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We consider how to describe Hamiltonian mechanics in generalised probabilistic theories with the states rep-
resented as quasi-probability distributions. We give general operational definitions of energy-related concepts.
We define generalised energy eigenstates as the purest stationary states. Planck’s constant plays two differ-
ent roles in the framework: the phase space volume taken up by a pure state and a dynamical factor. The
Hamiltonian is a linear combination of generalised energy eigenstates. This allows for a generalised Liouville
time-evolution equation that applies to quantum and classical Hamiltonian mechanics and more. The approach
enables a unification of quantum and classical energy concepts and a route to discussing energy in a wider set
of theories.

Introduction.—Generalised probabilistic theories (GPTs)
constitute a metatheoretical framework developed within the
foundations of quantum mechanics. Two key goals of GPTs
are to understand the structure of quantum theory, particularly
which elements necessarily arise from its probabilistic nature,
and to elucidate the relations between classical and quantum
mechanics [1–4]. Classical and quantum theories, as well as
classical-quantum hybrid models, appear as special cases [3–
5]. The states in GPTs are viewed as compressed lists of
probabilities of possible measurement outcomes, with specifi-
cations contingent on the system preparation and subsequent
dynamical transformations. While the initial emphasis was on
the underlying probabilistic structure of GPTs, there is now
a growing focus on a unified treatment of energy concepts
within GPTs and the exploration of natural generalisations of
classical and quantum dynamics [6–11].

In Refs. [6–9], the quantum theory Hamiltonian was ex-
tended in various ways to GPTs. In Ref. [7] it was shown that
the phase space formalism can represent continuous-variable
generalised probabilistic theory models. Thus one may use
the phase space formalism for a dynamical description of hy-
pothetical post-quantum theories of mechanics [7, 9]. Us-
ing the phase space approach Ref. [10] recently presented
post-quantum toy models of real systems including hydro-
gen atoms, by hypothesizing a generalised phase-space time
evolution that is based on a generalization of a quantum-
mechanical Moyal bracket [11].

These promising results create hope that we can develop
self-consistent post-quantum theories of Hamiltonian me-
chanics as well as gain a deeper understanding of quantum
and classical mechanics and their interrelations. There are
certain hurdles lying ahead. For example, the formal classical
limit of quantum theory where the Planck constant is taken
to zero is singular [12], creating a further potential block to-
wards a unified framework: how does one generalise this con-
stant? There is also the fact that well-defined energy states
in classical mechanics have descriptions (for example, Liou-
ville density written in terms of positions and momenta), that
evolve explicitly, whereas quantum energy eigenstates are sta-

tionary and thus akin to functions of action and angle vari-
ables. Thus it may appear as though at least some classical
energy concepts are incompatible with quantum energy con-
cepts.

We tackle these questions via a generalised phase space ap-
proach. By introducing postulates that reduce to the stan-
dard assumptions of the quantum and classical theories in
the appropriate limits, we are able to describe dynamics in
terms of a generalised Hamiltonian H(q, p). The generalised
evolution equations are obtained with the help of a theory-
specific integration kernel K (k). In the particular case of
K (k) → 2

k δ (k − h̄), the quantum evolution is recovered.
When K (k) → 2

k δ (k), the classical evolution is obtained.
General functions K (k) model post-quantum theories.

The Hamiltonian of a closed system is an observable with a
time-invariant expectation value ⟨E⟩= ∫ H(q, p) f (q, p)dqd p,
where f is a GPT state. We construct the Hamiltonian as
H = ∑i EiVgigi, where Ei are the generalised energy eigenval-
ues and gi are their generalised eigenstates that are ascribed
a phase space volume Vgi . This volume acts as a generaliza-
tion of the Bohr–Sommerfeld elementary volume, reducing to
Vgi =(2π h̄)n for a quantum system with n degrees of freedom.
The generalised energy eigenstates gi are defined as the purest
stationary states. In other words, they are time-invariant states
that are not mixtures of other time-invariant states [13]. They
coincide with the standard energy eigenstates if the GPT is
a quantum theory and are uniform distributions over phase
space orbits in the case of classical mechanics.

