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5Centre de Recerca Matemàtica, Campus de Bellaterra, Edifici C, 08193

Barcelona, Spain

March 5, 2024

Abstract

Space debris mitigation guidelines represent the most effective method to pre-
serve the circumterrestrial environment. Among them, end-of-life disposal solutions
play a key role. In this regard, effective strategies should be conceived not only on
the basis of novel technologies, but also following an advanced theoretical under-
standing. A growing effort is devoted to exploit natural perturbations to lead the
satellites towards an atmospheric reentry, reducing the disposal cost, also if depart-
ing from high-altitude regions. In the case of the Medium Earth Orbit region, home
of the navigation satellites (like GPS and Galileo), the main driver is the gravita-
tional perturbation due to the Moon, that can increase the eccentricity in the long
term. In this way, the pericenter altitude can get into the atmospheric drag domain
and the satellite can eventually reenter.

In this work, we show how an Arnold diffusion mechanism can trigger the eccen-
tricity growth. Focusing on the case of Galileo, we consider a hierarchy of Hamilto-
nian models, assuming that the main perturbations on the motion of the spacecraft
are the oblateness of the Earth and the gravitational attraction of the Moon. First,
the Moon is assumed to lay on the ecliptic plane and periodic orbits and associated
stable and unstable invariant manifolds are computed for various energy levels, in
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the neighborhood of a given resonance. Along each invariant manifold, the eccen-
tricity increases naturally, achieving its maximum at the first intersection between
them. This growth is, however, not sufficient to achieve reentry. By moving to a
more realistic model, where the inclination of the Moon is taken into account, the
problem becomes non-autonomous and the satellite is able to move along different
energy levels. Under the ansatz of transversality of the stable and unstable man-
ifolds in the autonomous case, checked numerically, Poincaré-Melnikov techniques
are applied to show how the Arnold diffusion can be attained, by constructing a
sequence of homoclinic orbits that connect invariant tori at different energy levels
on the normally hyperbolic invariant manifold.
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1 Introduction

One of the key actions to mitigate the space debris problem and ensure a sustainable
exploitation of the circumterrestrial environment is to implement effectively end-of-life
procedures. While for the Low Earth Orbit and the Geosynchronous protected regions,
there exist well-defined guidelines [35], for the Medium Earth Orbit (MEO) region still
a discussion is ongoing. This is due to the fact that the MEO region is very broad (in
principle, it goes from an altitude of 2000 km up to the geostationary altitude) and not
yet critical in terms of population density.

The MEO region is mostly known because it is where the satellites of the Global Nav-
igation Satellite Systems (GNSS) orbit, namely, GPS, Galileo, GLONASS and Beidou-M
[3]. They cover a range of semi-major axis between about 25500 km (GLONASS) and
29600 km (Galileo) and their nominal inclination is 550˘20 (GPS and Beidou-M), 560˘20

(Galileo), 650 ˘ 20 (GLONASS) (see, e.g., [50, 2] and references herein). In the recent
ESA’s zero debris policy [20], the GNSS orbits are defined as “valuable orbits” and the
possibility of extending the protection to this region is introduced. Given the high al-
titude, so far at the end of life the GNSS satellites were either left in the operational
orbit or re-orbited by a given amount [3]. The accumulation of non-operational satel-
lites in a limited region eventually will lead to a critical situation in terms of potential
collisions and thus fragmentation. For this reason, Jenkin and Gick [36] proposed to
dilute the collision probability by increasing the orbital eccentricity of the satellites at
the end of life. Indeed, the GNSS inclination and altitude are such that in the long term
the third-body perturbation, that is, the gravitational perturbation exerted by Sun and
Moon, could lead to a natural eccentricity growth up to reentry, if a suitable initial or-
bital orientation is chosen. This mechanism was proven numerically by several authors
(see, e.g., [50, 48, 2, 4, 32, 44, 45]), but an exhaustive theoretical explanation of the
underlying mechanism is still missing. In particular, the singular resonance hypothesis,
that is, an integrable model, cannot explain the maximum value of eccentricity that can
be observed by considering a full dynamical model, nor the Saros periodicity detected.

More precisely, following [39] the disturbing function corresponding to the gravita-
tional perturbation due to a third body can be written as a series expansion depending
on semi-major axis, eccentricity, inclination of both the satellite and the third body, and
a periodic term involving the longitude of the ascending node, the argument of perigee
and the mean anomaly of both the satellite and the third body. By doubly-averaging
the periodic terms (over the orbital period of the satellite and the orbital period of the
Moon), and considering only the first-order effect, we define the secular Hamiltonian.1

A possible way to deal with the secular Hamiltonian is to assume that only one
periodic term is dominant at a time, in particular, when its argument is resonant. Most
of the past works2 focus on such “isolated resonance hypothesis” and on the eccentricity

1In what follows, this step will be omitted because it can be found in several past works (see references
above).

2It is beyond the scope of this work to provide a review of all the past investigations on the subject.
Here, we recall only the works that are relevant to our contribution.
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growth associated with an inclination-dependent resonance, involving the argument of
the pericenter ω and the longitude of the ascending node of the satellite Ω. For quasi-
circular orbits at MEO altitudes, and assuming the Galileo inclination (« 560), the
dominant resonance is 2 9ω ` 9Ω « 03. As a first approximation, ω and Ω change in time
because of the Earth’s oblateness, but the third body perturbation has also an effect.

The authors in [49, 12] assumed the isolated resonance hypothesis and brought for-
ward the concept that the eccentricity growth that ensures a reentry is due to a chaotic
behavior, that occurs when two or more resonances overlap. The Chirikov criterion is
mainly proven by detailed Fast Lyapunov Indicators (FLI) maps that show the location
of the chaotic regions. The phase space associated with each possible resonance of the
secular dynamics was investigated also in [42], but in this case, the authors remarked the
role of the Laplace plane. More recently, the authors in [31, 11, 41] proposed the idea
that the high eccentricity growth is due, not to the chaos generated by overlapping res-
onances, rather to the normally hyperbolic invariant manifold (NHIM) associated with
the given resonance and through an Arnold diffusion mechanism. They showed, with
refined FLI maps and an ad hoc Hamiltonian derived for circular orbits in the neighbor-
hood of the resonance, that what triggers the phenomenon is the variation of a given
integral of motion. They also emphasized the role of the Laplace plane for the motion on
the invariant tori. Some of the invariant objects “necessary” to achieve Arnold diffusion
were already identified in [11, 41]. These papers also showed, numerically, hyperbolicity
and unstable motions along the resonance.

The goal of the present paper is to explain the mechanism that creates the drift and
how to construct drifting orbits across the neighborhood of an isolated resonance. In
particular, we focus our study on the resonance 2ω`Ω with the Galileo satellites values.
Nonetheless, our approach is fairly general and can be adapted for other resonances and
values. In other words, we follow the idea that it is the NHIM the cause that we have to
investigate, and we will show how it is possible to construct homoclinic connections that
“connect” different energy levels on the NHIM associated with the 2ω ` Ω resonance.
Moreover, we will show how to construct orbits that shadow (follow closely) this sequence
of homoclinic orbits. These shadowing orbits achieve a drift in eccentricty large enough
so that the satellite renters the Earth’s atmosphere.

We will focus only on the third-body effect exerted by the Moon, thus neglecting the
Sun, and we will apply a perturbative approach with respect to the inclination of the
Moon on the ecliptic plane iM (which has a real value of iM “ 5.15˝). More details on
this will be given in the next subsection. Notice that the model we consider is a rather
simplified version of the initial problem. However, we expect that the outcome of this
work will pave the way for the analysis of a more realistic model, that can be used to
define effective end-of-life solutions.

The paper is structured as follows. In Section 2 we define the secular Hamiltonian
and provide formulas for it. Then, we state the main result of this paper. In Section 3
we introduce a “good” system of coordinates which captures the timescales of the model.
In Section 4, relying on what we call hierarchy of models, we explain how the Arnold

3For GLONASS the inclination is « 630 and thus the dominant resonance is 2 9ω.
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diffusion mechanism takes place in the secular Hamiltonian. Finally, we also provide
definitions for the main tools we use: a normally hyperbolic invariant manifold and the
associated scattering maps. In Section 5 we analyze the dynamics for the coplanar model
(that is, taking iM “ 0q. We use this analysis to describe, in Section 6, the dynamics for
the full secular Hamiltonian with iM ą 0 small enough.

1.1 An Arnold diffusion mechanism

V. Arnold in 1964 (see [5]) showed, in a cleverly chosen model, that actions can vary
drastically in nearly integrable Hamiltonian systems (of at least 2 and a half degrees
of freedom, that is a phase space of at least dimension 5). Then, he conjectured that
such behavior, nowadays called Arnold diffusion, should be typical. In (nearly integrable)
physical models, it is expected that Arnold diffusion is a fundamental mechanism leading
to transport in phase space. Such transport is achieved by drifting along resonances.

The understanding of Arnold diffusion mechanisms has had outstanding progress in
the last decades, relying on a wide variety of techniques: the original geometric approach
by Arnold, which has been deeply developed in [7, 13, 14, 15, 18, 26, 19, 27], variational
methods [9, 8], topological tools [29, 10], the so-called separatrix map [53, 54] or a
combination of different approaches [6, 37].

As stated before, the goal of this paper is to explain how an Arnold diffusion mech-
anism can enhance drift in eccentricity along the 2ω ` Ω resonance. The mechanism we
propose relies on geometric tools in the spirit of the seminal work by Arnold. They are
explained in detail in Section 4.2.

Let us mention here just the main ingredients. We show that, along the resonance,
there exists a normally hyperbolic invariant cylinder (see Definition 4.3 below). The
stable and unstable manifolds of this cylinder intersect transversally. Thus, we can con-
struct trajectories that, following closely a sequence of homoclinic orbits to the cylinder,
achieve a considerable drift in eccentricity. Such drift allows the satellite, by flattening
its osculating ellipse, to enter the Earth’s atmosphere.

To perform such analysis, we assume that the inclination of the Moon iM with respect
to the ecliptic plane is small enough. This allows us to use perturbative arguments to
construct the “highways” that lead to the drift. Note that it is fundamental that iM ą 0,
because in the coplanar case, namely, when iM “ 0, there are not enough dimensions to
achieve Arnold diffusion.

Even if our tools rely on the fact that iM ą 0 is small enough, we expect that the
same mechanism takes place for a realistic value of iM, because, indeed, it is expected
that transport phenomena are even stronger and more robust in far from integrable
Hamiltonians. Nevertheless, in that setting, one cannot combine analytical and numer-
ical techniques to describe the cylinder and its invariant manifolds, as we do in the
present paper. Instead, one has to describe them fully numerically. In this work, nu-
merical simulations are done for a lower dimensional model (what we call the coplanar
Hamiltonian) and can be kept “simple”. Otherwise, it would require to compute numer-
ically high dimensional objects in the 5-dimensional phase space. Moreover, when iM
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increases other resonances could come to play also an important role and an resonance
overlapping could take place.

Finally, note that, for applications, it is fundamental to know the speed of such
transport mechanisms. For arbitrarily small iM ą 0 the mechanism is rather slow (the
drifting time is T „ 1{iM). However, for a realistic value of iM it is expected to be faster.
Moreover, one may expect that combining Arnold diffusion mechanism with maneuvers
could speed up considerably the drifting.
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2 The secular Hamiltonian system and the main result

Let us consider a spacecraft that is affected by the gravitational attraction of the Earth,
the perturbation due to the Earth’s oblateness and the lunar gravitational perturbation.
In the geocentric equatorial reference system, the motion of the spacecraft takes place on
an ellipse, that is described by the orbital elements semi-major axis a, eccentricity e, in-
clination i, longitude of the ascending node Ω and argument of pericenter ω. The ellipse
changes in time due to the perturbations. The orbit of the Moon is defined in the geocen-
tric ecliptic reference system by the corresponding orbital elements paM, eM, iM,ΩM, ωMq,
where aM “ 384400 km, eM “ 0.0549006, iM “ 5.150, while the longitude of the ascend-
ing node of the Moon with respect to the ecliptic plane varies approximately linearly
with time in a period TΩM

of 1 Saros (about 6585.321347 days [51, 46]) due to the solar
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gravitational perturbation, namely,

ΩMptq “ ΩM,0 ` nΩM
t, nΩM

“ 2π{TΩM
, (2.1)

where ΩM,0 is the longitude of ascending node of the Moon at a given epoch.
Since we consider the secular model (the system averaged over the mean anomalies

of both the satellite and the moon), the semi-major axis a is a constant of motion which,
in the case of Galileo, corresponds to a “ 29600 km. Let us define

α “ a{aM,

which characterizes the Earth-satellite distance with respect to the Earth-Moon distance.
Then, in Delaunay action-angle variables4, the secular dynamics is described by the

Hamiltonian [12]

HpL,G,H, g, h,ΩM; iMq “ HKpLq ` H̃0pL,G,Hq ` α3H̃1pL,G,H, g, h,ΩM; iMq, (2.3)

where

HKpLq “ ´
1

2

µ2

L2

is the constant term associated with the Earth’s monopole, being µ “ 398600.44 km3{s2

the mass parameter of the Earth, and

H̃0pL,G,Hq “
1

4

ρ0
L3

G2 ´ 3H2

G5
(2.4)

is the perturbative term associated with the Earth’s oblateness, averaged over the orbital
period of the spacecraft, being ρ0 “ µ4J2R

2, with J2 “ 1.08 ˆ 10´3 the coefficient of
the second zonal harmonic in the geopotential and R “ 6378.14 km the mean equatorial
radius of the Earth. The secular perturbative term due to the Moon is instead

H̃1pL,G,H, g, h,ΩM; iMq

“ ´
ρ1
L2

2
ÿ

m“0

2
ÿ

p“0

D̃m,ppL,G,Hq

2
ÿ

s“0

cm,sF2,s,1piMq

ˆ

”

Um,´s
2 pϵq cos

´

ψ̃m,p,spg, h,ΩMq

¯

` Um,s
2 pϵq cos

´

ψ̃m,p,´spg, h,ΩMq

¯ı

.

The function Um,¯s
2 pϵq corresponds to the Giacaglia function with ϵ “ 23.440 (see Table 2

in Appendix A.1) being the obliquity of the ecliptic with respect to the equatorial plane.
Also, one has that

D̃m,ppL,G,Hq “ F̃m,ppG,HqX̃ppL,Gq, (2.5)

4Recall that in celestial mechanics, these are the classical canonical variables, defined as

L “
?
µa, l “ M,

G “ L
?
1 ´ e2, g “ ω,

H “ G cos i, h “ Ω.

(2.2)
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where F̃m,ppG,Hq is a function of the Kaula’s inclination functions F2,m,ppiq5, see [38],

and X̃ppL,Gq is a function of the zero-order Hansen coefficient X2,2´2p
0 peq6 , see [34],

and
ψ̃m,p,σpg, h,ΩMq “ 2p1 ´ pqg `mh` σ

´

ΩM ´
π

2

¯

´ y|σ|π, (2.6)

where σ “ ˘s defines the relative orientation satellite-Moon. In addition, the other
variables are constants defined as

ρ1 “
µµM

p1 ´ e2Mq3{2
, εn “

"

1 if n “ 0
2 if n ‰ 0

,

cm,s “ p´1qtm{2u εmεs
2

p2 ´ sq!

p2 `mq!
, y|s| “

"

0 if s is even
1{2 if s is odd

,

(2.7)

where µM “ 4902.87 km3{s2 is the mass parameter of the Moon.

Remark 2.1. By Kaula’s inclination functions (see [38]), one obtains that

F2,s,1piMq “

$

’

’

&

’

’

%

´1
2 ` 3

4 sin2 iM if s “ 0,

´3
2 sin iM cos iM if s “ 1,

3
2 sin2 iM if s “ 2.

(2.8)

We remark that when iM “ 0, the inclination function F2,s,1p0q “ 0 for all s, except for
s “ 0 which is F2,0,1p0q “ ´1{2. In other words, assuming that the Moon lies on the eclip-
tic plane, the Hamiltonian H in (2.3) is autonomous, because the angle ψ̃m,p,spg, h,ΩMq

does not depend on ΩM for s “ 0.

