponding integrals of motion are presented in
Item 4 of Table 1.

Thus we have found all inequivalent systems with position dependent mass which admit
pseudo scalar integrals of motion. They are defined up to pairs of arbitrary functions. The
related Hamiltonians commute also with the third component of angular momentum and so
the found systems are integrable. We will se that for some particular arbitrary functions these
systems are superintegrable.

6.3 True scalar integrals of motion

Consider now the integrals of motion which are invariant with respect to the space reflections.
Their generic form is given by formulae (66)–(72).

Let us represent the corresponding determining equations. They include functions M and
N which depend on r̃ and x3, but in some cases it is reasonable to treat them as functions of
r and x3. To unify the representation we will use the notations r̃2 = x4 and r2 = x5 .
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Substituting the Killing tensors fixed in (66)-(72) into (14) we come to tjhe following equa-
tions:

For Q1 : ∂r̃N = 0, ∂3(M +N) = 0; (81)

For Q2 :
∂3M + 2∂5N = 0,
2∂5(x5M + x3N) + ∂3(x3M +N)− 2M = 0;

(82)

For Q3 :
2∂4(x

2
3M +N)− x3p3M = 0,

∂3(r̃
2M +N)− 2x3r̃

2∂4M = 0;
(83)

For Q4 :
∂4(N + 4x23r̃

2M)−W±∂3M = 0,
∂3(N +W 2

±M)− 4x3r̃
2W±∂4M = 0,

W± = r̃2 ± 1− x23 = x4 − x23 ± 1;
(84)

For Q5 :
∂4(N + 4(x23 ± 1)r̃2M)− x3(W±)∂3M = 0,
∂3N + ((W±)2 + 4r̃2)∂3M − 4∂4(x3r̃

2M(W ∓ 2));
(85)

For Q6 :
(2x23∂4M − x3∂3)M = ∂4N,

(x24 − 1)(∂3 − 2x3x4∂4)M = ∂3N ;
(86)

For Q7 :
x3(x4 − x23 + n)∂3M + 2(N + 2− 2x23)∂4(x4M) = ∂4N,

(x43 − 2(x4 + n)x23 + x24 − 4x4 ± 1)∂3M
−4x3(x4 − x23 + n)∂4x4M = −∂3N,

(87)

For Q8 :
(3x23 − x4 ± 1)∂3M + 8x3∂4(x4M) = 2∂4N,
2(x4 − 3x23 ± 1)(x4∂4M + ∂3(x3M)) = −∂3N (88)

The systems (81) and (83) are easy solvable. They are solved by the following functions:

M = F (r̃) +G(x3), N = −G(x3)

and

M =
F (θ) +G(R)

r2
, N = −F (θ)

where F (.) and θ are arbitrary functions, θ = arctan
(

r̃
x3

)

is the Euler angle. These solutions

generate the inverse masses and potentials represented in Items 5 and 6 of Table 1
Equations (84) are a bit more complicated. Excluding unknown variable N we obtain the

following second order equation for M :

∂33M − 4∂55(x5M) + 2∂5M = 0. (89)

The obtained partial differential equation with variable coefficients appears to be exactly solv-
able. To discover its exact solutions it is reasonable to represent them as

M =
P√
x5

=
P

r
(90)

where P are polynomials in r and x3.
The only first order polynomial satisfying (89), (89) is c1x3, the second order polynomial is

c2rx3 + c3(r
2 + x23), the third order polynomial is c4(x

3
3 + 3x3r

2) + c5(r
3 + 3rx23), etc. In this

way we can find the infinite (but countable) set of exact solutions for M . A more difficult step
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is to recognize the fact that such polynomials are only particular case of the generic solution
P = F (r+x3)+G(r−x3) were F (.) and G(.) are arbitrary functions of the arguments fixed in
the brackets. It means that rather complicated second order equation with variable coefficients
presented in (89) can be reduced to the D’Alambert equation if we represent the dependent
variable in form (90) and change the independent variables (x3, x5) to (x3,

√
x5).

The corresponding inverse masses and potentials are presented in Item 7 of Table 1.
The remaining tasks, i.e., the constructions of exact solutions for the determining equations

(84)-(88) appear to be much more difficult problems which, however, are solvable.
Consider equations (84). Excluding variable N we obtain the following compatibility con-

ditions for this system:

−(W 2
± ∓ r̃3x23)∂34M + x3W±(4x4∂4M − ∂33M)

+(20x4 − 8x3(x3 ∓ 1))∂4M + (3W± + 6x23)∂3M + 12x3M.
(91)

This rather complicated partial differential equation of second order can be solved by the
following trick. Let us choose new independent variables. To find the first of them we solve
equations (84) for N = 0 and obtain the following subclass of solutions for our problem:

M =
G
(

r2±1
r̃

)

(r2 ± 1)2 ∓ 4r̃2
. (92)

This solution is valid for any arbitrary function G
(

r2±1
r̃

)

, in particular, for G
(

r2±1
r̃

)

= 1, when

M =
1

(r2 ± 1)2 ∓ 4r̃2
. (93)

Thus it is reasonable to search for solutions with non-trivial N in the form:

M =
F (r, x3)

(r2 ± 1)2 ∓ 4r̃2
. (94)

Substituting this form into (84) we immediately recognize that the latter equations turn to the
identities provided N = −F (r, x3) and

F = F

(

r2 ∓ 1

x3

)

. (95)

In this way we come to the solutions presented in Item 8 of Table 1.
In complete analogy with the above one can solve equations (85). The inverse masses and

potentials generated by solutions of these equations are presented in Item 9 of Table 1.
Let us consider equations (86). Excluding N we obtain the following compatibility condition

for this system:

((x4 − x23 − 1)∂3∂4 + 4x3x4∂4∂4 − x3∂3∂3 − 3∂3 + 8x3∂4)M(x4, x3) = 0. (96)

Like (89) equation (96) can be reduced to the D’Alambert equation if we chose the following
new independent and dependent variables:

x = r2 ± 1, y = x23, M̃(x, y) =
√

x2 ∓ 4yM(r̃, x3). (97)
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As a result we come to the following generic solution for (96):

M =
F (x−) +G(x̃−)
√

(r2 ± 1)2 ∓ 4x23
(98)

where x− =
√

x2 ∓ 4y + x, x̃− =
√

x2 ± 4y − x, F (.) and G(.) are arbitrary functions. The
corresponding potential V (17) looks as:

V =
F̃ (x−) + G̃(x̃−)

F (x−) +G(x̃−)
. (99)

For any fixed F (x−) and G(x̃−) we can solve equations (86) and find functions N = NF,G

corresponding to M defined in (98). Unfortunately, it is seemed be impossible to represent
functions NF,G in closed form for F and G(x̃−) arbitrary. However, we can do it at least for
some rather extended classes of F (.) and G. In particular it is the case if F (x−) + G(x̃−) is a
homogeneous function of x23 and y, say, for

F (x−) +G(x̃−) = xn− + (−1)n+1x̃n− = Φn. (100)

Substituting (100) into (97) and integrating the corresponding equations (14) we find the related
functions M and N in closed form for n arbitrary:

M =Mn =
Φn

√

(r2 − 1)2 + 4x23
,

N = Nn = 2nx23Mn−1.

(101)

Thus we found the infinite (but countable) set of solutions of the determining equations
(14) which generate integrals of motion (71). Let us represent explicitly some of them:

M1 = r2 − 1, M−1 =
1

x23

M2 = (r2 − 1)2 + x23,

M3 = ((r2 − 1)((r2 − 1)2 + 2x23)

M4 = (r2 − 1)4 + 3(r2 − 1)x43 + x63,

M5 = (r2 − 1)5 + 4(r2 − 1)3x23 + (r2 − 1)x43,

...

Mn =
∑

m≤n

(n−m)!xn−2mx2m3
(n− 2m)!2mm!

.

(102)

Two more particular solutions are:

M =
1

r̃2
and M =

x23 + 1

r̃4
. (103)

Notice that linear combinations of solutions (101), (102) and (103) also solve equations (14),
see Item 10 of Table 1.
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The last class of symmetries which we are supposed to study is represented in equation (72).
The corresponding determining equations (87) are the most complicated, but in many aspects
they are analogous to ones requested for the systems admitting integrals of motion of type (71).

Excluding N we come to the following compatibility condition for the system (87):

((x4 − x23 + n)2 − n2 ± 1− 4x23x4)∂3∂4 − (n + x4 − x23)(x3∂3∂3 − 4x3x4∂4∂4)
+3(n+ x4 − 3x23r)∂3 − (8n− 8x23 + 20x4)x3∂4 − 12x3)M = 0.