These results provide a unified framework within which
one can derive statements relating to energy in such a man-
ner that they apply directly to both quantum and classical me-
chanics as well as to a wider set of theories.

We proceed as follows. First, we briefly summarize the
key rules of the quantum and classical phase space descrip-
tion. We then generalise (i) the Born rule and Planck’s con-
stant therein, (ii) the energy eigenstates, (iii) the equation of
motion, and (iv) the Hamiltonian. Detailed derivations and
additional results are given in an accompanying paper [14].
Phase space representation.— Consider first classical me-
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chanics of a non-constrained system with a finite number of
degrees of freedom. Its states and (the algebra of) observ-
ables are smooth functions on the phase space P [12, 15].
Mathematically, it is a symplectic manifold that is a cotan-
gent bundle of the configuration space with local coordinates
q. The local coordinates on P are z = (q, p) where p are the
generalised momenta.

The Poisson bracket of two phase space functions { f ,g} is
defined as

∑
j

(
∂ f
∂q j

∂g
∂ p j
− ∂ f

∂ p j

∂g
∂q j

)
≡ f
(←
∂q
→
∂p−

←
∂p
→
∂q
)
g≡− f Λg,

(1)
where j runs through all the degrees of freedom (we will fo-
cus on one-dimensional systems hereafter), and arrows indi-
cate the direction of action of the differential operators. The
Poisson bracket governs the dynamics of observables via the
canonical equations of motion q̇ = {q,H} and ṗ = {p,H},
that are generated by the system’s Hamiltonian H.

Our knowledge about a system is encapsulated in a prob-
ability (Liouville) density ρ(z). Its evolution is given by the
Liouville equation,

∂ρ(q, p)
∂ t

= {H,ρ}=−HΛρ. (2)

The most common quantum phase space representa-
tion [11, 16, 17] is the Wigner function W (q, p), a real func-
tion which may be negative for regions of q, p, and is therefore
termed a quasi-probability density [11, 12, 16, 18–20]. The
Wigner function corresponding to a Hermitian operator Â is
the Fourier transform of the off-diagonals of Â (the Wigner
transform of Â):

A(q, p) :=Wignerk{Â}(q, p)=
∫

dxeipx/k 〈q− 1
2 x|Â|q+ 1

2 x
〉
.

(3)
The Weyl transform [11, 16]

Â =
1

4π2k2

∫
Wignerk{Â}(q, p)ei a(q−q̂)+b(p−p̂)

k dqd pdadb,

(4)
effects the inverse transformation, with obvious generaliza-
tion to n degrees of freedom. In quantum mechanics k = h̄.
Both transforms do not affect the dimension. Since ρ̂ is di-
mensionless, the Wigner function as a quasi-probability dis-
tribution on P is defined as Wρ̂ := Wignerh̄{ρ̂/(2π h̄)} [16].

The Born rule is reproduced by the following inner product,

p(i|ρ̂ j) = Tr(Êiρ̂ j) = h
∫

WiWjdqd p, (5)

where h = 2π h̄, and Wi and Wj are Wigner functions corre-
sponding to Êi (the effect) and ρ̂ j (the state), respectively.

The (non-commutative) product of operators is represented
as Wignerh̄{ÂB̂} = Wignerh̄{Â} ⋆ Wignerh̄{B̂} where ⋆ =
exp
(
− 1

2 ih̄Λ
)

is the Moyal star product. Finally, the time
evolution of the density operator ρ̂ under the (Weyl-ordered)
Hamiltonian Ĥ is equivalently represented as the evolution of

the Wigner function Wρ ,

∂Wρ

∂ t
=

1
ih̄

(
H ⋆Wρ −Wρ ⋆H

)
=−2

h̄
H(q, p)sin

(
h̄
2

Λ
)

Wρ(q, p).