Remark 2.2. In the numerical computations that will be presented throughout the text,
all the variables will be taken in non-dimensional units defined in such a way that the
semi-major axis a of the orbit of the Gallileo satellites (equal to 29600 km) is the unit
of distance and the corresponding orbital period is 2π.

The main result of the paper is the following. It assumes several ansätze that are
stated below and are verified numerically.

Theorem 2.3. Consider the secular Hamiltonian H in (2.3) with the parameters just
fixed, take

α “ 0.077 (2.9)

and assume that the Ansätze 5.1, 5.6 and 6.6 are satisfied.
Then, for iM ą 0 small enough, there exist a time T ą 0 and a trajectory zptq “

pLptq, Gptq, Hptq, gptq, hptq,ΩMptqq such that

Hpzp0qq “ 1.7 ¨ 10´8 and HpzpT qq “ 1.3 ¨ 10´6.

5Since H “ G cos i, one has that F̃m,ppG,Hq “ F2,m,pparccos H
G

q.

6Since G “ L
?
1 ´ e2, one has that X̃ppL,Gq “ X2,2´2p

0

ˆ

b

1 ´ G2

L2

˙

.
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Moreover, along the energy increase the osculating eccentricity and inclination satisfy

ep0q “ 0 and epT q “ 0.78,

and
iptq P r56.060, 58.090s for t P r0, T s.

Note that such evolution would not be possible if iM “ 0 since in that case the Hamil-
tonian is autonomous and therefore the energy is a first integral (recall Remark 2.1).

Concerning the evolution of the eccentricity, we note that it is already oscillating
when iM “ 0. However, the size of this oscillations depends on the energy value. Indeed,
the orbit that we obtain in Theorem 2.3 is such that at the initial time, assuming
i “ 56.060 the eccentricity is oscillating (approximately) between 0 and 0.35, whereas
at the final time T is oscillating between 0 and 0.78. Therefore, at the initial time the
satellite is far from the Earth’s atmosphere whereas at the final time the satellite is
reentering.

Theorem 2.3 does not provide any estimate on the time T ą 0 needed to achieve
the drift in eccentricity. As mentioned before, more quantitative shadowing arguments
compared to those used in the present paper (see, for instance [52, 47]) should lead to
estimates for T “ T piMq of the form

|T | ď
C

iM
,

for some constant C ą 0 independent of iM ą 0 (see Remark 4.5 below).
Finally, in what follows, we will omit the Keplerian term of the Hamiltonian HK,

since it does not contribute to the variation of the orbital elements. As well, we omit
the dependence of the Hamiltonian on the variable L since it is a constant of motion.

3 A good system of coordinates

Let us start by focusing on the region of the phase space where an orbit satisfies the
“2g`h resonance” in the unperturbed problem, defined by the Hamiltonian H̃0 in (2.4)
(i.e., α “ 0), which is integrable.

The resonance is the set of points in action space where the condition 9x “ 0 holds,
where x “ 2g`h is the resonant angle. This is satisfied if the orbital inclination is equal
to i‹ » 56.060 in the prograde case or to i‹ » 110.990 in the retrograde case. Indeed,
according to the equations of motion, the resonance occurs when

5H2 ´G2 ´HG “ 0,

that is, for all G ‰ 0 (i.e. e ă 1) and H “ G cos i‹ (see (2.2)) that satisfy

5X2 ´ 1 ´X “ 0, X “ cos i‹.

Hence, we can distinguish two situations:

9



• the prograde case for i‹ “ arccos
´

1`
?
21

10

¯

» 56.060,

• the retrograde case for i‹ “ arccos
´

1´
?
21

10

¯

» 110.990.

In what follows, i‹ will be mentioned as the inclination of the (exact) 2g`h-resonance
and we will focus on the prograde case.

The unperturbed Hamiltonian highlights that x is constant for i “ i‹, while it circu-
lates for |i´ i‹| ą 0. Moreover, in a small enough neighborhood of the (exact) resonance
the angular variables evolve at different rates: g and h are “fast” angles compared to x
which undergoes a “slow” rotation of Opi´ i‹q.

3.1 Slow-fast coordinates py, xq

Instead of using the Delaunay action-angle variables, in order to take advantage of
the timescales separation, we introduce the transformation pG,H, g, hq “ ΥDelpy,Γ, x, hq

given by

x “ 2g ` h, y “
G

2
, Γ “ H ´

G

2
(3.1)

and the symplectic form dx^ dy ` dh^ dΓ.
Notice that several symplectic transformations are possible, however we prefer the

one such that the resonant action y does not depend on the inclination7. Hence, the
action-angle variables py, xq are associated with the variation in eccentricity.

In slow-fast variables, the Hamiltonian of the full problem can be written as

Hpy,Γ, x, h,ΩM; iMq “ H0py,Γq ` α3H1py,Γ, x, h,ΩM; iMq

where

H0py,Γq “ pH̃0 ˝ ΥDelqpy,Γq “
ρ0
128

y2 ´ 6yΓ ´ 3Γ2

L3y5

and

H1py,Γ, x, h,ΩM; iMq “ pH̃1 ˝ ΥDelqpy,Γ, x, h,ΩM; iMq. (3.2)

See Appendix A.1 and, in particular, equation (A.1) for a detailed expansion of the
functions involved in the expression of the Hamiltonian H1.

Notice that, in the unperturbed problem (α “ 0), Γ and y are first integrals of the
problem, because the Hamiltonian does not depend on the angles h and x, while in the
full problem (α ą 0), the phase space is no more integrable. Moreover, in the integrable
case once fixed a and e, the dynamics can be catalogued as a function of the inclination.

7Even if we focus our analysis on the 2g ` h resonance, our approach is fairly general. A similar
change of coordinates can be considered for a different resonance. What is important is to choose the
angle x as the one corresponding to the slow dynamics. The other changes of variables are chosen so
that the transformation is symplectic.
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In the coordinates just defined, the 2g ` h–resonance becomes the x–resonance. In
the unperturbed problem, the action space associated with the resonance is defined by
the condition

9x “
BH0py,Γq

By
“

3

128

ρ0
L3

5Γ2 ` 8yΓ ´ y2

y6
“ 0.

In other words, the resonance can take place on the two lines

Γ “ y
´4 `

?
21

5
and Γ “ y

´4 ´
?

21

5
, (3.3)

with py,Γq ‰ p0, 0q, that are associated with prograde and retrograde orbits, respectively.

3.2 Poincaré coordinates pη, ξq

The next step is to study the dynamics in the neighborhood of a circular orbit, that
is for small values of e ą 0. However, the slow-fast variables derived from the De-
launay variables (as happens with the original Delaunay variables) are singular at e “

0. In order to overcome this difficulty, we introduce the set of Poincaré coordinates
py,Γ, x, hq “ ΥPoipη,Γ, ξ, hq where

ξ “
a

2L´ 4y cos
´x

2

¯

, η “
a

2L´ 4y sin
´x

2

¯

, (3.4)

which are symplectic. Notice that ξ and η are respectively equivalent to e cospx{2q and
e sinpx{2q for quasi-circular orbits, that is when e « 0.

In this set of coordinates, the Hamiltonian of the full problem can be written as

Hpη,Γ, ξ, h,ΩM; iMq “ H0pη,Γ, ξq ` α3H1pη,Γ, ξ, h,ΩM; iMq (3.5)

where
H0pη,Γ, ξq “ pH0 ˝ ΥPoiqpη,Γ, ξq

“
ρ0
2

p2L´ ξ2 ´ η2q2 ´ 24p2L´ ξ2 ´ η2qΓ ´ 48Γ2

L3p2L´ ξ2 ´ η2q5

(3.6)

and
H1pη,Γ, ξ, h,ΩM; iMq “ pH1 ˝ ΥPoiqpη,Γ, ξ, h,ΩM; iMq. (3.7)

See Appendix A.2 and, in particular, equation (A.2) for a detailed expansion of the
functions involved in the expression of Hamiltonian H1.

4 The hierarchy of models and dynamical systems tools

We devote this section to explain the geometric framework that will lead to the drifting
orbits. To this end, it is convenient to autonomize the Hamiltonian. Let us recall
equation (2.1) for the time variation of ΩM P T, namely,

ΩMptq “ ΩM,0 ` nΩM
t.

11



We introduce ΩM as a variable and define its symplectic conjugate variable J . Then, we
define the 3-degree-of-freedom Hamiltonian

Kpη,Γ, J, ξ, h,ΩM; iMq “ Hpη,Γ, ξ, h,ΩM; iMq ` nΩM
J, (4.1)

where H is the Hamiltonian introduced in (3.5).
We analyze this Hamiltonian in two steps, relying on the smallness of iM. In Sec-

tion 4.1, we explain the strategy of this analysis. In this section, we also introduce the
h-averaged Hamiltonian. We will not rely on it to construct our diffusion mechanism.
However, we introduce it since it has been widely studied numerically in literature (see,
e.g., [11]). and is a convenient simplified model to use as a first step in certain numerical
studies of the full problem. In the paper [1], we perform a detailed analytic study of the
h´averaged Hamiltonian, and we describe its equilibrium points and their stability.

In Section 4.2, we introduce the two main tools that will create the “highway” of
unstable orbits: a normally hyperbolic invariant cylinder and the associated scattering
maps.

4.1 The hierarchy of models

To construct the intermediate models, we rely on the fact that the model depends on
two parameters: the inclination of the Moon with respect to the ecliptic plane iM and
the ratio between the semi-major axis of the satellite and the one of the Moon α.

In our analysis, we consider iM arbitrarily small - the perturbative parameter - and
a realistic value for α (see Theorem 2.3). Still, the smallness of α creates different
timescales that may be taken into account.

Main reduction: the Coplanar Model Since we are assuming that the inclination
of the Moon is small, the main reduction that one can do to have an intermediate model
is to take iM “ 0. We refer to this model as the Coplanar Model since it corresponds to
assuming that the orbit of the Moon is coplanar to that of the Earth. When doing this
reduction, the Hamiltonian K in (4.1) becomes ΩM independent, see Remark 2.1.

Starting from (4.1), we define

KCPpη,Γ, J, ξ, hq “ Kpη,Γ, ξ, h,ΩM; 0q “ Hpη,Γ, ξ, h,ΩM; 0q ` nΩM
J, (4.2)

where the subscript CP stands for coplanar. Since KCP is ΩM-independent, J is a first
integral. In fact, one can work in the reduced phase space and consider the 2-degree-of-
freedom Hamiltonian

HCPpη,Γ, ξ, hq “ Hpη,Γ, ξ, h,ΩM; 0q. (4.3)

This Hamiltonian can be written as

HCPpη,Γ, ξ, hq “ H0pη,Γ, ξq ` α3HCP,1pη,Γ, ξ, hq,

12



where H0 is the Hamiltonian introduced in (3.6) and HCP,1 is the Hamiltonian H1 in (3.7)
with iM “ 0, that is,

HCP,1pη,Γ, ξ, hq “ H1pη,Γ, ξ, h,ΩM; 0q.

See Appendix A.2 and, in particular (A.3), for the explicit expression of HCP,1.

A possible further reduction: the h-averaged problem The departing point of
our analysis is the coplanar Hamiltonian in (4.3) above. However, in literature exten-
sive investigations have been based on the h-averaged coplanar model. The reduction
to the h-averaged model is based on the fact that, if α is a small parameter, the au-
tonomous Hamiltonian HCP has a timescale separation between the slow and fast angles,
respectively x and h. Indeed,

9ξ, 9η „ α3 whereas 9h „ 1.

A classical way to exploit this feature is to simplify the Hamiltonian HCP by another
one in which the fast oscillations have been removed by averaging over the longitude of
the ascending node h. That is,

HAVpη,Γ, ξq “
1

2π

ż 2π

0
HCPpη,Γ, ξ, hqdh.

We refer to this Hamiltonian as the h-averaged Hamiltonian. Note that since the Hamil-
tonian H0 in (3.6) is h-independent, HAV can be written as

HAVpη,Γ, ξq “ H0pη,Γ, ξq `
α3

2π

ż 2π

0
HCP,1pη,Γ, ξ, hqdh.

Notice that HAV is a 1-degree-of-freedom Hamiltonian provided that Γ is a first integral
of the h-averaged system.

4.1.1 Theoretical results for the coplanar and h-averaged system

The mechanism we use to show the existence of drifting orbits is the Arnold diffusion
mechanism (see Section 4.2 and 4.3 below). A key point in the analysis is to study the
relative position between the invariant manifolds of the hyperbolic periodic orbits of the
coplanar model.

In this work, we use circular periodic orbits, that is, the periodic orbits located at
pη, ξq “ p0, 0q (see (3.4)). Indeed, let us recall that HCPpη,Γ, ξ, hq is a 2-degrees-of-
freedom autonomous Hamiltonian that can be expressed as HCP “ H0 ` α3HCP,1 with
H0 as given in (3.6) and HCP,1 in (A.3). From the explicit expression of the Hamiltonian
obtained in Appendix A.2, one can easily see that it does not have linear terms with
respect to pη, ξq “ p0, 0q. This implies that pη, ξq “ p0, 0q is invariant. Then, to analyze
the circular periodic orbits, it is enough to look for periodic solutions of the 1-degree-
of-freedom Hamiltonian HCPp0,Γ, 0, hq. In Appendix A.2 we provide formulas for this
Hamiltonian (see Lemma A.1).
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In [1], we prove the existence of periodic orbits at tη “ ξ “ 0u when the semi-major
axis a P ramin, amaxs with

amax “ 30000 km, amin “ 6378.14 km (to avoid collision).

We also introduce Lmin,max “
?
µamin,max.

Theorem 4.1. For any L P rLmin, Lmaxs, we define

E1pLq “ HCPp0, 0.49L, 0, πq, E2pLq “ HCPp0, 0, 0, 0q.

Then, for any energy level E P rE1pLq,E2pLqs, there exists a periodic orbit of the form
PEptq “ p0,ΓEptq, 0, hEptqq such that, hEp0q “ 0 and, for t ě 0, 9hEptq ‰ 0, ΓEptq P

r0, 0.49Ls and
HCPp0,ΓEptq, 0, hEptqq “ E.

In addition, for the case of Galileo, namely L “ 1 in non-dimensional units (which
corresponds to a “ 29600 km see Remark 2.2), one has that

E1p1q “ ´2.515161379204321 ¨ 10´5, E2p1q “ 2.477266122798186 ¨ 10´6.

This result ensures the existence of periodic orbits but does not give information
about the character of them. A first theoretical approach for solving this problem is to
study the character of the equilibrium point pη, ξq “ p0, 0q for the h-averaged system and
to consider the coplanar Hamiltonian as a perturbation with respect to α of HAV. Since
in this work we deal with a realistic value of α “ 0.077 (see (2.9)), this perturbative
approach is not useful in our case. However it gives an insight about the scenario we
can encounter. In [1], the following result about HAV is proven.

Theorem 4.2. There exist two functions Γ1,Γ2 : rLmin, Lmaxs Ñ
`

0, L2
˘

such that, for
L P rLmin, Lmaxs:

• If either Γ P p0,Γ1pLqq or Γ P
`

Γ2pLq, L2
˘

, then p0, 0q is a center of HAV.

• If Γ P pΓ1pLq,Γ2pLqq, then p0, 0q is a saddle of HAV.

• If Γ “ Γ1pLq or Γ “ Γ2pLq, the origin is a degenerated equilibrium point of HAV.

In addition, L´1Γ1pLq P
`

0, m2
˘

and L´1Γ2pLq P
`

m
2 ,

1
2

˘

, with m :“ ´4`
?
21

5 (i.e. the
slope of the prograde resonance line in (3.3)).

For a given L, the values of Γ1,2 can be numerically computed (as the zeroes of some
appropriate function). For instance, for the case of Galileo (i.e., L “ 1),

Γ1p1q “ 0.029613649805289, Γ2p1q “ 0.084971418151141,

and the corresponding energy levels (for the h-averaged system) are

EAV
1 p1q “ 2.072230388690642 ¨ 10´6, and EAV

2 p2q “ ´3.473759155836634 ¨ 10´7,
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respectively. Therefore, for L “ 1 and E P pEAV
2 p1q,EAV

1 p1qq, as a consequence of
Theorem 4.2, the origin is a saddle point of the h-averaged system.

