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Abstract

We study the space-time nonlinear fractional stochastic heat equation driven by a
space-time white noise,

∂β
t u(t, x) = −(−∆)α/2u(t, x) + I1−β

t

[

σ(u(t, x))Ẇ (t, x)
]

, t > 0, x ∈ R,

where σ : R → R is a globally Lipschitz function and the initial condition is a measure
on R. Under some growth conditions on σ, we derive two important properties about
the moments of the solution: (i) For p > 2, the pth absolute moment of the solution to
the equation above grows exponentially with time. (ii) Moreover, the distances to the
origin of the farthest high peaks of these moments grow exactly exponentially with time.
Our results provide an extension of the work of Chen and Dalang [6] to a time-fractional
setting. We also show that condition (i) holds when we study the same equation for
x ∈ R

d.
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1 Introduction

Since their introduction in the 17th century by Isaac Newton and Gottfried Leibniz, differen-
tial equations have been used to model various phenomena. However, differential equations
of integer order have shown some limitations in the modeling of more complex phenomena.
Recently, fractional differential equations have gained popularity since they can handle such
problems. Their applications include modelling contamination of groundwater flow, the elec-
trical dynamics of the heart and the design of new materials, viscoelasticity [14]. Stochastic
partial differential equations (SPDEs) incorporate randomness in the system [13]. They gen-
eralize partial differential equations (PDEs).

In this paper, we study the space-time fractional nonlinear stochastic equation (see for a
motivation to study these type of equations, and the physical derivation of these equations in
[8] and [15])

{

∂β
t u(t, x) = −(−∆)α/2u(t, x) + I1−β

t

[
σ(u(t, x)Ẇ (t, x)

]
, t > 0, x ∈ R,

u(0, ·) = µ(·),
(1.1)

with α ∈ (0, 2], σ is a globally Lipschitz function defined on R, Ẇ denotes the space-time
white noise, −(−∆)α/2 is the fractional Laplacian. The initial datum µ is a measure satisfying

some conditions (to be specified later). ∂β
t is the Caputo fractional differential operator for

β ∈ (0, 1), defined by:

∂β
t f(t) =

1

Γ(1− β)

∫ t

0

f ′(s)

(t− s)β
ds,

and Iγt is the Riemann-Liouville fractional integral of order γ > 0, defined by

Iγt f(t) =
1

Γ(γ)

∫ t

0
(t− s)γ−1f(s)ds, for t > 0,

with the convention that I0t = Id, the identity operator.
Following Walsh [19], we interpret (1.1) in the mild sense, i.e

u(t, x) =J0(t, x) + I(t, x), where

J0(t, x) =

∫

R

G(t, x − y)µ(dy) and I(t, x) =
t∫

0

∫

R

G(t− s, x− y)σ
(
u(s, y)

)
W (ds, dy),

(1.2)

where G(·, ·) is the "heat kernel". It is known that this kernel satisfies the following bounds
for α ∈ (0, 2):

(1.3) c1

(

t−β/α ∧ tβ

|x|1+α

)

6 G(t, x) 6 c2

(

t−β/α ∧ tβ

|x|1+α

)

,

for positive constants c1 and c2 and where the upper bound is only valid for 1 < α, see for
example [11, Lemma 2.1] and the references therein.

Using a measured-valued initial data allows us to consider a wide range of initial data
including functions with rough paths like the delta Dirac function. Let M(R) be the set of
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signed Borel measures on R. Recall that by the Jordan decomposition, µ = µ+ − µ−, where
µ+, µ− are two nonnegative Borel measures with disjoint support. Then |µ| = µ+ + µ−. It
follows that the admissible set for the initial data is

Mα(R) :=
{

µ ∈ M(R) : sup
y∈R

∫

R

1

1 + |x− y|1+α
|µ|(dx) < ∞

}

, for α ∈ (1, 2].

We will also use the notation Mα,+(R) :=
{

µ ∈ Mα(R) : µ is nonnegative
}

.

Eq. (1.1) is of particular interest since it is an extension of equation (1.1) in [5, 6].
When studying Eq. (1.1), the second feature of interest, after the existence and uniqueness

of the solution, is the asymptotic properties of the solution since it displays intermittency.
Intermittency has been studied by many authors recently [5, 6, 7, 10, 12].

To describe mathematically this physical property, we define the pth upper and lower
Lyapunov exponents of the random field u := {u(t, x)}t>0, x∈R at x0, respectively as:

γp(x0) := lim sup
t→∞

1

t
logE|u(t, x0)|p

and

γ
p
(x0) := lim inf

t→∞

1

t
logE|u(t, x0)|p.

(1.4)

It is known that when the initial datum is constant, the two moments defined in (1.4) do not
depend on x0. In this case, Bertini and Cancrini [3] defined the solution u to be intermittent
if

(1.5) γp : γp = γ
p

for all p ∈ N and p 7→ γp
p

is strictly increasing.

Carmona and Molchanov [4] defined the notion of asymptotic and full intermittency as
follows: let p∗ = inf{n : γn > 0}. If p∗ < ∞, then the solution u is said to exhibit (asymptotic)
intermittency of order p∗. If p∗ = 2, it is said to exhibit full intermittency. It was also shown
that full intermittency implies the intermittency defined by Bertini and Cancrini in (1.5).
Also, following [6], the solution is said to be weakly intermittent of type I if γ

2
> 0 and weakly

intermittent of type II if γ2 > 0. Clearly, the weak intermittency of type I is stronger than the
weak intermittency of type II but weaker (expectedly!) than the full intermittency. Chen et
al. [7] and Mijena and Nane [16] showed the weak intermittency of type I for the solution of
(1.1).

This mathematical definition of intermittency is related to the property that the solutions
are close to zero in vast regions of space-time but develop high peaks on some small "islands"
[5]. In order to properly characterize the speed of propagation of these "high peaks", we recall
the upper and lower growth indices of linear type, respectively, see [5, 9] for example for more
details about these "moments".

(1.6) γ(p) := inf
{

a > 0 : lim
t→∞

1

t
sup
|x|>at

logE|u(t, x)|p < 0
}

,
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and

(1.7) γ(p) := sup
{

a > 0 : lim
t→∞

1

t
sup
|x|>at

logE|u(t, x)|p > 0
}

.

These quantities are of interest since they provide information about the possible locations
of "high peaks", and how they propagate away from the origin. In fact, if γ(p) = γ(p) := γ(p),

then there will be high peaks at time t inside
[

− γ(p)t, γ(p)t
]

, but no peaks outside of

this interval [5, 16]. It is not hard to check directly that 0 6 γ(p) 6 γ(p) 6 ∞. When
0 < γ(p) 6 γ(p) < ∞, it follows that:

(i) The solution to Eq. (1.1) has very high peaks as t → ∞, i.e weak intermittency;

(ii) The distances between the origin and the farthest high peaks grow exactly linearly in t.