(104)

This frighteningly looking equation appears to be equivalent to the d’Alambert one if we choose
the new independent and dependent variables

y =
1

x4
(
√

z2± + 2x23x4 + z±), ỹ =
1

x4
(
√

z2± + 2x23x4 − z±),

z± =
x24 ± 1 + 2n(x4 − x23)

2
√

2(n2 ∓ 1)
, 1− n2 ≤ 0, M̂(y, ỹ) =

√

z2± + 2x23x4M(r̃, x3).

As a result equation (104) takes the canonical form

∂y∂ỹM̂ = 0 (105)

and so the related mass function has the following form:

M =
F (y) +G(ỹ)

x4
√

z2± + 2x23x4

with arbitrary functions F (.) and G(.).
For any particular functions F (.) and F2(.) we can find the corresponding functions N by

direct integration of equations (87). Moreover, for some rather extended classes of the arbitrary
functions it is possible to present the related functions N in closed form like it was done in
equations (100)-(103). In particular we can set:

M =Mm =
1

x4
√

z2± + 2x23x4
(ym + (−1)m+1ỹn) (106)

where n are natural numbers. Then the corresponding functions N = Nm can be found in the
closed form for arbitrary m by directs integration of equations (87):

Nm = 2m−1x23Mm−1. (107)

We again have a countable set of exact solutions whose linear combinations
∑

m cmMm are
solutions also. The corresponding potentials looks as follows:

V =

∑

m c̃m(y
m + (−1)m+1ỹm)

∑

m cm(y
m + (−1)m+1ỹm)

. (108)

The obtained in this way solutions are represented in Items 11 and 12 of Table 1. Solutions
corresponding to n2 − 1 < 0 which are represented in Items 13 and 14 of the same table can be
obtained in analogous way.

Thus we find all inequivalent PDM systems which, in addition to the cylindric symmetry,
admit at least one second order scalar integral of motion and so are integrable. The inverse
masses and potentials of these systems are defined up to two arbitrary functions for pseudo
scalar integrals of motion and up to four arbitrary functions if integrals of motion are true
scalars. For some particular classes of the mentioned arbitrary functions the number of the
admitted scalar integrals of motion can be extended as it is indicated in Tables 3-5.
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Table 1. Inverse masses, potentials and scalar integrals of motion for integrable systems

No f V Integrals of motion

1 r̃2

c1x3+F (r̃)
c2x3+G(r̃)
c1x3+F (r̃)

P3L3 +
c1
2
(ϕ ·H)− c2

2
ϕ

2 r̃2

F
(

r
2−1

r̃

)

+c1arctanh
(

r
2+1

2x3

)

G
(

r
2−1

r̃

)

+c2arctanh
(

r
2
+1

2x3

)

F
(

r
2−1

r̃

)

+c1arctanh
(

r
2+1

2x3

)

{L3, (K3 + P3)}
−2c1 (ϕ ·H) + 2c2ϕ

3 r̃2

c1 arctan
(

r
2−1

2x3

)

+F
(

r
2+1

r̃

)

c2 arctan
(

r
2−1

2x3

)

+G
(

r
2
+1

r̃

)

c1 arctan
(

r
2−1

2x3

)

+F
(

r
2+1

r̃

)

{L3, (K3 − P3)}
−2c1 (ϕ ·H) + 2c2ϕ

4 r̃2

F (θ)−2c1 ln(r̃)
G(θ)−2c2 ln(r̃)
F (θ)−2c1 ln(r̃)

DL3 + c1(ϕ ·H)− c2ϕ

5 1
F (r̃)+G(x3)

F̃ (r̃)+G̃(x3)
F (r̃)+G(x3)

P 2
3 − (G(x3) ·H) + G̃(x3)

6 r2

F (θ)+G(r)
F̃ (θ)+G̃(r)
F (θ)+G(r)

L2
1 + L2

2 − (F (θ) ·H) + F̃ (θ)

7 r2

F (r+x3)+G(r−x3)
F̃ (r+x3)+G̃(r−x3)
F (r+x3)+G(r−x3)

{P3, D} − Pnx3Pn

−((F (r + x3)−G(r − x3)) ·H)

+F̃ (r + x3)− G̃(r − x3)

8 F±

F
(

r
2±1

r̃

)

−G
(

r
2∓1

x3

)

F̃
(

r
2±1

r̃

)

+G̃
(

r
2∓1

x3

)

F
(

r
2±1

r̃

)

−G
(

r
2∓1

x3

)

(K3 ∓ P3)
2 + G̃

(

r2∓1
x3

)

+
(

G
(

r2∓1
x3

)

·H
)

− η̂

9
√

F±

F (x±)+G(x̃±)

F̃ (x±)+G̃(x̃±)
F1(x±)+F2(x̃±)

{P3, (K3 ± P3)}+ Pax
2
3Pa

+ ((g(F,G) ·H)− η((F̃ , G̃)

10
∑

n cnFn, Fn =
xn

±+(−1)n+1x̃n

±

F+

∑

n
c̃nFn

∑

n
cnFn

{P3, (K3 ± P3)}+ Pax
2
3Pa

− (x23
∑

n cn2
nFn−1 ·H)

+x23
∑

n c̃n2
nFn−1

11

√
z2±+2x2

3
r̃2

F (y±)+G(ỹ±)
F̃ (y±)+G̃(ỹ±)
F (y±)+G(ỹ±)

K2
3 ± P 2

3 + 2n{K3, P3}+ 4Par̃
2Pa

+ (g(F,G) ·H)− η̃(F̃ , G̃)− η̂,

1− n2 ≤ 0

12
∑

m cmF̃m, F̃m =
ym±+(−1)m+1 ỹm±

z±

∑

m
c̃mF̃m

∑

m
cmF̃m

K2
3 ± P 2

3 + 2n{K3, P3}+ 4Par̃
2Pa

−
(

x23
∑

m cm2
m−1F̃m−1 ·H

)

+x23
∑

m c̃m2
m−1F̃m−1 − η̂,

1− n2 ≤ 0

13

√
z̃2±∓2x2

3
r̃2

F (s±)+G(s̃±)
F̃ (s±)+G̃(s̃±)
F (s±)+G(s̃±)

K2
3 ± P 2

3 + 2n{K3, P3}+ 4Par̃
2Pa

+ (g(F,G) ·H)− η̃(F̃ , G̃)− η̂,

n2 − 1 < 0

14
∑

m cmΦm, Φm =
sm±+(−1)m+1 s̃m±

z±

∑

m
c̃mΦm

∑

m
cmΦm

K2
3 ± P 2

3 + 2n{K3, P3}+ 4Par̃
2Pa

− (x23
∑

m cm2
m−1Φm−1 ·H)

+x23
∑

m c̃m2
m−1Φm−1 − η̂,

n2 − 1 < 0

In Table 1 and the following Tables 2, 3, 4 F (.), G(.), F̃ (.) and G̃(.) are arbitrary functions,
g(F,G) and η(F̃ , G̃) are solutions of equation (86), (87) with given F1(x), F2(x̃) and G1, G2,
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c1, c2, .. are arbitrary real parameters. In addition we use the following notations which also
will be used in all tables:

F± = (r2 ± 1)2 ∓ 4x23, F̃± = (r2 ± 1)2 ± 4x23,

η̂ = 3(r2 − 5x23), G± = (r̃2 − 2x23)(r
2 ± 1)2 + 4x23r̃

2,

z± =
r4 ± 1 + 2n(r̃2 − x23)

2
√

2(n2 ∓ 1)
, −n2 ≤ 1,

y± =
1

r̃2

(

√

z2± + 2x23r̃
2 + z±

)

, ỹ± =
1

r̃2

(

√

z2± + 2x23r̃
2 − z±

)

,

z̃± =
r4 ± 1 + 2n(r̃2 − x23)

2
√

2(1∓ n2)
, n2 < 1

s± =
1

r̃2

(

√

z̃2± ∓ 2x23r̃
2 + z̃±

)

, s̃± =
1

r̃2

(

√

z̃2 ∓ 2x23r̃
2 − z̃±

)

,

x± =
√

(r2 ± 1)2 ∓ x23 + r2 ± 1, x̃± =
√

(r2 ± 1)2 ∓ x23 − r2 ∓ 1.

(109)

The mysterious term η̂ appears as a result of the following identity:

K2
3 = paµ

ab
8 pb + η̂

where µab
9 is the Killing tensor (41) with λ39 6= 0 , and it is the cost paid for our desire to

represent the integrals of motion via the anticommutators of operators (21).

7 Vector integrals of motion

The systems admitting vector integrals of motion can be classified in the way analogous to one
used for the case of scalar integrals. First, using our knowledge of the requested Killing tensors
we will find the generic form of second order integrals of motion which transform as a vectors
under rotations with respect to the third coordinate axis. Then, using the discrete equivalence
transformations we will select the subsets of such integrals with fixed parities. Then, using the
continuous equivalence transformations we will specify all inequivalent linear combinations of
the Killing tensors which should be considered. Finally we will solve the determining equations
generated by such inequivalent Killing tensors.