Applying perturbation techniques, it can be seen (see [1]) that if α3 is small enough,
the circular periodic orbits for the coplanar Hamiltonian, HCP, stated in Theorem 4.1, are
of saddle type if they belong to certain energy levels close enough to those of HAVp0,Γ, 0q

with Γ P pΓ1pLq,Γ2pLqq. However, as expected, there is no quantitative information
about the maximum value of α such that this result can be applied. For this reason,
we have decided to consider the coplanar (non-averaged) model to build the Arnold
diffusion mechanism. This is important to have a more realistic numerical computation
of the hyperbolic periodic orbits and the corresponding manifolds (see Section 5.1).

4.2 Normally hyperbolic invariant manifolds and scattering maps

We devote this section to explain the main tools that we use to construct the “instability
paths” along which the eccentricity of the satellite drifts. These are normally hyperbolic
invariant manifolds, the homoclinic intersections of their invariant manifolds and the
associated scattering maps.

Such objects can be defined for maps or flows. We will use them both for maps and
flows in Sections 5 and 6 below. Here we provide the definitions for flows. The ones for
maps are analogous.

In this section we denote by M a Cr smooth manifold, by X P CrpM,TMq a vector
field on M and by φt : M Ñ M the associated smooth flow. Let Λ Ă M be a compact
φt-invariant submanifold, possibly with boundary. By φt-invariant we mean that X is
tangent to Λ, but that orbits can escape through the boundary (a concept sometimes
referred to as local or weak invariance).

Definition 4.3. We call Λ a normally hyperbolic invariant manifold for φt if there is
0 ă ν ă ϑ´1, a positive constant C and an invariant splitting of the tangent bundle

TΛM “ TΛ ‘ Es ‘ Eu

with TΛ “
ď

PPΛ

`

tP u ˆ TPΛ
˘

, Es,u “
ď

PPΛ

`

tP u ˆ Es,u
P

˘

such that, for all P P Λ,

}DφtpP qv} ď Cϑ|t| for all t P R, v P TPM,

}DφtpP qv} ď Cνt for all t ě 0, v P Es
P ,

}DφtpP qv} ď Cν´t for all t ď 0, v P Eu
P .

Moreover, Λ is called an r-normally hyperbolic invariant manifold if it is Cr smooth
and

0 ă ν ă ϑ´r ă 1 for r ě 1. (4.4)

Fenichel Theory [23, 24, 25] ensures that normally hyperbolic invariant manifolds
are persistent under perturbations. Moreover, they possess stable and unstable invari-
ant manifolds W s,upΛq Ă M defined as follows. The local stable manifold W s

locpΛq is the
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set of points in a small neighbourhood of Λ whose forward orbits never leave the neigh-
bourhood, and tend with exponential rate to Λ. The local unstable manifold W u

locpΛq is
the set of points in the neighbourhood whose backward orbits stay in the neighbourhood
and tend exponentially to Λ. We then define the stable and unstable manifold of Λ as

W spΛq “

8
ď

tě0

φ´t pW s
locpΛqq , W upΛq “

8
ď

tě0

φt pW u
locpΛqq .

The stable and unstable manifolds of Λ are foliated by what is usually called the strong
stable and strong unstable foliations, the leaves of which we denote by W s,upP q for P P Λ.
For each P P Λ, the leaf W spP q (resp. W upP q) of the strong stable foliation is tangent
at P to Es

P (resp. Eu
P ). Moreover, the foliations satisfy that φt pW spP qq “ W s

`

φtpP q
˘

and φt pW upP qq “ W u
`

φtpP q
˘

for each P P Λ and t P R.
Then, one can define the usually called wave maps πs,u : W s,upΛq Ñ Λ to be projec-

tions along leaves of the strong stable and strong unstable foliations. That is to say, if
Q P W spΛq then there is a unique Q` P Λ such that Q P W spQ`q, and so πspQq “ Q`.
Similarly, if Q P W upΛq then there is a unique Q´ P Λ such that Q P W upQ´q, in which
case πupQq “ Q´. The points Q˘ satisfy that

lim
tÑ˘8

distpφtpQ˘q, φtpQqq “ 0.

Now, suppose that Q P pW spΛq&W upΛqq zΛ is a transverse homoclinic point such that
Q P W spQ`q X W upQ´q. We say that the homoclinic intersection at Q is strongly
transverse if

TQW
spQ`q ‘ TQ pW spΛq XW upΛqq “ TQW

spΛq,

TQW
upQ´q ‘ TQ pW spΛq XW upΛqq “ TQW

upΛq.
(4.5)

In this case, in a small enough neighborhood Ξ of Q in W spΛq X W upΛq, (4.5) holds at
each point of Ξ, and the restrictions to Ξ of the holonomy maps, πs,u, are bijections onto
their images. We call Ξ a homoclinic channel. In such domain, following [16], we define
the scattering map as follows.

Definition 4.4. Let Q´ P πu pΞq, let Q “ pπu|Ξq
´1

pQ´q, and let Q` “ πspQq. The
scattering map S : πupΞq Ñ πspΞq is defined by

S “ πs ˝ pπuq
´1 : Q´ ÞÝÑ Q`.

Assume that both M (the manifold) and X (the vector field) are Cr with r ě 2
and that (4.4) is satisfied, so that Λ is also Cr. Then, the scattering map S is Cr´1

(see [16]). Moreover, if the vector field has a Cr-dependence on some parameters, then
the scattering map depends on a Cr´1 on them.

In general, the scattering map is only locally defined, as the transverse homoclinic
intersection of stable and unstable manifolds can be very complicated. In the present
paper, we are able to describe quite precisely the domains of the scattering maps that
we consider.
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4.3 The Arnold diffusion instability mechanism

Once we have introduced the hierarchy of models in Section 4.1 and the dynamical
systems tools in Section 4.2, we are ready to explain the instability mechanism that
we consider to achieve drift in the eccentricity of the satellite. Such mechanism fits
into what are usually called a priory chaotic Hamiltonian systems in Arnold diffusion
literature [13, 47, 22].

Consider first the coplanar Hamiltonian HCP in (4.3), namely, iM “ 0. Since HCP

is autonomous, its energy is a first integral, and therefore the coordinate J as well for
the Hamiltonian KCP in (4.2) (in the extended phase space). In Section 5 we will see
that at each energy level (in a certain interval), the Hamiltonian HCP has a periodic
orbit at the 2g ` h-resonance. In Poincaré variables, this periodic orbit is located at
tη “ ξ “ 0u. Moreover, in the considered energy interval, these periodic orbits are
hyperbolic and, thus, they have stable and unstable invariant manifolds. In addition,
we check numerically that they intersect transversally within each energy level. The
obtained homoclinic orbit has a range of eccentricity between e “ 0 (the periodic orbit)
and certain e “ emax which depends on the energy level8. For energy levels realistic
for Galileo emax » 0.35 (in particular, its orbit does not enter the Earth’s atmosphere)
whereas for higher energies emax reaches 0.78 (which implies that the osculating ellipse
of the satellite hits the Earth atmosphere) or higher.

iM “ 0

Λ0 W spΛ0q

J “ J0

W upΛ0q

homoclinic

channel

iM ą 0

ΛiM W spΛiMq

W upΛiMq

Figure 1: The normally hyperbolic invariant cylinder and its invariant manifolds. In the left
figure iM “ 0 and therefore J is a first integral. The cylinder is foliated by invariant tori
whose invariant manifolds intersect transversally within J “ constant giving rise to a homoclinic
channel. In the right figure, iM ą 0 (small enough). Then, J is not a first integral anymore
and one can construct heteroclinic connections between different tori in the cylinder (diamond
intersections in the picture). See Corollary 5.2 and Theorem 6.1, respectively, for a detailed
description of the notation.

In the extended phase space (i.e., adding the pair pJ,ΩMq and considering the Hamil-
tonian KCP in (4.2)) these periodic orbits become 2-dimensional tori. If one considers
the union of such tori for an energy interval, one has a normally hyperbolic invariant
cylinder (see Definition 4.3). Analogously, the union of the stable and unstable manifolds
of the periodic orbits (now tori) constitute the invariant manifolds of the cylinder and

8By energy level we mean with respect to the coplanar secular Hamiltonian HCP.
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their transverse intersections give rise to homoclinic channels (see Figure 1-left). This
allows to define scattering maps (in suitable domains, detailed in Section 5).

The fact that J is constant when iM “ 0, implies that solutions close to the invariant
manifolds of the cylinder have a constrained drift in eccentricity: it ranges from e “

0 (close to the cylinder) to close to the already mentioned emax (close to the “first”
homoclinic point), which depends on J .

When iM ą 0 but still small enough the dynamics changes drastically. Indeed, in
Section 6, we construct solutions of the full Hamiltonian K in (4.1) such that the action
J undergoes big changes. Equivalently, we construct solutions of the Hamiltonian H
in (3.5) with energy drift. These solutions travel along the resonance (3.3) and therefore,
while increasing energy along the resonance, they perform larger homoclinic excursions
which lead to larger oscillations in eccentricity.

The achievement of this drift is given by an Arnold diffusion mechanism, which relies
on the normally hyperbolic invariant manifold and the associated invariant manifolds and
scattering maps (see Section 4.2). Indeed, classical Fenichel Theory (see [23]) implies that
the normally hyperbolic invariant cylinder of the Hamiltonian HCP in (4.3) persists for
iM small enough and the same happens for the associated stable and unstable invariant
manifolds (see Figure 1-right). Moreover, all the objects are regular with respect to
iM. This implies that the transverse intersections present in the case iM “ 0 are also
persistent and the associated scattering maps are also smooth with respect to iM.

We use the scattering maps to construct what is usually called a pseudo-orbit. That
is, a sequence of concatenated “pieces of orbits”. More precisely, this pseudo-orbit is
formed by pieces of orbits in the cylinder (that is, pieces of orbits of what is usually
called the inner dynamics) which are connected by heteroclinic orbits (see Figure 2-
left). Recall that a point in the cylinder Q´ is mapped to a point Q` by the scattering
map if there is a heteroclinic orbit of the Hamiltonian (4.1) between them. Thus, to
construct a pseudo-orbit one has to understand how to “combine” the inner dynamics
(the flow restricted to the cylinder) and the scattering map (in occasions also called
outer map) to achieve drift in J .

J

ΛiM W spΛiMq

W upΛiMq

ΛiM

Shadowing orbit

Figure 2: The pseudo-orbit (left) and the shadowing orbit (right): The blue orbit shadows
(follows closely) the pseudo-orbit formed by heteroclinic orbits connecting different points in the
cylinder and pieces of cylinder orbits.

Both the inner and scattering maps are computed numerically relying on perturba-
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tive methods (for iM ą 0 small enough). Thanks to the particular form of the Hamilto-
nian (4.1), these maps have a rather simple form. Indeed, note that one can reduce the
dimension of the model by considering a Poincaré map associated to the section th “ 0u

and by eliminating the variable Γ through energy conservation. Then, the cylinder be-
comes two dimensional and a good system of coordinates for it is pJ,ΩMq. In these
coordinates, the inner map is of the form

F in
iM

:

ˆ

J
ΩM

˙

ÞÑ

ˆ

J ` iM
`

A`
1 pJqeiΩM `A´

1 pJqe´iΩM
˘

` Opi2Mq

ΩM ` nΩM
T0pJq ` OpiMq

˙

, (4.6)

and one can define two scattering maps (denoted as primary and secondary) of the form

Fout,˚
iM

:

ˆ

J
ΩM

˙

ÞÑ

ˆ

J ` iMpB˚,`
1 pJqeiΩM `B˚,´

1 pJqe´iΩMq ` Opi2Mq

ΩM ` nΩM
ζ˚pJq ` OpiMq

˙

, (4.7)

for ˚ P tpri, secu, associated to two different homoclinic channels. We compute numeri-
cally the functions appearing in the first orders of these maps. Those of the scattering
maps, Fout,˚

iM
, are given by Melnikov-like integrals (similar so those in [13, 21]).

Note that the scattering maps are not globally defined since the invariant manifolds
of the cylinder may have tangencies. This is the reason why we must use two scattering
maps: the union of domains of the two scattering maps contain the whole region of the
cylinder we are interested in.

Then, we construct a drifting pseudo-orbit. Note that we cannot use now the clas-
sical results [43, 40], which ensure that such pseudo-orbits exist provided the inner and
scattering maps dynamics share no common invariant curves, since they require glob-
ally defined maps (which is not the case for the scattering maps in the present paper).
Instead, we construct it from a “generalized transition chain”, that is, a sequence of
invariant quasi-periodic tori of either the inner map or one of the scattering maps, which
are connected by an iteration of the other map. This is done in Section 6.

Once the pseudo-orbit is constructed, the final step is to show that there is a true
orbit of the Hamiltonian (4.1) which “shadows” (i.e. follows closely) the pseudo-orbit
(see Figure 2-right). For this last step we rely on shadowing results developed in [30].
These results are rather flexible and can be easily applied to our setting. Unfortunately,
they do not provide time estimates.

Remark 4.5. Instead of [30], we could have relied on more quantitative shadowing ar-
guments (see for instance [52, 47, 29, 10]) which could provide time estimates. However,
they require a more precise knowledge of the inner dynamics and, therefore, to keep the
proof simple, we do not use them. Still, they should be applicable also to our setting and
should lead to instability times T “ T piMq satisfying

|T | ď
C

iM
,

for some constant C ą 0 independent of iM ą 0.
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5 The coplanar secular Hamiltonian

In this section, we analyze the dynamics of the Hamiltonian HCP (see (4.3)). That is,
we consider the secular Hamiltonian with no inclination of the Moon with respect to the
ecliptic plane (i.e., iM “ 0). In particular, we analyze certain features of its dynamics
and then we “translate” them to the Hamiltonian KCP (see (4.2)) in the extended phase
space.

Since we consider α “ 0.077 as a fixed parameter9 (see (2.9)), the application of
perturbative techniques to analyze HCP is not possible. Instead, in the following sections,
we assume certain ansätze on the Hamiltonian and verify them numerically.

5.1 Periodic orbits and their invariant manifolds

Concerning the secular coplanar Hamiltonian in (4.3) we assume the following ansatz. It
concerns the existence of hyperbolic periodic orbits at circular motions and the transverse
intersections of their stable and unstable invariant manifolds.

As we claimed in Section 4.1.1, the plane tη “ ξ “ 0u is invariant by the coplanar
Hamiltonian. The ansatz is related to the (circular) periodic orbits lying on tη “ ξ “ 0u.

Ansatz 5.1. The Hamiltonian HCPpη,Γ, ξ, hq given in (4.3) satisfies the following state-
ments.

1. In every energy level E P rEmin, Emaxs “ r´2.12 ¨ 10´7, 1.36 ¨ 10´6s, the periodic
orbit PEptq “ p0,ΓEptq, 0, hEptqq provided in Theorem 4.1 is hyperbolic. Denoting
T pPEq its period, we have that

nΩM
T pPEq P r3.9π, 4.15πs, HCPpPEptqq “ E.

Both the periodic orbit and the period depend smoothly on E. In addition, T pPEq

is a strictly increasing function with respect to E.

2. For each E P rEmin, Emaxs, the invariant manifolds W upPEq and W spPEq intersect
transversally. Let QEptq be any of these homoclinic orbits.

3. For E P rEmin, Emaxs, the periodic orbit PEptq and the homoclinic orbit χEptq
satisfy

ipQEptqq, ipPEptqq P r55.700, 58.180s, for all t P R,
and

max
tPR

epQEptqq ě 0.795,

where ip¨q and ep¨q denote the osculating inclination and eccentricity respectively.

Note that this ansatz assumes the existence of transverse homoclinic orbits to the
periodic orbits but does not provide information on how these homoclinic orbits depend
on E. In fact, we will have to consider the intersections between different branches of
the invariant manifolds depending on the energy levels to avoid homoclinic tangencies.

We devote the next section to verify numerically this ansatz.

