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We present a general ab initio method based on Wannier function for simulating the photocurrent
in solids. The method is widely applicable to charge/spin DC and AC photocurrent at any per-
turbation levels in both semiconductors and metals for both linearly and circularly polarized light.
This is because the method is theoretically complete (within relaxation time approximation), that is
to say, it includes all intra-band, inter-band and their cross terms. Specifically for the second-order
DC photocurrent, it includes all of the following contributions - shift current, (magnetic) injection
current, Berry curvature dipole, gyration current and Fermi surface ones, instead of only a part of
them as in most previous ab initio methods. It is also free from the degeneracy issue, i.e., applicable
to arbitrary band structures with arbitrary numbers of degenerate bands. We apply the method
to various semiconductors and metals, including GaAs, graphene-hBN heterostructure, monolayer
WS2, a 2D ferroelectric material - monolayer GeS, bilayer anti-ferromagnetic MnBi2Te4 and topo-
logical Weyl semimetal RhSi to simulate their charge and/or spin, DC and/or AC photocurrent.
Our theoretical results are in good agreement with previous theoretical works. Our method pro-
vides a universal computational tool for reliable and accurate predictions of abundant weak-field
photocurrent phenomena in disparate materials.

I. INTRODUCTION

The electric current generation under uniform light il-
lumination, called photocurrent, have been extensively
studied in optoelectronic physics.[1–11] Recently, the
photocurrent phenomena in solids, such as bulk photo-
voltaic effect (BPVE, also called photogalvanic effect -
PGE), second- and third-harmonic generation (SHG and
THG) and sum-/difference-frequency generation, have
drawn much attention in the research fields of condense
matter physics, opto-electronics, opto-spintronics, mate-
rial science, etc. For example, quantized circular photo-
galvanic effect (CPGE), whereby circular polarized light
generates a helicity-dependent photocurrent, in Weyl
semimetals were predicted[4] and observed[5]. Spin–
valley-coupled CPGE and its electric control was real-
ized in WSe2.[6] Robust pure spin photocurrent was pre-
dicted in several materials.[7, 12] Electrically and broad-
band tunable third-harmonic generation was realized in
graphene.[13]
In this work we focus on the photocurrent under weak

fields, since such conditions are usually satisfied in the
studies of BPVE and low-order harmonic generation
(LHG) and are preferred for the related low-power op-
tical device applications. Moreover, the weak-field pho-
tocurrent measurements are invaluable in detecting ma-
terials’ properties such as topological and spin ones. This
is because the weak-field photocurrent is simply the prod-
uct of electric fields and optical susceptibilities, and the
latter are a class of materials’ properties determined by
band structure, Berry connections, spin-orbit coupling,
the scattering strength, etc.

∗ jqxu@hfut.edu.cn
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Predictive ab initio theories based on density func-
tional theory (DFT) appeared since the late 1990s for
SHG[9, 14] and since the early 2010s for BPVE[2, 12, 15].
These theories are invaluable for the understandings of
experimental findings and the predictions of new mate-
rials with excellent properties. The main challenge of
ab initio calculations is that very dense k-point sam-
plings are often required to converge the results, e.g.,
106 k-points may be necessary for topological semimet-
als, which makes them computationally expensive. The
k-point convergence issue becomes more serious if ab ini-
tio sophisticated forms of the scattering/relaxation pro-
cesses beyond the simple relaxation time approximation
(RTA) are employed.

To resolve this issue, ab initio methods using max-
imally localized Wannier function have been employed
for efficient calculation of the shift current, injection
current and Berry curvature dipole contributions to
the photocurrent.[16–20] However, the current Wannier-
function-based methods have two main problems: (i)
Some important contributions to BPVE, e.g., the intrin-
sic Fermi surface effect and the gyration current proposed
by Watanabe and Yanase[21], are not considered and the
implementations for LHG are even less complete. There-
fore, large errors may present in the studies of metal-
lic systems and/or under circularly polarized light. (ii)
The Wannier interpolation of Berry connection (needed
in their methods) uses the nondegenerate perturbation
theory, so that the degenerate bands are not treated
properly.

The above problems can be removed by employing a
technique originally developed for theoretical simulations
of high harmonic generation under strong fields in Ref. 9,
where the laser term of the electron dynamics is first
expressed in the smooth “Wannier” representation and
then transformed to the eigenstate representation. In
“Wannier” representation, the basis are smooth Bloch-
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like functions of k, so that the laser term (in the length
gauge) is well defined and can be easily computed by
finite difference. Therefore, the degeneracy issue is by-
passed. Moreover, with the accurate expression of the
laser term, all contributions to the photocurrent within
RTA, including the shift current, (magnetic) injection
current, Berry curvature dipole, gyration current and
Fermi surface contributions, can be considered.
Therefore, it is promising to apply the technique of

Ref. 9 to other photocurrent properties besides HHG.
Here, we thus have developed an ab initio method based
onWannier function of the photocurrent including BPVE
and LHG within RTA. The method is applicable to both
semiconductors and metals for both linearly and cir-
cularly polarized light, corresponding to linearly PGE
(LPGE) and CPGE respectively.
This article is organized as follows. In Sec. II, we de-

rive the formulae of optical susceptibilities via perturba-
tive treatment of the density-matrix (DM) master equa-
tion in the length gauge within RTA. We then relates
the second-order susceptibilities to LPGE and CPGE. In
Sec. III, we given the computational setups of our DFT
and photocurrent calculations. In Sec. IV, we apply our
method to various semiconductors and metals, including
GaAs, graphene-hBN heterostructure, monolayer WS2, a
2D ferroelectric material - monolayer GeS, bilayer anti-
ferromagnetic MnBi2Te4 and topological Weyl semimetal
RhSi to simulate their charge and/or spin BPVE and
LHG. In Sec. V, a summary and outlooks are given.