Conus and Koshnevisan [9] studied Eq. (1.1) with β = 1 and proved that 0 < γ(p) 6

γ(p) < ∞ if the initial function u0 is a nonnegative, lower semicontinuous function with

compact support of positive Lebesgue measure. In particular, the authors showed that ξ2

2π 6

γ(2) 6 γ(2) 6
ξ2

2 if in addition α = 2 and σ(u) = ξu (Parabolic Anderson Model) in Eq.
(1.1).

Chen and Dalang [5], improved the existence result in [9] by working under a much weaker
condition on the initial datum, namely by letting µ be any signed Borel measure over R

such that
∫

R

e−ax2 |µ|(dx) < ∞ for all a > 0. The authors also showed that for the Parabolic

Anderson Model in this case, ξ(2) = ξ(2).

Chen and Dalang [6] considered Eq. (1.1) with β = 1 and allowed the operator −(−∆)α/2

to have some positive skewness δ. The authors defined the following growth indices of expo-
nential type:

(1.8) ξ(p) := inf
{

a > 0 : lim
t→∞

1

t
sup

|x|>exp (at)
logE|u(t, x)|p < 0

}

,

and

(1.9) ξ(p) := sup
{

a > 0 : lim
t→∞

1

t
sup

|x|>exp (at)
logE|u(t, x)|p > 0

}

.

In this case, the authors showed that for the quantities in (1.8) and (1.9), 0 < ξ(p) 6

ξ(p) < ∞ if the initial datum has sufficiently rapid decay at ±∞.
In this paper, we assume that α ∈ (1, 2) in Eq. (1.1), i.e the underlying process has both

positive and negative jumps. We show that for all p > 2, ξ(p) < ∞ if the initial datum has
sufficiently rapid decay at ±∞, see Corollary 2.2. On the other hand, we also prove that if
µ ∈ Ma,+(R), µ 6= 0 then ξ(p) > 0 for all p > 2 and provided that the growth condition
(1.10) (specified below) is satisfied, see Theorem 2.3. Our results provide an extension of the
results in [6]( with δ = 0).

Next, we assume that the function σ : R → R is globally Lipschitz with Lipschitz constant
Lipσ > 0. As aforementioned, the following growth conditions are needed in our calculations:
assume there are some constants lσ, Lσ, ς and ς such that
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(1.10) σ(x)2 > l2σ(ς
2 + x2), for all x ∈ R.

and

(1.11) σ(x)2 6 L2
σ(ς

2 + x2), for all x ∈ R.

Note that these growth conditions are direct consequences of the Lipschitz continuity of the
function σ.

The rest of the article is structured as follows: we state our main results in section 2.In
section 3 we state and prove some technical results needed for the proofs of our main results.
We then prove our main results in section 4. In section 5, we state and prove extension of
our results to higher spatial dimensions (d > 1). The article concludes with an appendix in
section 6 where some useful results from other authors are compiled. Throughout this paper,
the letter c in upper or lower case, with or without a subscript or superscript is a constant
whose exact value may not be of great importance for our results. Also, ” ⋆ ” represents the
convolution in both the time and space variables, while ” ∗ ” represents the convolution in a
single variable, for example the space (or time) variable.

2 Main Results

The following Theorems and corollary extend [6, Theorem 3.6] with δ = 0 to the corresponding
space-time fractional stochastic heat equation. All these results are proven in section 4.

Theorem 2.1. Suppose 1 < α < 2 and σ satisfies Eq. (1.11) with ς̄ = 0. If

(2.1)

∫

R

|µ|(dy)(1 + |y|η) < ∞

for some η > 0, then there are positive constants C < ∞ and b = min(η, 2) such that for all
(t, x) ∈ [1,∞)× R,

(2.2) |J0(t, x)| 6 |Jα,β(t, x)| 6 C
(
1 + tβ/α

)
(1 + |x|)−b,

where Jα,β := Gα,β ⋆ µ and Gα,β is defined in (3.5).

Corollary 2.2. Assume the conditions of Theorem 2.1 hold, then

(2.3) ξ̄(p) 6
c2
b

< ∞.

for some positive constant c2.

Theorem 2.3. Suppose that α ∈ (1, 2] and σ satisfy the growth condition (1.10). For all
µ ∈ Mα,+(R), µ 6= 0 and for all p > 2, if ς = 0, then

(2.4) ξ(p) >
Ψ

1

1−β/α

2(α+ 1)
> 0,

where Ψ is constant depending on α, β, and lσ.
For these µ, if ς = 0 and µ(dx) = f(x)dx with f(x) > c for all x ∈ R or if ς 6= 0, then

ξ(p) = ξ̄(p) = +∞. In particular, γ(p) = γ̄(p) = +∞.
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3 Preliminaries

Let W =
{
Wt(A) : A ∈ Bb(R), t > 0

}
be a space-time white noise defined on a complete

probability space (Ω,F , P ), where Bb(R) is the collection of Borel sets with finite Lebesgue

measure. Let Ft = σ
(

Ws(A) : 0 6 s 6 t, A ∈ Bb(R)
)

∨ N , t > 0, be the natural filtration

augmented by the σ-field generated by all P -null sets in F . Then W is martingale measure,
and the integral

∫∫

[0,t]×R

X(s, y)W (ds, dy) is well-defined in the Walsh sense [19] for a suitable

class of random fields
{
X(s, y), (s, y) ∈ R+ × R

}
. We will also use the notation ‖ · ‖p for the

Lp(Ω)−norm for p > 1.

The following definition provides an interpretation of the solution to our main problem.

Definition 3.1. Following [6], a random filed u := {u(t, x)}t>0, x∈R is called a solution of
(1.1) if the following conditions hold:

1. u is adapted, i.e, for all (t, x) ∈ R
∗
+ × R, u(t, x) ∈ Ft;

2. u is jointly measurable with respect to B(R∗
+ × R)×F ;

3. for all (t, x) ∈ R
∗
+ × R, the following space-time convolution is finite:

(

G2 ⋆ ‖σ(u)‖22
)

(t, x) :=
t∫

0

ds
∫

R

dy G2(t− s, x− y)‖σ
(
u(s, y)

)
‖22 < ∞.

4. the function I : R
∗
+ × R → L2(Ω) is continuous;

5. u satisfies (1.2) for all (t, x) ∈ R
∗
+ × R.

The existencee and uniqueness of such solution are all proved in [7, Theorem 3.2], therefore
we do not replicate these results here. Instead we focus on proving that the inequality,
0 < ξ(p) 6 ξ(p) < ∞, holds. To this aim, we need to introduce some kernel functions. For all
(t, x) ∈ R

∗
+ × R, n ∈ N and λ ∈ R, define,

L0(t, x) := G2(t, x),

(3.1) Ln(t, x) := (L0 ⋆ · · · ⋆ L0
︸ ︷︷ ︸

n factors of L0

)(t, x), for n > 1,

and,

(3.2) K(t, x;λ) :=

∞∑

n=0

λ2(n+1)Ln(t, x).

The following variations of the kernel functions K will also be used.