7.1 Generic vector integrals of motion and their parity properties

Vector integrals of motion are generated by linear combinations of Killing tensors (33)-(41)
with nonzero parameters λαn and λ3αn , where α = 1, 2, n = 1, ..., 9. The corresponding integrals
of motion (28) are linear combinations of operator Q(0) generated by µab

0 , i.e.,

Q(0) = Pag(x)Pa (110)

and the following operators:

{S12, S3α}, {S12, S4α}, {S12, S0α}, (111)

{S3α, S03}, {S3α, S43}, {S3α, S04}, {S0α, S43}, {S4α, S03}. (112)
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Notice that operators (111) are invariant with respect to the reflections xα → −xα while
operators (112) change their size under this operation. Thus operators (111) and (112) are true
and pseudo vectors respectively.

The generic vector integral of motion includes a linear combination of operators (111) and
(112). Since Hamiltonians (42) are invariant with respect to the space reflection, such combina-
tions can include either operators (111) or (112), but never both of them. Thus it is necessary
to consider the true vector and pseudo vector integrals of motion separately, while their linear
combinations can be rearrangered in accordance with the following comment.

Let us note that pseudo vectors (111) have the following property: whenever we change the
sign of x1, the first components of these vectors are not changed but the second components
change their sign. Analogously, if we change the sign of x2: the second components are kept
unchanged while the first components change their signs also. In other words, if Vα is one of
pseudo vectors (111), then Ṽα = εανVν (were εαν is the antisymmetric unit tensor, α and ν take
the values 1 or 2) transforms as a true vector under the space reflections.

That is why the true vectors and pseudo vectors the generic forms of the related operator
Q(0) (110) are

Q(0)
α = Paxαg(r̃, x3)Pa (113)

and

Q̃(0)
α = Paεανxνg(r̃, x3)Pa (114)

correspondingly, were εαν is the antisymmetric unit tensor, α and ν take the values 1 or 2.
Like in Section 5, we can use the equivalence transformations from group SO(1,2) whose

generators are S03, S04 and S43 to simplify the integrals o motion. Let us discuss these possible
simplifications.

In accordance with (33)-(41) it is possible to specify five classes of vector integrals of motion,
whose coefficients are zero, first, second, third or four order polynomials in xa which are fixed
in the following equations (115), (116), (117), (118) and (119) correspondingly:

Q(1)
α = P3Pα +Q(0)

α + xαη̃1, µ
ab = µab

1 , (115)

Q(2)
α = {Pα, D}+Q(0)

α + xαη̃2, µ
ab = µab

2 ,

Q(3)
α = εαν{P3, Lν}+Q(0)

α + xαη̃3, µ
ab = µab

2 + µab
3 ,

(116)

Q(4)
α = {K3, Pα}+Q(0)

α + xαη̃4, µ
ab = µab

4 ,

Q(5)
α = εαν{D,Lν}+Q(0)

α + xαη̃5, µ
ab = µab

4 + µab
6 ,

(117)

Q(6)
α = {D,Kα}+Q(0)

α + xαη̃6, µ
ab = µab

7

Q(7)
α = εαν{K3, Lν}+Q(0)

α + xαη̃7, µ
ab = µab

7 + µab
8 ,

(118)

Q(8)
α = {K3, Kα}+Q(0)

α + xαη̃8, µ
ab = µab

9 (119)

where η̃n = η̃n(r̃, x3) are an unknown functions, µab
1 , .., µ

ab
8 are tensors (33)-(41) with the fol-

lowing nonzero coefficients:

λαn, λ
3α
m , α = 1, 2, n = 2, 4, 6, m = 1, 3, 7, 8, 9. (120)
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In accordance with (115)- (119), to generate vector integrals of motion we choose the special
Killing tensors whose nonzero parameters are fixed in (120). In addition, functions η and g in
(7) and (110) and functions N,K in (19) should be changed in the following manner:

η → xαη̃(r̃, x3), N → xαÑ(r̃, x3), K → xαK̃(r̃, x3). (121)

Let us note that operators Q(8), Q(7) and Q(6) are equivalent to Q(1), Q(3) and Q(2) respec-
tively up to transformation (24) and so it is sufficient to consider only the potential integrals of
motion represented in (115)-(117). The generic vector integral of motion is a linear combination
of operators (115)-(119). However, such linear combination can be a priori simplified.

Operators (115)-(119) have different invariance properties with respect to transformation
x3 → −x3. Half part of them including Q(1), Q(4), Q(5) and Q(8) change their signs together
with x3 while the remaining operators keep their form.

Let us start with operators Q(1), Q(4), Q(5), Q(8) and consider their linear combination:

Q = c1Q
(1) + c4Q

(4) + c5Q
(5) + c8Q

(8) +Q(0)
α + xαη̃. (122)

Let the coefficients c1 and c8 are nontrivial, then up to the dilatation transformation c1 =
±c8. Setting c8 = 2 we come to the following version of operator (122):

Q = {K3, Kα} ± 2P3Pα + c4{K3, Pα}+ c5εανDLν +Q(0)
α + xαη̃. (123)

If only one of the coefficients c1, c8 is trivial and c4 is nontrivial then up to transformation
(24) and dilatation we can reduce (122) to the following form:

Q = {(K3 ± P3), Pα}+ c5εανDLν +Q(0)
α + xαη̃, (124)

while the remaining inequivalent versions of operator (122) are

Q = P3Pα + c5εανDLν +Q(0)
α + xαη̃ (125)

and

c4{K3, Pa}+ c5εανDLν +Q(0)
α + xαη̃ (126)

Analogous speculations with the linear combinations of operators Q2, Q3, Q6 and Q7 make
it possible to specify the following their inequivalent versions:

Q = c1{D, (Kα ± Pα)}+ c2εαν{Lν , (K3 ± P3)}+Q(0)
α + c3εαν{Lν , P3}+ xαη̃,

Q = c1{D,Pα}+ c2εαν{Lν , (K3 ± P3)}+Q(0)
α + xαη̃,

Q = c1{D, (Kα ± Pα)}+ c2εαν{Lν , P3}+Q(0)
α + xαη̃,

Q = c1{D,Pα}+ c2εαν{Lν , Pα}+Q(0)
α + xαη̃.

(127)

Concerning the linear combinations of operators (115) - (119) with different parities with

respect to the reflection of x3 we can note that such combinations of operator Q
(1)
α with Q

(2)
α

or Q
(3)
α are equivalent to Q

(2)
α or Q

(3)
α up to the shift transformations. The same is true for the

bilinear combinations of Q
(2)
α with Q

(5)
α and Q

(4)
α with Q

(7)
α : they can be reduced to Q

(5)
α and

Q
(7)
α respectively.
We will not discuss the remaining linear combinations since the computing experiments

show that they do not correspond to nontrivial integrals of motion.
Thus to classify the PDM systems with cylindric symmetry which admit vector integrals of

motion we are supposed to solve the determining equations (14), (16) which correspond to the
symmetries represented in equations (115) - (117) and (123) - (127).
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7.2 Selected calculations

The next step is to solve the the determining equations indicated in the above.
For the symmetry specified in (115) the determining equations (14) have especially simple

form. Namely, substituting the Killing tensor µ3α
1 for α = 1 into (14) we come to the following

system:

∂3M(r̃, x3) = ∂1(x1Ñ(r̃, x3)),

∂2Ñ(r̃, x3) = 0, ∂1M(r̃, x3) = ∂3(x1Ñ(r̃, x3))
(128)

which is easy solvable. Its generic solution is:

M = c1r
2 + c2x3 + c3, Ñ = −c1x3 − c2. (129)

In contrast with the case of scalar integrals of motion (refer to Table 1) the obtained solution
do not include arbitrary functions but only arbitrary parameters c1, c2 and c3. Moreover,
parameter c2 can be reduced to zero via the shift of x3 provided parameter c1 is nontrivial.
Thus taking into account that at least one of nonzero parameters in parameter in (129) can be
reduced to the unity by simultaneous scaling of all independent variables x1, x2 and x3, without
loss of generality we can rewrite the latter equation in the following form:

M = cos(λ)r2 + sin(λ)x3 + c3, Ñ = − cos(λ)x3 − sin(λ) (130)

where parameter λ takes two values: λ = 0 or λ = π
2

The reason of the reduced freedom in the arbitrary elements M lies in the fact that the
considered systems by definition admit as minimum two integrals of motion which are the
components of the bivector (115). We have found the first component, i.e, choose α = 1 in
(115) and (121) but the second one can be obtained simple by the changes P1 → P2, x1 → x2.

Moreover, it happens that our system admits two more integrals of motion and is maximally
superintegrable. Its integrals of motion together with the admissible potential are represented
in Item 4 of Table 5.

Consider now integral of motion Q
(2)
a presented in (116) where Q

(0)
α = −PaxαPa and α = 1.