II. METHODS

Theoretically, the photocurrent formulae can be ex-
pressed in both the length and velocity gauges for the
laser.[22] In most theoretical works, the length gauge was
employed. This is because that although the velocity
gauge has simpler formulae, it suffers from several issues:
(i) Large number of bands are required to converge the re-
sults if additional calculations are not employed;[12, 23]
(ii) The dephasing and the general scattering term be-
yond relaxation time approximation (RTA) are hard to
be included;[24] (iii) The numerical results may diverge
at low-ω (photon frequency) limit.[22]
In length gauge, the current density Jc (t) and spin-

current density Jsγ (t) are

Jc/sγ (t) =V −1
cellTr

[
jc/sγρ (t)

]
, (1)

jc =− ev, (2)

v =
−i

ℏ
[
r, H0

]
, (3)

jsγ =0.5× (sγv + vsγ) , (4)

where ρ is the DM of Bloch electrons. Vcell is the unit-
cell volume/area of the crystal for 3D/2D systems. jc is
the charge current operator. v is the velocity operator. r
is the position operator, H is Hamiltonian operator and

H0 is unperturbed Hamiltonian operator. In the eigen-
basis, H0

kab = ϵkaδab with ϵ the eigenvalue, k the k-point
index and a (b) the band index. sγ is the spin operator
along γ direction. jsγ is the conventional spin-current
operator[25].

A. DM master equation in the length gauge

We solve the quantum master equation of the single-
particle ρ (t) in the Schrödinger picture as[22, 26, 27]

dρ (t)

dt
=− i

ℏ
[
H0, ρ (t)

]
+DE [ρ] + C [ρ] , (5)

DE [ρ] =
e

ℏ
E (t) · Dρ

Dk
, (6)

where DE [ρ] and C [ρ] is the laser and collision terms
of the DM dynamics respectively. E (t) is the time-

dependent electric field of a laser. Dρ
Dk is the covariant

derivative of ρ.
For a laser with photon frequency ω,

E (t) =E (ω) eiωt +E (−ω) e−iωt (7)

with E (−ω) ≡ E∗ (ω) being the constant amplitude.
The covariant derivative of an arbitrary operator A -

DA
Dk is defined as[22]

DA

Dk
=
dA

dk
− i [ξ, A] , (8)

ξkab =i

〈
uka|

dukb

dk

〉
, (9)

where d
dk is the gradient, ξ is the Berry connection

and u is the basis function or the periodic part of Bloch
wavefunction. Note that Eq. 8 above is the same as
Eq. 34 of Ref. 22, but different notations are used. The
operator D

Dk is directly related to the position operator
r as follow:

DA

Dk
=− i [r, A] . (10)

Therefore, the electric-field term of the master equa-
tion DE [ρ] can be expressed as

DE [ρ] =− i

ℏ
[
HE , ρ

]
, (11)

HE =eE (t) · r. (12)

The computation of Dρ
Dk via Eq. 8 is non-trivial due

to the following issues: First, the basis functions uk are
usually obtained by diagonalizing H0

k at different k in-
dependently, so that uk contain arbitrary phase factors
and are arbitrary in degenerate subspaces. Therefore,
uk are in general not smooth over k, which makes dρ

dk
not well-defined (except when ρ = f eq). Second, the
computation of ξ may suffer from the degeneracy issue,



3

as discussed later in Sec. IID 1. The above issues are
bypassed through the use of a Wannier-function-based
technique given below in Sec. IID 2.
The collision term C [ρ] of Eq. 5 describes the decay

of ρ to its equilibrium due to various processes such as
the electron-phonon scattering, the electron-hole recom-
bination, etc. In this work, we approximate C [ρ] within
RTA as

C [ρ] =− Γ⊙ {ρ− f eq} , (13)

where f eq is the equilibrium part of ρ and a diagonal
matrix whose elements are Fermi-Dirac functions. Γ is
the relaxation rate matrix and Γkaa is the relaxation rate
of the electronic state (k, a) - Γka. Hadamard product
A⊙B means the elementwise multiplication of matrices
A and B.
Suppose

ρ =f eq + ρE . (14)

Considering that dfeq

dt = 0 and [ϵ, f eq] = 0, within RTA,
Eq. 5 becomes

iℏ
dρE

dt
+ (iℏΓ−∆)⊙ ρE =ieE (t) · Dρ

Dk
, (15)

∆kab =ϵka − ϵkb. (16)

B. Perturbative solution of ρE and optical
susceptibility for charge and spin current

At weak fields, ρ can be expanded as ρ =
∑

n ρ
(n)

with ρ(n) = O (|E (ω)|n) and ρ(0) ≡ f eq. Therefore, the
nth-order master equation is

iℏ
dρE,(n)

dt
+ (iℏΓ−∆)⊙ ρE,(n) =ieE (t) · Dρ(n−1)

Dk
,

(17)

ρE,(n) =(1− δn0) ρ
(n). (18)

The above equation is a first-order (for the time deriva-
tive) ordinary differential equation. If the minimum ele-
ment of Γ - Γmin is positive. At t ≫ Γ−1

min, Eq. 17 has a
stationary solution

ρE,(n) (t) =
∑
m

ρE,(n) (mω) eimωt, (19)

where ρE,(n) (mω) is time-independent. Therefore, at
t ≫ Γ−1

min, from Eq. 17,

(−mℏω −∆+ iℏΓ)⊙ ρE,(n) (mω)

=ie
∑
±

E (±ω) · Dρ(n−1) ((m∓ 1)ω)

Dk
. (20)

Define

dΓkab (ω) =
1

−ℏω −∆kab + iℏΓkab
, (21)

we have,

ρE,(n) (mω) =ie
∑
±

E (±ω) · Dρ(n−1) ((m∓ 1)ω)

Dk

⊙ dΓ (mω) , (22)

From the above equation, we can define a nth-order
DM from the following iterative formulae,

ρE,(n)
α1...αn

(ω1, ..., ωn) =

 ieEα1 (ω1)
Dρ(n−1)

α2...αn
(ω2,...,ωn)

Dkα1

⊙dΓ
(∑n

j=1 ωj

)
 ,

(23)

ρE,(1)
αn

(ωn) =ieEαn
(ωn)

Dρ(0)

Dkαn

⊙ dΓ (ωn) , (24)

ωj =± ω. (25)

We further define the normalized nth-order DM as

ρ̃E,(n)
α1...αn

(ω1, ..., ωn) =
ρ
E,(n)
α1...αn (ω1, ..., ωn)∏n

i Eαi (ωi)
. (26)

Therefore, the nth-order current and spin-current den-
sities can be expressed as

Jc/sγ ,(n) (t) =
∑
m

Jc/sγ ,(n) (mω) eimωt, (27)

Jc/sγ ,(n)

 n∑
j=1

ωj

 =V −1
cell

n∏
i

Eαi
(ωi) (28)

× Tr
[
jc/sγ ρ̃E,(n)

α1...αn
(ω1, ..., ωn)

]
.

