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The links of a physical network cannot cross, which often forces the network layout into non-
optimal entangled states. Here we define a network fabric as a two-dimensional projection of a
network and propose the average crossing number as a measure of network entanglement. We
analytically derive the dependence of the crossing number on network density, average link length,
degree heterogeneity, and community structure and show that the predictions accurately estimate
the entanglement of both network models and of real physical networks.

Many complex networks, from the brain
[1] to the network of atoms or molecules in
materials have true physical manifestation,
hence their nodes and links cannot cross
each other. While network science offers a
series of tools to explore abstract networks
like social networks or the World Wide Web,
whose links are virtual and whose structure
is fully encoded by the adjacency matrix
Aij , lately there is a growing interest in un-
derstanding physical networks, whose lay-
out and properties are affected by the ma-
terial nature of their nodes and links [2].
Indeed, volume exclusion and non-crossing
conditions [3–5] can force such networks
into non-optimal spatial layouts which they
cannot escape, thereby creating entangled
networks. The resulting entanglement af-
fects the network’s elastic energy [5], in-
duces transitions in supercooled water [6]
and affects the mechanical response of poly-
mers [7].

Here we investigate how the network em-
bedding, defined by the detailed spatial lay-
out of its nodes and links, and the network
topology, captured by Aij , affect network
entanglement. We begin by defining a net-
work fabric as a two-dimensional projection
of a physical network. As a physical net-
work can have multiple fabrics depending on
the projection angle, inspired by knot the-
ory [8, 9], we propose the average crossing

number (ACN) [10, 11] of a physical network
as a measure of it’s entanglement. We de-
rive analytically the dependence of entangle-
ment on the network’s density, link length,
degree heterogeneity, and community struc-
ture. Finally, we show that the developed
analytical framework can predict changes in
entanglement of both network models and
real physical networks.

The fabric f is a two-dimensional projec-
tion of a physical network such that each
crossing point maintains the over and under
crossing information (Fig. 1(a)). The aver-
age crossing number (ACN) of a network is
⟨m⟩ = 1

4πr2

∫
S2 m(f)dS [10], where m(f) is

the number of crossings in the fabric f , dS
is the area form of the sphere S2 and r is the
radius of the sphere that holds the network.
In other words, ⟨m⟩ is the average number
of link intersections over all possible fabrics
(projections).

To estimate ⟨m⟩ for a given physical net-
work, we take a projection and count the
crossings in the resulting fabric using the
crossing matrix, R ∈ RL×L, whose entries
are 1 if the row-link crosses over the column-
link, −1 if the row-link crosses under the
column-link, and 0 if the two links do not
intersect (Fig. 1(b)). We then average m(f)
over multiple fabrics to estimate the average
crossing number. We find that the ACN is
self-averaging for large system sizes (see SI
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FIG. 1. (a) Three fabrics of a simple five cycle.
Each projection to a different plane results in a
different fabric with different crossings. (b) The
crossing matrix of the fabric in the left projec-
tion. Each row and column corresponds to a
link in the physical network. To calculate the
average crossing number, we average the num-
ber of crossings in each fabric. For the three
fabrics shown in the figure, the five cycle has
⟨m⟩ ≈ 2.66.

II) and it correlates with the linking among
loops (see SI I), suggesting that the crossings
in a fabric directly informs our understand-
ing of network entanglement.
For simplicity and without loss of gener-

ality, we focus on linear physical networks
(LPNs), whose links are straight lines, and
assume each link has infinitesimally small
thickness. This will allow us to focus on
the effects of the network layout and topol-
ogy on entanglement while avoiding the ef-
fects of volume. Note that any non-linear
physical network can be approximated with
a LPN by adding ghost nodes along curved
links, hence our results can be generalized
to networks with curved links.
The network layout affects the probability

that two links can cross, which we can an-
alytically calculate for random layouts (see
SI III) using Sylvester’s four point problem
[12]. However, real networks are not ran-
domly embedded but follow an optimal lay-
out, obtained by minimizing the network’s
total link length, which captures the sys-
tem’s elastic energy [4, 13–15].
The longer a link, the higher likelihood

that it will cross other links, suggesting that
the probability that each link pair will cross
must scale with the average link length ⟨l⟩

(see SI III). Because real physical networks
have widely different length scales, we nor-
malize ⟨l⟩ by the average distance between
two nodes ⟨l⟩∗ = ⟨l⟩/⟨d⟩. As random lay-
outs with higher ⟨l⟩ should have more cross-
ings than optimal layouts with minimal ⟨l⟩,
for random layouts ⟨l⟩∗ → 1 and for op-
timal layouts ⟨l⟩∗ << 1. We then write
⟨m⟩ ∼ ⟨l⟩∗mmax where mmax is the maxi-
mum number of possible link pairs and ⟨l⟩∗
scales with the probability that the pair
crosses.