The related determining equations (14) have the following form:

2r̃∂4M(r̃2, x3) + x3∂3M(r̃2, x3) +M(r̃2, x3) +N(r̃2, x3) = 0,

2x3∂4M(r̃2, x3)− ∂3M(r̃2, x3) + ∂3N(r̃2, x3) = 0, ∂4N(r̃2, x3) = 0
(131)

and are easy solvable also. Their generic solution is:

M = c1 +
c2

x23
,+

c3

r̃
, N = −c1 +

c2

x23
. (132)

The corresponding inverse mass and potential are presented in Item 5 of Table 4 where one
more integral of motion is indicated also. Thus the considered system is superintegrable.

The next (and the last) example we consider is the system admitting the symmetry presented

in (126), i.e., c1Q
(4)
α + c2Q

(5)
α . Setting α = 1 we come to the following determining equations

(14):

(c2 − c1)(x4 − x23)∂3M + (2c1 − c2)∂4M + 2(2c1 − c2)x3M − 2x4∂4N −N = 0,
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2(c2 − 2c1)x3x4∂4M + ((c2− c1)x23 + c1x4)∂3M + 2(c2 − 2c1))x3∂3M +N = 0,

(c1 − c2)(x
2
3 − x4)−

1

2
∂3Nc2x3∂3M + c2M = 0.

Excluding N we come to the following compatibility conditions of the system presented above:

(c2 − 2c1)x3x4∂34M +
1

2
(c2 − c1)(x

2
3 + c1x4)∂34M +

3

2
(c2 − 2c1)∂4M +

1

4
(c2 + 2c1)∂3M = 0,

(c1 − c2)(x4 − x23)∂44M +
3

2

(

c2 −
2

3

)

x3∂34M +

(

5

2
c2 − 2c1

)

∂4M − 1

4
∂33M = 0.

This system has two special and one regular solutions. Namely, for c1 = 2c2 and c1 = c2 we
obtain:

M = c3r (133)

and

M =
c3x3

r2
+ F (r) (134)

respectively, where F (r) is an arbitrary function. If parameters c1 and c2 do not satisfy the
conditions presented above, the solution is

M =
c3

r
. (135)

The system with whose mass is given in (134) is maximally superintegrable, see Item 1 of
Table 5. The solutions (133) and (135) correspond to the rotationally invariant systems which
admit as minimum the three parametric Lie group. Such systems are completely classified in
paper [9] and we will not discuss them here.

Solving step by step the determining equations corresponding to the remaining symmetries
(117), (118), (119), (123) - (127) we find all inequivalent PDM systems with cylindric symmetry,
which admit vector integrals of motion. The obtained results are presented in Tables 2-5.

8 Tensor integrals of motion

The last class of symmetries which is supposed to be considered are the tensor integrals of
motion. The corresponding Killing tensors are given by equations (33), (35), (38), (40) and
(41) where where the indices a, b of the nonzero parameters λabk independently take the values
1 and 2. In other words, we have to consider exactly five linearly independent tensors and their
linear combinations. The corresponding integrals of motion include operators (110) and the
following bilinear combinations:

PαPν , {KαKν}, {PαKν} (136)

and

{Pα, Lν}, {KαLν} (137)
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were α and ν take the values 1 and 2.
Notice that operators (136) are true tensors while operators (137) change their signs under

the reflection and so are pseudo tensors. It means that we have to consider linear combinations
of symmetries (136) and (137) separately.

One more note is that the traceless symmetric tensor Qαν in two dimensions has exactly
two linearly independent components, i.e., Q12 and Q11 − Q22. We will work with the first
components, i.e., Q12 and will omit the top index 12.

8.1 True tensor integrals of motion

Up to equivalence transformation (22) we can specify the following inequivalent linear combi-
nations of true scalars (133) and the universal block (110):

Q1 = Q
(0)
1 + P1P2 + η1, (138)

Q2 = Q
(0)
2 {K1, K2} ± 2P1P2 + η2, (139)

Q3 = Q(0) + {P1, P2 ±K2}+ η3, (140)

Q4 = Q(0) + {P1 ±K1, P2 ±K2}+ η4. (141)

The determining equations (14) for symmetry (138) are simple and have the following form:

∂2M + ∂1N = 0, ∂1M + ∂2N = 0, ∂3N = 0. (142)

Taking into account that the generic form of functions M and N is given by the following
equation

M =M(r̃, x3), N = x1x2Ñ(r̃, x3)

the system (142) is easy integrated and solved by the following functions:

M = c1r
2 + F (x3), N = c1x1x2.

The corresponding PDM system appears to be superintegrable, see Item 2 of Table 4.
Let us consider one more integral of motion which is specified in (141). Denoting N =

x1x2Ñ(r̃2, x3) we come to the following corresponding equations (14):

∂4((x4 − x23 ± 1)2M) + x3(x4 − x23 ± 1)∂3M +
1

2
∂4(x4Ñ) = 0,

x3(x4 − x23 − 1)∂4M + ∂3(x
2
3M) +

1

8
∂3Ñ

which are perfectly solved by the following functions:

M =
(r2 ± 1)F

(

r2∓1
x3

)

− c1r
2

(r4 − 1)2
, Ñ =

c1x1x2

(r2 ± 1)2
.

The obtained results are represented in Item 6 of Table 2.
We will not discuss the determining equations for symmetries (139) and (140) but mention

that both of them can be solved exactly also. However, for symmetry (139) the related solutions
are functions of x3 only, but for symmetry (140) we obtain the mass function which depends
only on r. Such systems are out of the scop of the present paper since they were discussed in
papers [35] and [39].
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Table 2. Inverse masses, potentials, vector and tensor integrals of motion for integrable PDM
systems

No f V Integrals of motion

1
x2
3

c1+c2(r2±1)F
1
2
± +c3x

2
3
(r2∓1)−2

c4+c5(r2±1)F
1
2
± +c6x

2
3(r

2∓1)−2

c1+c2(r2±1)F
1
2
± +c3x

2
3
(r2∓1)−2

{(K3 ± P3), Lα}+ 3εανxν
+2εανxν(c4(r2±1)+c5(r2∓1)2)

x2
3

−
(

2εανxν(c1(r2±1)+c2(r2∓1)2)

x2
3

·H
)

2
x2
3
F̃±

c2(r2∓1)+F̃±(c3x2
3
(r2±1)−2+c1)

c5(r2∓1)+F̃±(c6x2
3
(r2±1)−2+c4)

c2(r2∓1)+F̃±(c3x2
3
(r2±1)−2+c1)

{(Kα ± Pα), D} − 15xα
∓εαν{L3, (Kν ∓ Pν)} ± 3xα

−2xα

(

c5
r2∓1

(r2±1)2
∓ 2c6

F̃±

)

+2
(

xα

(

c2
r2∓1

(r2±1)2
∓ 2c3

F̃±

)

·H
)

3
x6
3

c1(x2
3
+4r̃2)+c2x

4
3
+c3x

6
3

(c4x2
3
+4r̃2)+c5x

4
3
+c6x

6
3

c1(x2
3
+4r̃2)+c2x

4
3
+c3x

6
3

{Pα, D}+ εαν{L3, Pν}
+2
(

xα(c1−c3x
4
3
)

x4
3

·H
)

−2
xα(c4−c6x

4
3
)

x4
3

4
r(r2±1)2x2

3

c1r(r2±1)2+c2rx
2
3
+c3(r2∓1)x2

3

c4r(r2±1)2+c5rx
2
3
+c6(r2∓1)x2

3

c1r(r2±1)2+c2rx
2
3
+c3(r2∓1)x2

3

{D, (Kα ± Pα)} − 2xαc5(r2∓1)
(r2±1)2

−xαc6((r2∓1)∓4r2)
r(r2±1)2

− 15xα

+
(

2xαc2((r2∓1)
(r2±1)2

·H
)

+
(

xαc3((r2∓1)2+4r2)
r(r2±1)2

·H
)

5
x2
3

x2
3
F (r)+c1

x2
3
G(r)+c2

x2
3
F (r)+c1

{L1, L2}+
(

c1x1x2

x2
3

·H
)

− c2x1x2

x2
3

,

L2
1 − L2

2 +
(

c1(x2
1−x2

2)

2x2
3

· h
)

− c2(x2
1−x2

2)

2x2
3

6 (r4−1)2

(r2±1)2F
(

r
2∓1

x3

)

−c1r2

(r2±1)2G
(

r
2∓1

x3

)

+c2r
2

(r2±1)2F
(

r
2∓1

x3

)

−c1r2

(K1 ± P1)
2 − (K2 ± P2)

2

+15(x21 − x22)

+c1

(

x2
1
−x2

2

(r2±1)2
·H
)

