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Abstract—This paper investigates a multi-antenna cache-
enabled network with interference nulling (IN) employed at base
stations. Two IN schemes, namely, the fixed IN scheme and
the flexible IN scheme are considered to improve the received
signal-to-interference ratio (SIR) at users. To thoroughly explore
the effects of the caching parameter and the IN parameters
on the network performance, we focus on the analysis of not
only the successful transmission probability (STP) but the SIR
meta distribution. For each IN scheme, the expression for the
STP is derived and an approximated expression for the SIR
meta distribution is also obtained by deriving the first and
second moments of an upper bound of the link reliability and
utilizing the beta distribution. With this analytical framework,
we compare the performance of these two IN schemes and gain
some useful system design guidelines from the perspectives of the
STP and the SIR meta distribution by numerical simulations.

Index Terms—Cache-enabled networks, Interference nulling,
Successful transmission probability, Meta distribution, Stochastic
geometry

I. INTRODUCTION

A. Motivation

C
ACHE-ENABLED networks (CENs), where base sta-

tions (BSs) are equipped with cache to pre-fetch popular

files during the peak-off time, have been proved to be an

effective solution to alleviate the backhaul burden caused

by the exponential increase of the mobile data traffic [1],

as well as reduce the transmission delay [2]. However, the

strong interference suffered by users is a noteworthy problem

in CENs, since the serving BS of a user may not be its

geographically nearest BS due to the limited cache size at

BSs [3]. To improve the quality of received signals at users,

multiple antennas can be deployed at each BS in CENs to

either boost the user-received desired signals by providing

extra spatial diversity [4], [5]; or mitigate the interference at

each user by conducting interference coordination [6]–[10].

However, the performance metrics considered in the afore-

mentioned works are all based on the successful transmission

probability (STP), which is the complementary cumulative

distribution function (CCDF) of the signal-to-interference ra-

tio (SIR) at the typical user and is obtained by taking an

expectation over the point process. Even though the STP

is of importance for reflecting the average performance of
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the networks, it does not provide any information on the

distribution of the performance of individual links for each

network realization.

To this end, an innovative performance metric called the

meta distribution of the SIR is proposed in [11], which can

provide more fine-grained information by characterizing the

distribution of the conditional STP (CSTP) conditioning on

the realization of BS point process. The meta distribution can

answer the question “given the randomness of the locations

of BSs, what is the distribution of the probability of the event

that the SIR threshold is met for any user?”, which reflects

the achievable performance for a given percentile of users,1

and is an important design criterion for the network operators;

whereas the STP only answers the question “with a given

SIR threshold, what fraction of users can achieve successful

transmission on average?” [11].

So far, there has not been any work focusing on the meta

distribution analysis on multi-antenna CENs, not to mention

the interference nulling (IN). The works in [6]–[10] with IN

only study the average performance of the networks. However,

from the perspective of system design, it is important to

evaluate the network performance from the aspects of not

only the average STP, but also the link reliability distribution.

When considering IN in multi-antenna CENs, the caching

parameter and the IN parameters are coupled with each other

in a complicated manner, the effects of these two groups of

parameters on the distribution of link reliability are still not

clear and need further investigation. This motivates the work

of this paper.

B. Contributions

In this work, we investigate multi-antenna CENs with two

IN schemes, namely the fixed IN scheme and the flexible IN

scheme, considered. We endeavor to analyze the performance

of these two schemes from the perspectives of not only the

STP but the SIR meta distribution and further explore the

effects of the caching parameters and the IN parameters on

these two metrics, so as to obtain more system design insights.

Specifically, for both schemes, multiple antennas are equipped

at each BS, a part of the spatial degrees-of-freedom (DoF) is

allocated for IN, and the remaining DoF is reserved to provide

spatial diversity gain. The IN ranges in the fixed IN scheme

are the same for all users; whereas the IN ranges for different

users in the flexible IN scheme are flexible and depend on

1For example, if we focus on the 5th-percentile, the meta distribution
gives the link reliability that 95% of the users can achieve.
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their average received signal power. The contributions of this

work are summarized as follows.

• We first present a tractable analytical framework for the

aforementioned multi-antenna CENs with a flexible uniform

distribution caching policy considered under the fixed IN

scheme and the flexible IN scheme. Using stochastic geometry

analysis techniques, we obtain tractable expressions for the

STPs under both IN schemes. These expressions enable us

to efficiently analyze the impacts of the caching parameter

(i.e., the file diversity gain) and the IN parameters (i.e., the

IN range and the maximum IN DoF) on the average network

performance, i.e., the STP.

• We derive a tight upper bound on the CSTP, with which

we further provide approximated expressions for the SIR meta

distributions of the two IN schemes. Specifically, due to the

difficulty of attaining the exact expression for the distribution

of the CSTP, we focus on the upper bound, derive the first

and second moments of this upper bound, and utilize the beta

distribution to obtain approximated expressions for the SIR

meta distributions, which facilitates the investigation into the

effects of the caching parameter and the IN parameters on the

distribution of link reliability.

• With the aforementioned analytical framework and via

numerical simulations, for the low and high SIR threshold

regions, we provide several system design guidelines for the

purposes of improving the STP, improving the link fairness,

and increasing the fraction of users with high link reliability.

Moreover, we further provide a numerical optimization frame-

work to explore more design guidelines quantitatively.

The rest of this paper is organized as follows. A literature

survey is presented in Section II. The system model is illus-

trated in Section III. Section IV provides the analytical results

for the STP and SIR meta distribution. The numerical results

are provided in Section V, and the conclusions are drawn in

Section VI.

II. RELATED WORKS

A. Interference Management for Cache-Enabled Networks

In cache-enabled networks, users can suffer severe interfer-

ence due to the content-centric user association mechanism,

when their serving BSs are not the geographically nearest

BSs. To tackle this problem, some interference management

techniques are considered in [4]–[10], [12]–[14]. Specifically,

in [12]–[14], several different BS cooperation transmission

schemes for different network scenarios are proposed to en-

hance the received signal power at each user. However, they

only focus on the single-antenna layout in the network, the

advantages of multi-antenna are not fully exploited.

Multi-antenna technique is also an effective method to

improve the received signal quality at users in CENs [4]–[10].

Specifically, by deploying multiple antennas at each BS, [4]

and [5] take advantage of the spatial diversity gain it brings

to strengthen the desired signal at each user in multi-tier and

limited-backhaul network scenarios, respectively; whereas [6]–

[10] utilize the available spatial DoF for IN so as to suppress

the interference suffered by users. In [6], multiple antennas

are equipped at each user, and the IN is implemented on the

receiver side. The authors in [7] divide the multi-antenna BSs

into clusters and use coordinated beamforming to cancel the

intra-cluster interference of each BS at the users within the

cluster. Starting from this cluster-based IN scheme, the authors

in [9] further consider multiple antennas equipped at each

user to form a multiple-input multiple-output (MIMO) system,

so that more users can simultaneously enjoy an interference-

free link in each cluster with interference alignment applied.

In addition, the works [8] and [10] investigate more flexible

user-centric IN schemes with a fixed IN range and a flexible

IN range, respectively; and the per-user throughput and the

area spectrum efficiency are investigated. Note that all the

works above only focus on the metrics about the averaged

performance. Therefore, no system design insight from the

perspective of individual links can be obtained.

B. Successful Transmission Probability Based Analysis

The STP, also known as the coverage probability in some

works, is an important metric to evaluate the average link

reliability in wireless networks. For the works [6], [7], [9],

[10] considering IN in multi-antenna CENs, the STP serves

as either a main performance metric to be maximized [6],

or an intermediate metric for investigating other metrics of

interest, such as the hit probability [7], [9] and the spectral

efficiency [7], [10]. To tackle the high-order derivatives of

the Laplace transform of the interference when analyzing the

STP in multi-antenna networks, the authors in [6] resort to

the Faa di Bruno’s formula, which leads to a result with

complicated form; the authors of [7] and [9] consider approx-

imated expressions for STP to avoid the calculation of high-

order derivatives; whereas our previous work [10] derives an

exact expression for the STP using the L1-induced norm of a

Toeplitz matrix with simple structure. In this paper, we follow

the work in [10] to conduct further investigation of the STP.

By introducing a parameter called the maximum IN DoF, we

have more freedom to analyze the impact of IN and spatial

diversity on the STP as well as the distribution of individual

link performance, which, however, is not considered in [10].

C. Meta Distribution Based Analysis

As mentioned before, the meta distribution can provide

more detailed information on per-link performance, the con-

cept of which is first introduced in [11]. Following the work

[11], the meta distribution is investigated in various network

scenarios, such as the Poisson cellular networks with BS

cooperation [15], [16]; heterogeneous networks (HetNets) with

joint spectrum allocation and user offloading [17], and cell

range expansion [18]; non-Poisson HetNets [19]; device-to-

device (D2D) communication underlaying cellular networks

[20], and millimeter-wave D2D networks [21]; non-orthogonal

multiple access (NOMA) networks [22] for both uplink and

downlink; and cache-enabled networks with random discontin-

uous transmission [23]. However, none of the aforementioned

works studies the multi-antenna scenario.

While the work [24] provides SIR meta distribution anal-

ysis with interference cancellation taken into consideration,
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it only considers an ideal scheme called the close interfer-

ence cancellation, where the effectiveness of the scheme is

simply reflected by a coefficient, and the wireless channel

characteristic brought by multiple antennas is not considered.

When implementing multi-antenna techniques for IN in cache-

enabled networks, it remains unknown the effects of the IN

range, the DoF allocated to IN, and the file diversity gain on

the distribution of the individual links and the fairness among

different users.

In this paper, we will shed some light on the above issues.

We consider two IN schemes, i.e., the fixed IN scheme and

the flexible IN scheme, and compare the network performance

of these two schemes from the perspectives of not only the

STP but the SIR meta distribution, so as to provide more fine-

grained information and obtain more system design insights.

III. SYSTEM MODEL

A. Network and Caching Model

We consider a single-tier cache-enabled multi-antenna net-

work. The locations of base stations (BSs) are modeled as

a homogeneous Poisson point process (PPP) in R
2, denoted

by Φ with density λ. Each BS is equipped with M antennas

and is considered to serve one user over one time-frequency

resource block with transmit power P . Single-antenna users

are also distributed as a homogeneous PPP Φu with density

λu. We consider the downlink transmission and assume a full-

loaded scenario so that each BS always has at least one user

connected to it. Without loss of generality, we assume a typical

user u0 located at the origin and focus on the performance

analysis of this user according to Slivnyak’s theorem [25].