In a LPN, if two links connect to the same
node, they cannot cross elsewhere. Hence,
mmax =

(
L
2

)
−
∑

i∈V (G)

(
ki

2

)
[16]. Here

the first term is the total number of link
pairs and the second term removes the pairs
which connect to the same node. We expand
this bound to (see SI III)

mmax =
L(L− 1)

2
− N

2
⟨k2⟩+ N

2
⟨k⟩, (1)

where ⟨k⟩ and ⟨k2⟩ are the moments of the
degree distribution P (k).

Real networks often present strong com-
munity structure in optimal energy layouts
[13, 17]. For spatially separated communi-
ties, links within the same community are
more likely to cross each other than they
are to cross links in different communities,
suggesting that the presence of communi-
ties reduces mmax. To capture this reduc-
tion, consider a network with C equal sized
communities where each link in the network
connects two nodes in distinct communities
with probability p. Then (1 − p)L links
only cross links within their own community
while pL links can cross any link, reducing
mmax to (see SI III)

mmax ≈ (1− p)2L2

2C
+2pL2−

∑
i

(
ki
2

)
. (2)

Combining (1) and (2), we arrive at our
key result, approximating the impact of the
network layout and topology on LPN entan-
glement. Defining ⟨m⟩∗ = ⟨m⟩/L2 as the
normalized ACN, we obtain



3

⟨m⟩∗ ∼ ⟨l⟩∗
(
(1− p)2

C
+ 2p− ⟨k2⟩

N⟨k⟩2
+

1

N⟨k⟩

)
. (3)

This result highlights the combined im-
pact of the network’s embedding and topol-
ogy on the network’s entanglement. Fur-
thermore, it helps us understand the vari-
ables which control entanglement. To test
the validity of (3), we examine separately
the role of the average link length, degree
heterogeneity, and community structure.
Average Link Length – Networks with the

same adjacency matrix Aij can have lay-
outs with different ⟨l⟩∗. To test the effect of
⟨l⟩∗ on the ACN, we generate different em-
beddings of the same network, each with a
specified average link length ⟨l⟩∗, using sim-
ulated annealing (see SI IV). We measure
the normalized ACN, ⟨m⟩∗, for each embed-
ding. As shown in Fig. 2(a), we find a linear
relationship between ⟨l⟩∗ and ⟨m⟩∗ for both
ER, BA and configuration model networks,
evidence that Eq. 3 correctly captures the
ACN’s dependence on ⟨l⟩∗ for networks with
different layouts.
Degree Heterogeneity – A remarkable fea-

ture of Eq. 3 is its dependence on ⟨k2⟩, indi-
cating the unexpected role of degree hetero-
geneity and hubs in entanglement. Indeed,
while network robustness [18, 19] and epi-
demic spreading [20] are known to depend
on ⟨k2⟩, in physical networks the role of de-
gree heterogeneity remains unknown. In-
deed, heterogeneity’s role on LPNs emerges
because links connected to a hub cannot
cross. Hence, hubs reduce the number of
possible crossings. In the extreme case of a
star network, where all nodes are connected
to a single hub, no links can cross and the
ACN is zero.
Eq. 3 predicts the effect of heterogene-

ity for different network models. Assume
each model exhibits no community struc-
ture. In regular or random regular networks
(ki = k), we have ⟨k2⟩ = ⟨k⟩2, hence as

N → ∞, ⟨m⟩ ∼ (N⟨k⟩)2 ⟨l⟩∗. In ER ran-

(b)(a)

FIG. 2. (a) The average link length for net-
works, generated by the ER, BA and configura-
tion models with N = 103 and ⟨k⟩ = 6, embed-
ded using simulated annealing and compared
with the normalized ACN. The black dashed
line corresponds to a linear fit y = 0.06x− .01.
(b) We generate networks with N = 105 and
P (k) ∼ k−γ using a hypercanonical configura-
tion model with γ = 2.01. The plot shows ⟨k2⟩
versus ⟨m⟩∗

⟨l⟩∗ and the dotted line is the analytical

prediction (3).

dom networks, ⟨k⟩ = ⟨k⟩ (1 + ⟨k⟩), thus, the
leading term becomes N(N − 1)⟨k⟩2⟨l⟩∗. In
a scale-free network with degree exponent

γ, we have ⟨k2⟩ ∼ N
1

γ−1 ; hence, ACN scales

as (N⟨k⟩)2 ⟨l⟩∗
(
1−N

4−2γ
γ−1 + 1

N⟨k⟩

)
. When

γ < 3 the second moment diverges with the
network size, resulting in a potentially sig-
nificant reduction of the ACN.