K(t, x) := K(t, x;λ) K(t, x) := K(t, x;Lσ),

K(t, x) := K(t, x; lσ) K̂(t, x) := K(t, x; 4
√
pLσ), for p > 2.

(3.3)
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The moment bounds of the solution of Eq. (1.1), see [7, (3.3) and (3.4)], depend heavily
on the kernels defined above in (3.3). To use them, we need good estimates on the kernel
function K. Due to the fractional time-derivative, the "heat kernel" G lacks several important
properties including the Chapman-Kolmogorov identity (semigroup property). We therefore
introduce additional kernel functions that display the semi-group property or at least some
restrictive form of it (like sub-semigroup property or sup-semigroup property). Define the
reference kernel functions:

(3.4) Gα,β(t, x) :=
C1,αt

β

(
t2β/α + x2

) 1+α
2

for α ∈ (0, 2) and β ∈ (0, 1)

and,

(3.5) Gα,β(t, x) :=
C1t

β/α

t2β/α + x2
for α ∈ (0, 2) and β ∈ (0, 1),

where C1,α and C1 are understood to be normalizing constants.
For example,

(3.6) C1,α :=
Γ(α/2 + 1/2)

Γ(α/2)Γ(1/2)
and C1 :=

1

π
.

It is easy to verify directly that, for 1 6 α,

(3.7) G(t, x) 6 Gα,β(t, x) 6
C1,α

C1

Gα,β(t, x).

The proofs of our main results require some technical results and will be provided in
Section 4. The next four results are needed to prove Theorem 2.3.

Lemma 3.2. For all x ∈ R and t > 0,

(3.8) G(t, x) > C̃Gα,β(t, x)

for some positive constant C̃.

Proof. Using the scaling property of G and Gα,β , we have

inf
(t,x)∈R∗

+
×Rd

G(t,x)
G
α,β

(t,x) = inf
y∈R

G(1,y)
G
α,β

(1,y) .

Recall from (1.3) that G(t, x) > c1

(

t−β/α ∧ tβ

|x|1+α

)

for some positive constant c1. We

consider two cases.
Case 1: |y| > 1. In this case,

G(1, y)

Gα,β(1, y)
> C̃1

(1 + |y|2) 1+α
2

|y|1+α
> C̃2.

Case 2: |y| 6 1. Then G(1,y)
G
α,β

(1,y) > c̃1
(
1 + |y|2

) 1+α
2 > c̃2.

It follows that in both cases, we have inf
y∈R

G(1,y)
G
α,β

(1,y) > 0 and this concludes the proof.
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The next Lemma provides some lower bound estimates on the reference kernel function
Gα,β. They will be used in the proof of our second main result.

Lemma 3.3. 1. For all t > 0, Gα,β(t, x− y) > 2−(1+α)C−1
1,αt

β/αGα,β(t, x)Gα,β(t, y).

2. For t > 0 and z ∈ R, F
[
G2
α,β(t, ·)

]
(z) > C2

1,αCα+1/2t
−β/α exp

(
− tβ/α|z|

)
, where Cα+1/2

is the constant defined in Lemma 6.1.

3. For all t > s > 0 and x ∈ R, we have
(

G2
α,β(t− s, ·) ∗ G2

α,β(s, ·)
)

(x) >
C2

1,αC
2
α+1/2

22α+3π
(st)−β/α(t− s)β/αG2

α,β(t− s, x).

4. For t > r > t/2 > 0, we have Gα,β(r, x) > 2−β(1+1/α)(t/r)β/αGα,β(t, x).

Proof. 1. Note that for all a, b ∈ R, 1+ (a− b)2 6 1+ 2a2 +2b2 6 (1+ 2a2)(1+ 2b2). Thus

Gα,β(t, x− y) =
C1,αt

β

[
t2β/α + (x− y)2

](1+α)/2

=
C1,αt

−β/α

(

1 +
[
t−β/α(x− y)

]2
)(1+α)/2

>
C1,αt

−β/α

(
[

1 +
(
t−β/α

√
2x
)2
][

1 +
(
t−β/α

√
2y
)2
]
)(1+α)/2

=C−1
1,αt

β/αGα,β(t,
√
2x)Gα,β(t,

√
2y).

Now

Gα,β(t,
√
2x) =

C1,αt
−β/α

2
1+α
2

[

2−1 +
(
t−β/αx

)2
](1+α)/2

> 2−
1+α
2 Gα,β(t, x).

Therefore,
Gα,β(t, x− y) > C−1

1,α2
−(1+α)tβ/αGα,β(t, x)Gα,β(t, y).

2. Apply Lemma 6.1 with ν = α+ 1/2 and b = tβ/α.

3. By part 1. of this Lemma, we have

(

G2
α,β(t− s, ·) ∗ G2

α,β(s, ·)
)

(x) > C−2
1,α2

−2(1+α)(t− s)2β/αG2
α,β(t− s, x)

∫

R

G2
α,β(t− s, y)G2

α,β(s, y)dy.
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Now using Plancherel’s identity and part 2. of this Lemma, we have,

∫

R

G2
α,β(t− s, y)G2

α,β(s, y)dy >
C4
1,αC

2
α+1/2

2π

∫

R

[

s(t− s)
]−β/α

exp
[

−
(
(t− s)β/α + sβ/α

)
|z|
]

dz

=
C4
1,αC

2
α+1/2

2π

[
s(t− s)

]−β/α 2

(t− s)β/α + sβ/α

>
C4
1,αC

2
α+1/2

2π

[
s(t− s)

]−β/α
t−β/α.

4. For t > r > t/2 > 0, we have

Gα,β(r, x) =C1,αr
−β/α

(

1 +
x2

r2β/α

)−(1+α)/2

>
C1,αr

−β/αtβ(1+1/α)

2β(1+1/α)

(

(t/2)2β/α + x2
)−(1+α)/2

>
1

2β(1+1/α)
r−β/αtβ/αGα,β(t, x).

This concludes the proof.

Lemma 3.4. Suppose α ∈ (1, 2] and µ ∈ Mα,+(R), µ 6= 0. Then for all ǫ > 0, there exists a
positive constant C# := C#(α, β) such that for all t > 0 and x ∈ R,

(3.9) J0(t, x) =
(

G(t, ·) ∗ µ
)

(x) > C#1{t>ǫ}Gα,β(t, x).

Proof. Combining Lemma 3.2 and Lemma 3.3 (1), we get

J0(t, x) >C̃

∫

R

Gα,β(t, x− y)µ(dy)

>C̃1t
β/αGα,β(t, x)

∫

R

Gα,β(t, y)µ(dy)

=C̃2Gα,β(t, x)

∫

R

(

1 +
y2

t2β/α

)−(1+α)/2

µ(dy).