Let N = {1, 2, · · · , N} be a content library containing N
different files. All files are assumed to have the same size

which equals 1. For any given user, the probability that file n is

requested is an ∈ [0, 1], which is called the file popularity, and

we have
∑

n∈N an = 1. Thus, the file popularity distribution

is given by a , (an)n∈N . Note that the popularity distribution

changes slowly over time, and can be estimated using learning-

based methods [26], [27]. Therefore, we assume it is known

as a priori and remains unchanged over the period of interest.

Without loss of generality, we assume that a file of smaller

index has higher popularity, i.e., a1 > a2 > · · · > aN . Each

BS is equipped with a cache of size C ≤ N and can store C
different files.

In this paper, we consider a flexible uniform distribution

caching (FUDC) policy. Specifically, consider a tunable pa-

rameter ξ′ ∈ [1, N
C ]. With this parameter, the Nc = ⌊ξ′C⌋

most popular files from N are chosen to form a file set

Nc = {1, 2, · · · , Nc}, where ⌊x⌋ denotes the rounding down

of x. All the files in Nc can be stored in the network,

and each BS will uniformly randomly select C different

files out of Nc to store, with the same caching probability

Tc = C
Nc

. We refer to the discrete parameter ξ = Nc

C as

the file diversity gain. Therefore, FUDC is a combination of

the most popular caching (MPC) policy [28] and the uniform

distribution caching (UDC) policy [29]. When setting ξ = 1,

the Nc = C most popular files from N are cached at each

BS with probability Tc = 1, which is exactly the MPC

policy; whereas when setting ξ = N
C , we have Nc = N ,

and each BS will randomly select C files out of Nc to store,

according to the uniform distribution, which is the same as

the UDC policy. The FUDC policy takes both file popularity

and file diversity into consideration with only one parameter

ξ. In particular, by adjusting the value of ξ, a high cache

hit probability can be ensured for the Nc most popular files;

whereas randomly storing these Nc files at each BS makes

the spatial file diversity fully exploited. Even though in some

scenarios, the performance of this policy may not be as good

as that of the optimal policies studied in [4], [6], [7], the

simplicity of FUDC will significantly facilitate the analysis

of the network performance.

For the user association, consider the content-centric associ-

ation mechanism [30], where a user will connect to its nearest

BS storing the file it requests. This BS is referred to as its

serving BS and can provide the maximum long-term average

receive power for the requested file. In this case, the serving

BS of a user may not be its geographically nearest BS, thus

the interference caused by the non-serving BSs that are closer

to the user than its serving BS will significantly deteriorate

the quality of the received signal at the user. This motivates

us to use user-centric IN schemes to suppress the interference

received by the user, which will be elaborated on later. When

the requested files of users are not stored in the network, BSs

may retrieve these uncached files from the core network via

backhaul links. The investigation of this case is beyond the

scope of this paper, thus we omit it as in [30], [31], and simply

regard it as a failed transmission.

B. Interference Nulling Schemes

In this paper, we consider two interference nulling schemes

for analysis, namely, the fixed IN scheme and the flexible IN

scheme. In both schemes, each BS equipped with M antennas

randomly selects one user out of its all potential users to serve.

To mitigate the strength of received interference, each served

user will send an IN request to all the interfering BSs within

a given distance. This area is referred to as the IN range.

Consider a parameter L ∈ N called the maximum IN DoF.

Each BS reserves L ∈ [0,M − 1] antennas to suppress its

interference at up to L other users and the remaining DoF is

used to provide spatial diversity to boost the desired signal

power at its served user.

The main difference between these two IN schemes lies in

the selection of the IN range for each user. Specifically, for the

fixed IN scheme, the IN range for each user is set to be a given

value, denoted by Rc. Whereas, for the flexible IN scheme,

a tunable parameter µ ∈ [0,+∞), which is referred to as the

IN coefficient, is chosen to control the IN range of each user.

Suppose the distance between a user and its serving BS is Z ,

which is referred to as the serving distance. The user will send

an IN request to all the interfering BSs within the circle of

radius µZ , which is the IN range of the flexible IN scheme.

Note that for the flexible IN scheme, the IN ranges for different

users are generally different, since the serving distances are

usually different. Therefore, the flexible IN scheme takes

the different interference situations for different users into
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consideration, which, however, is not considered in the fixed

IN scheme, where the IN ranges are set to be equal for all

users.

For both IN schemes, when a BS receives IN requests, it will

suppress its interference at up to L requesting users, due to the

limitation of available antennas. Let Θr denote the number of

IN requests received by a BS. If Θr is greater than L, the BS

uniformly randomly selects L requests to satisfy; otherwise,

the BS cancels its interference at all Θr users, and the extra

DoF is used to provide its served user with a spatial diversity

order M −Θr.

For the fixed IN scheme, we need to consider the relation

between the serving distance Z and the IN range Rc. When

Rc < Z (resp. Rc ≥ Z), all the interfering BSs of u0 consist

of: 1) the interfering BSs within the circle of radius Rc (resp.

Z); 2) the interfering BSs within the annulus from radius Rc

(resp. Z) to Z (resp. Rc); and 3) the remaining interfering

BSs outside the circle of radius Z (resp. Rc). Note that the

interference within the circle of radius Z comes from those

BSs that do not store the file requested by u0 and whose

interference is not nulled out. Denote by Φfx
a , Φfx

b , and Φfx
c

the sets of interfering BSs corresponding to the above three

cases. We have

Φfx
i , {x|x ∈ Φ\{x0}, ‖x‖ ∈ Ωfx

i }, i ∈ {a, b, c}, (1)

where x0 denotes the serving BS of u0, and

Ωfx
a = [0,min{Z,Rc}),

Ωfx
b = [min{Z,Rc},max{Z,Rc}),

Ωfx
c = [max{Z,Rc},+∞), (2)

are three distance intervals.

For the flexible IN scheme, we need to consider the cases

that 0 ≤ µ < 1 and µ ≥ 1. Similarly to the fixed IN scheme,

the interfering BSs can also be categorized into three groups,

denoted by Φfl
a, Φfl

b , and Φfl
c with

Φfl
i , {x|x ∈ Φ\{x0}, ‖x‖ ∈ Ωfl

i }, i ∈ {a, b, c}, (3)

and

Ωfl
a = [0,min{Z, µZ}),

Ωfl
b = [min{Z, µZ},max{Z, µZ}),

Ωfl
c = [max{Z, µZ},+∞). (4)

C. SIR Model

In this paper, we assume perfect channel state information

(CSI) and implement the low-complexity zero-forcing beam-

forming (ZFBF) at each BS to serve its user as well as suppress

its interference at other users. Note that ZFBF is a commonly

used technique for interference management, and provides a

reasonable balance between the performance and tractability

[32]–[34]. We leave more other precoding techniques, e.g.,

minimum mean square error (MMSE), for future work.

For the wireless channel, we consider the standard power-

law path loss model and Rayleigh fading coefficient. There-

fore, the received power at the typical user u0 from a BS

located at x ∈ Φ is given by Pgx‖x‖−α, where α > 2

is the path loss exponent and gx is the channel gain. With

ZFBF and perfect CSI, when we assume the Rayleigh fading

channel, if x is the serving BS, gx denotes the effective channel

gain of the desired signal, and follows Gamma distribution,

i.e., gx
d∼ Γ(M − min{Θr, L}, 1) [32]; however, if x is an

interfering BS, gx denotes the interfering channel gain between

u0 and BS x, and follows gx
d∼ Γ(1, 1) = Exp(1), which is

the exponential distribution [32].

Denote by x0 the serving BS of u0. Then, when the file n
is requested, the received signal to interference ratio (SIR) at

u0 is given by

Υn =
gx0

Z−α

∑

x∈Φa∪Φb∪Φc
gx‖x‖−α

, (5)

where Υn can be Υfx
n or Υfl

n corresponding to the fixed IN

scheme or flexible IN scheme; Z is the serving distance of u0;

Φi, i ∈ {a, b, c} can be Φfx
i in (1) or Φfl

i in (3). Note that in this

paper, we investigate SIR, rather than the signal to interference

and noise ratio (SINR), since for nowadays densely deployed

wireless networks, the power of interference received at users

is much larger than that of environment noise so that we can

safely neglect the noise.

D. Meta Distribution

The transmission of a given file n is considered to be

successful if the received SIR Υn at the requesting user is

greater than some predefined threshold τ , the probability of

which is referred to as the successful transmission probability

(STP) of this file and is given by

ps,n , P[Υn ≥ τ ]. (6)

Furthermore, if the locations of BSs Φ in a network realization

are given, the conditional successful transmission probability

(CSTP, or equivalently, the link reliability, i.e., the probability

that the wireless channel under consideration gives an SIR

exceeding τ [11]) of a link for transmitting file n is given by

Ps,n(τ) , P [Υn ≥ τ | Φ] . (7)

The SIR meta distribution of file n is defined as [11]

F̄Ps,n
(x) , P [Ps,n(τ) > x] , x ∈ [0, 1], (8)

which is the complementary cumulative distribution function

(CCDF) of the CSTP Ps,n(τ); x here is some predefined link

reliability threshold. Since the point processes Φ and Φu are

ergodic, F̄Ps,n
(x) can reflect the fraction of users whose link

reliability, i.e., Ps,n(τ), is greater than x in each network

realization when file n is requested. Moreover, we note that

the STP in (6) is the mean of the CSTP in (7). Since Ps,n(τ)
is non-negative, we have the following relation between the

STP and the SIR meta distribution:

ps,n = E [Ps,n(τ)] =

∫ 1

0

F̄Ps,n
(x)dx. (9)

From (9), we observe that compared with the STP, the SIR

meta distribution provides more detailed information on link

reliability given the network realization. From the meta distri-

bution, we can easily obtain the STP; while with an STP, we
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cannot observe any information about the distribution of the

CSTP. In this paper, we pay more attention to the investigation

of the SIR meta distribution and the comparison between the

STP and the SIR meta distribution, so as to provide more

insights into the impact of system design parameters, i.e.,

(Rc, L, ξ) (for the fixed IN scheme) or (µ, L, ξ) (for the

flexible IN scheme), on the link reliability in the network.