+ c2
x2
1
−x2

2

(r2±1)2
,

{(K1 ± P1), (K2 ± P2)}
+c2

x1x2

(r2±1)2
+ 15x1x2

7
(r2±1)2F 2

±

c1G±+2c2x2
3
(r2±1)+c3F

2
±

c4G
±+2c5x2

3(r
2±1)+2c6F 2

±

c1G±+2c2x2
3
(r2±1)+c3F

2
±

{(K1 ± P1), L1}
−{(K2 ± P2), L2}

+2
(

x1x2(
c1x3(r2±1)

F 2
±

+ c2) ·H
)

−2x1x2(
c4x3(r2±1)

F 2
±

+ c5),

{(K1 ± P1), L2}
+{(K2 ± P2), L1}

+
(

(x21 − x22)(
c1x3(r2±1)

F 2
±

+ c2) ·H
)

−(x21 − x22)(
c4x3(r2±1)

F 2
±

+ c5)
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8.2 Pseudo tensor integrals of motion

Such integrals should include linear combinations of the terms presented in (137). Up to the
equivalence we can restrict ourselves to two types of such linear combinations:

Q6 = Q(0) + {P1, L2}+ {P2, L1}+ η6 (143)

and

Q7 = Q(0) + {(P1 ±K1), L2}+ {(P2 ±K2), L1}+ η7. (144)

Let us denote N = (x21 − x22)Ñ(r, x3) then symmetry (143) generates the following version
of the determining equations (14):

2(x21 − x22)∂4Ñ + 4x3∂4M − ∂3M + 2Ñ = 0,

2∂4M − ∂3N = 0.

which are solved by the following functions:

M = c1 + c2(r̃
2 + 4x23 + 2c3x3), Ñ = −2c2x3 − c3.

The corresponding PDM system appears to be maximally superintegrable, see Item 2 of Table
5.

The next (and the last in this section) symmetry which we consider is specified in (144).
The corresponding determining equations (14) are reduced to the following system:

x3(x4 − x23 − 1)∂4M +
1

4
(1 + 3x23 − x4)∂3M − 1

2
(x4Ñ) + x3M = 0,

(x4 + 3x23 + 1)∂3M − 4x3(x
2
3 + 1)∂4M + 4x3M − 2Ñ,

(x4 − 3x23 − 1)∂4M + 2∂3(x3M) +
1

2
Ñ = 0

which is solved by the following functions:

M = c1
(r̃2 − 2x23)(r

2 ± 1)2 + 4x23r̃
2

(r2 ± 1)2((r2 ± 1)2 ± 4x23)
+ 2c2

x23
(r2 ± 1)((r2 ± 1)2 ± 4x23)

+
c3

(r2 ± 1)2
,

Ñ = c1
x3

((r2 ± 1)2 ± 4x23)
+ c2.

The related PDM system is integrable, see Item 7 of Table 2.

9 Superintegrable systems

Thus we have specified all nonequivalent cylindrically invariant PDM systems which admit a
second order integral of motion. By definition such systems admit two integrals of motion
one of which is the generator of rotations around the third coordinate axis, and so they are
integrable. All the systems admitting two (but no more) integrals of motion are presented in
Tables 1 and 2.
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However, some of the found systems automatically admit more than two integrals of motion.
In addition, for some particular versions of the arbitrary elements, i.e., arbitrary functions and
integration constants we also can find additional integrals of motion. The related systems are
superintegrable or even maximally superintegrable.

The next (and final) step of our analysis is the specifications of just these systems. It can
be done in two ways.

The first way presupposes solving of the functional equations. Let you have two systems
any of which admit one second order integral of motion, and the related mass functions are
M (1) and M (2). Then we have to equate to zero their linear combination:

k1M
(1) + k2M

(2) = 0. (145)

and this condition generates a functional equation for the arbitrary elements present in M (1)

and M (2).
The second way is to solve the extended systems of the determining equations (14) cor-

responding to the inequivalent pairs of integrals of motion. In all cases when such extended
systems have nontrivial solutions we can obtain the mass functions of the related superinte-
grable systems.

The same speculations with the inequivalent triplets of integrals of motion and the related
mass functions make it possible to specify the inequivalent maximally superintegrable sytems.
We will not present the complete set of the corresponding calculations which do not include
new elements in comparison with the given above, but restrict ourselves to considering few
examples.

9.1 Superintegrable systems admitting scalar integrals of motion

The systems admitting scalar integrals of motion are defined up to arbitrary functions, and to
specify such of them which admit as minimum two such integrals it is preferable to use the
second approach, i.e. to search for such cases when arbitrary elements M and N satisfy more
than one system of the determining equations specified in (74), (76), (77), (80) and (81)-(88).

Let the PDM system includes arbitrary elements satisfying determining equations (81), see
Item 5 of Table 1. The corresponding position dependent mass include two arbitrary functions.
Let us search for such the arbitrary functions that the related PDM system admits one more
second order integral of motion. It is the case when functions M and N satisfies one more
system of the determining equations mentioned in the above.

Solving step by step all pairs of equations including (81) and one of of equations (74), (76),
(77), (80) and (82)-(88) we obtain the following results. Equation (81) is incompatible with
equations (76), i.e, the corresponding systems of equations have no solutions. The remaining
pairs of equations are consistent, but only three of them, namely, (81) and (82), (81) and (83),
(81) and (79) have good solutions, presented in Items 1, 3 and 3 of Table 3. Solutions for the
other pairs of equations are invariant with respect to two parametric Lie groups and so can be
ignored as being classified in our previous papers.

Considering the doublets of equations which include (82) we recognize two more inequivalent
systems with good solutions. Those are the doublets including systems (84) or (88). One of the
mentioned solutions is represented in Item 4 of Table 3. The other solutions are too cumbersome
to be placed in the table, and we fix them in equations (147).
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Table 3. Inverse masses, potentials and scalar integrals of motion for superintegrable systems

No f V Integrals of motion

1 r̃2

r̃2(c1+2c2x3+c3(r̃2+4x2
3
))+c4

r̃2(c5+2c6x3+c7(r̃2+4x2
3
))+c8

r̃2(c1+2c2x3+c3(r̃2+4x2
3
))+c4

P 2
3 + 2c6x3 + 4c7x

2
3 + c4

x3

r̃2

− ((2c2x3 + 4c3x
2
3) ·H) ,

{P3, D} − Pnx3Pn

+ ((−c1x3 − c2(2x
2
3 + r̃2)

−c3x3(4x23 + 3r̃2)) ·H)
+c5x3 + c6(2x

2
3 + r̃2)

−c8 x3

r̃2
+ c7x3(4x

2
3 + 3r̃2)

2 rr̃2

c1rr̃2+c2r+c3x3+c7r̃2
c4rr̃

2+c5r+c6x3+c8r̃
2

c1rr̃2+c2r+c3x3+c7r̃2

{P3, D} − Pnx3Pn

+c2
(

c2x3+c3r
r̃2

·H
)

− c5x3+c6r
r̃2

,

L2
1 + L2

2

−( r
2

r̃2
(c2 + c3

x3

r
) ·H)

+(c5 + c6
x3

r
) r

2

r̃2

3
r̃2x2

3

c1x
2
3
+c2r̃2+c3x

2
3
r̃2+c4r2r̃2x

2
3

c5x
2
3
+c6r̃

2+c7x
2
3
r̃2+c8r

2r̃2x2
3

c1x
2
3
+c2r̃2+c3x

2
3
r̃2+c4r2r̃2x

2
3

{P3, K3}+ 2c6r̃2

x2
3

− 2ωx23

+2
(

(c3x
2
3 − c2

r̃2

x2
3

) ·H
)

,

P 2
3 −

(

( c2
x2
3

+ c4x
2
3) ·H

)

+ c6
x2
3

+ c8x
2
3

4
r̃2x2

3

c1r̃2+x2
3
(c3−2c2 ln(r̃))

x2
3
(2c5 ln(r̃)+c6)+c4r̃

2

c1r̃2+x2
3
(c3−2c2 ln(r̃))

P 2
3 −

(

( c1
x2
3

·H
)

+ c4
x2
3

,

DL3 + c2(ϕ ·H)− c5ϕ

5
r̃2x2

3

√
F±

c1x
2
3

√
F±+c2r2

√
F±+c3r̃2(r2±1)

c4x
2
3

√
F±+c5r

2
√

F±+c6r̃
2(r2±1)

c1x
2
3

√
F±+c2r2

√
F±+c3r̃2(r2±1)

(K3 ± P3)
2 + F±(c5+c6(r2±1))

x2
3

−
(

F±(c2+c3(r2±1))
x2
3

·H
)

− η̂,

{P3, (K3 ± P3)}+ c5
(r̃2±1)

x2
3

+c6
x2
3(r̃

2∓1)+(r̃2±1)2

x2
3

√
F±

−
(

c2
(r̃2±1)

x2
3

·H
)

′ −
(

c3
x2
3(r̃

2∓1)+(r̃2±1)2

x2
3

√
F±

·H
)

6
r̃2x2

3

√
F±

c1x
2
3

√
F±+c3r2

√
F±+c3(r2±1)r̃2

c4x
2
3

√
F±+c5r

2
√

F±+c6(r2±1)r̃2

c1x
2
3

√
F±+c2r2

√
F±+c3(r2±1)r̃2

K2
3 − P 2

3 − η̂ + c5(r4−1)

x2
3

+ c6(r2∓1)(r4±1+2r̃2)

x2
3

√
F±

−
(

c2(r4−1)
x2
3

·H
)

−
(

c3(r2∓1)(r4±1+2r̃2)

x2
3

√
F±

·H
)

,

(K3 ± P3)
2 − η̂ + c5(r2±1)

x2
3

+
c6(r2±1)2

√
F±

x2
3

−
(

c2(r2±1)

x2
3

·H
)

−
(

c3(r2±1)2
√

F±

x2
3

·H
)
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We will not represent the following steps and the calculation details since any of the related
systems includes four or more equations for two unknowns depending on two variables which
make them rather simple solvable. The obtained results are represented in Table 3 and equations
(148)-(151). Let us however represent the examples of solutions which are missing in the table
and mentioned formulae.