To verify the role of degree heterogeneity,
we generate networks with N = 105 using a
hypercanonical configuration model drawn
from a power-law degree distribution [21].
For each network we measure ⟨m⟩∗/⟨l⟩∗,
finding that the dependence of ⟨m⟩∗ on ⟨k2⟩
is well captured by Eq. 3 (see Fig. 2(b)).

Community Structure – Optimal network
embeddings with community structure re-
duce entanglement by forcing links into dis-
tinct communities. To test the role of com-
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munity structure on the ACN, we gener-
ate networks with C isolated, homogeneous
communities. Each link is then rewired to a
random node in the network with probabil-
ity p, representing an inter-community link.
As shown in Fig. 3, we find that when p → 0,
⟨m⟩ ∼ C−1 as predicted in Eq. 3. For p → 1,
C has no effect. For intermediate p values,
we find that ⟨m⟩ ∼ (1 − p)2C−1 + 2p offers
an excellent approximation, as predicted by
Eq. 3 (see SI III).
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FIG. 3. The normalized ACN for networks
(N = 5000) with varying degree of inter-
community connections (p). The dashed line
corresponds to the prediction of curve Eq. 3.

Taken together, we find that both degree
heterogeneity and communities reduce net-
work entanglement. To test the accuracy of
Eq. 3 as a whole, we generated networks us-
ing a variety of network models exhibiting
varying levels of degree heterogeneity and
community structure. For each network, we
predict the ACN using (3) and calculate the
true ACN numerically. We embed each net-
work with an optimal non-crossing layout
offered by an accelerated force-directed lay-
out [13] and FUEL algorithm [4] as well as
in a random layout. We estimate C with
the number of connected components. Each
network’s ACN is then predicted for p = 0
and p = 1, obtaining a range of possible
estimated ACN values. For each network
model, the prediction (3) is close to the true
ACN for both optimal and random layouts
(Fig. 4).
Finally, we repeat the above procedure for
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Neuron - (Larva Fly)
Neuron (Adult Fly)
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GNP
BA
HSCM = 2.5
HSCM = 2.1
FDL
Random

FIG. 4. The predicted ACN by Eq. 3 (verti-
cal axis) for various real datasets, the flavor
network, a BA network, an ER network, and
two hypercanonical configuration models versus
the emprically measured ACN (horizontal axis).
Each synthetic network has 1000 nodes with av-
erage degree ⟨k⟩ = 6. The black dashed line is
the diagonal. For each dataset we compute the
ACN for p = 0 and p = 1, represented by the
error bar (one for each dataset). For datasets,
the data point is for p = 1.

real physical networks (see SI VII) and for
the flavor network, a network with high het-
erogeneity and strong community structure,
using a previously published optimal layout
[13]. The number of communities C is esti-
mated by maximizing the modularity of the
network.

Again, we find a good agreement between
the predicted and true ACN (Fig. 4). Simi-
lar results hold for the normalized ACN (see
SI VIII). For neurons, tropical trees, and
the flavor network, the community structure
must be accounted for to obtain a more ac-
curate estimate. However, the other net-
works’ ACN is not affected by the commu-
nity structure.

Previous work estimated network entan-
glement using the graph linking number
(GLN) [5], whic correlates with the ACN.
Yet, the GLN has an exceptionally high
computational complexity and it is confined
to networks with loops. Indeed, for an
arbitrary network, the GLN has complex-
ity O(N2

L⟨c⟩2), where NL is the number of
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loops and ⟨c⟩ is the average loop size. Yet,
O(NL) = eN meaning the GLN complex-
ity is also O(eN ). In contrast, the complex-
ity of the ACN ifO