Considering the total probability theorem, the whole STP

and the whole SIR meta distribution for the network, denoted

by ps and F̄Ps
(x), are respectively given by

ps =
∑

n∈Nc

anps,n, (10)

F̄Ps
(x) =

∑

n∈Nc

anF̄Ps,n
(x). (11)

E. Notation

In this paper, we use (RI, L, ξ) to uniformly denote the

design parameters for the two IN schemes, with RI = Rc for

the fixed IN scheme and RI = µ for the flexible IN scheme.

For a given variable X , X fx (resp. Xfl) denotes the variable

for the fixed (resp. flexible) IN scheme. If the superscript “fx”

or “fl” is not specified, then X denotes the variable for both

IN schemes. Moreover, Xu denotes the upper bound of X ,

and Xn denotes the corresponding variables when file n is

requested. All these superscripts and subscripts can combine

with each other to endow a variable with different meanings.

IV. THE SUCCESSFUL TRANSMISSION PROBABILITY AND

SIR META DISTRIBUTION

In this section, we first present some auxiliary results

which are necessary for the STP and SIR meta distribution

analysis, including the probability mass function (PMF) of the

number of IN requests received by a BS and the IN missing

probability (whose definition will be given later). Based on

these results, the expression for the STP of each IN scheme is

obtained. Then, we give upper bounds on the first and second

moments of the CSTP of each IN scheme, based on which, an

approximation of the SIR meta distribution is then obtained.

A. Auxiliary Results

1) PMF of the Number of IN Requests Received by a BS:

To facilitate the derivation of the SIR meta distribution, we

first need to calculate the PMF of the number of IN requests

received by the serving BS of a user, i.e., Θr. We have

the following assumptions to make the performance analysis

more feasible: 1) the served users form a homogeneous PPP

Φ̃u, which is a thinning of Φu, and is independent from the

locations of BSs Φ; and 2) the numbers of IN requests received

by different BSs are independent. Similar assumptions are

adopted in [33], [35], and the accuracy will be verified

later in Section V. Based on theses assumptions, Θr can be

approximated by a Poisson random variable with PMF

P [Θr = θr] ≈
Θ̄(RI, ξ)

θr

θr!
exp

(
−Θ̄(RI, ξ)

)
, (12)

where Θ̄(RI, ξ) represents Θ̄fx(Rc, ξ) or Θ̄fl(µ, ξ) correspond-

ing to RI = Rc or RI = µ, which is the mean of the number

of IN requests received by a BS for the fixed IN scheme or

the flexible IN scheme and is approximately given by

Θ̄fx(Rc, ξ) ≈ πλR2
c + e−π λ

ξ
R2

c − 1,

Θ̄fl(µ, ξ) ≈ ξµ2 −min{µ2, 1}. (13)

The detailed derivation can be found in Appendix A.

From (13), we observe that for the flexible IN scheme, the

mean of the number of IN requests received by a BS is only

affected by the IN coefficient µ and the file diversity gain ξ;

whereas for the fixed IN scheme, the BS density λ also has

an impact on it besides the IN range Rc and the file diversity

gain ξ.
2) IN Missing Probability: When the number of IN requests

received at a BS is smaller than the maximum IN DoF L, all

the requests will be satisfied; otherwise, the BS will randomly

choose L users to suppress its interference. Therefore, the PMF

of the number of IN requests satisfied by a BS, for both IN

schemes, denoted by ΘI ∈ {0, 1, · · · , L}, is given by

P [ΘI=θ]=

{
P [Θr = θ] , 0 ≤ θ ≤ L−1,
∑∞

θ′=L P [Θr = θ′] , θ = L.
(14)

Note that for the case θ = L, we have the following

equality to simplify the calculation, i.e.,
∑∞

θ′=L P [Θr = θ′] =
γ(L,Θ̄(RI,ξ))

Γ(L) , where γ(s, x) =
∫ x

0
ts−1 e−t dt is the lower

incomplete Gamma function, and Θ̄(RI, ξ), with RI = µ or

RI = Rc is given by (13).

Then, as we show in Appendix B, the following formula

(15) gives the probability that a BS receives an IN request

from the typical user u0 but fails to null the interference at

it, which is referred to as the IN missing probability, and is

denoted by ε(RI, L, ξ).

ε(RI, L, ξ)=

∞∑

θ=L

θ + 1− L

(θ + 1)!
Θ̄(RI, ξ)

θ exp
(
−Θ̄(RI, ξ)

)
, (15)

where Θ̄(RI, ξ) can be either Θ̄fx(Rc, ξ) or Θ̄fl(µ, ξ) given in

(13), corresponding to the fixed or flexible IN scheme.

With the IN missing probability, the densities of the interfer-

ing BSs in Φa, Φb, and Φc, i.e., λa, λb, and λc, are respectively

given by

λa = ε(RI, L, ξ)λ

(

1− 1

ξ

)

, λb = abλ, λc = λ; (16)

where the coefficients a and b for the two IN schemes are

given by

afx =

{
εfx(Rc, L, ξ) Z < Rc,
1 Z ≥ Rc,

bfx =

{
1 Z < Rc,
1− 1

ξ Z ≥ Rc;

afl =

{
1− 1

ξ µ < 1,

1 µ ≥ 1,
bfl =

{
1 µ < 1,
εfl(µ, L, ξ) µ ≥ 1.

(17)

B. Expressions for the STPs

In this subsection, we will present the expression for the

STP of each IN scheme, so as to figure out how the STPs

respond to the changes of the design parameters (RI, L, ξ),
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and obtain some system design insights from the perspective

of improving the average network performance.

1) STP for the Fixed IN Scheme: As shown in Appendix C,

when file n is requested, the STP for the fixed IN scheme is

given by

pfx
s,n=

L∑

θ=0

P
[
Θfx

I = θ
]
∫ ∞

0

‖ exp (QM−θ(Rc, L, ξ)) ‖1fZ(z)dz,

(18)

where P
[
Θfx

I = θ
]

is given in (14); fZ(z) =
2π λ

ξ z exp(−π λ
ξ z

2) is the probability distribution function

(PDF) of the serving distance Z; exp (A) =
∑∞

k=0
A

k

k! is

the matrix exponential; and QD(Rc, L, ξ) is a D ×D lower

Toeplitz matrix, given by

QD(Rc, L, ξ) =








q0
q1 q0
...

...
. . .

qD−1 qD−2 · · · q0







, (19)

whose elements, i.e., q0 and qm for m ≥ 1 are given by

q0 =− πλ

{

εfx(Rc, L, ξ)

(

1− 1

ξ

)

z2
τ

2

α

sinc( 2
α )

+ afx z
2

ξ
F (τ)

+ bfx
(
1− εfx(Rc, L, ξ)

)
R2

cF

(

τ

(
z

Rc

)α)
}

, (20)

qm =2πλ

{

εfx(Rc, L, ξ)

(

1− 1

ξ

)
τ

2

α

α
z2B

(

m− 2

α
, 1 +

2

α

)

+ afx 1

ξ
τmz2F̃m(τ) + bfx(1− εfx(Rc, L, ξ))τ

mzαm

×R2−αm
c F̃m

(

τ

(
z

Rc

)α)
}

, (21)

where εfx(µ, L, ξ) is shown in (15); sinc(x) = sinπx
πx ; coeffi-

cients afx and bfx are given by (17); B(x, y) denotes the Beta

function; and F (x) and F̃m(x) are respectively given by

F (x) = 2F1

(

− 2

α
, 1; 1− 2

α
;−x

)

− 1, (22)

F̃m(x) =
1

αm− 2
2F1

(

1 +m,m− 2

α
;m− 2

α
+ 1;−x

)

,

(23)

with 2F1 (a, b; c; d) denoting the Gauss hypergeometric func-

tion.

Finally, the whole STP for the network with the fixed IN

scheme can be obtained by plugging (18) into (10).

2) STP for the Flexible IN Scheme: To present the expres-

sion for the STP in this scheme, we first define a notation as

follows.

w0 , εfl(µ, L, ξ)

(

1− 1

ξ

)
τ

2

α

sinc( 2
α )

+ afl
(
1− εfl(µ, L, ξ)

)
µ2F

(
τ

µα

)

+ bfl 1

ξ
F (τ), (24)

where εfl(µ, L, ξ) is shown in (15); sinc(x) = sinπx
πx ; coef-

ficients afl and bfl are given by (17); and F (x) is given by

(22).

We also show in Appendix C that when file n is requested,

the STP for the flexible IN scheme is given by

pfl
s,n =

1

ξ

L∑

θ=0

P
[
Θfl

I = θ
] ∥
∥WM−θ(µ, L, ξ)

−1
∥
∥
1
, (25)

where P
[
Θfl

I = θ
]

is given in (14); ‖ · ‖1 is the L1 in-

duced matrix norm; WM−θ(µ, L, ξ) ,

(
1
ξ + 2w0

)

IM−θ −
W̃M−θ(µ, L, ξ), where w0 is given by (24), In denotes an

n × n identity matrix, and W̃D(µ, L, ξ) is a D × D lower

Toeplitz matrix given by

W̃D(µ, L, ξ) =








w0

w1 w0

...
...

. . .

wD−1 wD−2 · · · w0







, (26)

the elements of which for m ≥ 1 are

wm= 2

{

εfl(µ, L, ξ)

(

1− 1

ξ

)
τ

2

α

α
B

(

m− 2

α
, 1 +

2

α

)

+afl(1−εfl(µ, L, ξ))τmµ2−αmF̃m

(
τ

µα

)

+
bfl

ξ
τmF̃m(τ)

}

,

(27)

where B(x, y) is the Beta function, and F̃m(x) is given by

(23).

Finally, the whole STP for the network with the flexible IN

scheme can be obtained by plugging (25) into (10).

C. The SIR Meta Distribution

The exact expression for the SIR meta distribution of file n
can be obtained using the Gil-Pelaez theorem [36], i.e.,

F̄Ps,n
(x) =

1

2
+

1

π

∫ ∞

0

ℑ
(
e−jt log xMjt,n

)

t
dt, x ∈ [0, 1],

(28)

where j ,
√
−1; Mi,n = E

[
Ps,n(τ)

i
]

denotes the i-
th moment of the CSTP Ps,n(τ), and then, Mjt,n is the

corresponding imaginary moment of Ps,n(τ); and ℑ(z) gives

the imaginary part of z ∈ C.