(29)

Since nth-order optical susceptibilities for charge and
spin current are defined as

J
c/sγ ,(n)
β

 n∑
j=1

ωj

 =
∑

α1...αn

n∏
i

Eαi (ωi)σ
c/sγ ,β
α1...αn

(ω1, ..., ωn) ,

(30)

we have

σc/sγ ,β
α1...αn

(ω1, ..., ωn) =V −1
cellTr

[
j
c/sγ
β ρ̃E,(n)

α1...αn
(ω1, ..., ωn)

]
.

(31)

From the above equations, we can obtain arbitrary-
order perturbative optical susceptibilities and photocur-
rent. Considering that BPVE, SHG and THG, three of
the most important photocurrent phenomena, are deter-
mined by second- and third-order optical susceptibilities,
we present the detailed formulae of optical susceptibili-
ties in first three orders in the following.
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1. First-order

From Eq. 24, 26 and 31, we have

ρ̃E,(1)
α (ω) =ie

Df eq

Dkα
⊙ dΓ (ω) , (32)

σc/sγ ,β
α (ω) =ieV −1

cellTr

[
j
c/sγ
β

Df eq

Dkα
⊙ dΓ (ω)

]
. (33)

σ
c/sγ ,β
α (ω) determines the optical conductivity.

2. Second-order

From Eq. 23, 24, 26 and 31, we have the DC compo-
nent

ρ̃E,(2)
α1α2

(−ω, ω) =ie
ρ̃
E,(1)
α2 (ω)

Dkα1

⊙ dΓ (0) , (34)

σc/sγ ,β
α1α2

(−ω, ω) =V −1
cellTr

[
j
c/sγ
β ρ̃E,(2)

α1α2
(−ω, ω)

]
. (35)

and the 2ω AC component

ρ̃E,(2)
α1α2

(ω, ω) =ie
ρ̃
E,(1)
α2 (ω)

Dkα1

⊙ dΓ (2ω) , (36)

σc/sγ ,β
α1α2

(ω, ω) =V −1
cellTr

[
j
c/sγ
β ρ̃E,(2)

α1α2
(ω, ω)

]
. (37)

σ
c/sγ ,β
α1α2 (−ω, ω) and σ

c/sγ ,β
α1α2 (ω, ω) determine BPVE

and SHG respectively.

3. Third-order

From Eq. 23, 24, 26 and 31, we have the 3ω AC com-
ponent

ρ̃E,(3)
α1α2α3

(ω, ω, ω) =ie
ρ̃
E,(2)
α2α3 (ω, ω)

Dkα1

⊙ dΓ (3ω) , (38)

σc/sγ ,β
α1α2α3

(ω, ω, ω) =V −1
cellTr

[
j
c/sγ
β ρ̃E,(3)

α1α2α3
(ω, ω, ω)

]
.

(39)

σ
c/sγ ,β
α1α2α3 (ω, ω, ω) determines THG.

Under weak fields, the photocurrent mechanisms can
be separated into two classes[2] - (i) One is described us-
ing the single-particle electronic quantities and with the
scattering in Born approximation. The scattering is usu-
ally further simplified within RTA. (ii) Another is due
to the asymmetric scattering beyond Born approxima-
tion and is called ballistic current. Since the former class
seems more important in more cases and ab initio sim-
ulations of ballistic current are numerically difficult[28],
most ab initio works only consider the former class of
mechanisms[21].
The former class can be further separated into var-

ious types of contributions depending on if intra-

or inter-band parts of Dρ
Dk and/or j

c/sγ
β matrices are

considered.[21] See intra- and inter-band parts of Dρ
Dk in

Appendix A. For BPVE, the separation of different con-
tributions is systematically discussed in Ref. 21 and the
following contributions are identified: the shift current,
(magnetic) injection current, Berry curvature dipole, gy-
ration current and Fermi surface contributions. Since our
method includes both intra- and inter-band parts of Dρ

Dk

and j
c/sγ
β matrices, all types of contributions belonging

to the former class are considered.

C. LPGE and CPGE

Since the electric field amplitudes E (±ω) of the
linearly polarized light satisfy Eα1 (−ω)Eα2 (ω) ≡
E∗

α1
(ω)Eα2

(ω) is real for any α1 and α2 and E (−ω) ×
E (ω) ≡ E∗ (ω)×E (ω) = 0, while those of circularly po-
larized light satisfy E (−ω) × E (ω) ≡ E∗ (ω) × E (ω) is
purely imaginary, we introduce the following definitions
for for LPGE and CPGE:

Lα1α2
(ω) =Re

{
E∗

α1
(ω)Eα2

(ω)
}
, (40)

F (ω) =
1

2
iE∗ (ω)×E (ω) , (41)

ηc/sγ ,βα1α2
(ω) =

1

2
Re
(
σc/sγ ,β
α1α2

(−ω, ω) + σc/sγ ,β
α2α1

(ω,−ω)
)
,

(42)

κ
c/sγ ,β
λ (ω) =

ϵα1α2λ

2
Im
(
σc/sγ ,β
α1α2

(−ω, ω) + σc/sγ ,β
α2α1

(ω,−ω)
)
,

(43)

where ϵα1α2λ is Levi-Civita symbol. We note

that Lα1α2
(ω) ≡ Lα2α1

(ω) and η
c/sγ ,β
α1α2 ≡ η

c/sγ ,β
α2α1 .