(
(L2 −N⟨k2⟩+N⟨k⟩)f

)
where f is the number of fabrics averaged
over. For example, in a sparse network with
N ∼ L = 20, computing the GLN takes
approximately the same time as computing
the ACN on a network with 20,000 nodes.
Finally, the ACN can be measured on net-
works without loops and can be analytically
estimated via Eq. 3 (see SI I).
Also note that degree heterogeneity re-

duces the computational complexity of the
ACN. To test this prediction, we generated
networks with degree distribution drawn
from a power law with varying degree expo-
nent γ, finding that small γ has lower com-
putational cost (see SI I).
In conclusion, we have shown how the en-

tanglement of a physical network is simulta-
neously affected by the network layout and
the network topology. While network den-
sity (N⟨k⟩)2 sets the magnitude of entangle-
ment, hubs and community structure reduce
its value.
Our results can be further improved by

examining how to measure the community
structure and estimate p using both the net-
work layout and topology, improving the
predictive power of Eq. 3. Presently Eq. 3
only offers a bounded range on the possible
ACN. Furthermore, we assumed that ⟨l⟩∗,
degree heterogeneity, and community struc-
ture are independent variables, which is not
generally true [22] (see SI III and V). Fur-
thermore, understanding the impact of de-
gree heterogeneity and community structure
on ⟨l⟩∗ will glean better insight into the full
role of network topology on the ACN.
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Ravasz, L. Magrou, B. Gămănut, , D. C.
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[20] M. Boguná, R. Pastor-Satorras, and
A. Vespignani, Physical review letters 90,
028701 (2003).

[21] I. Voitalov, P. Van der Hoorn, M. Kitsak,
F. Papadopoulos, and D. Krioukov, Physi-
cal Review Research 2, 043157 (2020).

[22] A.-L. Barabási, Z. Dezső, E. Ravasz, S.-
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Supplementary Information

I. SI I: GRAPH LINKING NUMBER

The graph linking number measures the amount of linking between cycles in the network
[5]. It suffers from high computational complexity and is only applicable to networks with
cycles. For LPNs, the computational complexity of the GLN is O(N2

L⟨c⟩2), where NL is
the number of loops and ⟨c⟩ is the average cycle length [5]. As O(NL) = eN [23], Liu
et. al. approximate NL by s(L − N + 1) where s is the number of spanning trees used, N
is the number of nodes, and L is the number of links. In contrast, the proposed ACN is
O(fmmax) which is at most O(fL2). Due to the self-averaging behavior of the ACN, we can
assume f = 1.
Additionally, we find that the average crossing number and GLN correlate for random,

regular, and heterogeneous topologies (r=0.99) making the ACN a useful substitute for
the GLN. We test this by calculating the GLN and average crossing number for lattice
networks, random networks, and BA networks with different embeddings (Fig. 5). In each
case, we observe strong correlation. However it should be noted that the GLN will not always
correlate with the ACN. For example, in trees the ACN may be very large but regardless of
the embedding, the GLN will be zero as there are no loops in the network.

(b)(a)

FIG. 5. We calculate the ACN and GLN for ER and BA networks at varying energy levels and plot
the ACN vs. GLN. We repeat this process for many iterations and plot all iterations at once. The
orange points represent one iteration. The average correlation among iterations is r = 0.99.

Because of the relationship between the second moment and mmax, we expect the sec-
ond moment to reduce the computational cost of calculating the ACN. To test this,
we generate 20 networks using a hypersoft configuration model with degree exponent
γ = 2.01, 2.1, 2.3, 2.5, 2.7 as well as a BA model where γ = 3. Each network has N = 103 and
its expected average degree is ⟨k⟩ = 6. Averaging over all networks with the same degree
exponent, we find that as γ decreases, so does the computational cost (see Fig. 6). Notably,
it is near zero for γ = 2.01 (2.86 s).
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FIG. 6. We generate networks with fixed average degree using a hypersoft configuration model
where the degree distributions are drawn from a Pareto distribution with varying degree exponents
γ. For each γ, we measure the ACN and calculate the computational cost in seconds. There is a
clear trend that as γ increases, so does the computational cost.

II. SI II: SELF-AVERAGE PROPERTY

To test whether the ACN exhibits self-averaging behavior, we generate networks (N =
101, 102, 103, 104) using an G(N, p) model, BA model, and hypercanonical configuration
model with degree distribution drawn from a power law with γ = 2.1. Each network is
first embedded optimally using an accelerated force-directed layout algorithm [13] and then
embedded randomly in a sphere (r = N1/3). We estimate the ACN for each network by
projecting F fabrics for F ∈ [1, 100]. In Fig. 7, we see that as N → ∞ we merely need one
fabric to estimate the ACN.
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FIG. 7. We estimate the ACN for G(N, p), BA and configuration model networks with P (k) ∼ k−2.1

using different numbers of fabrics for both force-directed and random layouts. The plot shows the
number of fabrics used, F , versus the ACN ⟨m⟩.