(6)
When h̄ → 0, Eq. (6) becomes the classical evolution

Eq. (2).
Generalised Born rule and inner product from

symmetries.—A key ingredient of any generalised proba-
bilistic theory (GPT) is the assignment of probabilities of
the outcomes i of tests on preparations f , P(i| f ) = ei( f )
[1–3, 21–23]. In the terminology of quantum foundations
research, the functional ei on the state space is called an effect
[24, 25]. In GPTs the states are represented as real vectors,
which here correspond to continuous real distributions
f (z) [7].

It is standard to assume linearity of the effects in a GPT,
such that the probability of a discrete outcome can always be
represented via

P(i| f ) = ei( f ) = ci

∫
f (z)gi(z)dz, (7)

where gi is a real-valued normalized function and ci is a pos-
itive constant. gi does not necessarily represent a valid state.
For the effects to form a complete measurement the iden-
tity ∑i ei( f ) = 1 should hold for any allowed state f . Thus
∑i cigi = 1, which is known as the completeness condition for
a measurement.

Similar expressions give the probability of continuous ef-
fects labelled by a continuous variable µ . The probabil-
ity of falling into an interval (µ,µ + dµ) is dP(µ;dµ| f ) =
ρ(µ| f )dµ , where ρ(µ| f ) is the probability density for the
outcome µ given the state f . We can represent the density by
the general expression ρ(µ| f ) = cµ

∫
f (z)gµ(z)dz. For exam-

ple, classical (sharp) phase space localization has µ = z0 ∈P,
and the state is given by the Liouville density: f = ρ(z). The
probability of being within the volume dz0 around z0 in P
is dP = ρ(z0)dz0. Comparison with the general expression
identifies gz0(z) = δ (z− z0) and cz0 = 1.

While the gi of effects in Eq. (7) are in general not asso-
ciated with specific states, it is possible that gi is a function
representing a state such that Eq. (7) can be interpreted as the
probability being proportional to the inner product between
two states, with

⟨ f ,g⟩=
∫

f (q, p)g(q, p)dqd p (8)

being a possible form of the inner product. We find that Eq.
(8) is, up to a multiplier, the unique inner product under three
symmetries. The symmetries read as follows: 1. Translation:
(q, p, t) 7→ (q+a, p+b, t + c), for any a,b,c ∈R, 2. Switch:
(q, p, t) 7→ (Cp,q/C,−t), where C is an arbitrary constant fix-
ing unit, 3. Time reversal: (q, p, t) 7→ (q,−p,−t). (See the
Supplementary Material for details).

Eq. (8) allows us to interpret the inner product with a state
gi as a possibly allowed effect ei( f ) ∝ ⟨gi, f ⟩ ∝

∫
f gidqd p.
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The proportionality constant is fixed if ei(gi) = 1:

1 = ei(gi) = ci

∫
gigidqd p := ci∥gi∥2, (9)

resulting in ci = ∥gi∥−2. We call complete sets of such ef-
fects state-dual measurements. Projective measurements in
quantum theory are an example. State-dual measurements are
guaranteed to exist in so-called self-dual theories [2, 3].

Eq. (9) associates a property of state gi with the corre-
sponding state-dual measurement. This relationship ascribes
a quantity with the units of [qp] to the effect gi. We will show
this ci can be given the meaning of volume that is occupied
by the corresponding state in P.

Generalised Planck constant of uncertainty: state
volume.— Consider a set of state-dual measurements on the
system whose states are confined within the region D ⊂ P.
The functions {gi} that represent the effects have joint sup-
port in the same domain. Completeness of the measurement
inside D implies ∑N

i=1 cigi = 1D, where 1D takes value 1 in-
side the domain D and 0 outside it. As the support of any gi
is in D, the phase space volume VD satisfies

VD =
∫

1Ddz = ∑
i

ci

∫

D
gidz = ∑

i
ci, (10)

enabling the interpretation of the coefficients ci as the effec-
tive phase space volume of the states gi. We will accordingly
use the terminology of the state volume Vfi of a function fi in
P as

Vfi :=
(∫

f 2
i dqd p

)−1

=
1
∥ fi∥2 . (11)

The generalised Born rule for state-dual measurements can
now be written as

P(i| f ) =Vgi

∫
gi(q, p) f (q, p)dqd p. (12)

For example, in quantum theory the purity of a state ρ̂ is
bounded via Eq. (5) as Tr

(
ρ̂2
)
= h

∫
W 2

i ⩽ 1. Thus the state
volume of any pure quantum state is given by the Planck con-
stant, Vρ = ∥Wρ∥−2 = h, while mixed states have larger state
volumes.