Here we call η
c/sγ ,β
α1α2 (κ

c/sγ ,β
λ ) LPGE (CPGE) coeffi-

cient/susceptibility.
For LPGE, F (ω) = 0, so that only the real parts of

σ
c/sγ ,β
α1α2 (∓ω,±ω) contribute. For CPGE, both the imag-

inary and real parts of σ
c/sγ ,β
α1α2 (∓ω,±ω) can contribute,

as F (ω) ̸= 0 and some of Lα1α2
(ω) can be nonzero.

Using the relation

σc/sγ ,β
α1α2

(−ω, ω) =
[
σc/sγ ,β
α1α2

(ω,−ω)
]∗

, (44)

the second-order dc current density for photon-
frequency ω can be expressed as

J
sγ
β (0) =

∑
α1α2±

Eα1
(∓ω)Eα2

(±ω)σc/sγ ,β
α1α2

(∓ω,±ω)

=2


∑

α1α2
Lα1α2

(ω) η
c/sγ ,β
α1α2 (ω)

+
∑

λ Fλ (ω)κ
c/sγ ,β
λ (ω)

 . (45)

For CPGE, in many cases, κ
c/sγ ,β
λ are found much

larger than η
c/sγ ,β
α1α2 , so that η

c/sγ ,β
α1α2 are often not con-

sidered.
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Let’s consider a few special cases below:
(i) Suppose E (ω) = E (1, 1, 0) with E a real value for

a linearly polarized light. As F (ω) = 0, we have

J
sγ
β (0) =2

∑
α1,α2=x,y

ηc/sγ ,βα1α2
Lα1α2

(ω) . (46)

(ii) Suppose E (ω) = E (1, i, 0) with E a real value for
a circularly polarized light. As Lxy (ω) = 0 and F (ω) =
E2 (0, 0,−1), we have

J
sγ
β (0) =2

( ∑
α=x,y

Lαα (ω) ηc/sγ ,βαα + Fz (ω)κ
c/sγ ,β
z

)
.

(47)

D. Wannier interpolation and the computation of
the covariant derivative Dρ

Dk

The Wannier interpolation based on maximally local-
ized Wannier functions of electronic and electronic scat-
tering quantities has been widely employed to simulate
various physical properties.[29–34] The Wannier interpo-
lation contains four steps: (i) The electronic and elec-
tronic scattering quantities are first calculated on coarse
wavevector (k- or q-point) meshes, e.g., 6×6×6 and
12×12 for 3D and 2D systems respectively. (ii) Secondly,
they are transformed to the corresponding real-space ma-
trix elements with (real-space) localized Wannier func-
tions (WFs) as basis. (iii) Thirdly, physical quantities
are transformed back to the reciprocal space. At this
step, quantities on very fine wavevector meshes (e.g.,
2000×2000) or at many arbitrary wavevectors in Wannier
representation are obtained. In Wannier representation,
the basis are the smooth Bloch-like functions described
below. (iv) Finally, Wannier representation is replaced
by the eigenbasis representation where the basis are the
Bloch eigenstates of the Wannier-interpolated Hamilto-
nian. Thus, physical properties can be conveniently cal-
culated with quantities in the eigenbasis representation
with converged number of wavevectors.
In this subsection, different representations are used

to express electronic quantities. Therefore, for clarity, no
additional notation or superscript is used for the eigen-
basis representation, while superscript W is used for the
Wannier representation. Note that all equations above
this subsection use the eigenbasis representation.

1. Wannier representation and Wannier interpolation

The WFs are noted as |Ra⟩, where a is the index of a
WF in the unitcell and R labels the unitcell. The smooth
Bloch-like functions are given by the phased sum of WFs∣∣uW

ka

〉
=
∑
R

e−ik·(r̂−R) |Ra⟩ , (48)

which span the actual Bloch eigenstates |uka⟩ at each
k. It follows that, if we construct the Hamiltonian in the
Wannier representation

HW
kab =

〈
uW
ka

∣∣ Ĥk

∣∣uW
kb

〉
(49)

and diagonalize it as

U†
kH

W
k Uk =ϵk, (50)

where Uk are the eigenstate matrix and ϵk is the di-
agonal matrix of eigenvalues. The corresponding Bloch
eigenstates are

|uka⟩ =
∑
b

∣∣uW
kb

〉
Ukba. (51)

Similar to HW
k , the velocity and spin matrices are well

defined in Wannier representation and are noted as vW
k

and sWk respectively. The computations of HW
k , vW

k and
sWk are efficient and done through standard techniques
developed in Ref. 30. With Uk, the velocity and spin
matrices in the eigenbasis representation read

vk =U†
kv

W
k Uk, (52)

sk =U†
ks

W
k Uk. (53)

Having vk and sk, j
c/sγ
β is obtained straightforwardly

from Eq. 2 and 4. As the basis size of Wannier rep-
resentation is usually small (same as the eigenbasis rep-
resentation), the computations of ϵk, Uk, vk and sk are
all efficient. The computational technique of Berry con-
nection in Wannier representation ξWk is slightly different
from that of HW

k and is also efficient.[30]
In previous ab initio methods of the photocurrent

based on Wannier function,[16–20] it is often necessary

to compute ξk (as the covariant derivative Dρ
Dk , defined in

Eq. 8, involves ξ), which is expressed as

ξk =iDk + ξk, (54)

Dk =U†
k

dUk

dk
, (55)

ξk =U†
kξ

W
k Uk, (56)

ξWkab =i

〈
uW
ka|

duW
kb

dk

〉
. (57)

However, computing Dk directly via Eq. 55 is non-
trivial and usually done using non-degenerate perturba-
tion theory,[16, 30]

Dkab ≈Dpert
kab , (58)

Dpert
kab =


(
U†

k

dHW
k

dk Uk

)
ab

ϵkb−ϵka
, if ϵka ̸= ϵkb

0, if ϵka = ϵkb

. (59)

Obviously, Dpert
kab is problematic for degenerate bands.

This issue may be removed for two-fold degeneracy by



6

choosing a specific gauge of Uk,[35] but computing Dkab

for arbitrarily degenerate bands without an approxima-
tion is still difficult. This degeneracy issue is completely
removed in our method, since Dkab is absent in the com-
putation of Dρ

Dk , as present clearly in the next subsection.