Note that the integrand above is non-decreasing with respect with t. Therefore,

J0(t, x) >C̃31{t>ǫ}(t)Gα,β(t, x)

∫

R

(

1 +
y2

ǫ2β/α

)−(1+α)/2

µ(dy)

=C̃41{t>ǫ}(t)ǫ
β/αGα,β(t, x)

∫

R

Gα,β(ǫ, y)µ(dy).
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Since the function y 7→ Gα,β(ǫ, y) is strictly positive and by the choice of µ, it is clear that the
integral above is positive. Thus, the relation (5.12) follows by taking

C# := C̃4ǫ
β/α

∫

R

Gα,β(ǫ, y)µ(dy).

Proposition 3.5. Let α ∈ (1, 2]. Then for all t > 0 and x ∈ R,

(3.10) K(t, x) > C⋆G2
α,β(t, x)E1− β

α
,1− β

α

[

Ψt1−
β
α

]

,

where Ψ := Ψ(α, β, λ) > 0.

In particular, for all t > 0 and x ∈ R,

(3.11)
(
1 ⋆K

)
(t, x) > C◦t

1− β
αE

1− β
α
,2− β

α

[

Ψt1−
β
α

]

.

Here, C∗, and Co are all positive constants depending on α and β.

Proof. Denote the n−fold convolution product
(

G2
α,β

)⋆n
(t, x) :=

(

G2
α,β ⋆ · · · ⋆ G2

α,β
︸ ︷︷ ︸

n factors of G2

α,β

)

(t, x).

By the definition of K and the estimate (3.8),

(3.12) K(t, x;λ) =

∞∑

n=0

(

λ2G2
)⋆(n+1)

(t, x) >

∞∑

n=0

(

λ2C̃2G2
α,β

)⋆(n+1)
(t, x).

We now find a lower bound for the term
(

λ2G2
α,β

)⋆(n+1)
(t, x).

Claim:

(3.13)
(

λ2G2
α,β

)⋆(n+1)
(t, x) >

Ξn
α,βλ

2(n+1)Γ(1− β/α)n+1

Γ
(
(n+ 1)(1 − β/α)

) tn(1−β/α)G2
α,β(t, x) for all n > 0,

where Ξα,β := 2−2
(
α+β(1+1/α)+2

)

π−1C2
1,αC

2
α+1/2 is a positive constant.

We proceed by induction. The case n = 0 is straightforward. So consider n > 1 and
assume by induction that (3.13) holds for n − 1. Combining the induction hypothesis with
Lemma 3.3 (3), we get

(

λ2G2
α,β

)⋆(n+1)
(t, x) >

Ξn−1
α,β λ2(n+1)Γ(1− β/α)n

Γ
(
n(1− β/α)

)

t∫

0

(t− s)(n−1)(1−β/α)
(

G2
α,β(t− s, ·) ∗ G2

α,β(s, ·)
)

(x)ds

> Υnt
−β/α

t∫

0

G2
α,β(t− s, x)(t− s)(n−1)(1−β/α)+2β/α

[

s(t− s)
]−β/α

ds,
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where

Υn :=
Ξn−1
α,β λ2(n+1)Γ(1− β/α)n

Γ
(
n(1− β/α)

) ·
C2
1C

2
α+1/2

22α+3π
.

Now, if 0 6 s 6 t/2, then t− s > t/2. Thus, we can apply Lemma 3.3 (4) to see that

(

λ2G2
α,β

)⋆(n+1)
(t, x) > Υn2

−2β(1+1/α)tβ/αG2
α,β(t, x)

t/2∫

0

(t− s)(n−1)(1−β/α)
[

s(t− s)
]−β/α

ds.

Since t− s > s for 0 6 s 6 t/2, we get

(

λ2G2
α,β

)⋆(n+1)
(t, x) > Υn2

−2β(1+1/α)tβ/αG2
α,β(t, x)

t/2∫

0

s(n−1)(1−β/α)
[

s(t− s)
]−β/α

ds.

Thus,

(

λ2G2
α,β

)⋆(n+1)
(t, x) > Υn2

−2β(1+1/α)−1tβ/αG2
α,β(t, x)

t∫

0

s(n−1)(1−β/α)
[

s(t− s)
]−β/α

ds.

Finally, applying the definition of Euler’s Beta integral, see Eq. (6.5), proves the claim.

Therefore,

K(t, x;λ) > C̃2λ2Γ(1− β/α)G2
α,β(t, x)

∞∑

n=0

(

Ξα,βC̃
2λ2Γ

(
1− β/α

)
t1−β/α

)n

Γ
(
(n+ 1)(1 − β/α)

)

> C̃2λ2Γ(1− β/α)G2
α,β(t, x)E1− β

α
, 1− β

α

(

Ξα,βλ
2C̃2Γ(1− β/α)t1−β/α

)

.

Thus the estimate (3.10) follows by setting

(3.14) Ψ := Ξα,βC̃
2λ2Γ(1− β/α) and C∗ := λ2Γ(1− β/α)C̃2.

As for (3.11), using (3.10), we get

(

1 ⋆K
)

(t, x) =

t∫

0

∫

R

K(s, y)dyds

>C

t∫

0

E
1− β

α
, 1− β

α

(

Ψs1−β/α
)∫

R

G2
α,β(s, y)dyds.

Now,

∫

R

G2
α,β(s, y)dy = C2

1,αs
−β/α2

∞∫

0

1

(1 + z2)(1+α)
dz

= C2,αs
−β/α.

Finally, using Eq. (6.3), we conclude the proof.
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The next lemma is crucial in the proof of Corollary 2.2.

Lemma 3.6. Suppose 1 < α 6 2 and µ ∈ M(R). Then

1. J0(t, x) =
(

G(t, ·) ∗ µ
)

(x) ∈ C∞
(
R+

∗ × R
)
.

2. For all compact sets K ⊂ R+
∗ × R and ν ∈ R,

(3.15) sup
(t,x)∈K

([
ν2 + J2

0

]
⋆K
)

(t, x) < ∞.

In fact, for all (t, x) ∈ R+
∗ × R,

(3.16)
(

J2
0 ⋆K

)

(t, x) 6 C(t ∨ 1)βt1−β/α
[
t−β/α + ec2t

]∣
∣Jα.β(t, x)

∣
∣

where Jα,β := Gα,β ∗ µ and for some positive constants C and c2.

Proof. Part 1. and (3.15) follow from [7]. So we only provide the proof of of the estimate
(3.16).

Recall from [7, Theorem 3.4 (1)] that

K(t, x;λ) 6 C1Gα,β(t, x)
(

t−β/α + ec2t
)

,

and from [7, P. 5103] that

(3.17) J0(s, y) 6 C2s
−β/α(1 ∨ t)β , for s ∈ (0, t].

It follows that

(

J2
0 ⋆K

)

(t, x) 6C3

∫ t

0
ds
[

(t− s)−β/α + ec2(t−s)
] ∫

R

dy Gα,β(t− s, x− y)

× s−β/α(1 ∨ t)β

∣
∣
∣
∣
∣

∫

R

µ(dz)G(s, y − z)

∣
∣
∣
∣
∣
.