Classical pure states are associated with points in P and
Dirac-delta distributions centred on those points [12]. For
concreteness, consider a mixed state fδε that is given by a uni-
form distribution in the volume ∆q∆p where we set ∆q = δ ,
∆p = ε and take the limit of zero uncertainty by εδ → 0.
A normalised rectangular function is 1/(εδ ) on this domain
and zero elsewhere. Eq. (11) then implies that in the limit
εδ → 0 the volume Vfδε approaches zero. In an epistemically-
restricted classical theory simulating quantum mechanics [26]
Vf ⩾ h.

If we demand that similarly to classical and quantum theo-
ries all pure states in a GPT have the same 2-norm (this does
not hold in the example of the probabilistic theory known as
box-world [27]) we can define a state-independent general-
ization of h as ∥gp∥−2 = Vp, where gp is an arbitrary pure

state. The number N of distinguishable states (associated with
the state-dual measurements in D) can be interpreted as the
amount of information (as measured in the number of states)
one can store in the system, and then obeys N ≤ VD

Vp
in line

with Eq. 10.
Generalised energy eigenstates.—We generalise the energy
eigenstates of quantum mechanics as the set of purest station-
ary states of a GPT. For stationary states the probabilities of
all time-independent effects are time-independent, and thus
they are given by time-independent functions on P.

Probabilistic mixtures of stationary states are, by inspec-
tion, also stationary, so there is a convex set of stationary
states. Pure stationary states are the extreme points of the
set of stationary states. Pure stationary states are not neces-
sarily pure states of the corresponding GPT, i.e. the extreme
points [12, 25] of the convex set of all states.

Wigner functions that represent the energy eigenstates of
quantum mechanics are stationary by construction. On the
other hand, if the action-angle I− θ variables can be intro-
duced [15, 28, 29], then the invariance of the action variables
is an explicit manifestation of stationarity. The classical en-
ergy eigenstates are then δ (I− I0)/(2π), for all the possible
I0, corresponding to uniform distributions over phase-space
orbits. Thus pure stationary states of classical mechanics
are not classical pure states. These correspond to the phase
space points and in the Schrödinger picture are explicitly
given as fz0(t) = δ

(
z− z0(t)

)
, where z0(t) ∈ P is the phase

space trajectory. The pure stationary states moreover coin-
cide with the eigenfunctions of the Liouvillian operator in the
Koopman–von Neumann quantum-like formulation of classi-
cal mechanics [14]. However, the dual role of the Hamiltoni-
ans as the generator of dynamics and as an observable, which
we incorporate in the GPT framework, is not respected in the
Koopman–von Neumann formulation, which has important
consequences for the hybrid quantum-classical mechanics [?
].

We will show in subsequent sections that pure stationary
states further satisfy two natural desiderata for generalised
energy eigenstates: (i) pure stationary states can be assigned
sharp energy values, always giving the same value in an en-
ergy measurement, and (ii) they determine the time evolution
of the system.
Generalised equation of motion.—A class of generalised
equations of motion for the states f (z, t) is obtained if their
generator G is assumed to be a bilinear functional of the
state f and the generalised energy eigenstates G ( f ,∑eigi) =

∑i eiG ( f ,gi). Imposing the additional assumptions of (i) the
symmetries of canonical coordinates; (ii) preservation of the
inner product; (iii) G (gi,g j) = 0 for all i, j results in (See Sup-
plementary Material for details):

∂ f
∂ t

= ∑
i

εi

∫
K (k) f sin

(
k
2

Λ
)

gidk

= ∑
i

εi

∫ i
2
K (k)Wignerk{[ f̂k,(ĝi)k]}dk, (13)

where εi are constant coefficients and K (k) is a theory-
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specific distribution. Wignerk{ } represents the Wigner trans-
form of Eq. (3), and f̂k,(ĝi)k are the Weyl transforms (Eq. (4))
of f and gi (their units are different from density matrices). To
include the continuous spectrum (unbounded quantum states,
classical mechanics), the sum over should be replaced by inte-
gration. This generalised evolution provides a restricted ver-
sion of the generalised Moyal bracket in Ref. [10], here de-
rived from physical principles.