2. The computation of the covariant derivative Dρ
Dk

Dρ
Dk is called the covariant derivative because it satisfies

the following relation for arbitrary U :

Dρ

Dk
=U†DρW

Dk
U, (60)

where ρW = UρU†. The proof is given in Appendix B.
Since

DρW

Dk
=
dρW

dk
− i
[
ξW , ρW

]
, (61)

we further have

Dρ

Dk
=U† dρ

W

dk
U − i

[
ξ, ρ
]
. (62)

Since the basis of Wannier representation uW
ka is

smooth over k for each index a, the derivative dρW

dk is
well defined and can be computed numerically by finite
difference. We use the central difference here. Define
kp = k+ dk and km = k− dk so that

U†
k

dρWk
dk

Uk =U†
k

ρWkp
− ρWkm

2dk
Uk

=

 U†
kUkpρkpU

†
kp
Uk

−U†
kUkm

ρkm
U†
km

Uk


2dk

. (63)

Define the overlap matrix

ok1k2
=U†

k1
Uk2

, (64)

we have

U†
k

dρWk
dk

Uk =

(
okkp

ρkp
o†kkp

− okkm
ρkm

o†kkm

)
2dk

. (65)

Due to the use of WF, electronic quantities including

ρ
(n)
k can be computed at arbitrary k. Therefore, |dk| can

be arbitrarily small and is typically chosen as 10−8, which
guarantees the accuracy of finite difference computations.
With Eq. 65 and ξ computed by Eq. 56, Dρ

Dk is then
obtained from Eq. 62. For numerical implementation of
Eq. 65, helpful techniques are employed as described in
Appendix C and D.

III. COMPUTATIONAL DETAILS

The ground-state electronic structure is first calcu-
lated using DFT with relatively coarse k meshes. The
DFT calculations use 12 × 12 × 12, 12 × 12 and 6 ×
6 × 6 k meshes for GaAs, 2D materials and RhSi re-
spectively. We use Perdew-Burke-Ernzerhof exchange-
correlation functional[36]. For bilayer AFM MBT, the
DFT+U method is adopted to treat the d orbitals of Mn
atoms with Hubbard U parameter 4.0 eV, and its lattice
structures and internal geometries are fully relaxed us-
ing the DFT+D3 correction method[37] for dispersion in-
teractions. For graphene-hBN, the DFT+D2 correction
method[38] with scale factor s6 = 0.5 is used to be consis-
tent with our previous work[39]. For 3D and monolayer
materials, van der Waals corrections are not important
and not considered. For GaAs, we use the experimental
lattice constant of 5.653 Åas in our previous work[26].
For RhSi, we use experimental lattice constant[40] of 4.67
Å. For WS2 and GeS, we use the fully relaxed lattice con-
stants. We use Optimized Norm- Conserving Vanderbilt
(ONCV) pseudopotentials[41, 42]. The plane-wave cut-
off energies are 76, 74, 62, 44, 82 and 80 Ry for GaAs,
graphene-hBN, WS2, GeS, MBT and RhSi respectively.
For all 2D systems, the Coulomb truncation technique[43]
is employed to accelerate convergence with vacuum sizes
and the vacuum sizes are 20 bohr (additional to the thick-
ness of the heterostructures).

We then transform all quantities from plane-wave ba-

FIG. 1. Theoretical results of GaAs. (a) DFT and Wannier
band structures. (b) LPGE coefficients ηcβ

α1α2
compared with

ηcx
yz from previous theoretical results. “Theory A” and “The-

ory B” correspond to Refs. 16 and 44 respectively. A scissor
correction is included as in Refs. 16 and 44.
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sis to maximally localized Wannier function basis, and
interpolate them to substantially finer k meshes.[29, 30]
For the photocurrent calculations, the fine k meshes are
960×960×960, 12000×12000, 2400×2400, 2400×2400,
960× 960 and 120× 120× 120 for GaAs, graphene-hBN,
WS2, GeS, MBT and RhSi respectively. For simplicity,
the elements of the relaxation rate matrices Γk are all
set to the same constant, which unless specified is 0.001
eV/ℏ for graphene-hBN and 0.01 eV/ℏ for other mate-
rials, corresponding to a relaxation time of 666 and 66
fs respectively. All calculations are done based on the
open-source plane-wave DFT code JDFTx[45–48].

IV. RESULTS AND DISCUSSIONS

Before presenting our theoretical results, we would like
to clarify two points: (i) We simulate the photocurrent
within RTA, so that the ballistic current is absent. (ii)
The signs of optical susceptibilities and LPGE/CPGE co-
efficients depend on the definitions of x, y, z directions.

For CPGE, the sign of κ
c/sγ ,β
λ depends on the definition

of F (ω). Therefore, when comparing with other theoret-
ical works, we should be careful about these definitions.

A. First benchmark: GaAs

GaAs is a typical semiconductor with broken inversion
symmetry, which allows the presence of the second-order
photocurrent - BPVE and SHG. Due to its symmetry,
LPGE of GaAs is allowed while CPGE not. Without
considering the ballistic current, LPGE of GaAs is deter-
mined by shift current. GaAs was the first piezoelectric
crystal whose shift-current spectrum was evaluated using
modern band structure methods[49] and later simulated
in other method papers[16, 44]. Therefore, we first carry
out benchmark calculations of LPGE of GaAs.
In Fig. 1(a), we compare DFT and Wannier band

structures and find that they agree perfectly. This en-
sures the accuracy of the photocurrent calculation based
on Wannier function. From symmetry analysis, it is
known that LPGE coefficient ηcβα1α2

are only non-zero for
permutations βα1α2 of xyz. Indeed, in Fig. 1(b), nu-
merically we find that ηcxyz ̸= 0 while ηcyyz and ηczyz almost
vanish. Our calculated ηcxyz are in good agreement with
previous theoretical results[16, 44], which indicates the
reliability of the implementation of our method.

B. A 2D material: LPGE and LHG of
graphene-hBN

Since the discovery of graphene, low-frequency nonlin-
ear optical response of graphene has attract lots of at-
tention of both theorists and experimentalists.[8, 13, 50–
53] Here we simulate low-order optical susceptibilities
of graphene-hBN. The hBN substrate is introduced to

break the inversion symmetry to allow non-zero LPGE
and SHG.