9Instead of taking it “small enough”.
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5.1.1 Numerical verification of Ansatz 5.1

As we claimed in Section 4.1.1, the existence of the circular periodic orbits located at
tη “ ξ “ 0u is guaranteed by Theorem 4.1. Considering non-dimensional units (see
Remark 2.2), some examples of these periodic orbits computed for the system given by
HCP are shown in Figure 3. Note that Galileo corresponds to HCP “ 1.7¨10´8 (assuming
i “ 56.060q.
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Figure 3: Examples of periodic orbits for iM “ 0, non-dimensional units. The colorbar reports
the value of HCP. Here it is shown the behavior of a range of energies larger than the one we
are interested in.

Concerning the stability, the eigenvalues of the monodromy matrix of a given periodic
orbit are of the type

␣

1, 1, eT λ, e´T λ
(

, with T the period of the given orbit, in case of
orbits with hyperbolic nature, or

␣

1, 1, iν,´iν
(

in case of orbits with elliptic nature. We
will consider only the former case. In Figure 4, we show the behavior of the eigenvalue
greater than 1 for the hyperbolic periodic orbits, as a function of HCP.

In Figure 5, we show the period of the hyperbolic periodic orbits and the value of
nΩM

T as a function of HCP. Recall that ΩMptq “ ΩM,0 ` nΩM
t (see (2.1)), therefore the

value nΩM
T indicates the ratio between the periods of the variables h and ΩM. Notice

that at HCP « 4.4472 ¨ 10´7 P rEmin, Emaxs (non-dimensional units), the period is such
that nΩM

T “ 4π which corresponds to the resonance 2h´ΩM (that is, T “ 2TΩM
). This

double resonance was already observed in [11] and will be commented further at the end
of the paper.

Next, we analyze the dynamics of the stable and the unstable manifolds of the circular
periodic orbits and we look for transverse intersections between them at each energy level
(Item 2 in the ansatz). Note that the Hamiltonian HCP is reversible with respect to the
involutions

Φhpη,Γ, ξ, hq “ p´η,Γ, ξ,´hq and Φvpη,Γ, ξ, hq “ pη,Γ,´ξ,´hq,
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Figure 4: The value of the eigenvalue greater than 1, λ, as a function of the HCP for the
hyperbolic periodic orbits.

Figure 5: The period (left) T of the hyperbolic periodic orbits as a function of HCP. On the
right, nSarosT (where nSaros ” nΩM

) as a function of HCP.

where h and v stand for horizontal and vertical respectively, referring to the projection
of the symmetry axis onto the pξ, ηq plane, which are tη “ 0, h “ 0u, tη “ 0, h “ πu and
tξ “ 0, h “ 0u, tξ “ 0, h “ πu respectively. These symmetries simplify the numerical
verification of the ansatz since one can easily see that the intersections between W upPEq

and W spPEq have points at these symmetry axes in all the considered energy levels.
However, these intersections may not be transverse. Indeed, the angles between the
invariant manifolds at the symmetry axes depend analytically on the energy and they
may vanish for a discrete set of values of the energy.

In Figure 6, on the left, we show the behavior of the unstable invariant manifolds
associated with the periodic orbit on the Poincaré section th “ 0u, together with the
corresponding eccentricity growth (colorbar). Each curve corresponds to a different
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energy levels. In the same figure on the right, we show the behavior of the invariant
manifolds on the Poincaré section th “ 0u (purple) and th “ πu (green), for a same
value of energy.
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Figure 6: Left: the unstable manifolds on the Poincaré section th “ 0u for different energy
levels. The colorbar depicts the evolution of the eccentricity along these unstable manifolds.
Right: the behavior of the unstable manifolds computed assuming as Poincaré map th “ 0u

(purple) and th “ πu (green), for a given energy level.

All the computations of the hyperbolic manifolds have been performed following the
procedure explained in [22]. The first intersection between the stable and the unstable
manifolds takes place at η “ 0 (ξ ‰ 0), after about 30 iterations on the Poincaré map
of the fundamental domain assuming an initial displacement of 10´8 in non-dimensional
units from the periodic orbit along the eigendirections. This choice corresponds to an
error of 10´11 following [22].

To verify Item 2 in the ansatz we must show that, at every energy level, the circular
periodic orbit has a transverse homoclinic. We first consider the homoclinic point at
tη “ 0, h “ 0u with ξ ą 0. The corresponding value of ξ and the maximum eccentricity
growth achieved are shown in Figure 7. The invariant manifolds are transverse at these
points for all energies within the considered energy range except for 6 values. (These
values will be showed later in the first column of Table 1, see also Figure 8).

For these 6 energy levels we must look for other homoclinic points and check the
corresponding transversality. Note that one cannot consider the homoclinic points at
tη “ 0, h “ 0u with ξ ă 0 (see Figure 6) since they have the same tangencies as the
first branch considered as they are Φv-symmetric. The first choice is to look for the
homoclinic points at the symmetry axis tη “ 0, h “ πu (with either ξ ą 0 or ξ ă 0, since
they are Φv-symmetric). However, the energy values for which these homoclinic points
develop tangencies are very close to those of the other branch considered. This is shown
in Table 1 and Figure 8, where we show the splitting angle computed at the first point
of intersection between the negative branch of the stable and the unstable manifolds at
tη “ 0, h “ 0u and tη “ 0, h “ πu as a function of the given energy level. One should
expect that even if they look to be very close, the tangency energy values of the two
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Figure 7: Left: first point of intersection ξ0 between negative branch of the stable and the
unstable manifolds of a given periodic orbit at the crossing with the tη “ 0, h “ 0u axis, as
a function of HCP (non-dimensional units). Right: the corresponding maximum eccentricity
achievable along the hyperbolic manifolds as a function of HCP (non-dimensional units).

HCP ∆HCP ∆HCP{HCP ϕ

1.34294e-6 1.2e-11 8.9e-6 0.788
1.23642e-6 1.5e-10 1.2e-4 0.997
1.09175e-6 6.1e-12 5.6e-6 1.183
8.9030e-7 6.6e-12 7.4e-6 1.276
6.0662e-7 2.5e-11 4.1e-5 1.554
2.1005e-7 7.5e-11 3.5e-4 1.935

Table 1: The value of HCP corresponding to a non-transverse intersection at tη “ 0, h “ 0u

and the absolute and relative difference with respect to the value of HCP corresponding to a
non-transverse intersection at tη “ 0, h “ πu. On the last column, the splitting angle ϕ (rad)
computed at tξ “ 0, h “ 0u at the same energy level.

branches are disjoint. However, to check this would require a numerical analysis with a
much higher precision.

Instead, to keep the numerical analysis “simple”, we consider a different branch: we
look for homoclinic points at the symmetry axis tξ “ 0, h “ 0u. We refer to these
homoclinic points as secondary since their orbits approach twice the saddle, in contrast
to the first branch, which we denote by primary. The corresponding splitting angle ϕ is
shown in Table 1 (last column) and an example of such intersection is given in Figure 9.

Once we have computed the periodic orbits and the associated transverse homoclin-
ics, Item 3 of the ansatz can be easily verified by integrating numerically the flow of the
coplanar system.
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Figure 9: Homoclinic intersection (green point) computed at tξ “ 0, h “ 0u for HCP “

2.1005 ¨ 10´7 (non-dimensional units). In red the negative branch of the unstable manifold, in
blue the negative branch of the stable manifold.

5.2 The invariant cylinder and their invariant manifolds

In this section we analyze how the periodic orbits provided by Ansatz 5.1 (Item 1) give
rise to a normally hyperbolic invariant cylinder and, by means of Item 2 of Ansatz 5.1,
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we analyze the associated stable and unstable invariant manifolds and their intersec-
tions. Then, we study the inner dynamics (dynamics restricted to the cylinder) and the
scattering maps of the coplanar secular model (see Section 4.2).

Our aim is to study the complete problem as a perturbation of the coplanar one.
To this end, we consider the Hamiltonian KCP (see (4.2)) defined in the extended phase
space pη,Γ, J, ξ, h,ΩMq. In other words, we keep the conjugated variables pJ,ΩMq even
if ΩM is a cyclic variable (see (2.1)). As a result, the periodic orbits considered in
Ansatz 5.1 become 2-dimensional invariant tori. Indeed, we first notice that the energy
level KCP “ 0 in the extended phase space corresponds to HCP “ E with E “ ´nΩM

J .
In addition, since 9hEptq ‰ 0, t “ h´1

E phq. Then, from functions h´1
E ptq and ΓEptq, we

can obtain a parametrization of these tori in terms of ph,ΩMq of the form
´

0,Γext
J phq, J, 0, h,ΩM

¯

, for ph,ΩMq P T2,

for

J P rJmin, Jmaxs “

„

´
Emax

nΩM

,´
Emin

nΩM

ȷ

,

with Emax, Emin as given in Ansatz 5.1. Therefore, the union of these 2-dimensional
invariant tori form a normally hyperbolic invariant 3-dimensional manifold Λ0, diffeo-
morphic to a cylinder T2 ˆ rJmin, Jmaxs. Applying the implicit function theorem with
respect to the energy J , one can see that the cylinder is analytic (by Ansatz 5.1, the
periodic orbits are hyperbolic, thus non-degenerate). We summarize this fact in the
following lemma, which is a direct consequence of Ansatz 5.1 (see also Figure 1-left).

Corollary 5.2. Assume Ansatz 5.1. Then, the Hamiltonian KCP (see (4.2)) has an
analytic normally hyperbolic invariant 3-dimensional cylinder Λ0, which is foliated by 2-
dimensional invariant tori on the constant invariant hyperplanes J “ J0 P rJmin, Jmaxs.

Moreover, the cylinder Λ0 has 4-dimensional invariant manifolds, denoted byW upΛ0q

and W spΛ0q, which, for every J P rJmin, Jmaxs, intersect transversally either at the
symmetry axis tη “ 0, h “ 0u with ξ ą 0 or at tξ “ 0, h “ 0u with η ą 0.

From now on, we will call primary homoclinic orbits (and denote them with a su-
perindex pri) those which intersect the symmetry axis tη “ 0, h “ 0u with ξ ą 0 and
we will call secondary homoclinic orbits (and denote them with a superindex sec) those
which intersect the symmetry axis tξ “ 0, h “ 0u with η ą 0. Indeed, the first ones only
get close to the periodic orbit once while the second ones approach it twice.

To analyze the dynamics on the cylinder and the scattering map associated with
the transverse intersections of its invariant manifolds it is more convenient to consider
a Poincaré map. Therefore, we define a global Poincaré section and work with maps to
reduce the dimension by one.

There are two natural choices of section, th “ 0u or tΩM “ 0u, since both variables
satisfy 9h ‰ 0 (see Theorem 4.1) and 9ΩM “ nΩM

‰ 0. It would seem more natural to
choose the section tΩM “ 0u, however since we aim to prove drift on the energy J , it is
more convenient to consider the section

Σ “ th “ 0u
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and the induced Poincaré map
Π0 : Σ Ñ Σ (5.1)

Notice that this Poincaré section was already used in the numerical study in Section 5.1.
In addition, we denote the intersection of the cylinder Λ0 with the section Σ as

rΛ0 “ Λ0 X Σ.

Notice that rΛ0 is a 2-dimensional normally hyperbolic manifold for the Poincaré map
Π0 with 3-dimensional stable and unstable manifolds, which we denote W uprΛ0q and
W sprΛ0q for j “ 1, 2. They intersect at transverse homoclinic orbits which are just the
those analyzed in Corollary 5.2 intersected with the section Σ.

To fix notation, we denote by D˚
0 , with ˚ P tpri, secu, the subset of rJmin, Jmaxs for

which there exist primary/secondary homoclinic orbits to the corresponding invariant
torus in the cylinder. By Corollary 5.2, Dpri0 Y Dsec0 “ rJmin, Jmaxs.

Corollary 5.3. Assume Ansatz 5.1. The Poincaré map Π0 defined in (5.1) and in-
duced by Hamiltonian KCP (see (4.2)) has a normally hyperbolic 2-dimensional cylin-
der rΛ0 foliated by invariant curves. In addition, there exists an analytic function G0 :
rJmin, Jmaxs ˆ T Ñ R3 ˆ T3,

G0pJ,ΩMq “
`

0,GΓ
0 pJq, J, 0, 0,ΩM

˘

,

that parametrizes rΛ0,

rΛ0 “ tG0pJ,ΩMq : pJ,ΩMq P rJmin, Jmaxs ˆ Tu.

Moreover, for ˚ P tpri, secu, within the hypersurface J “ J0 with J0 P D˚
0 , the invari-

ant manifolds W uprΛ0q and W sprΛ0q intersect transversally at the symmetry axis of the
involutions Φh (for ˚ “ pri) and Φv (for ˚ “ sec).

Let Ξ˚
0 denote these transverse intersections on the symmetry axes. Then, there

exists an analytic function C˚
0 : D˚

0 ˆ T Ñ R3 ˆ T3, such that

Cpri
0 pJ,ΩMq “

´

0, CΓ,pri
0 pJq, J, Cξ,pri

0 pJq, 0,ΩM

¯

,

Csec
0 pJ,ΩMq “

´

Cη,sec
0 pJq, CΓ,sec

0 pJq, J, 0, 0,ΩM

¯

,

that parametrizes Ξ˚
0 . That is,

Ξ˚
0 “ tC˚

0 pJ,ΩMq : pJ,ΩMq P rJmin, Jmaxs ˆ Tu.

The subscript 0 in the previous structures and parameterizations indicates that we
are dealing with the coplanar case, i.e., iM “ 0.

Notice that Corollary 5.2 gives global coordinates for the cylinder rΛ0. Moreover, these
coordinates are symplectic with respect to the canonical symplectic form dΩM ^ dJ .
Indeed, Corollary 5.3 implies that at the cylinder rΛ0 one has η “ ξ “ h “ 0 and
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Γ “ GΓ
0 pJq. Then, the pullback of the canonical form dξ ^ dη ` dh^ dΓ ` dΩM ^ dJ to

rΛ0 is just dΩM ^ dJ .
Next, we consider the inner and the two scattering maps (for the primary and sec-

ondary homoclinic channels). The inner map is defined in the whole cylinder rΛ0 whereas
the scattering maps are defined in open domains of the cylinder where the associated
homoclinic channels are transverse. Since J is conserved by the inner and scattering
maps, these maps are integrable and the variables pJ,ΩMq are action-angle coordinates.
In these variables, it will be easier to later understand the effect of the inclination iM on
the inner and scattering maps.

5.2.1 The coplanar inner map

In this section we study the inner map, as introduced in (4.6), restricted to the normally
hyperbolic manifold rΛ0. In particular, the inner map F in

0 : rΛ0 Ñ rΛ0 is defined as the

Poincaré map Π0 in (5.1) restricted to the symplectic invariant manifold rΛ0. We express
F in
0 using the global coordinates pJ,ΩMq of rΛ0. Since J is an integral of motion and

9ΩM “ nΩM
, the inner map has the form of

F in
0 :

ˆ

J
ΩM

˙

ÞÑ

ˆ

J
ΩM ` nΩM

T0pJq

˙

, (5.2)

where T0pJq is the period of the periodic orbit obtained in Ansatz 5.1 on the correspond-
ing energy surface E “ ´nΩM

J .
The following lemma is a direct consequence of Ansatz 5.1 (see Figure 5).

Lemma 5.4. Assume Ansatz 5.1. The analytic symplectic inner map F in
0 defined

in (5.2) is twist, that is

BJT0pJq ă 0 for J P rJmin, Jmaxs.

In addition, there exists a unique Jres P rJmin, Jmaxs such that

nΩM
T0pJresq “ 4π.

Moreover,
nΩM

T0pJq R 2πZ for all J P rJmin, JmaxsztJresu.

This lemma is crucial to later, in Section 6.3, construct the heteroclinic connections
between different tori of the perturbed cylinder (with iM ą 0).