However, as mentioned in Section III-C, the effective

channel gain of the desired signal in multi-antenna networks

follows Gamma distribution. This will involve the calculation

of high-order derivatives of the Laplace transform of the inter-

ference, which makes it impossible to derive exact expressions

for high-order moments of the Ps,n(τ). Even if Mjt,n is

given, the calculation of the exact meta distribution using (28)

involves the integration of imaginary, which is still tedious. As

verified in [11], [15], [21], [22] for different network scenarios,

the beta distribution provides an excellent approximation for

the SIR meta distribution. Specifically, given the first moment

M1,n and the second moment M2,n of the CSTP, by matching
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them with the first and second moments of the beta distribu-

tion, we have the following approximation:

F̄Ps,n
(x) ≈ 1− Ix

(
M1,nκ

1−M1,n
, κ

)

, x ∈ [0, 1], (29)

where κ =
(M1,n−M2,n)(1−M1,n)

(M2,n−(M1,n)2)
; Ix(a, b) is the regularized

incomplete beta function with parameters a, b > 0, i.e.,

Ix(a, b) =
∫

x

0
ta−1(1−t)b−1 dt

B(a,b) ; and B(a, b) =
∫ 1

0
ta−1(1 −

t)b−1 dt here is the Beta function.

In this work, since the exact expressions for the second

moment of Ps,n(τ) cannot be obtained, we resort to a tractable

upper bound on Ps,n(τ), denoted by Pu
s,n(τ), to obtain an

approximation of the SIR meta distribution. We first present

the expression of this upper bound.

As shown in Appendix D, for both IN schemes, an upper

bound on Ps,n(τ) is given by

Pu
s,n(τ) =

L∑

θ=0

P [ΘI = θ]

M−θ∑

i=1

(−1)i+1

(
M − θ

i

)

×
∏

x∈Φa∪Φb∪Φc

1

1 + iβτZα‖x‖−α
, (30)

where β = ((M − θ)!)
−1

M−θ and Z is the serving distance of

u0 given a realization of Φ. Note that Pu
s,n(τ) can be P fx,u

s,n (τ)
(for the fixed IN scheme) or P fl,u

s,n (τ) (for the flexible IN

scheme), the corresponding ΘI can be Θfx
I or Θfl

I , and Φi,

i ∈ {a, b, c} can correspondingly be Φfx
i in (1) or Φfl

i in (3).

In the following, we present the expressions for the first and

second moments of Pu
s,n(τ) under each IN scheme.

For the fixed IN scheme, as shown in Appendix E, by

calculating the first and second moments of the upper bound

P fx,u
s,n (τ) given by (30), i.e., M fx,u

i,n = E
[
P fx,u
s,n (τ)i

]
, i ∈ {1, 2},

we can obtain

M fx,u
1,n =

L∑

θ=0

P
[
Θfx

I = θ
]
M−θ∑

i=1

(−1)i+1

(
M − θ

i

)∫ ∞

0

fZ(z)

× exp

(

− πλ

(

εfx(Rc, L, ξ)

(

1− 1

ξ

)

z2
(iβτ)

2

α

sinc( 2
α )

+ afx z
2

ξ
F (iβτ) + bfx

(
1− εfx(Rc, L, ξ)

)
R2

c

× F

(

iβτ

(
z

Rc

)α)
))

dz, (31)

M fx,u
2,n =

L∑

θ1=0

L∑

θ2=0

M−θ1∑

i=1

M−θ2∑

j=1

P
[
Θfx

I = θ1
]
P
[
Θfx

I = θ2
]

× (−1)i+j

(
M − θ1

i

)(
M − θ2

j

)∫ ∞

0

fZ(z)

× exp

(

−2π
c∑

k=a

λfx
k Hij(Ω

fx
k , β1τz

α, β2τz
α)

)

dz, (32)

where β = ((M − θ)!)
−1

M−θ , and βm = ((M − θm)!)
−1

M−θm ,

m ∈ {1, 2}; sinc(x) = sinπx
πx ; coefficients afx and bfx are

given in (17); fZ(z) = 2π λ
ξ z exp(−π λ

ξ z
2) is the PDF of the

serving distance Z; Ωfx
k and λfx

k , k ∈ {a, b, c} are given in (2)

and (16), respectively; Hij(Ω, x, y) is given by

Hij(Ω, x, y) ,

∫

Ω

(

1− 1

(1 + ixv−α) (1 + jyv−α)

)

vdv,

(33)

where Ω denotes the integration limits; we note that

Hij(Ω, x, y) = Hji(Ω, y, x), which can save computational

time significantly.

Similarly, for the flexible IN scheme, as shown in Ap-

pendix E, by calculating the first and second moments of

the upper bound P fl,u
s,n (τ) given by (30), i.e., Mfl,u

i,n =

E
[
P fl,u
s,n (τ)

i
]
, i ∈ {1, 2}, we can obtain

Mfl,u
1,n =

L∑

θ=0

P
[
Θfl

I = θ
]
M−θ∑

i=1

(−1)i+1

(
M − θ

i

)

×
(

1 + ξ
(

εfl(µ, L, ξ)(1− 1

ξ
)
(iβτ)

2

α

sinc( 2
α )

+ afl
(
1− εfl(µ, L, ξ)

)
µ2F (

iβτ

µα
) +

bfl

ξ
F (iβτ)

))−1

, (34)

and the expression for Mfl,u
2,n is similar to that for M fx,u

2,n , and

can be obtained by substituting all the superscript “fx” in (32)

with “fl”.

Note that the aforementioned expressions for Mu
1,n and

Mu
2,n involve a large number of summation and integration

operations, which may make the numerical computation time-

consuming when the values of M and L are large. However,

the approximation framework considered in the paper is still

of great importance, since it is impossible to obtain an explicit

expression for the second moment if we focus on the exact

expression of the CSTP Ps,n(τ).
After obtaining the expressions for Mu

1,n and Mu
2,n, we sub-

stitute them into (29). Then, the corresponding left-hand side

of (29) is rewritten as F̄Pu
s,n

(x). In this case, (29) gives a beta

approximation of F̄Pu
s,n

(x). In the sequel, we will use this beta

approximation of F̄Pu
s,n

(x) as an approximation of the exact

SIR meta distribution to analyze the link reliability distribution

of the network. The tightness of this approximation will be

verified via simulation in Section V. The overall SIR meta

distribution for both IN schemes then can be approximated by

F̄Ps
(x) ≈

∑

n∈Nc

anF̄Pu
s,n

(x). (35)

Together with the STP, the SIR meta distribution forms a

holistic analysis framework to reflect the performance from

the perspectives of not only the overall network but also the

individual links.

V. NUMERICAL RESULTS

In this section, we present numerical results to verify the

derived analytical expressions and give some design insights.

Unless otherwise stated, the default simulation parameter

settings are as follows: M = 8, L = 2, µ = 0.8, P = 46 dBm,

α = 4, λ = 1 × 10−4m−2, λu = 8 × 10−4m−2, N = 100,

C = 40, ξ = 1.75. The file popularity is assumed to follow

the Zipf distribution, i.e., an = n−γz
∑

n∈N n−γz
, n ∈ N , where

γz = 0.8 is the Zipf exponent.
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(a) The STP and the upper bound (b) The approximation of the variance (c) The approximation of the meta distribution

Fig. 1. Verification of the analytical results of the STP, the upper bound on the STP, the approximation of the variance, and the approximation of the SIR
meta distribution for the two IN schemes.

To fairly compare the performance of the fixed IN scheme

and the flexible IN scheme, we use the criterion that the

average numbers of IN requests received by a BS under these

two schemes are equal, which means the equality Θ̄fx(Rc, ξ) =
Θ̄fl(µ, ξ) holds. By solving this equality via the “fsolve”

function in MATLAB, given a value of the IN coefficient µ
(resp. the IN range Rc) for the flexible IN scheme (resp. the

fixed IN scheme), the corresponding value of Rc (resp. µ) can

be obtained. For instance, with the above default parameter

settings, the corresponding value of Rc is Rc = 52.71m.

Moreover, we further consider the variance of the CSTP

to evaluate the fairness of individual links among users. By

leveraging Mu
1,n and Mu

2,n given in Section IV-C, we can

obtain an approximated variance of the CSTP when file n
is requested, which is given by

Vn , Mu
2,n − (Mu

1,n)
2. (36)

Using the total probability theorem, the variance of the whole

CSTP is given by

V =
∑

n∈Nc

anVn. (37)

A. Verification of the Analytical Results

This subsection compares the analytical results obtained in

this paper with Monte Carlo simulations. For the Monte Carlo

simulations, we first generate 1 × 104 realizations of Φ and

Φu. For each realization of the PPPs, the files cached at each

BS and the file requested by each user are respectively deter-

mined according to our FUDC policy and the file popularity

distribution, so that the user association and the IN request

for each BS are determined. Next, for each realization of the

Φ and Φu, we further generate 5 × 103 realizations of the

Rayleigh fading channel. By averaging the results for these

5 × 103 realizations, we obtain the CSTP for one realization

of Φ and Φu. Finally, we obtain 1 × 104 different CSTPs,

based on which, the STP, the variance of the CSTP, and the

meta distribution are obtained.

Fig. 1 verifies the analytical results under the fixed IN

scheme and flexible IN scheme. Specifically, for different SIR

thresholds τ , Fig. 1(a) shows the results of the analytical

expressions for the STPs pfx
s and pfl

s, the upper bounds on

STPs, i.e., M fx,u
1 and Mfl,u

1 , and the Monte Carlo simulation

of the STPs for the two IN schemes. Here, the upper bound on

STP for each IN scheme is defined by Mu
1 ,

∑

n∈Nc
anM

u
1,n,

which is exactly the first moment of the upper bound of the

CSTP. As we can observe, for both schemes, the analytical

results match the Monte Carlo results well and the upper

bounds M fx,u
1 and Mfl,u

1 are respectively tight to pfx
s and pfl

s.

Fig. 1(b) shows that the analytical expressions for the variances

V given in (37) also match the Monte Carlo results.

For both IN schemes, the accuracy of the upper bounds

M fx,u
1 and Mfl,u

1 as well as the variances V fx and V fl allows

us to use the first and second moments of the upper bound on

CSTPs to approximate the moments of the original CSTPs,

and further obtain the corresponding approximations of the

SIR meta distributions using (29) and (35), as illustrated in

Section IV-C. Fig. 1(c) verifies this idea. The Monte Carlo

results in Fig. 1(c) are from the original CSTPs, whereas the

analytical results are from (29) and (35). From the figure, we

observe that the expressions for F̄Ps
(x) match the Monte Carlo

results well, and can effectively reflect the change tendency

of the meta distributions for both schemes. Therefore, in

the sequel, for each IN scheme, we use the approximation

F̄Ps
(x) in (35) to depict the original SIR meta distribution

and for simplicity, we refer to it as the meta distribution of

the network.