Three types of photocurrent simulations using three
types of electronic Hamiltonian H0 are carried out:

(i) “TB”: Minimum tight-binding Hamiltonian (as in
Ref. 53) with two atomic orbitals (in the unitcell) and
two energy parameters - gap Eg=0.0416 eV (same as our
DFT value) and a nearest-neighbor hopping parameter
t=2.8 eV. A t around 2.8 eV has been commonly used to
model graphene. Note that if choosing Eg=0.03 eV as in
Ref. 53, we can reproduce their LPGE and LHG spectra;

(ii) “Wannier A”: Minimum ab initio Wannier-
interpolated Hamiltonian with two WFs (in the unit-
cell), which reproduces DFT eigenvalues within the en-
ergy window [EF -1 eV, EF+3 eV]. From Fig. 2(a), it can
be seen that “Wannier A” nicely reproduces DFT bands
with tiny errors around Dirac cones;

(iii) “Wannier B”: ab initio Wannier-interpolated
Hamiltonian with 20 WFs, which reproduces DFT eigen-
values within [EF -6 eV, EF+7.7 eV]. From Fig. 2(a), it
can be seen that “Wannier B” perfectly reproduces DFT
bands.

From Fig. 2(b)-(d), we find that “Wannier A” and
“Wannier B” results of LPGE, SHG and THG suscep-
tibilities are identical, and TB leads to similar results.
The curves of TB results have the same shapes as ab ini-
tio results based on Wannier function, and the ratios of
TB results to ab initio results range from 63% to 123%,
which are insignificant. Therefore, our results indicate
that a minimum TB model and a minimum Wannier-
ization setup are good enough for simulations of LPGE
and LHG (within RTA) of graphene-hBN. This conclu-
sion however may not applicable if band structures are
complicated and/or spin-orbit coupling plays a crucial
role, in which cases sophisticated ab initio Wannieriza-
tion setups are required. Additionally, it is found that
TB results are insensitive to the nearest-neighbor hoping
parameter t (not shown), so that to cure the differences
between TB and ab initio results, farther-neighbor hop-
pings are probably needed.

We next investigate the response of different photon
processes for low-frequency LPGE and LHG of the semi-
conducting graphene-hBN. From Fig. 2(b), the LPGE
spectrum shows a one-photon resonant peak - a peak
right above ω = Eg. This is consistent with the fact
that the formula of LPGE susceptibility contains a delta-
like function dΓkab (1ω) (according to Eq. 32, 34 and 35),
which has a resonant energy at ω = ∆kab. For SHG
shown in Fig. 2(c), it is found that its spectrum shows
three peaks - two one-photon resonant peaks around
ω = Eg and one two-photon resonant peak right above
2ω = Eg. This is because the formula of SHG suscep-
tibility (Eq. 37, 36 and 32) contains both dΓ (2ω) and
dΓ (1ω). For THG, its spectrum (Fig. 2(d)) has a sharp
three-photon resonant peak right above 3ω = Eg cor-
responding to dΓ (3ω) in the formula of THG (Eq. 39,
38, 36 and 32). On the other hand, the THG spectrum
shows less clear features for two-photon processes and
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FIG. 2. Theoretical results of graphene-hBN. (a) DFT and Wannier band structures. “Wannier A” and “Wannier B” mean
Wannier-interpolated Hamiltonians with 2 and 20 WFs (in the unitcell) respectively. (b), (c) and (d) are optical susceptibil-
ities of LPGE (Reσcy

yyy (ω, ω, ω)), SHG (Reσcy
yy (ω, ω)) and THG (Reσcy

yy (−ω, ω)) respectively calculated using three types of
Hamiltonians - a two-band tight-binding (TB) Hamiltonian, “Wannier A” and “Wannier B”. See more details of TB, “Wannier
A” and “Wannier B” in the text of Sec. IVB. Three special photon energies satisfying ω, 2ω, 3ω = Eg, corresponding to one-,
two-, three-photon processes respectively, are labeled in (b), (c) and (d) using vertical dashed lines.

no obvious features for one-photon processes: (i) The
second peak of the THG spectrum is a bit away from
2ω = Eg and relatively broad; (ii) THG susceptibilities
around ω = Eg are much weaker than its maximum value.

C. A 2D material: (Spin) LPGE of monolayer WS2

Besides graphene, transition metal dichalcogenides
(TMDs) are another important class of 2D materials.
Optical (spin-)current generation is critical to the TMD-
based electronic and spintronic applications and has been
extensively studied experimentally and theoretically.[12,
17, 54–56]
Here we study both LPGE and spin LPGE (SLPGE)

of monolayer 2H WS2. As shown in Fig. 3(b), a high-
quality Wannierization is achieved, which ensures the ac-
curacy of our ab initio simulations. We first investigate
the effects of SOC on LPGE susceptibilities. From Fig.
3(c), our calculated LPGE spectrum is in good agree-
ment with previous theoretical results[17] and the SOC
effects are found significant. Most importantly, the first
peak near ω = Eg of the LPGE spectrum without SOC
is splitted to two by SOC (labeled as “V1” and “V2” in
Fig. 3(c)), and the splitting of two peaks is close to the

SOC band splitting between two highest valence bands
at K, ∼0.43 eV.

Therefore, we include SOC in further ab initio simula-
tions of LPGE and SLPGE susceptibilities of monolayer
WS2, shown in Fig. 3(d) and (e). Note that spin current
is only present when SOC is turned on. We find that
charge and spin currents are perpendicular to each other
- charge current is along y direction while spin current
is along x direction under linearly polarized light. This
means a pure spin current (along x direction) is gener-
ated by SLPGE. This phenomenon is due to the different
selection rule on charge and spin currents in the presence
of in-plane mirror symmetry Mx: kx → −kx for non-
magnetic 2D TMDs.[12]

D. A 2D material: LPGE and CPGE of 2D
ferroelectric GeS

Recently, ferroelectric group-IV monochalcogenide
monolayers have attract growing interests due to their
exciting properties, such as selective valley excitations,
valley Hall effects, and persistent spin helix behavior.[57]
They also show interesting nonlinear optical proper-
ties including an unusually strong SHG intensity, large
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FIG. 3. Theoretical results of monolayer WS2. (a) Top and side views of the structure. (b) DFT (black lines) and Wannier (red
lines) band structures. (c) LPGE susceptibilities ηcy

yy with and without spin-orbit coupling (SOC). (d) LPGE susceptibilities
with SOC for different electric field and current directions. (e) Spin LPGE (SLPGE) susceptibilities with SOC.