5.2.2 The coplanar scattering maps

In this section we study the scattering maps, as introduced in (4.7), associated to the
Poincaré map Π0 which sends rΛ0 to itself by means of the homoclinic channels Ξpri

0 and
Ξsec
0 (see Corollary 5.3). For each homoclinic channel, we denote

Fout,pri
0 : rΛ0 Ñ rΛ0, Fout,sec

0 : rΛ0 Ñ rΛ0.
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Notice the abuse of notation since the scattering maps are only defined provided J P D
pri
0

or J P Dsec0 , respectively, and not in the whole cylinder rΛ0.
The scattering map is always exact symplectic, see [16]. So, since J is preserved, the

scattering maps must be of the form

Fout,˚
0 :

ˆ

J
ΩM

˙

ÞÑ

ˆ

J
ΩM ` nΩM

ζ˚pJq

˙

, for ˚ P tpri, secu. (5.3)

The functions ζ˚ are usually called phase shift. Indeed the homoclinic orbits in Ξ˚
0 are

homoclinic to a periodic orbit. However, they are asymptotic to different trajectories
(that is, different phases) in the periodic orbit.

To compute the phase shifts ζ˚, it is convenient to deal with a flow instead of the
associated Poincaré map, because then one can rely on Melnikov Theory. However, the
outer map induced by the flow associated to the Hamiltonian (4.2) does not preserve the
section th “ 0u and, therefore, one cannot deduce the outer map associated with the
Poincaré map Π0 from that of the flow. Then, we reparameterize the flow so that its
scattering maps preserve this section. This reparameterization corresponds to identifying
the variable h with time t and is given by

dξ

ds
“

BηHCPpη,Γ, ξ, hq

BΓHCPpη,Γ, ξ, hq
,

dη

ds
“ ´

BξHCPpη,Γ, ξ, hq

BΓHCPpη,Γ, ξ, hq
,

dh

ds
“ 1,

dΓ

ds
“ ´

BhHCPpη,Γ, ξ, hq

BΓHCPpη,Γ, ξ, hq
,

dΩM

ds
“

nΩM

BΓHCPpη,Γ, ξ, hq
,
dJ

ds
“ 0.

(5.4)

Note that the right hand side of the system of equations (5.4) does not depend on ΩM. Let
pφCPts, pη,Γ, J, ξ, h,ΩMqu be the flow associated to equation (5.4) and φCPts, pη,Γ, ξ, hqu

be the flow associated with its pη,Γ, ξ, hq components. Componentwise, for the reduced
and extended phase space, it can be written as

φCPts, pη,Γ, ξ, hqu “
`

φηts, pη,Γ, ξ, hqu, φΓts, pη,Γ, ξ, hqu,

φξts, pη,Γ, ξ, hqu, h` s
˘

,

pφCPts, pη,Γ, J, ξ, h,ΩMqu “
`

φηts, pη,Γ, ξ, hqu, φΓts, pη,Γ, ξ, hqu, J,

φξts, pη,Γ, ξ, hqu, h` s,ΩM ` φΩMts, pη,Γ, ξ, hqu
˘

.

(5.5)

In addition, we denote the trajectories departing from points either in the normally
hyperbolic cylinder or in one of the homoclinic channels, respectively, as

γJpsq “ φCPts, p0,GΓ
0 pJq, 0, 0qu, χpri

J psq “ φCPts, p0, CΓ,pri
0 pJq, Cξ,pri

0 pJq, 0qu,

χsec
J psq “ φCPts, pCη,sec

0 pJq, CΓ,sec
0 pJq, 0, 0qu.

(5.6)

Lemma 5.5. Assume Ansatz 5.1. The functions ζ˚pJq involved in the definition of the
outer maps in (5.3) are given by

ζ˚pJq “ ζ˚
`pJq ´ ζ˚

´pJq.
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Figure 10: As a function of HCP ” ´nΩM
J , we show on the left nSarosζ

pripJq. Here nSaros ”

nΩM
. Note that at HCP “ 4.4472ˆ10´7 corresponding to the existence of a secondary resonance

(see Fig. 5 on the right), nSarosζ
pripJq{π « 5.61. On the right, nSarosζ

secpJq{2π for the non-
transverse values (see Table 1). The integral of Lemma 5.5 has been computed by means of the
function qags of the quadpack Fortran package.

where

ζ˚
`pJq “ ´ζ˚

´pJq “ lim
NÑ`8

N´1
ÿ

l“0

˜

ż 2πpl`1q

2πl

ds

BΓHCP ˝ χ˚
Jpsq

´ T0pJq

¸

.

In Figure 10-left, we plot the function ζpripJq for the case under study. This figure
prompts us to assume the following ansatz, which will be used in Section 6.3. Roughly
speaking it will ensure that the inner and outer maps do not have simultaneous reso-
nances at their first orders in iM.

Ansatz 5.6. For J “ Jres, the value introduced in Lemma 5.4, the function ζpri satisfies
that

ζpripJresq R πZ and BJζ
pripJresq ‰ 0,

Note that in Figure 10-left we only depict the horizontal lines at ζpri “ 2πk instead
of ζ “ πk to have a clear picture. In Figure 10-right, we plot the functions ζsecpJq for
the values of J P rJmin, Jmaxs where the primary homoclinic channel is not transverse
(see Table 1).

Proof of Lemma 5.5. Since the flow component ppφCPqΩM is of the form ΩM ` φΩM with
φΩM independent of ΩM, its behavior is given by

φΩMts, pη,Γ, ξ, hqu “ nΩM

ż s

0

ds

BΓHCP ˝ φCPts, pη,Γ, ξ, hqu
. (5.7)

First, we obtain an integral expression for the period T0pJq given in (5.2). Indeed, since
the inner map is just the 2π-time map of the flow pφCP for the components pJ,ΩMq, by
Corollary 5.3 one has that,

T0pJq “ φΩMt2π, p0,GΓ
0 pJq, 0, 0qu
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and, by (5.6) and (5.7),

T0pJq “

ż 2π

0

ds

BΓHCP ˝ γJpsq
. (5.8)

Let us now consider the primary scattering map. One has the homoclinic point

Cpri
0 pJ,ΩMq “ p0, CΓ,pri

0 pJq, J, Cξ,pri
0 pJq, 0,ΩMq P W u,1pΛ0q XW s,1pΛ0q X th “ 0u,

(see Corollaries 5.2 and 5.3). Since the pη,Γ, ξ, hq components are independent of ΩM,
this point is forward asymptotic (in the reparametrized time) to a point

Q` “
`

0,GΓ
0 pJq, J, 0, 0,ΩM ` nΩM

ζpri` pJq
˘

,

and backward asymptotic to a point

Q´ “
`

0,GΓ
0 pJq, J, 0, 0,ΩM ` nΩM

ζpri´ pJq
˘

.

The scattering map corresponds to the application Q´ ÞÑ Q` (see Definition 4.4). Then,
by the expression of the map Fout,pri

0 in (5.3), one has that

ζpripJq “ ζpri` pJq ´ ζpri´ pJq.

By the definition of ζpri` pJq, using definitions (5.6) of χpri
J , γJ and applying (5.7), one

obtains

ζpri` pJq “
1

nΩM

lim
sÑ`8

´

φΩMts, p0, CΓ,pri
0 pJq, Cξ,pri

0 , 0qu ´ φΩMts, p0,GΓ
0 pJq, 0, 0qu

¯

(5.9)

“ lim
sÑ`8

ż s

0

˜

dσ

BΓHCP ˝ χpri
J pσq

´
dσ

BΓHCP ˝ γJpσq

¸

.

Since system (5.4) is 2π-periodic in s, due to the identification of s with h, it is more
convenient to write these integrals as

ζpri` pJq “ lim
NÑ`8

ż 2πN

0

˜

ds

BΓHCP ˝ χpri
J psq

´
ds

BΓHCP ˝ γJpsq

¸

,

and, taking into account (5.8), one has that

ζpri` pJq “ lim
NÑ`8

N´1
ÿ

l“0

ż 2πpl`1q

2πl

˜

ds

BΓHCP ˝ χpri
J psq

´ T0pJq

¸

.

Let us recall that HCP is reversible with respect to Φhpη,Γ, ξ, hq “ p´η,Γ, ξ,´hq

(see (5.1.1)). Therefore, the flow satisfies φCPts, p0,Γ, ξ, 0qu “ Φh ˝φCPt´s, p0,Γ, ξ, 0qu.
Then, one can see that φΩMts, p0,Γ, ξ, 0qu “ ´φΩMt´s, p0,Γ, ξ, 0qu. As a result,

ζpri´ pJq “
1

nΩM

lim
sÑ´8

´

φΩMts, p0, CΓ,pri
0 pJq, Cξ,pri

0 , 0qu ´ φΩMts, p0,GΓ
0 pJq, 0, 0qu

¯

(5.10)

“ ´ζpri` pJq.

We proceed analogously for the secondary scattering map.
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6 Dynamics of the system with iM ą 0

In this section, we consider the Hamiltonian K in (4.1) and assume 0 ă iM ! 1. Since
we want to compare its dynamics with that of KCP (see also (4.2)), we write K as

Kpη,Γ, J, ξ, h,ΩM; iMq “ Hpη,Γ, ξ, h,ΩM; iMq ` nΩM
J

“ HCPpη,Γ, ξ, hq ` α3iMRpη,Γ, ξ, h,ΩM; iMq ` nΩM
J,

(6.1)

where HCP has been introduced in (4.3). See Appendix A.2 for the whole expression of
R.

6.1 Perturbative analysis of the inner and scattering maps

The first step is to compute perturbatively the inner and outer maps. To this end, we
apply Poincaré-Melnikov techniques. As done in the previous section (see (5.4)), we
reparameterize the flow so that the variable h becomes “time”. Namely,

dξ

ds
“

BηHpη,Γ, ξ, h,ΩM; iMq

BΓHpη,Γ, ξ, h,ΩM; iMq
,

dη

ds
“ ´

BξHpη,Γ, ξ, h,ΩM; iMq

BΓHpη,Γ, ξ, h,ΩM; iMq
,

dh

ds
“ 1,

dΓ

ds
“ ´

BhHpη,Γ, ξ, h,ΩM; iMq

BΓHpη,Γ, ξ, h,ΩM; iMq
,

dΩM

ds
“

nΩM

BΓHpη,Γ, ξ, h,ΩM; iMq

dJ

ds
“ ´α3iM

BΩM
Rpη,Γ, ξ, h,ΩM; iMq

BΓHpη,Γ, ξ, h,ΩM; iMq
.

(6.2)

This system is OpiMq-close to (5.4). Analogously, we consider the Poincaré map associ-
ated with this system,

ΠiM : Σ Ñ Σ, Σ “ th “ 0u, (6.3)

which is a OpiMq-perturbation of the map Π0 given in (5.1).
We study the system given by Hamiltonian K (see (6.1)) as a perturbation of the one

given by KCP (see (4.2)). By classical Fenichel Theory (see [23]) and Corollary 5.2, one
has that the flow associated to the Hamiltonian K has a normally hyperbolic invariant 3-
dimensional cylinder which is iM-close to the cylinder Λ0. Analogously, by Corollary 5.3,
the Poincaré map ΠiM has a normally hyperbolic invariant 2-dimensional cylinder at
section Σ.

Recall that, also by Corollary 5.3, the cylinder rΛ0 possesses two homoclinic channels
which we denote by pri and sec, which are defined for J P D˚

0 Ă rJmin, Jmaxs for ˚ P

tpri, secu. Moreover, the sets D˚
0 satisfy that Dpri0 Y Dsec0 “ rJmin, Jmaxs.

For the full model, with iM ą 0 small enough, we still have transverse homoclinic
connections but in slightly smaller domains. In order to characterize them, we define

D˚
δ “ tJ P D˚

0 : distpJ, BD˚
0q ą δu , for ˚ P tpri, secu. (6.4)

Analogously, we also define

Dδ “ rJmin ` δ, Jmax ´ δs.
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Next theorem, which is a direct consequence of the classical Fenichel theory and Corol-
lary 5.3, summarizes the perturbative context.

Theorem 6.1. Assume Ansatz 5.1. For any δ ą 0 and r ě 4, there exists i0M ą 0 such
that, for any iM P p0, i0Mq, the map ΠiM introduced in (6.3) has the following properties.

1. It has a Cr normally hyperbolic invariant manifold rΛiM,δ, which is iM-close in the

C1-topology to rΛ0. In addition, there exists a function GiM : Dδ ˆ T Ñ R3 ˆ T3 of
the form

GiMpJ,ΩMq “
`

Gη
iM

pJ,ΩMq,GΓ
iM

pJ,ΩMq, J,Gξ
iM

pJ,ΩMq, 0,ΩM

˘

,

which parameterizes the cylinder rΛiM,δ as a graph, that is

rΛiM,δ “ tGiMpJ,ΩMq : pJ,ΩMq P Dδ ˆ Tu.

2. There exists a nonvanishing Cr´1 function, aiM, such that the pull back of the

canonical form dξ^dη`dh^dΓ`dΩM ^dJ onto the cylinder rΛiM,δ is of the form

aiMpJ,ΩMqdΩM ^ dJ. (6.5)

3. The homoclinic channels obtained in Corollary 5.3 are persistent. That is, there
exist Cr functions C˚

iM
: D˚

δ ˆ T Ñ R3 ˆ T3,

C˚
iM

pJ,ΩMq “

´

Cη,˚
iM

pJ,ΩMq, CΓ,˚
iM

pJ,ΩMq, J, Cξ,˚
iM

pJ,ΩMq, 0,ΩM

¯

,

with ˚ P tpri, secu, such that the manifolds

Ξ˚
iM,δ “ tC˚

iM
pJ,ΩMq : pJ,ΩMq P D˚

δ ˆ Tu,

belong to the transverse intersections between the invariant manifolds W uprΛiM,δq

and W sprΛiM,δq. Moreover, the functions C˚
iM

are Cr regular with respect to iM and
are OpiMq to the function C˚

0 obtained in Corollary 5.3.

We can define the inner and scattering maps in the invariant cylinder rΛiM,δ given in
Theorem 6.1 as we have done in Lemmas 5.4 and 5.5, respectively, for the coplanar case
(iM “ 0). We also compute for them first order expansions. To this end, we consider
the following definition.

Definition 6.2. Let f be a 2π-periodic function in ΩM and denote by f rks its k-th
Fourier coefficient. Then, we define the set

NΩM
pfq “ tk P Z : f rks ı 0u.
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Let us recall that H “ HCP ` α3iMR (see (6.1)) and that HCP , the coplanar Hamil-
tonian, is independent of ΩM. However, the remainder R has the following harmonic
structure

Rpη,Γ, ξ, h,ΩM; iMq “R1pη,Γ, ξ, h,ΩMq ` iMR2pη,Γ, ξ, h,ΩMq ` Opi2Mq,

with
NΩM

pR1q “ t˘1u and NΩM
pR2q “ t0,˘2u.

This is a consequence of the particular formulas of R in Appendix A.2 (see equa-
tions (A.4) and (A.5)). To fix notation, we write R1 as

R1pη,Γ, ξ, h,ΩMq “ eiΩMR`
1 pη,Γ, ξ, hq ` e´iΩMR´

1 pη,Γ, ξ, hq.

Note that R´
1 “ R`

1 . We analyze the harmonic structure of all the objects involved in
the definition of the inner and scattering maps. The first step is to study the asymptotic
expansion with respect to iM of the flow associated to the vector field (6.2).

Lemma 6.3. Let ψiMts, pη,Γ, J, ξ, h,ΩMqu be the flow associated with the vector field
in (6.2) induced by the Hamiltonian K in (6.1). Then, for iM ą 0 small enough, it has
an expansion

ψiMts, pη,Γ, J, ξ, h,ΩMqu “ pφCPts, pη,Γ, J, ξ, h,ΩMqu ` iMψ1ts, pη,Γ, J, ξ, h,ΩMqu

` i2Mψ2ts, pη,Γ, J, ξ, h,ΩMqu ` Opi3Mq,

where pφCP has been introduced in (5.5) and the remaining functions satisfy that

NΩM
pψ1ts, pη,Γ, J, ξ, h,ΩMquq “ t˘1u,

NΩM
pψ2ts, pη,Γ, J, ξ, h,ΩMquq “ t0,˘2u.

The proof of this lemma is analogous to that of Lemma 3.6 in [22], and relies on
classical perturbation theory jointly with the special form of (6.2).