III. SI III: ESTIMATING THE NUMBER OF CROSSINGS

The total number of possible crossings is determined by the pairs of links that can cross.
Links can only cross if they are not connected to the same node. Let N be the number
of nodes, L the number of links, V (G) the set of nodes and ki the degree of node i. The
maximum number of possible crossings is bounded above by

mmax ≤
(
L

2

)
−

∑
i∈V (G)

(
ki
2

)
, (4)

where the first term counts the number of potential link pairs and the second term removes
link pairs connected to the same node. Furthermore, according to [24], ⟨m⟩max is bounded
below by

mmax ≥ 1

3

(L
2

)
−

∑
i∈V (G)

(
ki
2

) (5)

so we expect that

mmax ∼
(
L

2

)
−

∑
i∈V (G)

(
ki
2

)
. (6)
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Expanding Eq. 6 we have

mmax ∼ L(L− 1)

2
−

∑
i∈V (G)

ki(ki − 1)

2
(7)

=
L(L− 1)

2
−

∑
i∈V (G)

(
k2i
2

− ki
2

)
(8)

=
L(L− 1)

2
−

∑
i∈V (G)

k2i
2

+
∑

i∈V (G)

ki
2

(9)

=
L(L− 1)

2
− N

2
⟨k2⟩+ N

2
⟨k⟩ (10)

where ⟨k⟩ = 1
N

∑
i∈V (G) ki and ⟨k2⟩ = 1

N

∑
i∈V (G) k

2
i are the first and second moments of

the degree distribution P (k), respectively. For large L, we assume that L(L−1) ≈ L2. Thus
we can approximate Eq. 10 with

mmax ∼ 1

2

(
L2 −N⟨k2⟩+N⟨k⟩

)
. (11)

With this estimate, we can now calculate the ACN ⟨m⟩. We assume that the ACN is merely
⟨m⟩ = mmaxP (E) where P (E) is the probability that a random link pair crosses in embedding
E . Next we will derive P (E) for both random and optimal embeddings.

Random Layouts – For networks embedded randomly in a ball, we can calculate P (Erand)
using Sylvester’s Four Point Theorem. This theorem states that the probability any ran-
domly placed four points in a disk create a convex quadrilateral is 1 − 35

12π2 [12, 25, 26].
Consequently, the probability that two randomly placed line segments in a disk cross is
1
3

(
1− 35

12π2

)
. By randomly embedding a network and taking many projections, we can as-

sume that the network will have its links approximately randomly placed in a disk in each
fabric, though not fully random. Consequently, for sparse networks where L ∼ N , we expect

⟨m⟩rand ≈ 1

24

(
1− 35

12π2

)
(N⟨k⟩)2

(
1− ⟨k2⟩

N⟨k⟩2
+

1

N⟨k⟩

)
. (12)

Optimal Layouts - In optimal layouts, not all link pairs have an equal probability of cross-
ing in a fabric. In fact, force-directed layouts will separate nodes based on their community
structure [13]. To take this into account, we assume that all links within the same commu-
nity have an equal likelihood of crossing each other and that links in distinct communities
will not cross.
To calculate ⟨m⟩opt for optimal layouts, we must adjust mmax by first identifying how

many links are within communities and how many are inter-community links. Let p be the
probability that a link is an inter-community link, i.e. a link between distinct communities.

Then the number of possible link pairs within one community is
( (1−p)L

C
2

)
. Similarly, we

expect pL inter-community links. These inter-community links have the potential to cross
any of the other L− 1 links in the network. Consequently, they will contribute(

pL

2

)
+ pL (L− pL) ≈ p2L2

2
+ pL2 − p2L2 (13)

= pL2 − p2L2

2
(14)



11

possible crossings to the fabric. If p is small, then we can assume the inter-community links
contribute to pL2 potential crossings. Combining these two results, the maximum number
of crossings in an optimal layout becomes

mopt
max ∼ C

( (1−p)L
C

2

)
+ pL2 −

∑
i∈V (G)

(
ki
2

)
(15)

= C

(
(1− p)2L2

2C2

)
+ pL2 − N⟨k2⟩

2
+

N⟨k⟩
2

(16)