FIG. 4. Theoretical results of monolayer GeS. (a) Top and side views of the structure. Calculated (b) LPGE (c) SLPGE and
CPGE susceptibilities. SOC is considered.
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FIG. 5. Relaxation rate Γ dependence of calculated (a) LPGE, (b) SLPGE and (d) CPGE susceptibilities.

FIG. 6. Theoretical results of bilayer AFM MBT. (a) Side and top views of its crystal structure. This system has both inversion
symmetry P and mirror symmetry Mz: z → −z. This inversion center is in between two layers (black square). Red and blue
arrows indicate the magnetic moment directions of the top and bottom MBT layers respectively. The system has the so-called
PT symmetry, i.e., the system is invariant if inversion operation P and time-reversal operation T are applied together. (b) Band
structures with (black lines) and without (red lines) SOC. (c) and (d) are calculated LPGE and SLPGE susceptibilities with
SOC respectively. (e) and (f) are calculated LPGE susceptibilities for spin-up and spin-down states without SOC respectively.

BPVE.[57]

Here we study LPGE, SLPGE and CPGE of a group-
IV monochalcogenide monolayer - monolayer GeS. Our
results shown in Fig. 4 are in good agreement with pre-
vious theoretical ones[58, 59]. Similar to monolayer WS2,
from Fig. 4(b) and (c), we find pure spin currents per-
pendicular to charge currents, which is again due to the
presence of in-plane mirror symmetry Mx: kx → −kx.
Further, we observe strong CPGE (Fig. 4(d)), 30 times
stronger than LPGE. According to previous theoreti-
cal works[2, 21, 59], as monolayer GeS is nonmagnetic,
its CPGE is mainly attributed to the injection current,

where the DC photocurrent is determined by the inter-

band parts of Dρ(n)

Dk (Appendix A) and the intra-band

part of the current operator jc/sγ . Strong CPGE due
to injection current has been predicted in ferroelectric
group-IV monochalcogenide monolayers including GeS,
GeSe, SnS and SnSe, and it is attributed to various fac-
tors in these materials such as anisotropy, in-plane po-
larization and wave function delocalization.[59]

It is well known that optical susceptibilities due to in-
jection current are proportion to relaxation time τ = 1/Γ
if Γ > 0.[21] Therefore, we next examine the Γ depen-
dence of susceptibilities of CPGE as well as LPGE and
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FIG. 7. Theoretical results of RhSi with SOC. (a) Band structure. E4f is the energy of the four-fold degenerate point. (b) and
(c) are traces of CPGE susceptibilities κc multiplied by a factor of 4πΓ at different chemical potentials µ at 10 K and 300 K
respectively.

SLPGE. From Fig. 5(a), it is found that LPGE is in-
dependent from Γ except delta-like features around 4.6
eV. This is because LPGE of a nonmagnetic semicon-
ducting material such as monolayer GeS should be dom-
inated by the shift current contribution, which is known
independent from Γ.[2, 21] Calculated CPGE susceptibil-
ities κc are found proportional to 1/Γ (Fig. 5(c)) as ex-
pected. Calculated SLPGE susceptibilities ηsz are found
proportional to 1/Γ (Fig. 5(d)), which is probably be-
cause SLPGE is also dominated by the injection current
(the same as CPGE) as discussed in Ref. 60.

E. A magnet: Bilayer AFM MBT

Recently, various exotic BPVE properties have been
predicted for AFM systems with the so-called PT sym-
metry, which means the systems are invariant if inversion
operation P and time-reversal operation T are applied
together.[7, 12, 21] Here we apply our method to simu-
late LPGE and SLPGE of bilayer AFM MBT, which has
the PT symmetry. Similar to Ref. 12, we have the follow-
ing observations from Fig. 6: (i) SOC affects both band
structure and BPVE significantly; (ii) Pure spin currents
are present regardless of SOC. This is due to the differ-
ent selection rule on charge and spin-z currents in the
presence of the PMx symmetry.[12] (iii) With SOC, the
charge current is present (see Fig. 6(b)) and perpendic-
ular to spin-z current (see Fig. 6(d)). However, without
SOC, the charge current, which is the sum of the spin-up
and spin-down currents, is absent (see Fig. 6(e) and (f)).
This is because the so-called inversion-spin-rotation PS
symmetry is satisfied without SOC but is broken if SOC
is turned on, according to Ref. 12.

F. A topological Weyl semimetal: Quantized
CPGE in RhSi

CPGE serves as an invaluable tool to detect the chi-
rality, topological charge, symmetries and other proper-
ties of topological Weyl semimetals.[4, 5, 11, 19] Previ-
ously, quantized CPGE has been studied theoretically
considering only the injection current contribution, and
via model Hamiltonians[4] or Wannier-function-based ab
initio methods with the so-called diagonal tight-binding
approximation (DTBA)[11, 19], in which ξW is treated
approximately[16].
The so-called quantized-CPGE suggests that the rela-

tion: Tr [β (ω)] = iπ e3

h2CL with CL topological charge,
is satisfied in a certain photon-frequency range.[4, 19]
For the injection current (which dominates quantized
CPGE) with a finite relaxation time τ = 1/Γ, there is
β (ω) = iΓκc (ω).[2, 21] Therefore, the quantized-CPGE
relation becomes: 4πTr [Γκc] = CL in atomic units.