Now, integrating over dy, combining the estimate (3.7) with the sub-semigroup property of
Gα,β, see the relation (5.14) in [7] for example, and at last integrating over µ(dy), we get:

(

J2
0 ⋆K

)

(t, x) 6C4(t ∨ 1)β
∣
∣Jα,β(t, x)

∣
∣

∫ t

0
s−β/α

[

(t− s)−β/α + ec2(t−s)
]

ds

6C5(t ∨ 1)βt1−β/α
(

t−β/α + ec2t
)∣
∣Jα,β(t, x)

∣
∣,

where C5 is a positive constant depending on α and β.

With all the necessary tools at our disposal, we are now ready to prove our main results.
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4 Proofs of the main results

Proof of Theorem 2.1. The proof follows similar ideas from [6]. Assume (2.1) holds for some
η > 0. We consider two cases here.

Case 1: 0 < η < 2.

Using (3.5), we have

|Jα,β(t, x)| 6
∫

R

C1(1 + tβ/α)

1 + |x− y|2 |µ|(dy)

6C2(1 + tβ/α) sup
y∈R

[

(1 + |y|)
(
1 + |x− y|

)2/η
]−η

.

Note that υ = 2/η > 1 and (1 + |x − y|υ)(1 + |y|) > 1 + |x − y|υ + |y|. Thus, using Lemma
6.2, it follows that

|Jα,β(t, x)| 6 C3(1 + tβ/α) 1
1+|x|η .

Case 2: η > 2.

Observe that

|Jα,β(t, x)| 6
∫

R

Gα,β(t, x− y)
(
1 + |x− y|2

)

1 + |x− y|2 |µ|(dy).

Next, it is not hard to see from Eq. (3.5) that

Gα,β(t, x− y)
(
1 + |x− y|2

)
6 Ctβ/α.

Now, set ω = η/2 > 1. Note that

(

1 + |x− y|2
)(

1 + |y|2ω
)

>
1

2

(

1 + |x− y|2 + |y|2ω
)

>cω

(

1 + |x− y|2 + |y|2
)

>Cω

(

1 + |x|2
)

for some constant Cω > 0. It follows that for all t > 1 and x ∈ R,

|Jα,β(t, x)| 6C4t
β/α

∫

R

(1 + |y|η)
(1 + |x− y|2)(1 + |y|2ω) |µ|(dy)

6C5
tβ/α

(1 + |x|2)(1+α)/2

∫

R

(1 + |y|η)|µ|(dy)

6C6
1 + tβ/α

(1 + |x|)2 .

This concludes the proof.
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Proof of Corollary 2.2. Pick p > 2. Using Lemma 3.6 with t > 1 yields

(

J2
0 ⋆ K̂

)

(t, x) 6 Ct1+β(1−1/α)
(

t−β/α + ec2t
)∣
∣Jα,β(t, x)

∣
∣.

For a, b > 0 and using (2.2), we have

lim
t→∞

1

t
sup

|x|>exp(at)
log ‖u(t, x)‖2p = lim

t→∞

1

t
sup

|x|>exp(at)
log
(

J2
0 ⋆ K̂

)

(t, x)

6c2 − ab.

Now, c2 − ab < 0 if and only if a > c2
b . Thus,

(4.1) ξ̄(p) := inf
{

a > 0 : lim
t→∞

1

t
sup

|x|>exp(at)
logE

∣
∣u(t, x)

∣
∣p < 0

}

6
c2
b

< ∞.

Proof of Theorem 2.3. Since ξ(p) > ξ(2) for all p > 2, it is enough to consider only the case
p = 2.

To this aim, fix ǫ ∈ (0, t/2) and choose a positive constant C# as in Lemma 3.4 such that

J0(t, x) > C#1{t>ǫ}Gα,β(t, x) := Iǫ(t, x).

By [7, (3.4)],

‖u(t, x)‖22 > J2
0 (t, x) +

(

J2
0 ⋆K

)

(t, x) >
(

I2ǫ ⋆K
)

(t, x).

Now, applying Proposition 3.5 and Lemma 3.3 (3), we get

(

I2ǫ ⋆K
)

(t, x) > Ĉ1

t−ǫ∫

0

ds E
1− β

α
, 1− β

α

(
Ψs1−β/α

)
∫

R

dy G2
α,β(t− s, x− y)G2

α,β(s, y)

> Ĉ2t
−β/α

t−ǫ∫

0

E
1− β

α
, 1− β

α

(
Ψs1−β/α

)
s−β/α(t− s)β/αG2

α,β(t− s, x)ds.

Since Gα,β(t− s, x) >
(
t−s
t

)βGα,β(t, x), it follows that

(

I2ǫ ⋆K
)

(t, x) > Ĉ3t
−β(2+1/α)G2

α,β(t, x)

t−ǫ∫

0

E
1− β

α
, 1− β

α

(
Ψs1−β/α

)
s−β/α(t− s)β(2+1/α)ds

> Ĉ4t
−β(2+1/α)G2

α,β(t, x)E1− β
α
, 1− β

α

(

Ψ(t− 2ǫ)1−β/α
)

t−ǫ∫

t−2ǫ

s−β/α(t− s)β(2+1/α)ds

> Ĉ5t
−β(2+1/α)G2

α,β(t, x)E1− β
α
, 1− β

α

(

Ψ(t− 2ǫ)1−β/α
) ǫβ(2+1/α)

(t− ǫ)β/α
ǫ

= Cǫt
−β(2+1/α)(t− ǫ)−β/αG2

α,β(t, x)E1− β
α
, 1− β

α

(

Ψ(t− 2ǫ)1−β/α
)

.
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Clearly, the function x 7→ Gα,β(t, x) is even and decreasing for x > 0. It follows that for all
a > 0,

sup
|x|>exp (at)

‖u(t, x)‖22 > CǫG2
α,β

(
t, exp (at)

)
t−2β−β/α(t− ǫ)−β/αE

1− β
α
, 1− β

α

(

Ψ(t− 2ǫ)1−β/α
)

.

Since α, β > 0, there exists some t0 > 0 such that for all t > t0, t
β/α 6 eat, so

G2
α,β

(
t, exp (at)

)
>

Cαt
2β

e2a(α+1)t
.

Finally, the asymptotic expansion of the Mittag-Leffler function in Lemma 6.3 shows that

(4.2) lim
t→∞

1

t
sup

|x|>exp (at)
log ‖u(t, x‖22 > Ψ

1

1−β/α − 2a(α+ 1).

Therefore,

ξ(2) = sup
{

a : lim
t→∞

1

t
sup

|x|>exp (at)
log ‖u(t, x‖22 > 0

}

> sup
{

a > 0 : Ψ
1

1−β/α − 2a(α + 1) > 0
}

=
Ψ

1

1−β/α

2(α + 1)
.

As for the second part of the Theorem, suppose that ς = 0 and that there is c > 0 such that
J0 > c, or that ς 6= 0. In this case, by [7, (3.4)] and Proposition 3.5, we have

‖u(t, x)‖22 > max(c2, ς2)
(
1 ⋆K

)
(t, x) > C̄t1−β/αE

1− β
α
, 2− β

α

(
Ψt1−β/α

)
.