An example of solutions which are not ”good” since the related PDM system is invariant
with respect to two parametric group is:

M =
c1

r̃2
+
c2x3

rr̃2
. (146)

Function (146) solves the system of equations (82), (88). However, the related PDM Scrödinger
equation is invariant with respect to two parametric Lie group including rotations around the
third coordinate axis and dilatations. Such systems were discussed in [39].

One more nice solution looks as:

M =
c1

x23
+

1

r̃2

(

c2 + c3 ln

(

r̃

r2

))

.

The corresponding integrals of motion are Q̂4 (54) and K2
3 + Paq(r̃, x3)Pa + η. We will not

represent the explicit form of the related functions q(r̃, x3), η and q4(r̃, x3), η̃4 in (54) since
the latter integral of motion can be reduced to Q1 via transformation (22). Notice that this
transformation keeps operator Q̂4 invariant.

f =
F̃ 2
±(r

2 ∓ 1)2r̃2

c1(r2 ∓ 1)2F̃ 2
± + c2x3r̃2(r4 ± 1)(r2 ∓ 1) + c3Φ± + c4Λ±

,

V =
c5(r

2 ∓ 1)F̃ 2
± + c6x3r̃

2(r4 ± 1)(r2 ∓ 1) + c7Φ± + c8Λ±

c1(r2 ∓ 1)F̃ 2
± + c2x3r̃2(r4 ± 1)(r2 ∓ 1) + c3Φ± + c4Λ±

,

Φ± = (r2 ± 1)2((r2 ∓ 1)2 ± r) + 4x3(4r
2 − r̃2),

Λ± = (r̃2 + 4x23)(r
2 ± 1)2 − 4x23r̃

2,

(K3 ± P3)
2 − η̂ − 1

F̃ 2
±

(c6x3(r
2 ± 1)F− + 4(c8 − 3c7)x

2
3(r

2 ± 1)2)

+

(

1

F̃ 2
±

(c2x3(r
2 ± 1)F± + 4(c4 − 3c3)x

2
3(r

2 ± 1)2 ·H
)

,

{D, (K3 ∓ P3)} − 15x3 −
c6F±

8F̃ 2
±

+

(

−c2F±

8F̃ 2
±

·H
)

− c7x3(r
2 ∓ 1)4 + (c8 − 2c7x3)((r

2 ± 1)2 + 2r̃2)(2r2 − r̃2)(r2 ± 1)

F̃ 2
±(r

2 ∓ 1)2

+

(

c3x3(r
2 ∓ 1)4 + (c4 − 2c3x3)((r

2 ± 1)2 + 2r̃2)(2r2 − r̃2)(r2 ± 1)

F̃ 2
±(r

2 ∓ 1)2
·H
)

;

(147)

29



f =
(r4 ± 1)2x23r̃

2

x23(c1(r
4 ∓ 1)2r̃2 + c3r̃2(r4 ± 1) + c4r2r̃2) + c2(r4 ± 1∓ 2r2r̃2)r̃2

,

V =
x23(c5(r

4 ∓ 1)2r̃2 + c7r̃
2(r4 ± 1) + c8r

2r̃2) + c6(r
4 ± 1∓ 2r2r̃2)r̃2

x23(c1(r
4 ∓ 1)2r̃2 + c3r̃2(r4 ± 1) + c4r2r̃2) + c2(r4 ± 1∓ 2r2r̃2)r̃2

,

Q1 := K2
3 ± P 2

3 − η̂ − (1± r4)(c8x
4
3 + c6((r

4 ∓ 1)2 ± 4x43) + 2c7r
2x43)

x23(r
4 ∓ 1)2

+

(

(1± r4)(c4x
4
3 + c2((r

4 ∓ 1)2 ± 4x43) + 2c3r
2x43)

x23(r
4 ∓ 1)2

·H
)

,

(148)

Q2 = {K3, P3}+
c6(r̃

2(r4 ∓ 1)2 ± 2x43r
2)− c7(r

4 ± 1)x43 − 2c8r
2x43

2x23(r
4 ∓ 1)2

−
(

c2(r̃
2(r4 ∓ 1)2 − 2x43r

2)− c3(r
4 ± 1)x43 − 2c4r

2x43
2x23(r

4 ∓ 1)2
·H
)

;

f =
r̃2(r2 ± 1)2

√
F±√

F±(c1(r2 ± 1)2 + c2(r2 ± 1)2 − 2r̃2)) + c3(r4 − 1)(r2 ± 1) + c4x3r̃2
,

V =
c3F̃

2
± + c4x3r̃

2(r2 ∓ 1)

c1F̃
2
± + c2x3r̃2(r2 ∓ 1)

,

Q1 = (K3 ± P3)
2 − η̂ +

8c6x
2
3 + c8x3

√
F±

(r2 ± 1)2
−
(

8c2x
2
3 + c4x3

√
F±

(r2 ± 1)2
·H
)

,

Q2 = {D,K3 ± P3} − 15x3 − 4

((

c3x3√
F±

+
c1x3(r

2 ∓ 1)√
F±(r2 ± 1)2

)

·H
)

− 1

4

(

c4(r
2 ∓ 1)((r2 ± 1)2 ∓ 8x23)

(r2 ± 1)2
√
F±

·H
)

+ 4

(

c7x3√
F±

+
c5x3(r

2 ∓ 1)

(r2 ± 1)2

)

+
c8(r

2 ∓ 1)((r2 ± 1)2 ∓ 8x23)

4(r2 ± 1)2
√
F±

;

(149)

f =
r̃2
√
F±

c1
√
F± + c2(x3 − 1)

√
r2 ± 1 + 2x3 + c3(x3 + 1)

√
r2 ± 1− 2x3 + c4(r2 ∓ 1)

,

V =
c5
√
F± + c6(x3 − 1)

√
r2 ± 1 + 2x3 + c7(x3 + 1)

√
r2 ± 1− 2x3 + c8(r

2 ∓ 1)

c1
√
F± + c2(x3 − 1)

√
r2 ± 1 + 2x3 + c3(x3 + 1)

√
r2 ± 1− 2x3 + c4(r2 ∓ 1)

,

Q1 = {D,K3 ± P3} − 15x3 +
c6(r

2 ± 1)√
r2 ± 1− 2x3

+
c7(r

2 ± 1)√
r2 ± 1 + 2x3

+
4c8√
F±

−
((

c2(r
2 ± 1)√

r2 ± 1− 2x3
+

4c4
sqrtF±

)

·H
)

−
(

c3(r
2 ± 1)√

r2 ± 1 + 2x3
·H
)

,

Q2 = {P3, K3 ± P3}+
c6x3√

r2 ± 1− 2x3
+

c7x3√
r2 ± 1 + 2x3

+
c8(r

2 ± 1)√
F±

−
(

c3x3√
r2 ± 1 + 2x3

·H
)

−
((

c2x3√
r2 ± 1− 2x3

+
c4(r

2 ± 1)√
F±

)

·H
)

;

(150)
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f =
(r2 ± 1)2rr̃2

c1(r2 ± 1)2 + c2rr̃2 + c3x3(r2 ± 1)2 + c4r̃2(r2 ∓ 1)
,

V =
c5(r

2 ± 1)2 + c6rr̃
2 + c7x3(r

2 ± 1)2 + c8r̃
2(r2 ∓ 1)

c1(r2 ± 1)2 + c2rr̃2 + c3x3(r2 ± 1)2 + c4r̃2(r2 ∓ 1)
,

Q1 = {K3, P3}+
c7x3(r

2 ± 1)2 − x23(c6r + c8(r
2 ∓ 1))

r(r2 ± 1)2

−
(

c3x3(r
2 ± 1)2 − x23(c2r + c4(r

2 ∓ 1))

r(r2 ± 1)2
·H
)

,

Q2 = {D, (K3 ± P3)} − η̂ +
2c6x3(r

2 ∓ 1)

(r2 ± 1)2
+
c8(r

4 ∓ r2 + 1)− c7(r
4 − 1)(r2 ± 1)

r(r2 ± 1)2

−
(

2c2x3r(r
2 ∓ 1)− c3(r

4 − 1)(r2 ± 1) + c4(r
4 ∓ r2 + 1)

r(r2 ± 1)2
·H
)

.