Lemma 6.4. Assume Ansatz 5.1. Let GiM, aiM and C˚
iM
, for ˚ P tpri, secu, be as given

in Theorem 6.1. Then, for iM ą 0 small enough, they have an asymptotic expansion of
the form

GiMpJ,ΩMq “ G0pJ,ΩMq ` iMG1pJ,ΩMq ` i2MG2pJ,ΩMq ` Opi3Mq,

aiMpJ,ΩMq “ 1 ` iMa1pJ,ΩMq ` i2Ma2pJ,ΩMq ` Opi3Mq,

C˚
iM

pJ,ΩMq “ C˚
0 pJ,ΩMq ` iMC˚

1 pJ,ΩMq ` i2MC˚
2 pJ,ΩMq ` Opi3Mq,

where G0 and C˚
0 have been introduced in Corollary 5.3 and the remaining functions

satisfy that

NΩM
pG1q “ t˘1u, NΩM

pG2q “ t0,˘2u,

NΩM
pa1q “ t˘1u, NΩM

pa2q “ t0,˘2u,

NΩM
pC˚

1 q “ t˘1u, NΩM
pC˚

2 q “ t0,˘2u,
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and that, for i “ 1, 2,

GipJ,ΩMq “
`

Gη
i pJ,ΩMq,GΓ

i pJ,ΩMq, 0,Gξ
i pJ,ΩMq, 0, 0

˘

,

C˚
i pJ,ΩMq “

`

Cη,˚
i pJ,ΩMq, CΓ,˚

i pJ,ΩMq, 0, Cξ,˚
i pJ,ΩMq, 0, 0

˘

.

Lemmas 6.3 and 6.4 allow to compute asymptotic expansions in iM ą 0 for the
inner and scattering maps of the inclined model. First, we introduce notation (see (5.6))
for the evolution of the coplanar flow for points on the normally hyperbolic invariant
cylinder rΛ0 and on the homoclinic channels Ξ˚

0 (see Corollary 5.3):

γJpsq “ φCPts, p0,GΓ
0 pJq, 0, 0qu, χpri

J psq “ φCPts, p0, CΓ,pri
0 pJq, Cξ,pri

0 pJq, 0qu,

χsec
J psq “ φCPts, pCη,sec

0 pJq, CΓ,sec
0 pJq, 0, 0qu,

rγJpsq “ φΩMts, p0,GΓ
0 pJq, 0, 0qu, rχpri

J psq “ φΩMts, p0, CΓ,pri
0 pJq, Cξ,pri

0 pJq, 0qu,

rχsec
J psq “ φΩMts, pCη,sec

0 pJq, CΓ,sec
0 pJq, 0, 0qu,

(6.6)

where φCP and φΩM have been introduced in (5.5).

Theorem 6.5. Assume Ansatz 5.1. Fix δ ą 0 and iM ą 0 small enough. The normally
hyperbolic manifold rΛiM,δ given in Theorem 6.1 of the map ΠiM (see (6.3)) has associated
inner and outer maps which are Cr (also with respect to iM) and are of the following
form.

• The inner map is of the form

F in
iM

ˆ

J
ΩM

˙

“

ˆ

J ` iMA1pJ,ΩMq ` i2MA2pJ,ΩMq ` Opi3Mq

ΩM ` nΩM

␣

T0pJq ` iMT1pJ,ΩMq ` i2MT2pJ,ΩMq ` Opi3Mq
(

˙

,

where pJ,ΩMq P Dδ ˆ T, the function T0 has been introduced in (5.2) and the
functions A1, A2, T1 and T2 satisfy that

NΩM
pA1q,NΩM

pT1q “ t˘1u, NΩM
pA2q,NΩM

pT2q “ t0,˘2u.

Moreover, A1 is of the form

A1pJ,ΩMq “ A`
1 pJqeiΩM `A´

1 pJqe´iΩM ,

where

A˘
1 pJq “ ¯iα3

ż 2π

0

R˘
1 pγJpsqq

BΓHCPpγJpsqq
e˘irγJ psqds.

• For ˚ P tpri, secu, the scattering map is of the form

Fout,˚
iM

ˆ

J
ΩM

˙

“

ˆ

J ` iMB
˚
1 pJ,ΩMq ` i2MB

˚
2 pJ,ΩMq ` Opi3Mq

ΩM ` nΩM

␣

ζ˚pJq ` iMD
˚
1 pJ,ΩMq ` i2MD

˚
2 pJ,ΩMq ` Opi3Mq

(

˙

,
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where pJ,ΩMq P D˚
δ ˆ T, the function ζ˚pJq “ ζ˚

`pJq ´ ζ˚
´pJq has been introduced

in Lemma 5.5 and the functions B˚
1 , B

˚
2 , D

˚
1 and D˚

2 satisfy that

NΩM
pB˚

1 q,NΩM
pD˚

1 q “ t˘1u, NΩM
pB˚

2 q,NΩM
pD˚

2 q “ t0,˘2u.

Moreover, the functions B˚
1 are of the form

B˚
1 pJ,ΩMq “ B˚,`

1 pJqeiΩM `B˚,´
1 pJqe´iΩM ,

where

B˚,˘
1 pJq “ ˘iα3 lim

sÑ´8

«

ż s

0

R˘
1 pχ˚

Jpσqq

BΓHCPpχ˚
Jpσqq

e˘iprχ˚
J pσq`nΩM

ζ˚
`pJqqdσ

´

ż s

0

R˘
1 pγJpσqq

BΓHCPpγJpσqq
e˘irγJ pσqdσ

ff

¯iα3 lim
sÑ`8

«

ż s

0

R˘
1 pχ˚

Jpσqq

BΓHCPpχ˚
Jpσqq

e˘iprχ˚
J pσq`nΩM

ζ˚
`pJqqdσ

´

ż s

0

R˘
1 pγJpσqq

BΓHCPpγJpσqq
e˘iprγJ pσq`2nΩM

ζ˚
`pJqqdσ

ff

.

Proof. First, we focus on the inner map. Its regularity is a consequence of the regularity
of the original flow and the regularity of the invariant cylinder (which is a consequence of
Fenichel Theory). Notice that, since it is the dynamics of the Poincaré map ΠiM (defined

in (6.3)) restricted to rΛiM,δ, it satisfies the following homological equation

ΠiM ˝ GiM “ GiM ˝ F in
iM
, (6.7)

where GiM has been introduced in Theorem 6.1. Notice that ΠiM is defined by

ΠiMpη,Γ, J, ξ, 0,ΩMq “ ψiMt2π, pη,Γ, J, ξ, 0,ΩMqu,

where ψiM is the flow associated to the vector field (6.2). Therefore, by Lemma 6.3, one
can consider the following expansion

ΠiM “ Π0 ` iMΠ1 ` i2MΠ2 ` Opi3Mq,

where,

Π0pη,Γ, J, ξ, 0,ΩMq “ pφCPt2π, pη,Γ, J, ξ, 0,ΩMqu,

Πkpη,Γ, J, ξ, 0,ΩMq “ ψkt2π, pη,Γ, J, ξ, 0,ΩMqu, k “ 1, 2.

Let us consider the following expansions of the inner map

F in
iM

“ F in
0 ` iMF in

1 ` i2MF in
2 ` Opi3Mq.
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By (6.7) and Lemma 6.4, the map F in
0 is as given in (5.2). Moreover,

Π1 ˝ G0 ` pDΠ0 ˝ G0qG1 “ G1 ˝ F in
0 ` pDG0 ˝ F in

0 qF in
1 .

and

Π2 ˝ G0 ` pDΠ1 ˝ G0qG1 `
1

2
pD2Π0 ˝ G0qGb2

1 ` pDΠ0 ˝ G0qG2

“ G2 ˝ F in
0 ` pDG1 ˝ F in

0 qF in
1 `

1

2
pD2G0 ˝ F in

0 q ` pDG0 ˝ F in
0 qF in

2 .

(6.8)

Then, by Corollary 5.3 and Lemma 6.4,

π˛tF in
1 u “ π˛tΠ1 ˝ G0 ` pDΠ0 ˝ G0qG1uu, ˛ “ J,ΩM, (6.9)

where πJ and πΩM
denote the projections onto the coordinates J and ΩM, respectively.

Since NΩM
pG1q,NΩM

pΠ1q “ t˘1u one has that NΩM
pF in

1 q “ t˘1u. Moreover, using
analogous arguments and equation (6.8), one can obtain that NΩM

pF in
2 q “ t0,˘2u.

Now it only remains to compute the formula for A1pJ,ΩMq. Indeed, by (6.9) and
taking into account that BJΠ0 “ p0, 0, 1, 0, 0, 0q, we have that

A1pJ,ΩMq “ πJtF in
1 pJ,ΩMqu “ πJtΠ1 ˝ G0u “ πJ ψ1t2π,G0pJ,ΩMqu.

Since ψiM is the flow associated to the vector field (6.2), we can apply the fundamental
theorem of calculus and the expression of R in (A.2) to obtain

πJ ψ
iMt2π,G0pJ,ΩMqu “ ´α3iM

ż 2π

0

BΩM
RpψiMts,G0pJ,ΩMqu; iMq

BΓHpψiMts,G0pJ,ΩMqu; iMq
ds

“ ´α3iM

ż 2π

0

BΩM
R1ppφCPts,G0pJ,ΩMquq

BΓHCPpφCPts,G0pJ,ΩMquq
ds` Opi2Mq.

Then, by the expression of R1 in (A.4) and of functions (6.6), one has that

A1pJ,ΩMq “ ´ iα3

ż 2π

0

R`
1 pγJpsqqeipΩM`rγJ psqq

BΓHCPpγJpsqq
ds

` iα3

ż 2π

0

R´
1 pγJpsqqe´ipΩM`rγJ psqq

BΓHCPpγJpsqq
ds.

Next, we compute the scattering maps for a fixed ˚ “ tpri, secu (see Definition 4.4).
Its regularity is proven in [17] (for regular vector fields with regular normally hyperbolic
invariant manifolds).

Let us consider points GiMpJ`,Ω`
Mq,GiMpJ´,Ω´

Mq P rΛiM,δ and C˚
iM

pJ0,Ω0
Mq P Ξ˚

iM,δ

(see Theorem 6.1) such that the unstable fiber of GiMpJ´,Ω´
Mq intersects the stable fiber

of GiMpJ`,Ω`
Mq at the point C˚

iM
pJ0,Ω0

Mq in the homoclinic channel Ξ˚
iM,δ. This implies

that
lim

sÑ˘8

ˇ

ˇψiMts,GiMpJ˘,Ω˘
Mqu ´ ψiMts, C˚

iM
pJ0,Ω0

Mqu
ˇ

ˇ “ 0, (6.10)
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where ψiM is the flow associated to the vector field (6.2). In other words, the scattering
map satisfies that pJ`,Ω`

Mq “ Fout,˚
iM

pJ´,Ω´
Mq.

The analysis of the harmonic structure can be done as for the inner map. We show
now how to compute the first order of the J-component. Recall that πJGiMpJ,ΩMq “

πJC˚
iM

pJ,ΩMq “ J . By the fundamental theorem of calculus and using (6.10), one has
that

J0 ´ J˘ “ lim
sÑ˘8

«

ż 0

s
πJBsψ

iMtσ, C˚
iM

pJ0,Ω0
Mqudσ

´

ż 0

s
πJBsψ

iMtσ,GiMpJ˘,Ω˘
Mqudσ

ff

.

Then, by (6.2),

J0 ´ J˘ “ α3iM lim
sÑ˘8

˜

ż s

0

BΩM
RpψiMtσ, C˚

iM
pJ0,Ω0

Mu; iMq

BΓHpψiMtσ, C˚
iM

pJ0,Ω0
Mqu; iMq

dσ

´

ż s

0

BΩM
RpψiMtσ,GiMpJ˘,Ω˘

Mqu; iMq

BΓHpψiMtσ,GiMpJ˘,Ω˘
Mqu; iMq

dσ

¸

and, by Lemmas 6.3, 6.4 and the expression of R in (A.2), we obtain

J0 ´ J˘ “ α3iM lim
sÑ˘8

˜

ż s

0

BΩM
R1ppφCPtσ, C˚

0 pJ0,Ω0
Mquq

BΓHCPppφCPtσ, C˚
0 pJ0,Ω0

Mquq
dσ

´

ż s

0

BΩM
R1ppφCPtσ,G0pJ˘,Ω˘

Mquq

BΓHCPppφCPtσ,G0pJ˘,Ω˘
Mquq

dσ

¸

` Opi2Mq.

Finally, by the expression of R1 in (A.4), of pφCP in (5.5) and of the functions (6.6)

J0 ´ J˘ “ iα3iM lim
sÑ˘8

˜

ż s

0

R`
1 pχ˚

J0pσqqeiΩ
0
M`irχ˚

J0 pσq
´ R´

1 pχ˚
J0pσqqe´iΩ0

M´irχ˚

J0 pσq

BΓHCPpχ˚
J0pσqq

dσ

´

ż s

0

R`
1 pγJ˘pσqqeiΩ

˘
M`irγJ˘ pσq ´ R´

1 pγJ˘pσqqe´iΩ˘
M´irγJ˘ pσq

BΓHCPpγJ˘pσqq
dσ

¸

` Opi2Mq.

Notice that, by Lemma 5.5, (5.9) and (5.10), one has that

Ω˘
M “ Ω0

M ` nΩM
ζ˚

˘pJ0q ` OpiMq,

with ζ˚
` “ ´ζ˚

´. Therefore, since J˘ “ J0 ` OpiMq, one has that

Ω0
M “ Ω´

M ` nΩM
ζ˚

`pJ´q ` OpiMq,

Ω`
M “ Ω´

M ` 2nΩM
ζ˚

`pJ´q ` OpiMq
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Figure 11: The components of A`
1 as a function of HCP (non-dimensional units).

and, as a consequence,

J` “ J´ ` pJ0 ´ J´q ´ pJ0 ´ J`q

“ J´ ` iM

´

B˚,`
1 pJ´qeiΩ

´
M `B˚,´

1 pJ´qe´iΩ´
M

¯

` Opi2Mq,

with B˚,˘
1 are the functions defined in the statement of the result.

6.2 Existence of diffusing orbits

Once we have computed the first orders in iM of both the inner and the scattering maps
(see Theorem 6.5), the next step is to construct a “drifting pseudo-orbit”. By a pseudo-
orbit, we mean a sequence of points in the cylinder obtained by applying successively
iterations of the inner map F in

iM
and the scattering maps Fout,pri

iM
and Fout,sec

iM
. By drifting,

we mean that we look for a pseudo-orbit such that its initial condition is close to the
bottom of the cylinder, i.e J „ Jmin, and that eventually it hits a neighborhood of its
top, i.e., J „ Jmax.

To construct this pseudo-orbit we rely on the following ansatz, which we verify nu-
merically. See Figures 11, 12 and 13.

Ansatz 6.6. For any δ ą 0 and ˚ P tpri, secu, the following functions of J

f˚
˘pJq “

´

e˘inΩM
T0pJq

´ 1
¯

B˚,˘
1 pJq ´

´

e˘inΩM
ζ˚pJq

´ 1
¯

A˘
1 pJq,

do not vanish in the domain D˚
δ .

The following theorem ensures the existence of a pseudo-orbit. Its proof is deferred
to Section 6.3.
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Figure 12: For ˚ P tpri, secu, we plot the real functions B˚
1,cos “ B`

1 ` B´
1 and B˚

1,sin “

ipB`
1 ´ B´

1 q as a function of HCP (non-dimensional units). Left, the ˚ “ pri case. Right, the
˚ “ sec case for the non-transverse values (see Table 1).
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Figure 13: As a function of HCP ” ´J , we show the norm of fpri` pJq in Ansatz 6.6 on the left.
The minimum value computed is 0.0014295 and corresponds to HCP “ 4.81143 ˆ 10´7. On the
right, the same norm computed for the non-transverse cases (see Table 1). The corresponding
integrals have been computed by means of the function qags of the quadpack Fortran package.