∼ (1− p)2L2

C
+ 2pL2 −N⟨k2⟩+N⟨k⟩. (17)

If we assume that the communities are randomly arranged in space and that each commu-
nity resembles a random embedding in its subnetwork, then we can simply use the coefficient
we found for random layouts to estimate P (Eopt). However, we must modify this coefficient
by the normalized average link length ⟨l⟩∗. This is because networks with long links have
more crossings. In random layouts, all links are statistically equivalent in length. For op-
timal layouts this may not be true. Thus we have P (Eopt) = ⟨l⟩∗P (Erand). We can then
combine P (Eopt) with Eq. 17 to get

⟨m⟩ ≈ 1

24

(
1− 35

12π2

)
⟨l⟩∗
(
(1− p)2

C
+ 2p− ⟨k2⟩

N⟨k⟩2
+

1

N⟨k⟩

)
. (18)

Note that as ⟨l⟩∗ → 1 and p → 0, Eq. 18 reduces to Eq. 12.
The assumption that P (Eopt) scales with ⟨l⟩∗ comes from [5], where it is shown that the

network’s elastic energy relates linearly with the graph linking number. In SI I we show that
the GLN and the ACN are highly correlated. Consequently, we expect that ⟨m⟩ ∼ f(⟨l⟩)∗)
where f is some linear transformation of ⟨l⟩∗ and we assume that f(⟨l⟩∗) ∼ ⟨l⟩∗P (E).
In order to arrive at this approximation we made various assumptions which do not

always hold. First, we assumed that communities are homogeneous in size. If our network
has heterogeneous communities, Equation 3 will not simplify into only terms of the number
of communities. Second, we assume that all links within each community are randomly
embedded within the community. This may not be true as the community may not have a
random link structure. We also assumed that our communities are distinct from each other
and that each node is clearly within one community. In real networks, there are overlapping
communities [17, 27]. Next, we assume that the average link length of the network affects
the probability of links interacting as a multiplicative factor. Lastly, we assume that ⟨k2⟩,
C, and ⟨l⟩∗ are all independent. This has yet to be shown analytically and may not hold for
all networks. In fact, measurements indicate the average link length may depend on C (see
Fig. 8).
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(b)(a)

FIG. 8. (a) The average link length as a function of the number of communities for a network with
p = 0.1. We see a decreasing trend. (b) The average link length as a function of the number of

communities for a network with p = 0.01. Empirically we see this follows a power-law C−1/4.

IV. SI IV: SIMULATED ANNEALING PIPELINE

To generate networks with a specified average link length ⟨l⟩, we generate a force directed
layout of a network using NeuLay-2 [13]. Then at each time step, we randomly choose a
node and alter its position by selecting a new position within some ϵ distance using a normal
distribution. We then calculate the new average link length. Using simulated annealing, we
continue this process until we arrive at a network embedding with a predefined average link
length. This network is then projected many times to calculate the ACN (see Fig. 9).

R1
R2
R3
⋮

R100

m1
m2
m3
⋮

m100

⟨m⟩

FDL Layout Layout with Specified 
Avg. Link Length

Simulated 
Annealing

100 Different 
Crossing 
Matrices

Calculate 
Crossing 
Number

Estimate 
Average 
Crossing 
Number

a)

a) b)FIG. 9. Simulated Annealing Pipeline
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V. SI V: SECOND MOMENT RELATIONSHIP WITH ENERGY IN
FORCE-DIRECTED LAYOUTS

In force directed layouts, hubs are pulled to the center of the layout in order to reduce
energy. If the hub is sufficiently large, it’s links will stretch from the center of the network
to all other points in the layout. Furthermore, a node randomly placed in a ball of radius
N1/3 will be at a distance 3

4N
1/3 from the center of the ball on average. Combining these

two facts, if the hub conglomerates the majority of the links, then the average link length
will simply be ⟨l⟩ = 3

4N
1/3.

For a tree, ⟨k2⟩ ∼ N . Thus the average length of a link connected to the hub will be
3
4 ⟨k

2⟩1/3, obtaining ⟨l⟩∗ ∼ ⟨k2⟩1/3. We see similar behavior for power-law configuration
models with sufficiently low γ (see Fig. 10(a)).
Let us assume that the normalized average link length of a force-directed layout scales

with the second moment to some power, as observed in trees. Let τ be the strength of the
dependence ⟨l⟩∗ has on the second moment, giving ⟨l⟩∗ ∼ ⟨k2⟩τ . In the case of a tree, τ = 1

3 .