From Fig. 1, we see that the variance and meta distribution

can provide more information about the individual links than

the STP. For instance, in Fig. 1(a), the analytical results of

STPs for the two IN schemes are nearly equal when τ =
5dB. However, Fig. 1(b) shows that at this SIR threshold, the

variance of the flexible IN scheme is smaller than that of the

fixed IN scheme, which means the former scheme brings more

fairness among different individual links. Furthermore, from

Fig. 1(c), we see that at this SIR threshold, 46.3% of users

achieve link reliability of at least 0.9 with the fixed IN scheme,

whereas 43.1% of users with the flexible IN scheme can reach

such reliability. Therefore, although the STPs are nearly equal,

the fixed IN scheme has more high-reliability links than the

flexible one. This highlights the importance of this paper in

further investigating the variance and meta distribution of the

network.

In the following, we will further investigate the effects of
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RI

(a) The successful transmission probability

RI

(b) The variance

RI

(c) The meta distribution

Fig. 2. The STP, variance, and meta distribution (x0 = 0.9) versus the IN range RI for different SIR thresholds τ .

the IN range RI, the maximum IN DoF L, and the file diversity

gain ξ on the STP, the variance, and the meta distribution. For

the SIR threshold, we consider a low SIR threshold region

and a high SIR threshold region, whose typical values are

chosen as τ = −6 dB and τ = 20 dB, respectively. Moreover,

we focus on the meta distribution where the link reliability

threshold is given, whose default value is denoted by x0. We

set x0 = 0.9 and study the performance of F̄Ps
(x0), which

means the fraction of users achieving the link reliability of at

least 0.9 is of interest.

B. Effects of the IN Range RI

In this subsection, we focus on analyzing the effects of the

IN range RI on the aforementioned three metrics. Note that for

the fixed IN scheme, RI represents the IN range Rc; whereas

for the flexible IN scheme, RI represents the IN coefficient µ.

As mentioned before, we choose the value of Rc by making

Θ̄fx(Rc, ξ) = Θ̄fl(µ, ξ) hold for each given µ.

Fig. 2 shows the STP ps, the variance V , and the meta

distribution F̄Ps
(x0) as functions of IN range RI for different

SIR thresholds. µ is selected as the variable of x-axis. For

a given µ, the corresponding values of Rc for the fixed IN

scheme and ε(RI, L, ξ) are marked within the rectangles shown

in the three sub-figures. From Fig. 2(a) and Fig 2(c), we can

see that with the change of RI, regarding ps and F̄Ps
(x0),

the flexible IN scheme outperforms the fixed one in the low

SIR threshold region, whereas the fixed IN scheme performs

better in the high SIR threshold region. Fig. 2(b) shows that

the variance with the flexible IN scheme is always smaller

than that with the fixed IN scheme, which means the flexible

IN scheme makes the link quality of different users fairer.

Moreover, from Fig. 2(a), we observe that the STPs for both

IN schemes first increase and then decrease with RI, which

indicates that we should carefully select the values of RI to

maximize the STP (though the effect of adjusting µ on the

STP under the flexible IN scheme in the high SIR threshold

region is slight).

Regarding the variance, from Fig. 2(b), we observe that

there also exists an optimal RI for minimizing the variance.

Note that the optimal values of RI for maximizing the STP

and minimizing the variance are different. This indicates that

improving the whole STP of the network may compromise

the fairness of link reliability among different users, while

focusing on improving the link fairness among different users

may not achieve optimal overall performance. This reflects the

importance of link reliability distribution analysis in network

design.
Fig. 2(c) shows that F̄Ps

(x0) follows the similar tendency

to ps when RI changes. Nevertheless, we can still obtain more

detailed information on the link reliability distribution in the

network. For example, when ε(RI, L, ξ) = 0.07 (i.e., µ = 1),

the fractions of users achieving the link reliability of at least

0.9 are respectively 81% and 84% with the fixed IN scheme

and the flexible IN scheme when τ = −6 dB; whereas those

fractions are nearly 11% and 6% when τ = 20 dB.

C. Effects of the Maximum IN DoF L

This subsection focuses on analyzing the effects of the

maximum IN DoF L on the STP, the variance, and the meta

distribution. Fig. 3 depicts the relations between these three

metrics and L in the low SIR threshold region and the high

SIR threshold region. Given a value of L, the corresponding

IN missing probability is marked within the rectangle shown

in the sub-figures (recalling that we set the same value of

ε(RI, L, ξ) for the two IN schemes by adjusting the value of

Rc given a µ).

From Fig. 3(a), we observe that the STPs for both schemes

first increase and then remain unchanged with L. This is

because when L is small, the antenna resource allocated to IN

is not enough to satisfy all the IN requests received at each

BS. Therefore, increasing L will make more IN requests be

satisfied, and hence the STP improved. When L is sufficiently

large, almost all the IN requests are satisfied, e.g., when L = 2,

the IN missing probability is ε(RI, L, ξ) = 0.03, which means

averagely 97% of the IN requests can be satisfied. In this case,

keeping increasing L has little effect on improving the STP.
From the perspective of the variance, we can observe from

Fig. 3(b) that under the flexible IN scheme, increasing L will

decrease the variance. As we expect, allocating more antenna

resources for IN with the flexible scheme will always be bene-

ficial to link fairness. However, for the fixed IN scheme, only

in the low SIR threshold region, increasing L can decrease

the variance; in the high SIR threshold region, increasing L
will increase the variance. Note that allocating more antennas
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Fig. 3. The STP, variance, and meta distribution (x0 = 0.9) versus the maximum IN DoF L for different SIR thresholds τ .
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Fig. 4. The STP, variance, and meta distribution (x0 = 0.9) versus the file diversity gain ξ for different SIR thresholds τ .

for IN decreases the available spatial diversity for boosting

the desired signal. In the low SIR threshold region, the SIR

threshold is easy to achieve. For both IN schemes, increasing

the DoF for IN will improve the link quality of the poor-

link-quality users to achieve the SIR threshold, since more IN

requests can be satisfied, and hence, the variance decreases.

However, in the high SIR threshold region, the fixed IN

scheme does not bring enough gain for the poor-link-quality

users to achieve the SIR threshold, but makes the link quality

of users who have already reached the SIR threshold better,

which is detrimental to the link fairness.

Fig. 3(c) depicts the relation between F̄Ps
(x0) and L. We

can observe that in the low SIR threshold region, compared

with the fixed scheme, the flexible IN scheme leads to a higher

fraction of users achieving the link reliability of at least 0.9.

Increasing L will increase the fraction, and when L is large

enough, F̄Ps
(x0) almost keeps unchanged. Nevertheless, in the

high SIR threshold region, the fixed scheme leads to better

performance. Moreover, in this SIR threshold region, under

the flexible scheme, increasing L is harmful to F̄Ps
(x0), since

more antennas are allocated for IN to improving the received

SIR of the poor-link-quality users, leading to a decrease in the

fraction of high-link-quality users.

D. Effects of the File Diversity Gain ξ

This subsection focuses on analyzing the effects of the

file diversity gain ξ on the STP, the variance, and the meta

distribution. Fig. 4 shows these three metrics as functions of

the file diversity gain ξ in different SIR threshold regions.

Given a value of ξ, the corresponding IN missing probability

is marked within the rectangle shown in the sub-figures.

From Fig. 4(a), we observe that regarding the STP, in the

low SIR threshold region, the performance of the two IN

schemes is nearly the same when ξ is small, and the flexible

IN scheme outperforms the fixed one when ξ is large. For

both schemes, the STP is an increasing function of ξ. In

the high SIR threshold region, the fixed one always performs

better than the flexible one, and the STPs decrease with ξ.

This indicates that in the low SIR threshold region, caching

more files (corresponding to the UDC policy, ξ = 2.5) in the

network is beneficial to the STP, since the SIR threshold is

easy to reach, larger ξ means more files can be found in the

network, which is better for improving the STP; whereas in the

high SIR threshold region, caching the most popular files is a

better choice (exactly the MPC policy, ξ = 1), since the SIR

threshold is hard to reach, ensuring the successful transmission

of the most popular files is better.

Moreover, as can be observed from Fig. 4(b), increasing

the file diversity gain in the low SIR threshold region is

not only beneficial to the STP but the user link fairness

(i.e., decreasing the variance). However, in the high SIR

threshold region, even though selecting ξ = 1 contributes

to the maximum STP, it also makes the link reliability of

different users unfair. Furthermore, regarding the user link
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Fig. 5. Values of performance metrics under different SIR thresholds τ when
optimizing the STP, the variance and the meta distribution (x0 = 0.9).

fairness, compared with the high SIR threshold region, the

benefit brought by increasing ξ is more significant in the low

SIR threshold region. For example, when τ = −6 dB, the

percentage of the variance decreased by increasing the file

diversity gain from ξ = 1 to ξ = 2.5 with the flexible IN

scheme is 90.5%; whereas when τ = 20 dB, that percentage

is 41.5%.
Fig. 4(c) shows that in the low SIR threshold region,

F̄Ps
(x0) is an increasing function of ξ for both IN schemes.

The two schemes perform almost the same when ξ is small,

whereas the flexible IN scheme performs better than the fixed

one when ξ is large. Moreover, in the high SIR threshold

region, F̄Ps
(x0) decreases with ξ for both schemes, and the

fixed IN scheme performs better than the flexible one.

E. Performance Optimization

In this subsection, we endeavor to investigate several opti-

mization problems with the metrics considered in this paper

to obtain some system design guidelines quantitatively. The

optimization problem can be formulated as:
Problem 1:

(RI
⋆, L⋆, ξ⋆) = arg max

RI, L, ξ
S (38a)

s.t. RI ≥ 0, (38b)

0 ≤ L ≤ M − 1, (38c)

1 ≤ ξ ≤ N

C
, (38d)

where, for both fixed and flexible IN schemes, S can be either

ps given in Section IV-B, or F̄Ps
(x) given in (35), or 1/V

with V given in (37), or a weighted summation of ps and

F̄Ps
(x0), i.e., ηps + (1 − η)F̄Ps

(x0), where η ∈ [0, 1] is a

weight coefficient to balance the priority of maximizing the

STP or maximizing the fraction of users achieving a given link

reliability;2 and (RI
⋆, L⋆, ξ⋆) are the optimal values for the

three parameters for each problem. Note that for the weighted

objective function, a larger value of η means we pay more

attention to increasing the STP.