Theorem 6.7. Assume Ansätze 5.1, 5.6, 6.6. Fix ν ą 0 and δ ą 0. Then, if iM ą 0
is small enough, there exist z0 P rΛiM,δ, N P N and lm P tpri, secu, jm, km P N for
m “ 1 . . . N such that the sequence

zm “
`

F in
iM

˘jm
˝ Fout,lm

iM
˝
`

F in
iM

˘km
pzm´1q

satisfies zm P rΛiM,δ for all m “ 1 . . . N and the initial and final points z0 and zN satisfy

|πJz0 ´ Jmin| ď ν and |πJzN ´ Jmax| ď ν,

where πJ denotes the projection onto the J component.
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Moreover, in the regions

Jmin “ pJmin, Jmin ` νq ˆ T, Jmax “ pJmax ´ ν, Jmaxq ˆ T,

the inner map F in
iM

has invariant tori which are a graph over h and whose dynamics are
conjugated to rigid quasi-periodic rotation.

Once we have a pseudo-orbit, the final step to prove Theorem 2.3 is to construct a
true orbit of the Poincaré map ΠiM which shadows the pseudo-orbit, that is, which visits
small neighborhoods of the points zm of the pseudo-orbit given by Theorem 6.7. This
shadowing will rely on the following theorem by M. Gidea, R. de la Llave and T. M.
Seara in [30].

Theorem 6.8 (Lemma 3.2 in [30]). Assume that f : M Ñ M is a Cr map with r ě 4,
Λ Ă M is a normally hyperbolic invariant manifold, Γj, j “ 1 . . . N are homoclinic

channels and σj : Dj
1 Ñ Dj

2 are the associated scattering maps, where Dj
1,2 Ă Λ are open

sets. Assume that Λ and Γj are compact manifolds (possibly with boundary).
Then, for every ν ą 0, there exist functions n˚

i : Ni Ñ N and functions m˚
i :

N2i`1 ˆ Ni`1 Ñ N such that for every pseudo-orbit tyiuyě0 in Λ of the form

yi`1 “ fmi ˝ σαi ˝ fnipyiq,

with ni ě n˚
i pα0, . . . , αi´1q, mi ě m˚

i pn0, . . . , ni,m0, . . . .mi´1, α0, . . . , αiq and αi P

t1, . . . , Nu, there exists an orbit tziuiě0 of f in M such that, for all i ě 0,

zi`1 “ fmi`nipziq and dpzi, yiq ă ν.

Theorem 2.3 is a direct consequence of the following lemma.

Lemma 6.9. Assume Ansätze 5.1, 5.6, 6.6 and fix ν ą 0 small. Then, for iM ą 0 small
enough, there exist a point p0 P Σ (see (6.3)) and k1 . . . kN such that the iterates

pj “ Π
kj
iM

pp0q

satisfy that
|pj ´ GiMpzjq| ď 2ν, j “ 1 . . . N,

where tzju
N
i“0 is the pseudo-orbit obtained in Theorem 6.7 and GiM is the parameteriza-

tion of the cyilinder given in Lemma 6.1.
Moreover,

|πJp0 ´ Jmin| ď 2ν and |πJpN ´ Jmax| ď 2ν.

Proof. To prove Lemma 6.9 we have to apply Theorem 6.8. To this end, we denote by Λ
a domain of the cylinder rΛiM,δ delimited by one of the “‘top” and “bottom” invariant tori
given by Theorem 6.7. This makes Λ compact and invariant. Note that the projection
onto J of the homoclinic channels Ξ˚

iM,δ obtained in Theorem 6.1 covers the whole interval

41



rJmin ` δ, Jmax ´ δs and that one can choose compact sets inside the homoclinic channels
that still cover the same interval.

Then, to apply Theorem 6.8, it only remains to ensure that the amount of iterates
of the inner maps is large enough to fit the hypotheses of the theorem. We follow ideas
developed in [30].

Since Λ is compact and invariant by ΠiM and F in
iM

is an area preserving map, we can
use the Poincaré Recurrence Theorem to construct a pseudo-orbit which is arbitrarily
close to that of Theorem 6.7 and satisfies the hypotheses of Theorem 6.8. Indeed,
the Poincaré Recurrence Theorem assures that there exists z̃0 and k̃1 big enough such

that rQ0 :“
`

F in
iM

˘k̃1
pz̃0q is as close as necessary to Q0 :“

`

F in
iM

˘k1
pz0q. Since Fout,im

iM

is continuous, also Q1 :“ Fout,im
iM

pQ0q and rQ1 :“ Fout,im
iM

p rQ0q are as close as necessary.

Then, applying again the Poincaré Recurrence Theorem, there exists j̃1 such that z̃1 “
`

F in
iM

˘j1
pQ̃1q and z1 “

`

F in
iM

˘j1
pQ1q are close enough. We can repeat this procedure

N -times to obtain the result.

Lemma 6.9 completes the proof of Theorem 2.3. Indeed the trajectory of the secular
Hamiltonian H in (2.3) with initial condition p0 achieves the drift of energy stated in the
theorem. It only remains to prove the statements on eccentricity and inclination stated
in the theorem. To this end, it is enough to recall the estimates on the inclination and
eccentricity on the periodic and homoclinic orbits of the coplanar Hamiltonian given in
Ansatz 5.1. Then, since taking iM small enough, the shadowing orbits can be taken
arbitrarily close to these periodic and homoclinic orbits, we obtain the statements in the
theorem.

6.3 Proof of Theorem 6.7

To construct the pseudo-orbit, the first step is to compare the inner and the scattering
map obtained in Theorem 6.5. In order to do so, we apply two steps of averaging either
to the inner map or to one of the scattering maps (in some domains). These changes
of coordinates straighten the J component of one of the maps up to order Opi3Mq and
therefore it becomes straightforward to compare the “vertical jumps” of the inner and
outer maps.

Since we want to construct symplectic transformations, it is convenient to straighten
first the symplectic form given in (6.5).

Lemma 6.10. Assume Ansatz 5.1. There exists an iM-close to the identity change of
coordinates Υ : D2δ ˆ T Ñ Dδ ˆ T, pJ,ΩMq “ Υp qJ, qΩMq, which transforms the symplectic
form apJ,ΩMqdΩM ^ dJ given in (6.5) into dqΩM ^ d qJ .

In these new coordinates,

• The inner map is of the form

qF in
iM

˜

qJ
qΩM

¸

“

˜

qJ ` iMA1p qJ, qΩMq ` i2M
qA2p qJ, qΩMq ` Opi3Mq

qΩM ` nΩM

!

T0p qJq ` iM qT1p qJ, qΩMq ` i2M
qT2p qJ, qΩMq ` Opi3Mq

)

¸

,
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where p qJ, qΩiMq P D2δ ˆ T, the function T0 is the one given for the coplanar inner

map (see (5.2)), the function A1 is given in Theorem 6.5 and the functions qA2, qT1
and qT2 satisfy that

NΩM
p qA2q “ t0,˘2u, NΩM

pqT1q “ t˘1u, NΩM
pqT2q “ t0,˘2u.

• For ˚ “ tpri, secu, the scattering maps are of the form

qFout,˚
iM

˜

qJ
qΩM

¸

“

˜

qJ ` iMB
˚
1 p qJ, qΩMq ` i2M

qB˚
2 p qJ, qΩMq ` Opi3Mq

qΩM ` nΩM

!

ζ˚p qJq ` iM qD˚
1 p qJ, qΩMq ` i2M

qD˚
2 p qJ, qΩMq ` Opi3Mq

)

¸

,

where p qJ, qΩiMq P D˚
2δ ˆ T, the functions ζ˚pJq and B˚

1 are given in Lemma 5.5

and (6.5) respectively and the functions qB˚
2 ,

qD˚
1 and qD˚

2 satisfy that

NΩM
p qB˚

2 q “ t0,˘2u, NΩM
p qD˚

1 q “ t˘1u, NΩM
p qD˚

2 q “ t0,˘2u.

The proof of this lemma is analogous to that of [22, Lemma 4.1].
Now we perform an averaging procedure. The inner map has a resonance (see

Lemma 5.4) in whose neigborhood one cannot perform averaging. Then, we perform
two steps of averaging to the inner map in a domain away from the resonance. On
the contrary, in a neighborhood of the resonance we perform two steps of averaging to
straighten the primary outer map (this is possible thanks to Ansatz 5.6 which ensures
the absence of low order resonances). Taking this into account, we consider the new
domains

pD2δ “ tJ P D2δ : distpJ, Jresq ą 2δu , R5δ “ pJres ´ 5δ, Jres ` 5δq,

where Jres is the constant introduced in Lemma 5.4. Note that the two domains are
chosen so that they overlap (and they will still overlap after applying the averaging
changes of coordinates). Note that one can define analogously the domains pD˚

2δ (see
(6.4)), for ˚ P tpri, secu.

Lemma 6.11. Fix δ ą 0 and assume Ansatz 5.1. There exists a symplectic change of
variables iM-close to the identity rΥ : pD3δ ˆT Ñ pD2δ ˆT, p qJ, qΩMq “ rΥp rJ, rΩMq, such that,
in these new coordinates,

• The inner map is transformed into

rF in
iM

˜

rJ
rΩM

¸

“

˜

rJ ` Opi3Mq

rΩM ` nΩM

!

T0p rJq ` i2M
rT2p rJq ` Opi3Mq

)

¸

,

where p rJ, rΩiMq P pD3δ ˆ T and T0 is the function introduced in (5.2).
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• For ˚ P tpri, secu, the scattering maps are transformed to

rFout,˚
iM

˜

rJ
rΩM

¸

“

˜

rJ ` iM rB˚
1 p rJ, rΩMq ` Opi2Mq

rΩM ` nΩM

!

ζ˚p rJq ` OpiMq

)

¸

,

where p rJ, rΩiMq P pD˚
3δˆT, ζ˚ is given in Lemma 5.5 and rB˚

1 p rJ, rΩMq “ rB˚,`
1 p rJqei

rΩM`

rB˚,´
1 p rJqe´irΩM with

rB˚,˘
1 p rJq “ B˚,˘

1 p rJq ´A˘
1 p rJq

e˘inΩM
ζ˚p rJq

´ 1

e˘inΩM
T0p rJq

´ 1
.

Lemma 6.12. Fix δ ą 0. Assume Ansätze 5.1 and 5.6. There exists a symplectic
change of variables iM-close to the identity pΥ : R4δ ˆT Ñ R5δ ˆT, p qJ, qΩMq “ pΥp pJ, pΩMq,
such that, in these new coordinates,

• The primary scattering map is transformed to

pFout,pri
iM

˜

pJ
pΩM

¸

“

˜

pJ ` Opi3Mq

pΩM ` nΩM

!

ζprip pJq ` i2M
pDpri
2 p pJq ` Opi3Mq

)

¸

,

where p pJ, pΩiMq P pR4δ ˆ T and ζpri is given in Lemma 5.5.

• The inner map is transformed to

pF in
iM

˜

pJ
pΩM

¸

“

˜

pJ ` iM pA1p pJ, pΩMq ` Opi2Mq

pΩM ` nΩM

!

T0p pJq ` OpiMq

)

¸

,

where p pJ, pΩiMq P pR4δ ˆ T, T0 is given in (5.2) and pA1p pJ, pΩMq “ pA`
1 p pJqei

pΩM `

pA´
1 p pJqe´ipΩM with

pA˘
1 p pJq “ A˘

1 p pJq ´Bpri,˘
1 p pJq

e˘inΩM
T0p pJq

´ 1

e˘inΩM
ζprip pJq

´ 1
.

The proofs of these two lemmas are analogous to that of [22, Lemma 3.9].
Now we analyze the KAM curves that these maps possess in each of the regions. We

rely on a version of the KAM Theorem from [13] (see also [33]).

Theorem 6.13. Let f : r0, 1s ˆ T Ñ R ˆ T be an exact symplectic Cℓ map with ℓ ą 4.
Assume that f “ f0 ` εf1 where f0pI, ψq “ pI, ψ ` ApIqq, A is Cℓ, |BIApIq| ą M
and }f1}Cℓ ď 1. Then, if ε1{2M´1 “ ρ is sufficiently small, for a set of Diophantine
numbers ω with exponent θ “ 5{4, we can find 1-dimensional invariant tori which are
graph of Cℓ´3 functions uω, the motion on them is Cℓ´3 conjugate to the rotation by
ω, }uω}Cℓ´3 ď ε1{2 and these tori cover the whole annulus r0, 1s ˆ T except for a set of
measure of order M´1ε1{2.
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Lemmas 6.11 and 6.12 and Theorem 6.13 imply the following lemma.

Lemma 6.14. Fix δ ą 0 small. Then, for iM ą 0 small enough the following is satisfied.

• There exists a sequence of tori tT1,ku
N1
k“1 Ă rΛiM,δ which are invariant by the map

F in
iM

and whose dynamics are conjugated to a quasi-periodic rigid rotation such that

Fout,˚
iM

pT1,kq&T1,k`1, k “ 1 . . . N1 ´ 1,

for either ˚ “ pri or ˚ “ sec and

T1,1 Ă rJmin, Jmin ` 2δs and T1,N1 Ă rJres ´ 5δ, Jres ´ 2δs. (6.11)

• There exists a sequence of tori tT2,ku
N2
k“2 Ă rΛiM,δ which are invariant by the map

Fout,pri
iM

and whose dynamics are conjugated to a quasi-periodic rigid rotation such
that

F in
iM

pT2,kq&T2,k`1, k “ 1 . . . N2 ´ 1

and

T2,1 Ă rJres ´ 5δ, Jres ´ 2δs and T2,N2 Ă rJres ` 2δ, Jres ` 5δs.

Moreover,
T1,N1&T2,1. (6.12)

• There exists a sequence of tori tT3,ku
N3
k“1 Ă rΛiM,δ which are invariant by the map

F in
iM

and whose dynamics are conjugated to a quasi-periodic rigid rotation such that

Fout,˚
iM

pT3,kq&T3,k`1, k “ 1 . . . N3 ´ 1,

for either ˚ “ pri or ˚ “ sec and

T3,1 Ă rJres ` 2δ, Jres ` 5δs and T3,N3 Ă rJmax ´ 2δ, Jmaxs.

Moreover,
T2,N2&T3,1.

Proof. Since the proofs of the three statements follow exactly the same lines, we only
prove the first one. We prove the statement in the coordinates provided by Lemma 6.11.
Since they are OpiMq-close to the original coordinates, one can easily deduce the state-
ment for the original coordinates from that of the averaging coordinates.

By Lemma 6.11, the inner map rF in
iM

is Opi3Mq-close to integrable. Moreover, by
Lemma 5.4 the map is twist and the twist has a lower bound independent of iM. Then,
Theorem 6.13 implies that there is a sequence of invariant tori trT1,ku

N1
k“1 Ă rΛiM,δ with

quasi-periodic dynamics which satisfy (6.11) and

dist
´

rT1,k, rT1,k`1

¯

ď Ci
3{2
M k “ 1, . . . , N1 ´ 1. (6.13)
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for some C ą 0.
Let uk be such that rT1,k can be expressed as graph as J “ ukpΩMq. From the

expression of rF in
iM

in Lemma 6.11, ukpΩMq “ Jk ` Opi3Mq with Jk a constant. Then
rFout,˚
iM

prT1,kq is the graph of

wout
k`1pΩMq “ Jk ` iMB1pJk,ΩM ´ nΩM

ζ˚pJkqq ` Opi2Mq.

Therefore the intersection rFout,˚
iM

prT1,kq X rT1,k`1 is defined by the points satisfying

Jk ` iM rB˚
1

`

Jk,ΩM ´ nΩM
ζ˚pJkq

˘

“ Jk`1 ` Opi3Mq.

This condition, since by (6.13), |Jk ´ Jk`1| ď Ci
3{2
M , is equivalent to

rB˚
1

`

Jk,ΩM ´ nΩM
ζ˚pJkq

˘

“ Opi
1{2
M q.

Now, by Ansatz 6.6, the functions rB˚,˘
1 introduced in Lemma 6.11 do not vanish for

J P pD˚
δ and B˚

1 has just harmonics ˘1. Therefore one can easily show that

rB˚
1 pJ,ΩMq “ | rB˚,`

1 pJq| cospΩM ` ψpJqq, ψ “ argpB˚,`
1 pJqq

and to conclude that rFout,˚
iM

prT1,kq and rT1,k`1, for k “ 1, . . . , N1 ´ 1, intersects transver-
sally.

Finally, doing analogous arguments as the previous one, the transversality in (6.12)
is a direct consequence of Ansatz 6.6.