Note that the lower bound above is independent of x, thus by Lemma 6.3,

(4.3) lim
t→∞

1

t
sup

|x|>exp (at)
log ‖u(t, x‖22 > Ψ

1

1−β/α .

Thus, ξ(2) = +∞. This concludes the proof.

We now extend our results to higher spatial dimensions.

5 Higher Dimension

In this section, we consider the following equation

{

∂β
t u(t, x) = −(−∆)α/2u(t, x) + I1−β

t

[
σ(u(t, x)Ẇ (t, x)

]
, t > 0, x ∈ R

d,

u(0, ·) = µ(·),
(5.1)
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with everything else defined as in Eq.(1.1).
Mijena and Nane in [15] studied this equation and showed that a necessary and sufficient

condition for the existence and uniqueness of the solution is

(5.2) d < αmin{β−1, 2}.

Note that this condition implies that for some values of α and β the equation has a unique
solution in dimensions d = 1, 2 and 3, see [15].

Moreover, intermittency and intermittency fronts (when α = 2) properties were studied
by Asogwa and Nane in [1], Foondun and Nane in [11], and Mijena and Nane [16].

For the higher spatial dimension, we need to update the admissible set for the initial datum
as

Mα,d(R
d) :=

{

µ ∈ M(Rd) : sup
y∈Rd

∫

Rd

1

1 + |x− y|d+α
|µ|(dx) < ∞

}

, for α ∈ (1, 2].

We again interpret (5.1) in the mild sense, i.e

u(t, x) =J0(t, x) + Id(t, x), where

J0(t, x) =

∫

Rd

Gd(t, x− y)µ(dy) and Id(t, x) =
t∫

0

∫

Rd

Gd(t− s, x− y)σ
(
u(s, y)

)
W (ds, dy).

(5.3)

The "heat kernel" Gd(·, ·) now satisfies an updated version of (1.3), i.e for α ∈ (0, 2):

(5.4) c1

(

t−βd/α ∧ tβ

|x|d+α

)

6 Gd(t, x) 6 c2

(

t−βd/α ∧ tβ

|x|d+α

)

,

for positive constants c1 and c2 and where again the upper bound is only valid for d = 1 < α,
see for example [11, Lemma 2.1] and the references therein.

Similar to the case d = 1, we also provide a definition of the solution to our problem, Eq
(5.1).

Definition 5.1. Following [6], a random filed u := {u(t, x)}t>0, x∈Rd is called a solution of
(5.1) if the following conditions hold:

1. u is adapted, i.e, for all (t, x) ∈ R
∗
+ × R

d, u(t, x) ∈ Ft;

2. u is jointly measurable with respect to B(R∗
+ × R

d)×F ;

3. for all (t, x) ∈ R
∗
+ × R

d, the following space-time convolution is finite:
(

G2
d ⋆ ‖σ(u)‖22

)

(t, x) :=
t∫

0

ds
∫

Rd

dy G2
d(t− s, x− y)‖σ

(
u(s, y)

)
‖22 < ∞.

4. the function Id : R
∗
+ × R

d → L2(Ω) is continuous;

5. u satisfies (5.3) for all (t, x) ∈ R
∗
+ × R

d.
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Define the following reference kernel

(5.5) dGα,β(t, x) =
Cd,αt

β

(
t2β/α + |x|2

)(d+α)/2
, t > 0 and x ∈ R

d, with Cd,α :=
Γ(d/2 + α/2)

πd/2Γ(α/2)
.

Here, |x− y| =
√

(x1 − y1)2 + (x2 − y2)2 + · · ·+ (xd − yd)2 represents the Euclidean dis-
tance between two points x, y ∈ R

d. We will also use the differential dx := dx1dx2 · · · dxd.
Note that for all ζ > 0 and x ∈ R

d, we have

1 + ζ−2|x|2 6
(
1 + (ζ−1x1)

2)
(
1 + (ζ−1x2)

2) · · ·
(
1 + (ζ−1xd)

2).

Therefore,

dGα,β(t, x) =
Cd,αt

−βd/α

(
1 + t−2β/α|x|2

)(d+α)/2

> Cd,α

d∏

k=1

t−β/α

(
1 + (t−β/αxk)2

)(d+α)/2

= Cd,α

d∏

k=1

t
β
α
(d−1)+β

(
t2β/α + x2k

)(d+α)/2
(5.6)

Lemma 5.2. The following lower bound estimates hold for all x, and y ∈ R
d:

1. For all t > 0, dGα,β(t, x− y) > 2−(d+α)t
βd
α dGα,β(t, x)dGα,β(t, y).

2. For all t > s > 0,
(

dG2
α,β(t− s, ·) ∗ dG2

α,β(s, ·)
)

(x) >
C2

d,αC
2d
α+1/2

23d+2απd (st)−
βd
α (t− s)

βd
α dG2

α,β(t− s, x).

3. For all t > r > t/2 > 0, dGα,β(r, x) > 2−β(1+d/α)(t/r)
βd
α dGα,β(t, x).

Proof. The proof follows similar ideas from the one dimensional case in Lemma 3.3. We
provide the outlines below.

1. Observe that for all a, b ∈ R
d, 1 + |a− b|2 6 1 + 2|a|2 + 2|b|2 6 (1 + 2|a|2)(1 + 2|b|2).

Therefore,

dGα,β(t, x− y) =
Cd,αt

β

(
t2β/α + |x− y|2

)(d+α)/2

>C−1
d,αt

βd
α dGα,β(t,

√
2x)dGα,β(t,

√
2y).

Now,

dGα,β(t,
√
2x) > 2−

d+α
2 Gα,β(t, x).

It follows that,

dGα,β(t, x− y) > 2−(d+α)C−1
d,αt

βd
α dGα,β(t, x)dGα,β(t, y).
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2. By part 1. of this Lemma, we have

(

dG2
α,β(t− s, ·) ∗ dG2

α,β(s, ·)
)

(x) >
(t− s)

2βd
α

C2
d,α2

2(d+α) d
G2
α,β(t− s, x)

∫

R

dG2
α,β(t− s, y)dG2

α,β(s, y)dy.

Now, using (5.6), we have
∫

Rd

dG2
α,β(t− s, y)dG2

α,β(s, y)dy

>

∫

Rd

(

Cd,α

d∏

k=1

(t− s)
β
α
(d−1)+β

[
(t− s)2β/α + y2k

](d+α)/2
Cd,α

d∏

k=1

s
β
α
(d−1)+β

(
s2β/α + y2k

)(d+α)/2

)2

dy

= C4
d,α

[
s(t− s)

] 2βd
α

(d−1)+2βd
d∏

k=1

∫

R

1
[
(t− s)2β/α + y2k

](d+α)

1
(
s2β/α + y2k

)(d+α)
dyk

> dΘα,β

[
s(t− s)

] 2βd
α

(d−1)+2βd[
s(t− s)

]βd
α
(−2d−2α+1)

d∏

k=1

∫

R

exp
[

−
(

(t− s)β/α + sβ/α
)

|zk|
]

dzk

= dΘα,β

[
s(t− s)

]−βd
α

(

2

(t− s)β/α + sβ/α

)d

> dΘα,β

[

s(t− s)
]−βd

α
t−

βd
α .