2One can choose different combinations from ps, F̄Ps(x), and 1/V to
form different weighted objective functions for different purposes. Here, as
an example, our goal is to maximize the average STP of the networks as well
as to improve the fraction of users achieving a given link reliability x0.

Problem 1 can be iteratively solved by using the coordinate

descent method [37]. Specifically, in each iteration, we suc-

cessively search for the optimal value of each variable (e.g.,

RI) numerically with the remaining two variables (e.g., L and

ξ) fixed. Then, by repeating this procedure, an stationary point

for this optimization problem can be obtained. However, due to

the complexity of the expressions for the objective function,

we can only reach an approximated stationary point where

the precision of the variables RI, L, and ξ are ǫRI
, ǫL, and

ǫξ, whose values should be carefully selected, so that the

computation time cost is acceptable.

Figs. 5-7 provide some results obtained by solving Prob-

lem 1 under both IN schemes. The default parameters are

set as x0 = 0.9, ǫRc
= 5m for the fixed IN scheme (resp.

ǫµ = 0.05 for the flexible IN scheme), ǫL = 1, and ǫξ = 0.05.

Fig. 5 shows the results of performance metrics when the

objective function S in Problem 1 is set as ps, 1/V , and

F̄Ps
(x), respectively. From the figure, we can observe that in

terms of maximizing the STP and the meta distribution, in the

low SIR threshold region, the flexible IN scheme outperforms

the fixed one, whereas in the high SIR threshold region, the

fixed IN scheme performs better. When maximizing the metric

1/V (equivalently minimizing the variance), the flexible IN

scheme is always a better choice (in the high SIR threshold

region, the variance of the flexible scheme is slightly smaller

than that of the fixed one).

Fig. 5 discloses the information on which IN scheme

is better when optimizing the three single metrics alone.

Whereas Fig. 6 further presents the corresponding results of

(RI
⋆, L⋆, ξ⋆). From Fig. 6(a), we can see that when maximiz-

ing the STP, in the low SIR threshold region (from Fig. 5 we

know that the flexible IN scheme performs better in this case),

the flexible IN scheme tends to choose the largest L and the

largest ξ;3 whereas in the high SIR threshold region, the fixed

IN scheme leads to the largest L but smallest ξ. Fig. 6(b)

shows that to minimize the variance, we need to choose the

largest L and ξ for all SIR threshold region. From Fig. 6(c), we

see that to maximize the fraction of users with link reliability

no less than 0.9, in the low SIR threshold region, the flexible

IN scheme leads to the largest L and ξ; whereas in the high

SIR threshold region, the fixed IN scheme leads to the largest

L but smallest ξ. Moreover, for each of the aforementioned

single-metric optimization problems, an optimal RI should be

chosen to maximize the objective function.

Fig. 7 shows the relationships between the weight coef-

ficient η and the STP as well as the SIR meta distribution

under both IN schemes when considering the weighted metric

optimization problem. The SIR threshold is set as τ = 0dB.

From the figure we observe that when setting the weighted

metric ηps + (1 − η)F̄Ps
(x0) as the objective function in

Problem 1, the corresponding STP increases with η while

3In our network setup, the ranges of the three parameters are respectively
µ ∈ [0, 5] (correspondingly Rc ∈ [0, 446] m), L ∈ [0, 7], and ξ ∈ [1, 2.5].
From simulations, we found that for the variance minimization problem, given
a range of µ, when τ is greater than a threshold (e.g., 5 dB in Fig. 6), the
minima of V is always reached at the upper end of the range. Therefore, to
facilitate the solving of the problem, we set µmax = 5 here. The relative
margin gain of V by adjusting µmax = 5 to µmax = 6 is no more than
2.5%.
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(a) Maximize the STP (b) Minimize the variance (c) Maximize the meta distribution (x0 = 0.9)

Fig. 6. The optimal design parameters with different SIR thresholds τ for optimizing the STP, the variance and the meta distribution.

Fig. 7. Impact of the weight coefficient η on the STP and the SIR meta
distribution (τ = 0 dB and x0 = 0.9).

the corresponding SIR meta distribution decreases with η.

This is because when η increases, Problem 1 focuses more

on improving the STP, leading to a larger ps and a smaller

F̄Ps
(x0). Moreover, we can see that given the current values

of τ and x0, the flexible IN scheme outperforms the fixed one

on both the STP and the meta distribution.

Fig. 8 depicts the trade-off between ps and F̄Ps
(x0) with

different Zipf exponents γz and cache sizes C. The curves are

obtained by tuning the weight coefficient η from 0 to 1. The

SIR threshold is set as τ = 0dB. From Fig. 8(a), we see that

under both IN schemes, both the STP and the meta distribution

increase when γz increases, which means a more concentrated

user preference for files leads to better network performance.

From Fig. 8(b), we see that under both IN schemes, increasing

the cache size leads to higher ps and F̄Ps
(x0), since more files

can be stored in the network.

F. System Design Guidelines

Based on the analysis given in Section V-B, Section V-C,

and Section V-D as well as the simulations in Section V-E,

we can obtain some observations for the following purposes:

1) To improve the STP: in the low SIR threshold region,

it is better to choose the flexible IN scheme and cache

more files in the network; whereas the fixed IN scheme

with fewer files cached in the network performs better

in the high SIR threshold region. For both cases, we

should allocate more DoF for IN.

(a) Different Zipf exponents γz (b) Different cache sizes C

Fig. 8. Trade-off between the STP and the meta distribution with different
Zipf exponents γz and cache sizes C (τ = 0dB and x0 = 0.9).

2) To improve the link fairness: the flexible IN scheme

is always a better choice to improve the link fairness

among different users, compared with the fixed one.

Moreover, caching more files in the network and allocat-

ing more DoF for IN are more beneficial to the fairness

improvement.

3) To increase the fraction of users with high link reliabil-

ity: in the low SIR threshold region, we should choose

the flexible IN scheme with more files cached in the

network and larger DoF for IN; whereas in the high SIR

threshold region, the fixed IN scheme with fewer files

cached in the network and more DoF for IN is better.

Note that for all the purposes above, the optimal RI can

only be obtained by solving Problem 1. Furthermore, the

numerical results obtained in Section V-E further confirm the

observations above.

VI. CONCLUSION

In this paper, we investigate the SIR meta distribution for a

multi-antenna cache-enabled network with two IN schemes

considered, i.e., the fixed IN scheme and the flexible IN

scheme. Using stochastic geometry analysis techniques, the

expression for STP under each scheme is firstly derived. Then,

we provide an approximated expression for the SIR meta

distribution for each IN scheme, based on the first and second

moments of a tight upper bound on the CSTP and utilizing

the beta distribution. This is the first work to analyze the SIR

meta distribution in a multi-antenna cache-enabled network

incorporating the caching parameter and the IN parameters.

It is shown that these two groups of parameters impact the
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system performance in a complicated manner, and the STP and

the SIR meta distribution respond to the changes of parameters

differently. Some useful system design insights are obtained

by analysis and numerical simulation.

APPENDIX A

DERIVATION OF Θ̄

A. Flexible IN Scheme

First, we consider the flexible IN scheme. The derivation

procedure is similar to our previous work [10, Appendix B].

For completeness, we state the detailed procedures here.

Let Φ̃u,n and λ̃u,n respectively denote the set of served users

that request file n and the density of Φ̃u,n. Then Φ̃u,n is an

independent thinning of Φ̃u, since the file choices are indepen-

dently made. Given the file diversity gain ξ, each BS randomly

chooses C different files from all the files in Nc with the same

probability Tc = 1/ξ to form a file combination. The set of

all the file combinations is denoted by I. Ii denotes the i-th
combination from I. Denote by In the set of file combinations

containing file n. In
i denotes the i-th combination from In.

Let pi be the probability that a BS stores combination i. Then,

we have Tc =
∑

i∈In pi. The density of BSs that store file n
is λTc. Consider a typical BS which is located at the origin,

denoted by B0, and storing file n. Then, B0 will store the

combination In
i with probability pi

Tc
. Let p(n | In

i ) denote the

probability that the served user of a BS storing combination In
i

requests file n. To facilitate the analysis, we use the uniform

distribution to approximate it, i.e., p(n | In
i ) ≈ 1/C, whose

accuracy has been verified in [10, Fig. 8]. Then, we have

λ̃u,n ≈ λTc

∑

i∈In
pi

Tc
p(n | In

i ) =
λTc

C = λ
Cξ .

Next, we derive the expression for Θ̄fl. We first characterize

the probability that a served user sends an IN request to a BS.

Consider a BS B0 located at the origin and storing the file

combination Ii; and a user ux located at x requesting file

n ∈ Nc. Denote by Z the serving distance of the user ux.

Consider the case when µ < 1. When 0 ≤ ‖x‖ ≤ µZ ,

ux will send an IN request to B0 if n /∈ Ii; otherwise, B0

is the serving BS of ux, which is contradictory. Denote by

p̃(x, n | Ii) the probability that ux sends an IN request to B0.

Then, we have p̃(x, n | Ii) = 1{n /∈ Ii}P [‖x‖ ≤ µZ] =

1{n /∈ Ii}
∫∞

‖x‖
µ

fZ(z)dz = 1{n /∈ Ii}e−πλ‖x‖2

ξµ2 , where

fZ(z) = 2π λ
ξ z exp(−π λ

ξ z
2) is the PDF of the serving

distance of ux. Then, all the served users that request file

n and send an IN request to B0 form an inhomogeneous

PPP with density p̃(x, n | Ii)λ̃u,n. Therefore, the average

number of IN requests sent by these users and received by

B0, denoted by Θ̄fl
i,n, can be obtained by Campell’s Theorem

as Θ̄fl
i,n =

∫

R2 p̃(x, n | Ii)λ̃u,ndx = λ
Cξ

∫ 2π

0

∫∞

0
1{n /∈

Ii}e−πλ r2

ξµ2 rdrdθ = 1{n /∈ Ii}µ2

C . By summing Θ̄fl
i,n

for all the files in Nc, we have Θ̄fl
i =

∑

n∈Nc
Θ̄fl

i,n =
(∑

n∈Nc
1−∑n∈Ii

1
)

µ2

C , which is the average number of

IN requests received by B0 on the condition that it stores file

combination Ii. By the total probability theorem, we have

Θ̄fl =
∑

i∈I

piΘ̄
fl
i =

∑

i∈I

pi

(
∑

n∈Nc

1−
∑

n∈Ii

1

)

µ2

C

=

(

Nc −
∑

i∈I

∑

n∈Ii

pi

)

µ2

C

(a)
=

(

Nc −
∑

n∈Nc

Tc

)

µ2

C

= (Nc−C)
µ2

C
= ξµ2 − µ2, (39)

where (a) is from the relation C =
∑

i∈I piC =
∑

i∈I

∑

n∈Ii
pi1{n ∈ Ii} =

∑

n∈Nc

∑

i∈In pi =
∑

n∈Nc
Tc

[30].