(151)

f =
F̃ 2
±(r

2 ∓ 1)2r̃2

c1(r2 ∓ 1)2F̃ 2
± + c2x3r̃2(r4 ± 1)(r2 ∓ 1) + c3Φ± + c4Λ±

,

V =
c5(r

2 ∓ 1)F̃ 2
± + c6x3r̃

2(r4 ± 1)(r2 ∓ 1) + c7Φ± + c8Λ±

c1(r2 ∓ 1)F̃ 2
± + c2x3r̃2(r4 ± 1)(r2 ∓ 1) + c3Φ± + c4Λ±

,

Φ± = (r2 ± 1)2((r2 ∓ 1)2 ± r) + 4x3(4r
2 − r̃2),

Λ± = (r̃2 + 4x23)(r
2 ± 1)2 − 4x23r̃

2,

Q1 = (K3 ± P3)
2 − η̂ − 1

F̃ 2
±

(c6x3(r
2 ± 1)F− + 4(c8 − 3c7)x

2
3(r

2 ± 1)2)

+

(

1

F̃ 2
±

(c2x3(r
2 ± 1)F± + 4(c4 − 3c3)x

2
3(r

2 ± 1)2 ·H
)

,

Q2 = {D, (K3 ∓ P3)} − 15x3 −
c6F±

8F̃ 2
±

+

(

−c2F±

8F̃ 2
±

·H
)

− c7x3(r
2 ∓ 1)4 + (c8 − 2c7x3)((r

2 ± 1)2 + 2r̃2)(2r2 − r̃2)(r2 ± 1)

F̃ 2
±(r

2 ∓ 1)2

+

(

c3x3(r
2 ∓ 1)4 + (c4 − 2c3x3)((r

2 ± 1)2 + 2r̃2)(2r2 − r̃2)(r2 ± 1)

F̃ 2
±(r

2 ∓ 1)2
·H
)

.

(152)

Summarizing, we find all inequivalent superintegrable PDM systems admitting scalar inte-
grals of motion. The number of such systems appears to be rather extended, see Table 3 and
the following formulae (147)-(151). The latter formulae collect such expressions which are too
cumbersome to be placed in a table.

9.2 Superintegrable systems with combined symmetries

The next class of superintegrable PDM systems which we consider are those ones which ad-
mit both the scalar and vector or tensor integrals of motion. Since the systems admitting the
non-scalar integral of motion up to the only exception has a rather simple shape defined up to
arbitrary parameters, it is relatively easy to solve the functional equations (145) (where M (1)

and and M (2) are position dependent masses of the systems with different types of symme-
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tries) in order to select the cases when there exist additional integrals of motion and so the
related systems are superintegrable. To verify the completeness of the obtained in this way
list of superintegrable systems it is reasonable to verify the consistence of the systems of the
determining equations corresponding to the combinations of symmetries missing in this list.

Table 4. Inverse masses, potentials and combined integrals of motion for superintegrable
systems

No f V Integrals of motion

1
r̃x2

3

r̃F
(

r
2±1

x3

)

+c1x
2
3
(r2∓1)F±

r̃G
(

r
2±1

x3

)

+c2x
2
3
(r2∓1)F±

r̃F
(

r
2±1

x3

)

+c1x
2
3
(r2∓1)F±

{L3, (Kα ± Pα)}+ 3εανxν
+2c1

(

εανxν

r̃
·H
)

− 2c2
εανxν

r̃
,

(K3 ± p3)
2 +

G
(

r
2±1

x3

)

F±

x2
3

−
(

F
(

r
2±1

x3

)

F±

x2
3

·H
)

2
(r4−1)2x2

3

(r2±1)2(c1(r2∓1)2+c2x
2
3
)−c3x

2
3
r2

(r2±1)2(c4(r2∓1)2+c5x
2
3)−c6x

2
3r

2

(r2±1)2(c1(r2∓1)2+c2x
2
3
)−c1x

2
3
r2

(K1 ± P1)
2 − (K2 ± P2)

2

+15(x21 − x22)

+c1

(

x2
1−x2

2

(r2±1)2
·H
)

+ c2
x2
1−x2

2

(r2±1)2
,

{(K1 ± P1), (K2 ± P2)}+ 15x1x2

+c1

(

x1x2

(r2±1)2
·H
)

+ c2
2x1x2

(r2±1)2
,

{L1, L2} − c4x1x2

x2
3

+
(

c1x1x2

x2
3

·H
)

,

L2
1 − L2

2 −
c4(x2

1−x2
2)

2x2
3

+
(

c1(x2
1
−x2

2
)

2x2
3

·H
)

3 1
c1r̃2+F (x3)

c2r̃
2+G(x3)

c1r̃2+F (x3)

P1P2 − (c1x1x2 ·H) + c2x1x2,

P 2
3 − (F (x3) ·H) +G(x3),
P 2
1 − P 2

2 + c2(x
2
1 − x22)−

(c1(x
2
1 − x22) ·H)

4
x2
3

x2
3
(c1r2+c2)+c1

x2
3
(c3r2+c2)+c4

x2
3
(c1r2+c2)+c1

L2
1 − L2

2 −
c4(x2

1−x2
2)

2x2
3

+
(

c1(x2
1−x2

2)

2x2
3

·H
)

,

{L1, L2} − c4x1x2

x2
3

+
(

c1x1x2

x2
3

·H
)

P 2
3 + c3x

2
3 +

c4
x2
3

−
(

(c1x
2
3 +

c2
x2
3

) ·H
)

5 r̃
F (x3)r̃+c1

G(x3)r̃+c2
F (x3)r̃+c1

{L3, Pα} − c2
εανxν

r̃
+ c1εαν

(

xν

r̃
·H
)

P 2
3 − (F (x3) ·H) +G(x3)

6
x2
3
r

(c1x2
3
+c3)r+2c2x2

3

(c5x2
3
+c4)r+c6x

2
3

(c1x2
3
+c3)r+2c2x2

3

{Pα, D} − 2
(

xα(c1 +
c2
r
) ·H

)

+2xα(2c5 +
c6
r
),

P 2
3 −

(

c2
3

x2
3

·H
)

+ c4
x2
3

7 ((r2 ± 1)2 ∓ 4x23)
1

2 c1
{(K3 ± P3, Pα}+ Pnx3xαPn,

{P3, (K3 ± P3)}+ Pax
2
3Pa

In this way we find the superintegrable systems presented in Table 4 which collects the
systems admitting integrals of motion which transform in different way under rotation trans-
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formations. More exactly, there are such systems which admit both scalar and vector or tensor
integrals of motion. However, the system represented in Item 2 admits only tensorial integrals
of motion.

The final step is to classify the maximally superintegrable system. It can be done in the
same way as in the superintegrable case. The classification results are presented in Table 5
which includes two parts.

Table 5. Inverse masses, potentials and integrals of motion for maximally superintegrable
systems

No f V Integrals of motion

1 r2r̃
r̃F (r)+c1x3

r̃(G(r)+c2x3)
r̃F (r)+c1x3

{L3, Lα} − 2
(

c1xα

r̃
·H
)

+ 2c2xα

r̃
,

L2
1 + L2

2 − c1(
x3

r̃
·H) + c2x3

r̃
,

{K3, Pα}+ 2εανDLν

+
(

xα

r2
(x3F (r)− c1r̃) ·H

)

−xα

r2
(G(r)− c2r̃) + Pax3xαPa

2 1
c1+2c2x3+c3(r̃2+4x2

3
)

c4+2c5x3+c6(r̃2+4x2
3)

c1+2c2x3+c3(r̃2+4x2
3
)

P 2
3 + 2c5x3 + 4c6x

2
3

− ((2c2x3 + 4c3x
2
3) ·H) ,

{P3, D} − Pnx3Pn + c4x3 + c5(2x
2
3 + r̃2)

+c6x3(4x
2
3 + 3r̃2)− ((c1x3 + c2(2x

2
3 + r̃2)

+c3x3(4x
2
3 + 3r̃2)) ·H) ,

P1L1 − P2L2

−(x1x2(2c3x3 + c2) ·H) + x1x2(2c6x3 + c5),
{P1, L2}+ {P2, L1}

−((x21 − x22)(2c3x3 + c2) ·H)
+(x21 − x22)(2c6x3 + c5)