We recover the quantum dynamics (Eq. (6)) if we identify
K (k) = 2δ (k− h̄)/k (and H(q, p) ≡ ∑i εigi). To obtain the
classical theory (Eq. (2)) we have to take a (singular) limit
h̄→ 0. Thus K (k) can be viewed as generalising the dynam-
ically important Planck constant.

As a simple example of a self-consistent theory where
the dynamical and state Planck constants differ, consider d-
dimensional quantum systems with a restriction on the in-
formation about the preparation such that the allowed pure
states of the restricted theory are the states of the form
1
2 |ψ⟩

(a) ⟨ψ|(a) + 1
2 |ψ⟩

(b) ⟨ψ|(b) where |ψ⟩(x) = ∑d
i=1 c(x)i |i⟩

and ⟨ψ|(a) |ψ⟩(b) = 0. Then the generalised Planck constant
for states is V = 2h, whereas the dynamical Planck constant
remains h (see Ref. [14] for details).

For a general K (k) the evolution is given by the integral
of commutators with different commutation relations. A non-
associative algebra replaces the associative Moyal bracket or
the operator product. Therefore, the transformation is no
longer described by a Lie group, but a quasigroup, or what
may be termed a loop [30]. We have not found any principle
that rejects this possibility.
Generalised energy and Hamiltonian.—We now complete

the discussion by providing an explicit expression for the
Hamiltonian as an observable and writing the generalised
time evolution equation in terms of that Hamiltonian.

The set of energy eigenstates provides a set of state-dual
measurement effects in quantum mechanics. Generalizing
this idea, we postulate that there exists a state-dual measure-
ment corresponding to the pure stationary states {gi} ({gµ}
in the case of a continuum labelled by µ).

A restriction on how to define generalised energy values is
that the identification H = ∑i εigi in Eq. (13) in the quantum
cases indicates that the energy eigenvalues (scalars with the
dimension of energy) are Ei = εi/(2π h̄) = εi/Vi, where we
used Eq. (12) and that Vi = 2π h̄ for all pure states in quantum
mechanics.

Extending the definition of the Hamiltonian as the genera-
tor of time evolution, we demand

∂ f
∂ t

=
∫

dkK (k) f sin
(

Λk
2

)
H, (14)

i.e. the dynamics of a GPT is determined by the set (gi,εi)
and the kernel K (k). Thus the Hamiltonian can be written as

H(q, p) = ∑
i

EigiVgi +
∫

Eµ gµ dVµ , (15)

an expression which also defines the generalised energy
eigenvalues (both the discrete and continuous parts of the

spectrum). In Ref. [14], we give a detailed discussion about
how the generalised energy is a conserved and additive quan-
tity.

We have seen that the above definition reduces to the stan-
dard expression for the energy in quantum theory. In classical
mechanics we have gI0(I) =

1
2π δ (I− I0) where I stands for

the action in the action-angle coordinate [15], such that

H =
∫

EI0
1

2π
δ (I− I0)2πdI0, (16)

where EI0 is the classical energy that corresponds to the I0,
1

2π δ (I − I0) is a normalised state, and 2πdI0 gives dVI0 . It
trivially satisfies Eq. (15).