Thus as ⟨k2⟩ → ∞, we have ⟨l⟩ → 1, thereby increasing the ACN.
However, if ⟨k2⟩ is sufficiently large, it will reduce the ACN (see Fig. 2(b)). By substituting

⟨k2⟩τ for ⟨l⟩, we can solve for the critical point where ⟨k2⟩ is large enough to reduce the
number of crossings:

⟨m⟩ ∼ ⟨k2⟩τ
(
(1− p)2

C−1
+ 2p− ⟨k2⟩

N⟨k⟩2
+

1

N⟨k⟩

)
. (19)

By taking the derivative with respect to ⟨k2⟩, we find

∂⟨m⟩FDL

∂⟨k2⟩
= τ⟨k2⟩τ−1

(
(1− p)2

C−1
+ 2p− ⟨k2⟩

N⟨k⟩2
+

1

N⟨k⟩

)
− ⟨k2⟩τ

N⟨k⟩2
. (20)

Setting this equal to 0 and dividing by ⟨k2⟩τ−1 we find that

⟨k2⟩
N⟨k⟩2

= τ

(
(1− p)2

C−1
+ 2p− ⟨k2⟩

N⟨k⟩2
+

1

N⟨k⟩

)
(21)

⟨k2⟩
(

τ + 1

N⟨k⟩2

)
= τ

(
(1− p)2

C−1
+ 2p+

1

N⟨k⟩

)
(22)

⟨k2⟩ = τN⟨k⟩2

τ + 1

(
(1− p)2

C−1
+ 2p+

1

N⟨k⟩

)
(23)

→ τN

(τ + 1)

(
(1− p)2

C−1
+ 2p

)
(24)

as N → ∞ and ⟨k⟩ is constant. We apply a change of variables τ = 1
ρ as we expect τ < 1.

Then we have

τ

τ + 1
=

(
1

ρ

)(
ρ

ρ+ 1

)
=

1

ρ+ 1
(25)
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implying hubs reduce entanglement only if ⟨k2⟩ > N
(ρ+1)

(
(1−p)2

C−1 + 2p
)
.

We tested our prediction using trees. We choose trees because we analytically have τ = 1
3

for p = 1. We generate a random tree and slowly rewire each edge to some hub. As we
do so, we calculate the ACN for a force directed layout and random layout. To test the
accuracy of our experiment, we plot our analytical predictions of the ACN using Equation
18 and substitute ⟨k2⟩1/3 for ⟨l⟩∗ for the force-directed layout prediction. In Fig. 10, we see
that our experiments match with our analytical expectation. Additionally, we find that the
heterogeneity of the trees reduces the ACN when ⟨k2⟩ > N

4 , in line with our measurements
(see Fig. 10(b)).

(a) (b)

FIG. 10. (a) We generate tree networks with varying second moments and two hypercanonical
configuration models with power-law degree distributions (N = 103). We plot their average link
length as a function of network heterogeneity, capturing the predicted dependence on the second
moment. (b) We generate a random tree (N = 104) and slowly rewire each edge to increase the
heterogeneity. The tree is embedded randomly and optimally. We show the normalized ACN for
each embedding along with the analytical prediction. In the optimal layout, ⟨l⟩∗ is substituted with

⟨k2⟩1/3 in the analytical prediction and the maximum ACN is marked at N
4
.
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VI. SI VI: ESTIMATING THE SCALING OF ⟨m⟩ FOR NETWORK MODELS

Regular Network – In a regular network, all nodes have degree k. Consequently, we have
⟨k⟩ = k and ⟨k2⟩ = k2. In this case, (18) becomes

⟨m⟩ ∼ (Nk)
2 ⟨l⟩∗

(
(1− p)2

C−1
+ 2p− k2

Nk2
+

1

Nk

)
(26)

= (Nk)
2 ⟨l⟩∗

(
(1− p)2

C−1
+ 2p− 1

N
+

1

Nk

)
. (27)

Random Networks (Erdős-Rényi) – In a random network we have ⟨k2⟩ = ⟨k⟩(1 + ⟨k⟩).
Thus (18) becomes

⟨m⟩ ∼ (N⟨k⟩)2 ⟨l⟩∗
(
(1− p)2

C−1
+ 2p− ⟨k⟩ (1 + ⟨k⟩)

N⟨k⟩2
+

1

N⟨k⟩

)
(28)