3 r̃2

c1+c2x3r̃
c3+c4x3r̃
c1+c2x3r̃

{L3, Pα}+ c1εαν
(

xν

r̃
·H
)

− c3
x2

r̃
,

P 2
3 − (c2x3 ·H) + c4x3,

{P3, D}+
((

c1
x2
3

− c2(x
2
3 +

r̃2

2

)

·H
)

− c3
x2
3

− c4(x
2
3 +

r̃2

2
)

4 1
c1r2+2c2x3+c3

c4r
2+2c5x3+c6

c1r2+2c2x3+c3

P3Pα − (xα(c1x3 + c2) ·H)
+xα(c4x3 + c5),

P 2
3 − ((c1x

2
3 + 2c2x3) ·H)

+c4x
2
3 + 2c5x3,

P1P2 − c1(x1x2 ·H) + c4x1x2,

(P 2
1 − P 2

2 ) + c4(x
2
1 − x22)

−c1((x21 − x22) ·H)

5
x2
3

c1x
2
3
r2+c2

c3x
2
3r

2+c4

c1x
2
3
r2+c2

P1P2 − c1(x1x2 ·H) + c3x1x2,

P 2
1 − P 2

2 + c3(x
2
1 − x22)− c1((x

2
1 − x22) ·H),

{L1, L2}+
(

2c2x1x2

x2
3

·H
)

− 2c4x1x2

x2
3

,

L2
1 − L2

2 +
(

c2(x2
1
−x2

2
)

x2
3

·H
)

− c4(x2
1
−x2

2
)

x2
3

,

P 2
3 −

(

(c1x
2
3 +

c2
x2
3

) ·H
)

+ c3x
2
3 +

c4
x2
3
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Table 5 (continued). Inverse masses, potentials and integrals of motion for maximally
superintegrable systems

No f V Integrals of motion

6
r̃2
√

F±

c1
√

F±+c2(r2∓1)

c3
√

F±+c4(r2∓1)

c1
√

F±+c2(r2∓1)

K2
3 − P 2

3 − η̂ − 2c4(r2∓1)√
F±

+

(

2c2(r2∓1)√
F±

·H
)

,

{D, (K3 ± P3)} − 15x3 ∓ 4c4x3√
F±

±
(

4c2x3√
F±

·H
)

,

(K3 ± P3)
2 − η̂

7 r2r̃2

c1r2+c2r4r̃2+c3r2r̃2
c4r

2+c5r
4r̃2+c6r

2r̃2

c1r2+c2r4r̃2+c3r2r̃2

{P3, K3} − 2Pax3Pa

+
(

(
c2x

2
3

r̃2
− c3x

2
3) ·H

)

− c5x
2
3

r̃2
+ c6x

2
3,

L2
1 + L2

2 − (c1
r2

r̃2
·H) + c4

r2

r̃2
,

P 2
3 − (c2x

2
3 ·H) + c5x

2
3

8 1
c2(r̃2+4x2

3
)+2c3x3+c1

c6x3+c5(r̃2+4x2
3)+c4

c2(r̃2+4x2
3
)+2c3x3+c1

P1L1 − P2L2 + x1x2(2c5x3 + c6)
−(x1x2(2c2x3 + c3) ·H),

{P1, L2}+ {P2, L1}+ (x21 − x22)(2c5x3 + c6)
−((x21 − x22)(2c2x3 + c3) ·H)
P 2
3 − 2 ((2c2x

2
3 + c3x3) ·H)

+4c5x
2
3 + c6x3,

P1P2 − c2(x1x2 ·H) + c5x1x2,

P 2
1 − P 2

2 − c1((x
2
1 − x22) ·H) + c4(x

2
1 − x22)

9
x2
3

c1x
2
3
(x2

3
+4r̃2)+c2+c3x

2
3

c4+c5x
2
3(x

2
3+4r̃2)+c6x

2
3

c1x
2
3
(x2

3
+4r̃2)+c2+c3x

2
3

{P3, Lα}+ 2
εανxν(c4−c5x

4
3)

x2
3

+ 2
(

εανxν(c1x4
3−c2)

x2
3

·H
)

,

P 2
3 −

(

( c1
x2
3

+ c2
x2
3

) ·H
)

+ c4
x2
3

+ c5
x2
3

,

P1P2 − c1(x1x2 ·H) + c4x1x2,

P 2
1 − P 2

2 − c1((x
2
1 − x22) ·H) + c4(x

2
1 − x22)

10
x2
3
(r2±1)

c1(r2±1)+c2x
2
3

c3(r2±1)+c4x
2
3

c1(r2±1)+c2x
2
3

{D, (Kα ± Pα)} − 15xα − 2xαc4(r2∓1)
(r2±1)2

+
(

2xαc1((r2∓1)
(r2±1)2

·H
)

,

{(K3 ± P3), Lα}+ 3εανxν − 2c4εανxν(r2±1)
x2
3

+2c1

(

εανxν(r2±1)
x2
3

·H
)

,

{L1, L2}+
(

2c1x1x2

x2
3

·H
)

− 2c3x1x2

x2
3

,

L2
1 − L2

2 +
(

2c1(x2
1
−x2

2
)

x2
3

·H
)

− 2c3(x2
1
−x2

2
)

x2
3

At this point the classification of cylindrically invariant PDM system admitting second order
integrals of motion has been completed.
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10 Discussion

In contrast with the cases of the standard Schrödinger equations and 2D Schrödinger equations
with position dependent mass we still do not have the completed description of second order
integrals of motion for 3D PDM Schrödinger equations. However, some steps to such descrip-
tion have been already made: the maximally superintegrable sytems and separable systems
have been already classified [25, 26], there are successes in the classification of nondegener-
ate and semidegenerate systems [28, 30]. Moreover, the systems invariant w.r.t. three- and
two-parametric Lie groups are classified completely [35, 39].

In the present paper we make the next stem to the complete classification of the mentioned
integrals of motion. Namely, we present all inequivalent quantum mechanical PDM systems
which, in addition to the second order integrals of motion, admit the fixed one parameter Lie
symmetry group.

As it was shown in [17] there are six inequivalent one parametric Lie groups which can be
possessed by the PDM systems. We start with one of them, namely, with the group of rotations
around the fixed axis. In other words, we deal with the cylindrically symmetric PDM systems
and classify such of them which admit at least one second order integral of motion.

Let us mention that the PDM systems with cylindric symmetry possess a rather extended
collection of the mentioned integrals. Namely, we have fixed as much as 66 inequivalent systems
and presented their integrals of motion. In particular we specify 18 superintrgrable and 10
maximally superintgrable systems. They are collected in five tables. In addition, the most
cumbersome of them are presented separately in formulae (147)-(151). Notice that any item
including the terms ”±” in fact represents two systems one of which corresponds to the sign
”+” and the other to the sign”−”.

To optimize calculations we separate the integrals of motion to three qualitatively different
subclasses in accordance with their transformation properties with respect to the rotations
which by definition leaves the PDM Hamiltonians invariant. The mentioned subclasses include
the scalar, vector and tensor versions of the integrals. Moreover, the scalar and tensor integrals
of motion can be effective separated in accordance with their parity properties.

The systems admitting one scalar integral of motion are defined up to arbitrary functions
which depend on specific variables. Such (integrable) systems are presented in Table 1.

The majority of systems admitting vector or tensor integrals of motion are defined more
strictly and includes only arbitrary parameters. The reason of it is that for these subclasses the
related PDM system is supposed to admit as minimum two linearly independent integrals of
motion. The same is true for the case of superintegrable systems admitting integrals of motion
of arbitrary type.

Thus we have made an essential step to the complete classification of the 3D PDM systems
admitting second order integrals of motion. In spite of that we consider only one out of six
inequivalent one parametric Lie groups which can be accepted by such systems, this step is very
important since the number of found systems is very large, maybe more large then the total
number of all systems admitting the other inequivalent Lie symmetries. The latter statement
is supported by our computing experiments.

We believe that the presented classification is complete. However, the determining equa-
tions which we solve to find the inequivalent systems and their integrals of motion are rather
complicated systems of partial differential equations with variable coefficients, and there is a
danger to overlook some special solutions additional to the found generic ones. That is why we
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present the mentioned determining equations explicitly. And the absolutely rigorous statement
(which, however, is tot constructive) is that the discussed systems should include the arbitrary
elements which are functions solving these equations.

The next planned steps to the complete classification of the integrals of motion admitted by
the 3D PDM systems presuppose the classifications of the systems which possess symmetries
with respect to the remaining inequivalent one parametric Lie groups for such systems specified
in [17]. Finally, we plane to classify such integrals of motion for the systems which have no Lie
symmetry. The latter problem appears not to be catastrophically complicated thanks to the
existence of rather strong equivalence group.

Acknowledgement. I am indebted with Universitá del Piemonte Orientale and and Di-
partimento di Scienze e Innovazione Tecnologica for the extended stay as Visiting Professor.
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