Consider the expectation value of energy. By the gener-
alised Born rule of Eq. (12), P(i| f ) = ∫ Vgigi f dqd p. Combin-
ing that with the definition of the Hamiltonian (Eq. (15)), we
have that the expectation value of energy for state f is given
by

⟨E⟩=
∫

H f dqd p, (17)

which for the generalised energy eigenstate gi is just its value
Ei.
Summary and outlook.—We built a generalised phase-space
framework centred around generalizations of the quantum en-
ergy concepts, like Hamiltonian and energy eigenstates (as
listed in Table I). We define the generalised energy eigenstates
operationally: the most pure stationary states. Based on these
pure stationary states, we derive a generalised equation of
motion in phase space which encompasses the quantum and
classical Liouville equations of motion. This includes gener-
alizing Planck’s constant. In our framework, Plank’s constant
provides the volume occupied by pure states and also appears
in the commutation relation in the equation of motion. The
two generalizations of Planck’s constant can have different
values in general theories. The axioms used are listed together
in the Supplementary Materials. A specific theory is obtained
by specifying the set of pure states of the theory, the dy-
namical kernel K (k), and a general post-measurement state
update rule, as can be seen e.g. from comparison with sum-
maries of classical and quantum axioms [12, 25, 31]. An ac-
companying extended article contains a derivation of the gen-
eralised Born rule from symmetries and examples of theories
other than quantum and classical, amongst other things [14].

This framework can be employed and developed in sev-
eral directions: (i) the link between the generalised evolution,
state/effect negativity, ‘jumping in phase space’ and contex-
tuality deserves investigation [14]. (ii) other forms of me-
chanics can be built, that are neither classical nor quantum,
e.g. by letting Plank’s constant in the equation of motion dif-
fer from Plank’s constant for uncertainty or choosing a non-
trivial K (k), (iii) the framework enables clear analogies and
comparisons between quantum and classical dynamics and
could be for example help clarify the apparent speed-up of
Hamiltonian-based quantum walks over classical walks [32],
(iv) it may be possible to reduce or alter the set of postulates
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Quantum Classical Generalization
Wigner function Non-negative phase space distribution Arbitrary distribution in the phase space

Energy eigenstates Delta functions of action Pure stationary states
uncertainty h 0 State volume
dynamical h {q, p}= 1 Non-localized dynamics factor K (k) in Eq. (13)
Equation (6) Liouville equation Eq. (2) Time evolution Eq. (14)

TABLE I. Comparison between quantum, classical and our generalised framework.

(see the Supplementary Material for a list), (v) it is natural to
employ the framework to create a theory of thermodynamics
that is independent of the underlying choice of mechanics.
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LIST OF POSTULATES

Postulate 1 (Canonical coordinate symmetries). There exists
a coordinate system (q, p) where the physical laws manifested
by equations of motion and measurement are invariant under
the following coordinate transformations:
1. Translation: (q, p, t) 7→ (q+a, p+b, t+c), for any a,b,c∈
R. We represent its action on functions via (T̂a,b,c f )(q, p, t) =
f (q+a, p+b, t + c).
2. Switch: (q, p, t) 7→ (Cp,q/C,−t), where C is an arbitrary
constant with units [C] = [q/p].
3. Time reversal: (q, p, t) 7→ (q,−p,−t). (equivalent to
(q, p, t) 7→ (−q, p,−t) by switch.)

Postulate 2 (Local inner product). The inner product is local
which means for two arbitrary quasi-probability distributions
f1 and f2,

lim
a→∞

〈
f1, T̂a,0,0 f2

〉
= 0. (1)

Postulate 3 (Evolution dependence). The time evolution of a
state only linearly depends on the pure stationary states, up to
some dimensional factors Ei to keep the dimensions identical.

∂ f
∂ t

= G

(
f ,∑

i
Eigi

)
= ∑

i
EiG( f ,gi) , (2)

where gi is a set of pure stationary states and Ei are corre-
sponding parameters and G is some bi-linear functional.

Postulate 4 (Independence of stationary states). The pure sta-
tionary states are independent in the sense that G(gi,g j) = 0
holds for arbitrary i, j.

Postulate 5 (Inner product invariance). The time derivative
of inner products ∂

∂ t

∫
f1(t) f2(t)dqd p = 0 for arbitrary states

f1, f2 and time point t.