Here, dΘα,β :=
C4

d,αC
2d
d+α−1/2

(2π)d
and we have used Plancherel identity and Lemma 6.1 to get

the second inequality with ν = (d+ α)− 1/2.

3. For t > r > t/2 > 0, we have

dGα,β(r, x) =Cd,αr
−βd

α

(

1 +
|x|2
r2β/α

)−(d+α)/2

>
Cd,αr

−βd
α tβ(1+d/α)

2β(1+d/α)

(

(t/2)2β/α + |x|2
)−(d+α)/2

>2−β(1+d/α)(t/r)
βd
α dG2

α,β(t, x).

This concludes the proof.

The proof of the next Lemma is similar to that of Lemma 3.2, so we skip it.

Lemma 5.3. For all x ∈ R
d and t > 0,

(5.7) Gd(t, x) > C̃dGα,β,d(t, x)

for some positive constant C̃d.
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Proposition 5.4. Let α ∈ (1, 2]. Then for all t > 0 and x ∈ R,

(5.8) Kd(t, x) > dC⋆ dG2
α,β(t, x)E1−βd

α
,1−βd

α

[

Ψdt
1−βd

α

]

,

In particular, for all t > 0 and x ∈ R
d,

(5.9)
(
1 ⋆Kd

)
(t, x) > dC◦ t1−

β
αE

1−βd
α
,2−βd

α

[

Ψdt
1−βd

α

]

.

Here, dC⋆, dC◦ and Ψd are all positive constants depending on d, α and β.

Proof. The proof is similar to that of Proposition 3.5. We provide highlights below.
Denote the convolution product

(

dG2
α,β

)⋆n
(t, x) :=

(

dG2
α,β ⋆ · · · ⋆ dG2

α,β
︸ ︷︷ ︸

n factors of dG
2
α,β

)

(t, x).

By the definition of Kd and the estimate (5.7),

(5.10) Kd(t, x;λ) =

∞∑

n=0

(

λ2G2
d

)⋆(n+1)
(t, x) >

∞∑

n=0

(

C̃2
dλ

2
dG2

α,β

)⋆(n+1)
(t, x).

The next step is bound from below the term
(

λ2
dG2

α,β

)⋆(n+1)
(t, x). To this aim, we make the

following claim:

Claim:

(5.11)
(

λ2
dG2

α,β

)⋆(n+1)
(t, x) >

λ2(n+1)
dΞ

n
α,βΓ

(

1− βd
α

)n+1

Γ
(

(n+ 1)
(
1− βd

α

)) tn
(
1−βd

α

)

dG2
α,β(t, x) for all n > 0,

where dΞα,β := 2−
(
3d+2α+2β(1+d/α)+1

)

π−dC2
d,αC

2d
d+α−1/2 is a positive constant.

Again, the case n = 0 is straightforward. So we consider n > 1 and assume by induction
that (5.11) holds for n− 1. Combining the induction hypothesis with Lemma 5.2 (2), we get

(

λ2
dG2

α,β

)⋆(n+1)
(t, x) > dΥnt

−βd
α

t∫

0

dG2
α,β(t− s, x)(t− s)(n−1)(1−βd

α
)+ 2βd

α

[

s(t− s)
]−βd

α
ds,

where

dΥn :=
dΞ

n−1
α,β λ2(n+1)Γ(1− βd

α )n

Γ
(
n(1− βd

α )
) ·

C2
d,αC

2
dα−1/2

22α+3πd
.

Observe that t− s > t/2 whenever 0 6 s 6 t/2. Thus, Lemma 5.2 (3) implies that

(

λ2
dG2

α,β

)⋆(n+1)
(t, x) > dΥn2

−2β(1+d/α)t
βd
α dG2

α,β(t, x)

t/2∫

0

(t− s)(n−1)(1−βd
α
)
[

s(t− s)
]−βd

α
ds.
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Also, t− s > s for 0 6 s 6 t/2, so

(

λ2
dG2

α,β

)⋆(n+1)
(t, x) > dΥn2

−2β(1+d/α)t
βd
α dG2

α,β(t, x)

t/2∫

0

s(n−1)
(
1−βd

α

)
[
s(t− s)

]−βd
α ds.

It follows that

(

λ2
dG2

α,β

)⋆(n+1)
(t, x) > dΥn2

−2β(1+d/α)−1t
βd
α dG2

α,β(t, x)

t∫

0

s(n−1)
(
1−βd

α

)
[
s(t− s)

]−βd
α ds.

Finally, applying the definition of Euler’s Beta integral, see Eq. (6.5), proves the claim.

Therefore,

Kd(t, x;λ) > C̃2
dλ

2Γ
(

1− βd

α

)

dG2
α,β(t, x)

∞∑

n=0

(

dΞα,βC̃
2
dλ

2Γ
(

1− βd
α

)

t1−
βd
α

)n

Γ
(

(n+ 1)
(
1− βd

α

))

= C̃2
dλ

2Γ
(

1− βd

α

)

dG2
α,β(t, x)E1−βd

α
, 1−βd

α

(

dΞα,βλ
2C̃2

dΓ
(

1− βd

α

)

t1−
βd
α

)

.

Thus (5.8) follows by setting

Ψd := dΞα,βC̃
2
dλ

2Γ
(

1− βd

α

)

and dC∗ := λ2Γ
(

1− βd

α

)

C̃2
d .

The bound (5.9) easily follows from (5.8) as follows:

(

1 ⋆Kd

)

(t, x) =

t∫

0

∫

Rd

Kd(s, y)dyds

>C

t∫

0

E
1−βd

α
, 1−βd

α

(

Ψds
1−βd

α

) ∫

Rd

dG2
α,β(s, y)dyds.

Next,
∫

Rd

dG2
α,β(s, y)dy = C2

d,αs
−βd

α

∫

Rd

1

(1 + |z|2)(d+α)
dz

= dCαs
−βd

α .

Finally, using Eq. (6.3), we conclude the proof.

Lemma 5.5. Suppose α ∈ (1, 2] and µ ∈ Mα,d(R
d), µ 6= 0. Then for all ǫ > 0, there exists

a constant C such that for all t > 0 and x ∈ R
d,

(5.12) J0(t, x) =
(

Gd(t, ·) ∗ µ
)

(x) > dC#1{t>ǫ}dGα,β(t, x),

where dC# is a positive constant depending on d, α and β.
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Proof. The proof is very similar to the proof of Lemma 3.4 so we omit it.

We can now state our main result in this section.