When µ ≥ 1, the BS B0 will receive an IN request from

ux if: 1) 0 ≤ ‖x‖ ≤ Z and n /∈ Ii; 2) Z < ‖x‖ ≤ µZ .

Therefore, we have p̃(x, n | Ii) = 1{n /∈ Ii}P [‖x‖ ≤ Z] +

P [Z < ‖x‖ ≤ µZ] = (1{n /∈ Ii} − 1) e−π λ
ξ
‖x‖2

+ e
−πλ ‖x‖2

ξµ2 .

Similarly, we have Θ̄fl
i,n =

∫

R2 p̃(x, n | Ii)λ̃u,ndx =

(1{n /∈ Ii}−1) 1
C + µ2

C , and

Θ̄fl =
∑

i∈I

pi
∑

n∈Nc

Θ̄fl
i,n = ξµ2 − 1. (40)

Combining (39) and (40), we have the final result for Θ̄fl.

B. Fixed IN Scheme

Here, we consider the fixed IN scheme. In this case, for an

arbitrarily selected BS B0, suppose the serving distance of its

served user is Z . If Z > Rc, all the scheduled users within the

circle of a radius Rc centered at B0 will send an IN request to

B0. Since each BS only serves one user at each time, B0 will

averagely receive πR2
cλ IN requests. Nevertheless, if Z ≤ Rc,

B0 will receive the IN requests from all the scheduled users

within Rc except its served user, and thus, the average number

of IN requests is πR2
cλ− 1. Therefore, we have

Θ̄fx = P[Z ≤ Rc](πλR
2
c − 1) + P[Z > Rc]πλR

2
c

= (πλR2
c − 1)

∫ Rc

0

fZ(z)dz + πλR2
c

∫ ∞

Rc

fZ(z)dz

= πλR2
c + e−π λ

ξ
R2

c − 1, (41)

where fZ(z) = 2π λ
ξ z exp(−π λ

ξ z
2) is the PDF of Z .

Finally, we obtain the results in (13) for the two schemes.

APPENDIX B

DERIVATION OF THE IN MISSING PROBABILITY

Denote by ε′(Θ) the probability that an arbitrary interfering

BS B0 within the IN range of u0 does not select u0 for IN

when it has Θ more IN requests besides the one from u0. If

Θ + 1 ≤ L, ε′(Θ) = 0; if Θ + 1 > L, L IN requests are

randomly uniformly chosen to be satisfied, and thus, ε′(Θ) =
1− L

Θ+1 . Since whether or not a served user sends IN request

to its interfering BSs is independent of others, given B0 has

received the IN request from u0, Θ follows the same PMF as in

(12). Therefore, we have ε(RI, L, ξ) =
∑∞

θ=L ε′(θ)P [Θr = θ].
Further considering (12), we have the final result.
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APPENDIX C

DERIVATION OF THE EXPRESSIONS FOR THE STPS

A. Fixed IN Scheme

We first consider the fixed IN scheme. The derivation is

partly similar to [10, Appendix C]. The main differences

come from that: 1) in (42), we need to consider the PMF

P
[
Θfx

I = θ
]
; 2) when calculating P[gx0

≥ τzαI] in (42), the

densities λfx
i and intervals Ωfx

i , i ∈ {a, b, c} are different,

as shown in (43); and 3) the integration in (42) cannot be

written in a closed form, and is expressed as (18). We present

the whole procedure for completeness. Based on the total

probability formula, we have

pfx
s,n=

L∑

θ=0

P
[
Θfx

I = θ
]
∫ ∞

0

P[Υfx
n ≥ τ|Θfx

I = θ, Z = z]fZ(z)dz

=

L∑

θ=0

P
[
Θfx

I = θ
]
∫ ∞

0

P[gx0
≥ τzαI]fZ(z)dz, (42)

where P[Υfx
n ≥ τ | Θfx

I = θ, Z = z] is the STP conditioning

on the number of IN requests satisfied by the serving BS of

u0 is Θfx
I = θ, and the serving distance of u0 is Z = z;

fZ(z) = 2π λ
ξ z exp(−π λ

ξ z
2) is the PDF of Z; and I ,

∑

x∈Φ′ gx‖x‖−α, with Φ′ = Φfx
a ∪ Φfx

b ∪ Φfx
c , where Φfx

a , Φfx
b ,

and Φfx
c are given in (1). Let s , τzα, and LI(s) , EI [e

−sI ]

denote the Laplace transform of I . Since gx0

d∼ Γ(M − θ, 1)
is a gamma distributed variable, we have P [gx0

≥ τzαI] =

EI

[
∑M−θ−1

m=0
sm

m! I
me−sI

]
(a)
=
∑M−θ−1

m=0
(−s)m

m! L(m)
I (s) [33],

where L(m)
I (s) is the m-th derivative of LI(s), and (a) is

based on the property EI

[
Ime−sI

]
= (−1)mL(m)

I (s). We

further have

LI (s) = EI

[
e−sI

]
= EI

[

e−s
∑

x∈Φ′ gx‖x‖
−α
]

= EΦ′

[
∏

x∈Φ′

Egx

[

e−sgx‖x‖
−α
]
]

(a)
= EΦ′

[
∏

x∈Φ′

1

1 + s‖x‖−α

]

(b)
= exp

(

−2π

c∑

i=a

λfx
i

∫

Ωfx
i

(

1− 1

1 + sv−α

)

vdv

︸ ︷︷ ︸

,χ(s)

)

, (43)

where (a) is due to gx
d∼ Exp(1), (b) is from the probabil-

ity generating functional (PGFL) for a PPP and the polar-

Cartesian coordinate transformation, and the densities λfx
i and

intervals Ωfx
i , i ∈ {a, b, c} are given in (16) and (2). The

exponent χ(s) in (43) can be further obtained by

χ(s) =− 2π

[

λfx
a

(
∫ ∞

0

h(v)dv −
∫ ∞

min{Z,Rc}

h(v)dv

)

+ λfx
b

(
∫ ∞

min{Z,Rc}

h(v)dv −
∫ ∞

max{Z,Rc}

h(v)dv

)

+ λfx
c

∫ ∞

max{Z,Rc}

h(v)dv

]

, (44)

where h(v) ,
(
1− (1 + sv−α2)−1

)
v. Using [38, (3.194)] and

after some manipulation, we can obtain the expression for q0 =

χ(s) as shown in (20). Since L′
I(s) = LI(s)χ

′(s), according

to the Leibniz formula, we have

L(m)
I (s) =

m−1∑

k=0

(
m− 1

k

)

χ(m−k)(s)L(k)
I (s), (45)

where χ(k)(s) denotes the k-th derivative of χ(s) with respect

to s and is given by

χ(k)(s) = 2π

c∑

i=a

λfx
i

∫

Ωfx
i

(−1)kk!
(v−α)

k
v

(1 + sv−α)
1+k

dv. (46)

Let qm = (−s)m

(m)! χ
(m)(s), substituting s = τzα into (46),

considering [38, (3.194)], and after some manipulation, we

can obtain the expression for qm given in (21).

Let xm = 1
m! (−s)mL(m)

I (s). From (45), we have x0 =
LI(s) = exp(q0) and

xm =
m−1∑

k=0

m− k

m

(
(−s)m−k

(m− k)!
χ(m−k)(s)

)

xk

=

m−1∑

k=0

m− k

m
qm−kxk. (47)

To obtain P [gx0
≥ τzαI] =

∑M−θ−1
m=0

(−s)m

m! L(m)
I (s) =

∑M−θ−1
m=0 xm, we need to solve the explicit expression for

xm. We define two power series as

Q(t) ,

∞∑

m=0

qmtm, X(t) ,

∞∑

m=0

xmtm. (48)

Consider that the derivative of a series Y (t) ,
∑∞

m=0 ymtm

is Y (1)(t) =
∑∞

m=0mymtm−1, and the product of Q(t) and

X(t) is Q(t)X(t) =
∑∞

m=0(
∑m

i=0 qm−ixi)t
m. From (47), we

can obtain

X(1)(t) = Q(1)(t)X(t). (49)

The solution of the above differential equation is X(t) =
c exp (Q(t)). Since X(0) = x0 = LI(s) and Q(0) = q0, we

have c = 1. Thus, the solution of (49) is X(t) = exp (Q(t)).
Since P [gx0

≥ τzαI] =
∑M−θ−1

m=0 xm, we have

P [gx0
≥ τzαI] =

M−θ−1∑

m=0

xm =

M−θ−1∑

m=0

1

m!
X(m)(t)

∣
∣
∣
∣
t=0

=

M−θ−1∑

m=0

1

m!

dm

dtm
exp (Q(t))

∣
∣
∣
∣
t=0

. (50)

From [39, p. 14] and [40, Appendix A], it can be shown

that the first M − θ coefficients of the power series

exp (Q(z)) is the first column of the matrix exponential

exp (QM−θ(Rc, L, ξ)), and their sum equals the L1 induced

norm of this matrix, where QD(Rc, L, ξ) is given in (19).

Further considering (42), we obtain the final result as in (18).

B. Flexible IN Scheme

For the flexible IN scheme, the derivation is similar to the

fixed IN scheme. However, in (42), we need to consider the

PMF P
[
Θfl

I = θ
]
; in (43) and (46), the integration intervals

Ωfl
i and densities λfl

i , i ∈ {a, b, c} should be considered. In
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this case, we substitute the series Q(t) in (48) with W̃ (t) ,
∑∞

m=0 wmtm, and the corresponding coefficients wm, m =
0, 1, 2, . . . , are given by (24) and (27). Then, the corresponding

solution to (49) becomes X(t) = exp(πz2λ(W̃ (t) − 2w0)),
with which the integration in (42) can be written in a closed

form as
∫ ∞

0

P[gx0
≥ τzαI]fZ(z)dz =

∫ ∞

0

M−θ−1∑

m=0

xmfZ(z)dz

=

∫ ∞

0

M−θ−1∑

m=0

1

m!

dm

dtm
X(t)

∣
∣
∣
∣
t=0

fZ(z)dz

=

M−θ−1∑

m=0

1

m!

dm

dtm

∫ ∞

0

exp
(

πz2λ
(

W̃ (t)−2w0

))

fZ(z)dz

∣
∣
∣
∣
t=0

=
1

ξ

M−θ−1∑

m=0

1

m!

dm

dtm

(
1

ξ
+ 2w0 − W̃ (t)

)−1
∣
∣
∣
∣
∣
t=0

=
1

ξ

∥
∥
∥
∥
∥

[(
1

ξ
+ 2w0

)

IM−θ − W̃M−θ(µ, L, ξ)

]−1
∥
∥
∥
∥
∥
1

, (51)

which finishes the derivation.