Postulate 6 (Existence of energy measurement). There exists
a state-dual measurement whose effects all correspond to pure
stationary states.

THE INNER PRODUCT FROM CANONICAL
SYMMETRIES

This derivation depends on Postulate 1 and 2.

An inner product is a bilinear symmetric function of two
states. For phase space distributions f1 and f2, a general form
of such a bilinear function is
∫

M(q, p,∆q,∆p) f1(q, p) f2(q+∆q, p+∆p)dqd pd∆qd∆p,

(3)
where M is an arbitrary function. The symmetric condition
on the inner product ⟨ f1, f2⟩= ⟨ f2, f1⟩ further requires

M(q, p,∆q,∆p) = M(q, p,−∆q,−∆p) (4)

for arbitrary a,b,c,d ∈R.
Translation symmetry requires ⟨ f1(q, p), f2(q, p)⟩ =

⟨ f1(q+a, p+b), f2(q+a, p+b)⟩ such that
∫

M(q, p,∆q,∆p) f1(q, p) f2(q+∆q, p+∆p)dΩ =∫
M(q, p,∆q,∆p) f1(q+a, p+b) f2(q+a+∆q, p+b+∆p)dΩ,

(5)
where dΩ = dqd pd∆qd∆p. Eq. (5) holds for arbitrary f1, f2,
so

M(q, p,∆q,∆p) = M(q−a, p−b,∆q,∆p), (6)

for all a,b ∈ R. Therefore, M only depends on the relative
distance ∆q,∆p,.

M(q, p,∆q,∆p) = M(∆q,∆p). (7)

Similarly, switch symmetry with dimensional constant
C requires ⟨ f1(q, p), f2(q, p)⟩ = ⟨ f1(p/C,Cq), f2(p/C,Cq)⟩,
which leads to

M(∆q,∆p) = M(∆p/C,C∆q). (8)

Time reversal symmetry requires ⟨ f1(q, p), f2(q, p)⟩ =
⟨ f1(q,−p), f2(q,−p)⟩, which leads to

M(∆q,∆p) = M(∆q,−∆p). (9)

Equations (4), (7), (8), (9) imply that M(q, p,∆q,∆p) is
constant when |∆p∆q| = c for arbitrary c ≥ 0, except at the
origin (∆q = ∆p = 0). All these contour lines extend to in-
finity. Nevertheless, we postulated the local inner product,
⟨ f1, f2⟩ = 0 for infinitely separated states, M(∆q,∆p) must
go to 0 when ∆q→ ∞. This implies that M(∆q,∆p) = 0 ex-
cept for at the origin (∆q = ∆p = 0). Thus, M(∆q,∆p) ∝
δ (∆q)δ (∆p), and the inner product must have the form

⟨ f1, f2⟩ ∝
∫

f1(q, p) f2(q, p)dqd p. (10)
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2

DERIVING THE EQUATION OF MOTION

This is an abbreviated derivation depending on Postulate
1, 3, 4, and 5. The aim is to get the generalized equation of
motion:

∂ f
∂ t

= ∑
i

εi

∫
K (k) f sin

(
k
2

Λ
)

gidk. (11)

In this equation, ∂ f
∂ t only depends on local derivatives of f

and generalized eigenstates gi. To derive it, we introduce an
equivalent but different form of the equation:

∂ f
∂ t

(q, p) =
∫

f (q+ l, p+ j)J(q, p, l, j)dld. (12)

When J(q, p, l, j)

= ∑
i

εiIm
∫

gi(q+ y, p+ z)A(k′)e−ik′( jy−lz)dk′dydzdld j,

(13)
the Eq. (12) is equivalent to Eq. (11), where A(k′) corre-
sponds to the K (k), they represent the exactly same degree
of freedom. We can find the ∂ f

∂ t (q, p) not only depends on the
functions at (q, p), but the whole phase space (dld j are inte-
grated over the whole phase space). You can check the two
different forms are equivalent by multivariate Taylor expan-
sions of f (q+ l, p+ j) and g(q+ y, p+ z) in Eq. (12), (13).