Then, the pseudo-orbit given in Theorem 6.7 can be easily obtained from the sequence
of tori given by Lemma 6.14. Indeed, note that the fact the tori are quasi-periodic imply
the following. Take points

P1 P Fout,˚
iM

pT1,k´1q&T1,k and P2 P Fout,˚
iM

pT1,kq&T1,k`1

Then, for any ν ą 0 arbitrarily small, there exists K such that

ˇ

ˇpF in
iM

qKpP1q ´ P2

ˇ

ˇ ď ν.

Therefore, to construct the pseudo-orbit it is enough to use that both the inner and
outer maps are regular with respect to the parameter iM.

7 Conclusions

In this work, we have shown how to model the eccentricity growth for the Galileo con-
stellation by an Arnold diffusion mechanism. To this end, we have considered the full
quadrupolar expansion of the lunar gravitational perturbation, coupled with the Earth’s
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oblateness. By assuming that the Moon lies on the ecliptic plane, the dynamical sys-
tem is autonomous and we can compute numerically the normally hyperbolic invariant
manifold stemming from the 2g ` h resonance and the associated stable and unstable
manifolds. Then, we are able to describe the full dynamics under the assumption that
the inclination of the Moon is small enough. Indeed, in this regime, the cylinder, its
dynamics and its invariant manifolds are close to those of the coplanar one. In other
words, the inner map describing the cylinder dynamics and the outer map describing the
homoclinic connections to the cylinder are first derived for the coplanar case, and then
extended to the full system by means of a perturbative approach, assuming the lunar
inclination as a small parameter. Thanks to the existence of the homoclinic connections,
we are able to concatenate invariant objects along which the eccentricity increases, on
different energy levels. There exist orbits that shadow the sequence of homoclinic orbits.
Along these orbits, for a “ 29600 km, the eccentricity can transition from 0 to 0.78 and
higher, eventually to achieve a re-entry.

The work is based on the idea that the chaotic behavior associated with the homo-
clinic connection can be exploited to jump from one energy level to the other. Although
already proposed in very recent works [11, 41], the Arnold diffusion is handled here in
a semi-analytical way, considering the full model. Possible resonance overlapings, al-
though detected in the numerical computation, are not considered as the main trigger
to get to the atmospheric reentry. As a matter of fact, in the normally hyperbolic in-
variant cylinder the resonance 2h´ ΩM plays a role. This was already mentioned in [11],
where they see that, when a “ 29600 km, both 2g` h and 2h´ ΩM resonances interact.
However, under the assumption that iM ą 0 is small, the second resonance is weak and,
in particular, it does not break up the invariant cylinder that exists along the 2g ` h
resonance. Therefore, one can apply an Arnold-like mechanism to drift along the 2g`h
resonance even in the presence of a crossing weak resonance.

The procedure developed is general and can be applied to other resonances (e.g., for
GLONASS) and other values of semi-major axis, for instance to show where to locate
initially the satellites to facilitate eventually the end-of-life phase. The same argument
can be applied also to design very stable graveyard solutions, by exploiting the dynamics
in such a way that the excursion in eccentricity along the stable and unstable manifolds
gets lower and lower (0 in the limit)10.

The analysis and the tools provided in the work lay the foundations to study the
problem with the actual value of iM. In this regard, we expect that the mechanism will
persist and that the time of diffusion will reduce, but that the second resonance could
be significant11.

10Note that at the resonances one can find stability zones associated to secondary tori and elliptic
periodic orbits. Their analysis is beyond the scope of this paper.

11See [37] for the analysis of Arnold diffusion along double (strong) resonances.
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m s Um,s
2 pϵq »

0 0 1 ´ 6C2 ` 6C4 0.762646
0 -1 ´2CS´1

`

2C4 ´ 3C2 ` 1
˘

0.364961
0 1 ´2CS

`

1 ´ 2C2
˘

0.364961

0 -2 C2S´2
`

C2 ´ 1
˘2

0.039558
0 2 C2S2 0.039558
1 0 ´3CS´1

`

2C4 ´ 3C2 ` 1
˘

0.547442
1 -1 S´2

`

4C6 ´ 9C4 ` 6C2 ´ 1
˘

0.116974
1 1 C2

`

4C2 ´ 3
˘

0.800502

1 -2 ´CS´3
`

C2 ´ 1
˘3

0.008206
1 2 ´C3S -0.190687

2 0 6C2S´2
`

C2 ´ 1
˘2

0.237353

2 -1 ´4CS´3
`

C2 ´ 1
˘3

0.032826
2 1 ´4C3S´1

`

C2 ´ 1
˘

0.762750

2 -2 S´4
`

C2 ´ 1
˘4

0.001702
2 2 C4 0.919179

Table 2: The Giacaglia function Um,s
2 pϵq for the moon perturbation (see [28]) where C “ cos ϵ

2
and S “ sin ϵ

2 and its value for ϵ “ 23.440.

A Expression of the Hamiltonian

This appendix is devoted to compute explicit computations for the perturbative term
of the Hamiltonians H1 given in (3.2) and H1 in (3.7). In Appendix A.1, we obtain
an expression for H1 in the slow-fast coordinates introduced in Section 3.1 and in Ap-
pendix A.2 an expression for H1 in the Poincaré coordinates introduced in Section 3.2.

A.1 Hamiltonian in slow-fast coordinates py, xq

In this section, we compute explicit expressions for the Hamiltonian H1 given in (3.2).
Let us recall its expression here:

H1py,Γ, x, h,ΩM; iMq “ ´
ρ1
L2

2
ÿ

m“0

2
ÿ

p“0

Dm,ppy,Γq

2
ÿ

s“0

cm,sF2,s,1piMq

ˆ

”

Um,´s
2 pϵq cos

´

ψm,p,spx, h,ΩMq

¯

` Um,s
2 pϵq cos

´

ψm,p,´spx, h,ΩMq

¯ı

,

where Dm,p “ D̃m,p ˝ ΥDel and ψm,p,s “ ψ̃m,p,s ˝ ΥDel (see (2.5), (2.6) and (3.1) for the
change of coordinates). In addition, Um,¯s

2 pϵq is the Giacaglia function given in Table 2.
Applying the corresponding change of coordinates, one obtains the expressions for

Dm,p given in Table 3. Moreover,

ψm,p,spx, h,ΩMq “ p1 ´ pqx´ p1 ´ p´mqh` s
´

ΩM ´
π

2

¯

´ y|s|π.
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m p Dm,ppy,Γq ψm,p,0

0 0 ´15
64pLyq´2py ´ Γqp3y ` Γq pL´ 2yq pL` 2yq x´ h

0 1 1
32pLyq´2py2 ´ 6Γy ´ 3Γ2q

`

5L2 ´ 12y2
˘

0
0 2 ´15

64pLyq´2py ´ Γqp3y ` Γq pL´ 2yq pL` 2yq ´x` h

1 0 15
32pLyq´2

a

py ´ Γqp3y ` Γq p3y ` Γq pL´ 2yq pL` 2yq x

1 1 ´ 3
16pLyq´2

a

py ´ Γqp3y ` ΓqpΓ ` yq
`

5L2 ´ 12y2
˘

h

1 2 ´15
32pLyq´2

a

py ´ Γqp3y ` Γq py ´ Γq pL´ 2yq pL` 2yq ´x` 2h

2 0 15
32pLyq´2 p3y ` Γq

2
pL´ 2yq pL` 2yq x` h

2 1 3
16pLyq´2py ´ Γqp3y ` Γq

`

5L2 ´ 12y2
˘

2h

2 2 15
32pLyq´2 py ´ Γq

2
pL´ 2yq pL` 2yq ´x` 3h

Table 3: Computation of the functions pDm,pqm,pPt0,1,2u and pψm,p,0qm,pPt0,1,2u for the prograde
case.

with y|s| as given in (2.7). Then,

ψm,p,0px, hq “ p1 ´ pqx´ p1 ´ p´mqh,

ψm,p,1px, h,ΩMq “ ψm,p,0px, hq ` ΩM ´ π,

ψm,p,´1px, h,ΩMq “ ψm,p,0px, hq ´ ΩM,

ψm,p,2px, h,ΩMq “ ψm,p,0px, hq ` 2ΩM ´ π,

ψm,p,´2px, h,ΩMq “ ψm,p,0px, hq ´ 2ΩM ` π.

See Table 3 for the values of ψm,p,0px, hq. Moreover, notice that for s,m P t0, 1, 2u the
constants cm,s as defined in (2.7) do not depend on s. Therefore, we denote

ĉ0 :“ c0,s “
1

2
, ĉ1 :“ c1,s “

1

3
, ĉ2 :“ c2,s “ ´

1

12
.

Applying all these expressions, one can express the Hamiltonian H1 as a series in iM.
Indeed, considering the Kaula’s inclination functions in (2.8), one has that

F2,s,1piMq “

$

’

’

&

’

’

%

´1
2 ` Opi2Mq if s “ 0,

´3
2 iM ` Opi3Mq if s “ 1,

Opi2Mq if s “ 2.

Therefore, the Hamiltonian H1 can be expressed as

H1py,Γ, x, h,ΩM; iMq “ HCP,1py,Γ, x, hq ` iMRpy,Γ, x, h,ΩM; iMq,

Rpy,Γ, x, h,ΩM; iMq “ R1py,Γ, x, h,ΩMq

` iMR2py,Γ, x, h,ΩMq ` Opi3Mq,

(A.1)
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where

HCP,1py,Γ, x, hq “
ρ1
L2

2
ÿ

m“0

2
ÿ

p“0

f0mDm,ppy,Γq cos
´

ψm,p,0px, hq

¯

,

R1py,Γ, x, h,ΩMq “ cospΩMqRcos,1py,Γ, x, hq ` sinpΩMqRsin,1py,Γ, x, hq,

Rcos,1py,Γ, x, hq “
3ρ1
2L2

2
ÿ

m“0

2
ÿ

p“0

f cosm Dm,ppy,Γq cos
´

ψm,p,0px, hq

¯

,

Rsin,1py,Γ, x, hq “
3ρ1
2L2

2
ÿ

m“0

2
ÿ

p“0

f sinm Dm,ppy,Γq sin
´

ψm,p,0px, hq

¯

,

with

f0m “ ĉmU
m,0
2 , f cosm “ ĉm

´

Um,1
2 ´ Um,´1

2

¯

, f sinm “ ĉm

´

Um,1
2 ` Um,´1

2

¯

.

In addition, the harmonics of R2 satisfy that (see Definition 6.2)

NΩM
pR2q “ t0,˘2u.

A.2 Hamiltonian in Poincaré coordinates pη, ξq

In this section, we compute explicit expressions for the Hamiltonian H1 given in (3.7).
Let us recall that

H1pη,Γ, ξ, h,ΩM; iMq “ pH1 ˝ ΥPoiqpη,Γ, ξ, h,ΩM; iMq,

with ΥPoi as given in (3.4). Following the expression in (A.1), one has that

H1pη,Γ, ξ, h,ΩM; iMq “HCP,1pη,Γ, ξ, hq ` iMRpη,Γ, ξ, h,ΩM; iMq,

Rpη,Γ, ξ, h,ΩM; iMq “R1pη,Γ, ξ, h,ΩMq

` iMR2pη,Γ, ξ, h,ΩMq ` Opi3Mq,

(A.2)

where HCP,1 “ HCP,1 ˝ ΥPoi, R1 “ R1 ˝ ΥPoi and R2 “ R2 ˝ ΥPoi. Taking into account
that the Poincaré change of coordinates satisfy that

y “
2L´ ξ2 ´ η2

4
, pL´ 2yq cosx “

ξ2 ´ η2

2
, pL´ 2yq sinx “ ξη,

one has that

HCP,1 “
ρ1
L2

2
ÿ

m“0

”

f0mDm,0pη,Γ, ξq

ˆ

ξ2 ´ η2

2
cos

`

p1 ´mqh
˘

` ξη sin
`

p1 ´mqh
˘

˙

` f0mDm,1pη,Γ, ξq
`

8L2 ` 12Lpξ2 ` η2q ´ 3pξ2 ` η2q2
˘

cospmhq

` f0mDm,2pη,Γ, ξq

ˆ

ξ2 ´ η2

2
cos

`

p1 `mqh
˘

` ξη sin
`

p1 `mqh
˘

˙

ı

,

(A.3)
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where the functions pDm,pqm,pPt0,1,2u are given in Table 4. From this explicit expres-
sion, one can easily see that the coplanar Hamiltonian HCP “ H0 ` α3HCP,1 (see (3.6)
and (A.3)) is quadratic with respect to pη, ξq “ p0, 0q. This implies the following lemma.

Lemma A.1. The Hamiltonian system given by HCPpη,Γ, ξ, hq in (4.3) has orbits of
the form pη,Γ, ξ, hq “ p0,Γptq, 0, hptqq satisfying that

9h “ BΓH0p0,Γ, 0q ` α3BΓHCP,1p0,Γ, 0, hq, 9Γ “ ´α3BhHCP,1p0,Γ, 0, hq,

where

BΓH0p0,Γ, 0q “ ´
3ρ0
4L8

pL` 2Γq,

BΓHCP,1p0,Γ, 0, hq “ ´
ρ1

8L4

´

3U0,0
2 pL` 2Γq ` 4U1,0

2

L2 ´ 4LΓ ´ 4Γ2

a

pL´ 2Γqp3L` 2Γq
cosh

´ U2,0
2 pL` 2Γq cosp2hq

¯

,

BhHCP,1p0,Γ, 0, hq “
ρ1

16L4

´

2U1,0
2

a

pL´ 2Γqp3L` 2Γqp2Γ ` Lq sinh

` U2,0
2 pL´ 2Γqp3L` 2Γq sinp2hq

¯

.

Analogously, one can proceed for R1, which can be written as

R1pη,Γ, ξ, h,ΩMq “ eiΩMR`
1 pη,Γ, ξ, hq ` e´iΩMR´

1 pη,Γ, ξ, hq, (A.4)

where

R˘
1 “

3ρ1
2L2

2
ÿ

m“0

”

f˘
mDm,0pη,Γ, ξq

ˆ

ξ2 ´ η2

2
cos

`

p1 ´mqh
˘

` ξη sin
`

p1 ´mqh
˘

˙

` f˘
mDm,1pη,Γ, ξq

`

8L2 ` 12Lpξ2 ` η2q ´ 3pξ2 ` η2q2
˘

cospmhq

` f˘
mDm,2pη,Γ, ξq

ˆ

ξ2 ´ η2

2
cos

`

p1 `mqh
˘

` ξη sin
`

p1 `mqh
˘

˙

ı

,

with

f˘
m “

ĉm
2

´

p1 ¯ iqUm,1
2 ´ p1 ˘ iqUm,´1

2

¯

.

In addition, the harmonics of R2 satisfy that

NΩM
pR2q “ t0,˘2u. (A.5)
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m p Dm,ppη,Γ, ξq

0 0 ´ 15
128L

´2p2L´Mq´2p2L´M ´ 4Γqp6L´ 3M ` 4Γqp4L´Mq

0 1 1
128L

´2p2L´Mq´2pp2L´Mq2 ´ 24p2L´MqΓ ´ 48Γ2q

0 2 ´ 15
128L

´2p2L´Mq´2p2L´M ´ 4Γqp6L´ 3M ` 4Γqp4L´Mq

1 0 15
64L

´2p2L´Mq´2
a

p2L´M ´ 4Γqp6L´ 3M ` 4Γq3{2p4L´Mq

1 1 ´ 3
64L

´2p2L´Mq´2
a

p2L´M ´ 4Γqp6L´ 3M ` 4Γqp2L´M ` 4Γq

1 2 ´15
64L

´2p2L´Mq´2p2L´M ´ 4Γq3{2
?

6L´ 3M ` 4Γp4L´Mq

2 0 15
64L

´2p2L´Mq´2p6L´ 3M ` 4Γq2p4L´Mq

2 1 3
64L

´2p2L´Mq´2p2L´M ´ 4Γqp6L´ 3M ` 4Γq

2 2 15
64L

´2p2L´Mq´2p2L´M ´ 4Γq2p4L´Mq

Table 4: Computation of the functions pDm,pqm,pPt0,1,2u with M :“ ξ2 ` η2.

References
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