APPENDIX D

DERIVATION OF THE UPPER BOUND Pu
s,n(τ)

Based on the total probability formula, we have Ps,n(τ) =

P [Υn ≥ τ | Φ] =
∑L

θ=0 P [ΘI = θ]P [Υn ≥ τ | Φ, ΘI = θ],
where P [Υn ≥ τ | Φ, ΘI = θ] is the CSTP with further con-

dition that the number of IN requests satisfied by the serv-

ing BS of u0 is ΘI = θ. Then, it remains to calculate

P [Υn ≥ τ | Φ, ΘI = θ]. Let I =
∑

x∈Φ′ gx‖x‖−α be the

interference received at u0, where Φ′ , Φa ∪Φb ∪Φc denotes

all the interfering BSs of u0. According to (5), we have

P [Υn ≥ τ | Φ, ΘI = θ]

= Egx [P [gx0
≥ τZαI | Φ, ΘI = θ]]

(a)

≤ 1− Egx

[

(1− exp (−βτZαI))
M−θ

]

= 1− Egx

[
M−θ∑

i=0

(−1)i
(
M − θ

i

)

exp (−iβτZαI)

]

=

M−θ∑

i=1

(−1)i+1

(
M − θ

i

)

Egx

[

exp

(

−iβτZα
∑

x∈Φ′

gx‖x‖−α

)]

(b)
=

M−θ∑

i=1

(−1)i+1

(
M − θ

i

)
∏

x∈Φ′

Egx

[
exp

(
−iβτZαgx‖x‖−α

)]

(c)
=

M−θ∑

i=1

(−1)i+1

(
M − θ

i

)
∏

x∈Φ′

1

1 + iβτZα‖x‖−α

, Pu
s,n,ΘI

(τ, θ), (52)

where Z is the serving distance of u0, given a realization

of Φ; (a) is due to the Gamma distributed wireless channel

gx0

d∼ Γ(M − θ, 1) (whose CCDF is P[gx0
> y] = 1 −

γ(M−θ,y)
Γ(M−θ) ), and a lower bound on the incomplete Gamma

function
γ(M−θ,y)
Γ(M−θ) , i.e.,

(
1− e−βy

)M−θ ≤ γ(M−θ,y)
Γ(M−θ) , with

β = ((M − θ)!)−1/(M−θ); (b) is due to the independence of

Rayleigh fading channels for different BSs; (c) is obtained by

taking the expectation over the exponential distributed variable

gx
d∼ Exp(1). This completes the derivation.

APPENDIX E

DERIVATION OF Mu
1,n AND Mu

2,n

A. Fixed IN Scheme

We first consider the flexible IN scheme. Based on Pu
s,n(τ)

given in (30) and the definition of Pu
s,n,ΘI

(τ, θ) in (52), we

calculate the expression for M fx,u
1,n as follows.

M fx,u
1,n = E

[
L∑

θ=0

P
[
Θfx

I = θ
]
P fx,u

s,n,Θfx
I

(τ, θ)

]

=

L∑

θ=0

P
[
Θfx

I = θ
]
M−θ∑

i=1

(−1)i+1

(
M − θ

i

)

× E

[
∏

x∈Φ′

1

1 + iβτZα‖x‖−α

]

(a)
=

L∑

θ=0

P
[
Θfx

I = θ
]
M−θ∑

i=1

(−1)i+1

(
M − θ

i

)∫ ∞

0

fZ(z)

× exp

(

− 2π

c∑

k=a

λfx
k

∫

Ωfx
k

(

1− 1

1 + iβτzαv−α

)

vdv

)

dz

(b)
=

L∑

θ=0

P
[
Θfx

I = θ
]
M−θ∑

i=1

(−1)i+1

(
M − θ

i

)∫ ∞

0

fZ(z)

× exp

(

− πλ

(

εfx(Rc, L, ξ)

(

1− 1

ξ

)

z2
(iβτ)

2

α

sinc( 2
α )

+ afx z
2

ξ
F (iβτ) + bfx

(
1− εfx(Rc, L, ξ)

)
R2

c

× F

(

iβτ

(
z

Rc

)α)
))

dz, (53)

where Φ′ = Φfx
a ∪Φfx

b ∪Φfx
c ; (a) is due to the PGFL of a PPP

[25]; fZ(z) = 2π λ
ξ z exp(−π λ

ξ z
2) is the PDF of the serving

distance Z of u0; λfx
k , k ∈ {a, b, c} are given in (16), and the

integration limits Ωfx
k , k ∈ {a, b, c}, are given in (2); (b) is

from [38, (3.194)], and sinc(x) = sinπx
πx .

For the second moment M fx,u
2,n , from (30) and the definition

of Pu
s,n,ΘI

(τ, θ) in (52), we have

M fx,u
2,n = E





(
L∑

θ=0

P
[
Θfx

I = θ
]
P fx,u

s,n,Θfx
I

(τ, θ)

)2




=

∫ ∞

0

EΦ





(
L∑

θ=0

P
[
Θfx

I = θ
]
P fx,u

s,n,Θfx
I ,Z

(τ, θ, z)

)2


 fZ(z)dz,

(54)

where P fx,u
s,n,Θfx

I
,Z
(τ, θ, z) , P

[
Υfx

n ≥ τ | Φ, Θfx
I = θ, Z = z

]

is the upper bound of the CSTP with further conditions that
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Θfx
I = θ and the serving distance of u0 is Z = z. We then

have

EΦ





(
L∑

θ=0

P
[
Θfx

I = θ
]
P fx,u

s,n,Θfx
I
,Z
(τ, θ, z)

)2




= EΦ

[(
L∑

θ1=0

P
[
Θfx

I = θ1
]
P fx,u

s,n,Θfx
I
,Z
(τ, θ1, z)

)

×
(

L∑

θ2=0

P
[
Θfx

I = θ2
]
P fx,u
s,n,Θfx

I
,Z
(τ, θ2, z)

)]

= EΦ

[
L∑

θ1=0

L∑

θ2=0

P
[
Θfx

I = θ1
]
P
[
Θfx

I = θ2
]

× P fx,u

s,n,Θfx
I
,Z
(τ, θ1, z)P

fx,u

s,n,Θfx
I
,Z
(τ, θ2, z)

]

=

L∑

θ1=0

L∑

θ2=0

P
[
Θfx

I = θ1
]
P
[
Θfx

I = θ2
]

× EΦ

[

P fx,u

s,n,Θfx
I ,Z

(τ, θ1, z)P
fx,u

s,n,Θfx
I ,Z

(τ, θ2, z)
]

, (55)

where

EΦ

[

P fx,u

s,n,Θfx
I ,Z

(τ, θ1, z)P
fx,u

s,n,Θfx
I ,Z

(τ, θ2, z)
]

= EΦ

[(
M−θ1∑

i=1

(−1)i+1

(
M − θ1

i

)
∏

x∈Φ′

1

1 + iβ1τzα‖x‖−α

)

×
(

M−θ2∑

j=1

(−1)j+1

(
M − θ2

j

)
∏

x∈Φ′

1

1 + jβ2τzα‖x‖−α

)]

=

M−θ1∑

i=1

M−θ2∑

j=1

(−1)i+j

(
M − θ1

i

)(
M − θ2

j

)

× EΦ

[
∏

x∈Φ′

1

(1 + iβ1τzα‖x‖−α)(1 + jβ2τzα‖x‖−α)

]

(a)
=

M−θ1∑

i=1

M−θ2∑

j=1

(−1)i+j

(
M − θ1

i

)(
M − θ2

j

)

exp

(

− 2π

×
c∑

k=a

λfx
k

∫

Ωfx
k

(

1− 1

(1+iβ1τzαv−α)(1+jβ2τzαv−α)

)

vdv

)

=

M−θ1∑

i=1

M−θ2∑

j=1

(−1)i+j

(
M − θ1

i

)(
M − θ2

j

)

× exp

(

−2π

c∑

k=a

λfx
k Hij(Ω

fx
k , β1τz

α, β2τz
α)

)

, (56)

where βm = ((M − θm)!)
−1

M−θm , m ∈ {1, 2}, and (a) is from

the PGFL of a PPP; Hij(Ω, x, y) is given in (33). Considering

(54), (55), and (56), after some manipulation, we have the

expression for M fx,u
2,n shown in (32).

B. Flexible IN Scheme

The derivation for the flexible IN scheme is similar to the

fixed IN scheme. However, in (53), we need to consider the

PMF P
[
Θfl

I = θ
]
, and the integration intervals Ωfl

i and densi-

ties λfl
i , i ∈ {a, b, c} should be considered. Correspondingly,

the integration of (b) in (53) can be written as

L∑

θ=0

P
[
Θfl

I = θ
]
M−θ∑

i=1

(−1)i+1

(
M − θ

i

)∫ ∞

0

fZ(z)

× exp

(

− πz2λ
(

εfl(µ, L, ξ)(1 − 1

ξ
)
(iβτ)

2

α

sinc( 2
α )

+ afl
(
1− εfl(µ, L, ξ)

)
µ2F (

iβτ

µα
) + bfl 1

ξ
F (iβτ)

)
)

dz

=
L∑

θ=0

P
[
Θfl

I = θ
]
M−θ∑

i=1

(−1)i+1

(
M − θ

i

)

×
(

1 + ξ
(

εfl(µ, L, ξ)(1− 1

ξ
)
(iβτ)

2

α

sinc( 2
α )

+ afl
(
1− εfl(µ, L, ξ)

)
µ2F (

iβτ

µα
) + bfl 1

ξ
F (iβτ)

))−1

,

(57)

where the equality follows
∫∞

0 2xe−Ax2

dx = 1/A. Moreover,

following the same procedure as (54)-(56), we can obtain the

expression for Mfl,u
2,n .
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