Theorem 5.6. Suppose that α ∈ (1, 2) and σ satisfy the growth condition (1.10). For all
µ ∈ Mα,d,+(R

d), µ 6= 0 and for all p > 2, if ς = 0, then

(5.13) ξ(p) >
Ψ

1

1−
βd
α

d

2(α+ d)
> 0,

where Ψd is as defined in Proposition 5.4.
For these µ, if ς = 0 and µ(dx) = f(x)dx with f(x) > c for all x ∈ R

d or if ς 6= 0, then
ξ(p) = ξ̄(p) = +∞. In particular, γ(p) = γ̄(p) = +∞.

Proof. The proof is also similar to the proof of Theorem 2.3, so we only provide sketches here.
Again it is enough to only consider the case p = 2 since ξ(p) > ξ(2) for all p > 2. To this aim,
fix ǫ ∈ (0, t/2) and choose a positive constant dC# as in Lemma 5.5 such that

J0(t, x) > dC#1{t>ǫ}dG2
α,β(t, x) := dIǫ(t, x).

By an extension of [7, Eq. (3.4)] we can show that,

‖u(t, x)‖22 >

(

dI
2
ǫ ⋆Kd

)

(t, x).

Now, applying Proposition 5.4 and Lemma 5.2 (2), we get

(

dI
2
ǫ ⋆Kd

)

(t, x) > C1t
−βd

α

t−ǫ∫

0

E
1−βd

α
, 1−βd

α

(
Ψds

1−βd
α
)
s−

βd
α (t− s)

βd
α dG2

α,β(t− s, x)ds.

Since dGα,β(t− s, x) >
(
t−s
t

)β
dGα,β(t, x), we get

(

dI
2
ǫ ⋆Kd

)

(t, x) > C2t
−β(2+d/α)

dG2
α,β(t, x)

t−ǫ∫

0

E
1−βd

α
, 1−βd

α

(
Ψds

1−βd
α

)
s−

βd
α (t− s)β(2+d/α)ds

> C3t
−β(2+d/α)

dG2
α,β(t, x)E1−βd

α
, 1−βd

α

(

Ψd(t− 2ǫ)1−
βd
α

)
t−ǫ∫

t−2ǫ

s−
βd
α (t− s)β(2+d/α)ds

> C4t
−β(2+d/α)

dG2
α,β(t, x)E1−βd

α
, 1−βd

α

(

Ψd(t− 2ǫ)1−
βd
α

)ǫβ(2+d/α)

(t− ǫ)
βd
α

ǫ

= Cǫt
−β(2+d/α)(t− ǫ)−

βd
α dG2

α,β(t, x)E1−βd
α
, 1−βd

α

(

Ψd(t− 2ǫ)1−
βd
α

)

.

Again, the function x 7→ dG2
α,β(t, x) is even and decreasing for |x| > 0. It follows that for all

a > 0,

sup
|x|>exp (at)

‖u(t, x)‖22 > Cǫ dG2
α,β

(
t, exp (at)

)
t−2β−βd

α (t− ǫ)−
βd
α E

1−βd
α
, 1−βd

α

(

Ψd(t− 2ǫ)1−
βd
α

)

.
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Since α, β > 0, there exists some t0 > 0 such that for all t > t0, t
β/α 6 eat, so

dG2
α,β

(
t, exp (at)

)
>

Ĉd,αt
2β

e2a(α+d)t
.

Finally, the asymptotic expansion of the Mittag-Leffler function in Lemma 6.3 shows that

lim
t→∞

1

t
sup

|x|>exp (at)
log ‖u(t, x)‖22 > Ψ

1

1−
βd
α

d − 2a(α+ d).

Therefore,

ξ(2) = sup
{

a : lim
t→∞

1

t
sup

|x|>exp (at)
log ‖u(t, x)‖22 > 0

}

> sup
{

a > 0 : Ψ

1

1−
βd
α

d − 2a(α+ d) > 0
}

=
Ψ

1

1−
βd
α

d

2(α+ d)
.

This concludes the first part of the Theorem. As for the second part, suppose that ς = 0 and
that there is c > 0 such that J0 > c, or that ς 6= 0. In this case, by [7, (3.4)] and Proposition
5.4, we have

‖u(t, x)‖22 > max(c2, ς2)
(
1 ⋆Kd

)
(t, x) > C̄t1−

βd
α E

1−βd
α
, 2−βd

α

(
Ψdt

1−βd
α
)
.

Again, since the lower bound above is independent of x, by Lemma 6.3, it follows that

lim
t→∞

1

t
sup

|x|>exp (at)
log ‖u(t, x‖22 > Ψ

1

1−
βd
α

d .

Thus, ξ(2) = +∞ and this concludes the proof.

Remark 5.7. We were not able to prove the inequality ξ(p) < ∞ for d > 1 at this moment.
When d > 1, the heat kernel does not have a uniform upper bound, see for example [2, Page
7], making calculations extremely challenging. We leave this as an open problem for a future
project.
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6 Appendix

Lemma 6.1. [6, Lemma 5.2] Let fb,ν(x) := f(x) = (b2 + x2)−ν−1/2 with b > 0 and ν > 1/2.
Then

(6.1) F [f ](z) =

∫

R

dxe−iz·xf(x) > Cνb
−2νe−b|z|,

for all b > 0 and z ∈ R, where Cν = Γ(ν)Γ(1/2)
2Γ(ν+1/2) , ν > 1/2.

Lemma 6.2. [6, Lemma 5.5] Suppose ν > 1. For all x ∈ R,

min
y∈R

(
|x− y|ν + |y|

)
>

{

ν
ν

1−ν +
∣
∣|x| − ν

ν
1−ν
∣
∣ if |x| > ν

ν
1−ν ,

|x|ν otherwise

The (two-parameter) Mittag-Leffler function is defined as

(6.2) Eµ,ν(z) =

∞∑

k=0

zn

Γ(µk + ν)
for µ > 0, ν > 0..

It has the following asymptotic expansion:

Lemma 6.3. [17, Theorem 1.3] If 0 < µ < 2, ν is an arbitrary complex number and υ is an
arbitrary real number such that πµ/2 < υ < π ∧ (πµ), then for any arbitrary integer p > 1,
the following expression holds:

Eµ,ν(z) =
1

µ
z(1−ν)/µ exp(z1/µ)−

p
∑

k=1

z−k

Γ(ν − µk)
+O

(
|z|−1−p

)
,

as |z| → ∞ with |arg(z)| 6 υ.

The following integration formula about the Mittag-Leffler function can also be found in
[17, (1.99) on P.24]

(6.3)

z∫

0

Eα,β

(
λtα
)
tβ−1dt = zβEα,β+1

(
λzα

)
, β > 0.

The Euler’s Beta function is defined as

(6.4)

t∫

0

sa−1(t− s)b−1ds =
Γ(a)Γ(b)

Γ(a+ b)
ta+b−1, Re(a) > 0,Re(b) > 0.

Following [18, 5.12.3, p.142], it can also be defined as:

(6.5)

∞∫

0

ta−1

(1 + t)a+b
dt =

Γ(a)Γ(b)

Γ(a+ b)
.
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