The Eq. (12) describes the most general evolution of quasi-
probability. We are going to restrict the J(q, p, l, j) by postu-
lates. The inner product invariance

∫ ∂ f1
∂ t f2 +

∂ f2
∂ t f1dqd p = 0

requires

J(q, p, l, j) =−J(q+ l, p+ j,− j,−l). (14)

We have introduced symmetries of canonical coordinates:
Switch, Time reversal, Translation. Inspired by quantum me-
chanics, we assume the evolution linearly depends on the gen-
eralised energy eigenstates gi, so J is a linear functional of gi.
When we apply these symmetry operations to state f as well
as eigenstates gi, we expect the equation of motion to still
hold after operations:

∂ f ′

∂ t ′
=
∫

Jg′(q, p, l, j) f ′(q+ l, p+ j)dld j. (15)

(We can write (q, p, t) 7→ (q′, p′, t ′), or equivalently
f (q, p),g(q, p), t 7→ f ′(q, p),g′(q, p), t ′. We choose the lat-
ter one here.) The switch and time reversal symmetries re-
quire J(0,0, j, l) = J(0,0,− j,−l). Adding translation sym-
metry we require

J(q, p, j, l) = J(q, p,− j,−l) (16)

for arbitrary q, p, l, j.

Combining Eq. (14), (16), we find

J(q, p, l, j) = J(q+ l, p+ j, l, j), (17)
which means J is periodic on q, p. Hence, only certain fre-
quency components satisfying kql + kp j = 2πn (n ∈ Z) are
allowed in J. A general linear functional of g is given by

J(q, p, l, j) = Re
∫

g̃(kq,kp)A′′′(kq,kp, l, j)ei(kqq+kp p)dkqdkp,

(18)
where A′′′ and all the As below represent some unsettled de-
grees of freedom in J, different As help to absorb constants.
The periodic property adds a ∑n δ (kql + kp j− 2πn) term in
the frequency domain.

J(q, p, l, j)
= Re

∫
g̃(qk, pk)A′′(kq,kp, l, j)∑n δ (kql + kp j−2πn)ei(kqq+kp p)dkqdkp

= Re
∫

g(q+ y, p+ z)∑n A′
(

2πn−kp j
l ,kp, l, j

)
ei( 2πn−kp j

l y+kpz)dkpdydz

= Re
∫

g(q+ y, p+ z)∑n A(n,k′, l, j)ei 2πny
l e−ik( jy−lz)dk′dydz,

(19)

where we relabelled kp
l by k′. The term ei 2πny

l is not well-
defined when l = 0, but this term will vanish later.

The requirement Eq. (16) further requires that J is an odd
function of l, j, so

Jg = Im
∫

gi(q+y, p+z)∑
n

A(n,k′, l, j)ei 2πny
l e−ik′( jy−lz)dkdydz,

(20)
and requires A(n,k′, l, j) = A∗(n,k′,−l,− j).

One more requirement is the pure stationary states them-
selves should be stationary under the equation of motion (Pos-
tulate 4), i.e.,

∫
g(q+ l, p+ j)Jg(q, p, l, j)dld j

= Im
∫

g(q+ l, p+ j)g(q+ y, p+ z)

∑n A(n,k′, l, j)ei 2πny
l e−ik′( jy−lz)dk′dydzdld j

= 0.
(21)

Observe that the equation can be written in the matrix form:

gl jMl jyzgyz = 0, (22)

where Ml jyz = Im
∫

∑n A(n,k′, l, j)ei 2πny
l e−ik′( jy−lz)dk′. It

means M must be a generator of the orthogonal group,
which is anti-symmetric, Ml jyz = −Myzl j, swapping yz with
lz changes its sign. Therefore, we require n can only equal
zero and A(n,k′, l, j) = A(k′). Now the form of J is

Jg(q, p, l, j)= Im
∫

g(q+y, p+z)A(k′)e−ik′( jy−lz)dk′dydzdld j.

(23)
This is exactly Eq. (13), which means we have derived the
generalized equation of motion Eq. (11).