In this work, we apply our ab initio method to simu-
late CPGE of RhSi at various temperatures and chemical
potentials µ. We have gone beyond DTBA and consid-
ered photocurrent contributions beyond just the injection
current. From our calculated CPGE spectra in Fig. 7,
we observe that 4πTr [Γκc (ω)] ≈ 4 in a relatively wide
photon-energy range [0.3, 0.6] eV at both low (Fig. 7(b))
and high (Fig. 7(c)) temperatures, if µ is not too low.
Our results suggest that it seems easier to observe quan-
tized CPGE at lower temperatures and higher µ.

V. SUMMARY AND OUTLOOKS

We have developed an ab initio method based on Wan-
nier function for simulating weak-field BPVE and LHG
in solids. The method is of great predictive power and
widely applicable to semiconductors and metals with ar-
bitrary band structures for both linearly and circularly
polarized light. We demonstrated its power through its
applications into the simulations of (S)LPGE, (S)CPGE
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and LHG in various types of systems.
This method has the potential to be greatly improved

in various directions, such as: (i) By introducing a static
electric field, which can be done straightforwardly, the
so-called jerk current[61] can be simulated. (ii) The scat-
tering term within RTA with a global constant relaxation
time τ = 1/Γ can be replaced by the fully ab initio so-
phisticated scattering terms developed in our previous
works[26, 27], so that the energy-, k- and transition-
resolved relaxation and decoherence are accurately con-
sidered. This generation may have important effects on
quantized CPGE, which is predicted within RTA with
a global τ . (iii) By solving the density matrix non-
perturbatively via real-time dynamics, the photocurrent
at stronger fields can be simulated.
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APPENDICES

Appendix A: Intra- and inter-band parts of Dρ
Dk

Dρ
Dk can be separated into the intra- and inter-band

parts

Dρ

Dk
=

(
Dρ

Dk

)intra

+

(
Dρ

Dk

)inter

, (66)(
Dρ

Dk

)intra

=
dρ

dk
− i
[
ξintra, ρ

]
, (67)(

Dρ

Dk

)inter

=− i
[
ξinter, ρ

]
, (68)

ξintrakab =δϵkaϵkb
ξkab, (69)

ξinterkab =(1− δϵkaϵkb
) ξkab

=(1− δϵkaϵkb
)
vkab

i∆kab
. (70)

As ξinter can be easily obtained from v, the computa-

tion of
(

Dρ
Dk

)inter
is straightforwardly. Then, since Dρ

Dk

can be computed by the method given in Sec. IID 2,(
Dρ
Dk

)intra
can be obtained from

(
Dρ
Dk

)intra
= Dρ

Dk −(
Dρ
Dk

)inter
.

Appendix B: The proof of Eq. 8

From ρW = UρU† and Eq. 55 - D = U† dU
dk , we have

dρW

dk
=
dUρU†

dk

=
dU

dk
ρU† + U

dρ

dk
U† + Uρ

dU†

dk
.

=U

(
dρ

dk
+Dρ+ ρD†

)
U†

=U

{
dρ

dk
+ [D, ρ]

}
U†. (71)

With Eq. 54 - ξ = iD+ U†ξWU , we then have,

Dρ

Dk
=
dρ

dk
− i [ξ, ρ]

=
dρ

dk
− i
[
iD+ U†ξWU, ρ

]
=
dρ

dk
+ [D, ρ]− i

[
U†ξWU, ρ

]
=U† dρ

W

dk
U − i

[
U†ξWU,U†ρWU

]
=U†

(
dρW

dk
−−i

[
ξW , ρW

])
U

=U†DρW

Dk
U. (72)

Appendix C: The computation of Dfeq

Dk
without finite

difference

From Eq. 3 and 10, we have

vkab =
1

ℏ

(
DH0

k

Dk

)
ab

=
1

ℏ
dϵka
dk

δab +
i

ℏ
ξkab∆kab, (73)

so that

ξab =− i
ℏvkab

∆kab
, if ∆kab ̸= 0. (74)

Then, we have

−i [ξk, f
eq
k ]

ab
=iξkab (f

eq
ka − f eq

kb )

=iξkab (f
eq
ka − f eq

kb ) (1− δϵka,ϵkb
)

=ℏvkab
f eq
ka − f eq

kb

ϵka − ϵkb
(1− δϵka,ϵkb

) . (75)

Therefore,(
Df eq

k

Dk

)
ab

=

(
∆f eq

∆ϵ

)
kab

ℏvkab, (76)(
∆f eq

∆ϵ

)
kab

=

(
df eq

ka

dϵ

)
δab (77)

+
f eq
ka − f eq

kb

ϵka − ϵkb
(1− δϵka,ϵkb

) . (78)
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As
dfeq

ka

dϵ = (kBT )
−1

f eq
ka (f

eq
ka − 1) can be evaluated ana-

lytically, numerical finite difference is avoid for the com-

putation of Dfeq

Dk . Numerically, we have found that com-

puting Dfeq

Dk via Eq. 65 with finite difference and via Eq.
76 lead to almost the same results. Eq. 76 is preferred
since it is computationally convenient.

Appendix D: The computation of ξ (Eq. 56)

The accuracy of ξk seems sometimes a bit worse when
DFT meshes are not so dense, compared with Hk, vk

and sk, whose accuracy is good even when DFT coarse
k meshes for constructing WFs are quite coarse[29], e.g.,
4×4×4.[30] This is because: In usual implementation of
ξWk (Eq. 57, which determines ξ) using the plane-wave
DFT method, finite differences of uW

k on DFT coarse
meshes are required. Although uW

k is smooth over k,
too coarse k meshes may still lead to some errors. This
issue can be removed by increasing DFT k meshes or
by using another implementation of ξWk without finite
difference.[30]

Here we introduce another technique to improve the
accuracy of ξ:
From Eq. 3, 10 and 65, we have

vkab =
1

ℏ

(
DH0

k

Dk

)
ab

=
1

ℏ
U† dH

W

dk
U − i

ℏ
[
ξ, ϵ
]
. (79)

Therefore,

ξkab =
ℏvkab −

(
U†
k
dHW

k

dk Uk

)
ab

i∆kab
if ϵka ̸= ϵkb. (80)

Since dHW

dk can be computed accurately and efficiently

without finite difference,[30] the computation of ξkab for
the elements satisfying ϵka ̸= ϵkb by Eq. 80 above is also
accurate and efficient.
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