= (N⟨k⟩)2 ⟨l⟩∗
(
(1− p)2

C−1
+ 2p− 1 + ⟨k⟩

N⟨k⟩
+

1

N⟨k⟩

)
(29)

= (N⟨k⟩)2 ⟨l⟩∗
(
(1− p)2

C−1
+ 2p− 1

N

)
. (30)

BA Networks – In a BA network, we have ⟨k2⟩ ∼ logN . Thus (18) becomes

⟨m⟩ ∼ (N⟨k⟩)2 ⟨l⟩∗
(
(1− p)2

C−1
+ 2p− logN

N⟨k⟩2
+

1

N⟨k⟩

)
. (31)

Scale-Free Network 2 < γ < 3 – In a scale free network we expect that ⟨k2⟩ ∼ N (3−γ)/(γ−1).
In this case, (18) becomes

⟨m⟩ ∼ (N⟨k⟩)2 ⟨l⟩∗
(
(1− p)2

C−1
+ 2p− N

3−γ
γ−1

N⟨k⟩2
+

1

N⟨k⟩

)
(32)

= (N⟨k⟩)2 ⟨l⟩∗
(
(1− p)2

C−1
+ 2p− N

4−2γ
γ−1

⟨k⟩2
+

1

N⟨k⟩

)
. (33)

Scale-free Network 1 < γ < 2 – In a scale free network with diverging first and second
moment, we have that ⟨k⟩ ∼ N (2−γ)/γ and ⟨k2⟩ ∼ Nγ(1−γ)/2 [28]. In this case we have that
⟨k2⟩
⟨k⟩2 ∼ N

1
2γ

2(1−γ)/(γ−2). With this (18) becomes

⟨m⟩ ∼ N4/γ⟨l⟩∗
(
(1− p)2

C−1
+ 2p−N

1
2γ

2(1−γ)/(γ−2)−1 +N−2/γ

)
. (34)
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N ⟨k⟩ ⟨k2⟩ ⟨l⟩∗ C ⟨m⟩
Coral 4677.39 2 4.03 0.01 65.89 1.2 × 105

Trop. Tree 4474.59 2 4.62 0.03 64.59 3.2 × 104

Arad. Plant 1371.64 2 3.95 0.02 59.3 5.4 × 103

Lung Vascular 3295.94 2 4.04 0.01 56.29 2.6 × 104

Neuron (H) 1451.9 2 4.08 0.03 41.93 3.2 × 103

Hemibrain
Neuron (F)

3216.38 2 4.15 0.01 50.8 3.6 × 103

MANC
Neuron (F)

737.96 2 4.11 0.02 25.8 3.8 × 101

TABLE I. Physical network statistics of coral structures, arabidopsis plants, parts of the vascular
system of the human lung, and three neurons (human, fruit fly from the hemibrain, and fruit fly
from the male adult nerve cord (MANC)).

VII. SI VII – PHYSICAL NETWORK DATA

We collected physical network statistics describing various data systems including coral
structures, an arabidopsis plants [29], tropical trees [30], parts of the vascular system in the
human lung, and three neurons (human, fly from the hemibrain, and fly from the male adult
nerve cord (MANC)). Each dataset contains multiple networks. We present the average
network statistics for each network in Table I.
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VIII. SI VIII: NORMALIZED ACN OF REAL NETWORKS

The leading term of the ACN is the network density. To confirm that our prediction is not

merely capturing the effect of network density, we measure the normalized ACN ⟨m⟩∗ = ⟨m⟩
L2 .

Consequently, our predictions of ⟨m⟩∗ only depend on the normalized average link length
⟨l⟩∗ and the maximum number of crossings mmax. In Fig. 11(a), we see that we accurately
predict the true normalized ACN for both network models and real physical networks. In
the normalized ACN, the need to consider community structure in the neurons, tropical
trees, flavor network, and configuration network models is emphasized.
In Fig. 11(b), we show the ratio between our prediction of the ACN and the true ACN for

p = 1 and we consistently see ratio’s close to one. The network’s with ratio larger than one
are the networks where community structure should be taken into account when predicting
⟨m⟩.

(b)(a)

FIG. 11. (a) The true normalized ACN vs. the predicted normalized ACN for synthetic network
models and real datasets. The black line indicates x = x. For each dataset, we compute the
normalized ACN for p = 0 and p = 1, represented by the errorbar (one for each dataset). Each
dataset point is the prediction for p = 1. (b) The ratio between the predicted ACN and the true
ACN of each dataset.
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