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Based on the theory of hierarchical structures, a correspondence has been established between the 

dynamics for the number of neutrons obtained from the theory of branching processes, the number of 

neutrons of the n-th generation, the number of nodes at the n-th level of the hierarchy, the rate of change 

in the probability of a chain reaction, the type of intensity and strength of the hierarchical connection, the 

degree reactor criticality, and neutron trajectories in the reactor. A connection has been found between the 

probabilities of the formation of a certain generation of the number of neutrons and the probability of the 

occurrence of a self-sustaining chain reaction of nuclear fission. It is shown that the Tsallis and Rényi 

distributions describing these processes are related by relations of deformed algebra, and under certain 

conditions can be accompanying with respect to each other. 
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1. Introduction 
 

In [1], strict relations of the theory of percolation on Bethe lattices describe the behavior of the neutron 

multiplication factor. The critical point of the reactor corresponds to the percolation threshold. The 

behavior of the percolation probability, interpreted as the probability of the occurrence of a self-sustaining 

chain reaction, and its derivatives are considered. A striking manifestation of the complexity and 

nonequilibrium of chain nuclear processes in a reactor is their hierarchical structure. In this work, the 

statistics of hierarchical systems is applied to a more detailed study of complex fission chains. 

Concepts of hierarchical subordination have been used to describe physical, biological, economic, 

environmental, social and other complex systems. One of the most productive applications of the idea of 

hierarchical structure is complex networks [5]. Real networks have a high degree of clustering and a self-

similar structure, manifested in a power-law probability distribution over the number of connections 

between different neighbors [3, 6]. Many networks have a block structure, in the presence of which it is 

possible to identify groups of nodes that are strongly connected to each other, but have weak connections 

(or are completely unconnected) with nodes that do not belong to this group. This is due to the fact that 

the phase space of the system, far from equilibrium, when ergodicity is lost, is divided into clusters 

corresponding to structural levels that are hierarchically subordinate to each other. This is how fission 

chains behave in nuclear reactors. Hierarchically subordinate systems form an ultrametric space [2-4, 11]. 

Its geometric image is the Cayley tree (Fig. 1) 
 

  

                   а                                         b                                  c                                    d 
Fig.1. a). The simplest regular Cayley tree with branching s=2; b). Irregular Fibonacci tree with variable branching; 

c). Degenerate tree with s=3; d). Irregular tree for n=2, a=2. 

In this work, some results of the theory of hierarchically subordinate systems far from equilibrium are 

applied to the description of nuclear chain reactions in a nuclear reactor. In the second section, a 

connection was discovered between the percolation features of the behavior of neutron-nuclear processes 

in reactors, considered in [1], with the intensity of the hierarchical object at level n, which for a stochastic 

system is reduced to probability density, and with the degree of hierarchical connection of objects w, 

corresponding to the nodes of the tree at a given level. For various hierarchical trees, an explicit form of 

these quantities is found, a correspondence is established with various operating modes of the reactor, 

with the trajectories of neutron motion in these modes. In the third section, the processes of anomalous 
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diffusion in ultrametric space are considered, stationary solutions are found in the form of the Tsallis 

distribution [7], it is shown that these distributions in a particular case are escort in relation to the 

distributions found in the previous section (they are Rényi distributions) associated with probabilities of 

percolation and probabilities of a fission chain reaction. 

 

2. Relationship between neutron reactor modes and neutron trajectories. 
 

For neutron processes in a nuclear reactor, the most important characteristics are the percolation 

probability, which is interpreted as the probability of a self-sustaining chain reaction, and the percolation 

threshold value, which is proportional to the neutron multiplication factor. In [9], a recurrence relation 

was obtained for the probability of percolation from a root vertex, the probability that a connected 

component of the configuration containing the root vertex (some starting point of the appearance of the 

first neutron in the system, which generated a chain reaction), reaches the opposite edges of the system. 

Conventionally, mathematically, the size of the system and the connected component tends to infinity, 

although real systems are finite. In [9], the value P(n,c) denotes the probability of percolation from the 

root vertex to a distance n. The value n in our problem is interpreted as the number of generations of 

neutrons in a chain reaction. The number cc∞=inf{c: P(c)>0} is called the percolation threshold in [9]. In 

[28], this value is called the critical probability at which a cluster first appears, extending over the entire 

lattice. Here P(c)=limn→∞P(n,c). In [1], for the percolation probability P(n,c) a recurrence relation of the 

form was used: 
 

P(n+1,c)=c[1-(1-P(n,c))s],       P(0,c)=с, (1) 

 

where с=p=λf(λf+с)–1 is the probability of nuclear fission by a neutron, the intensity of neutron death 

(absorption by the environment or leaving the system) during the time Δt→ is designated as сΔt+0(Δt), 

and the intensity of nuclear fission by a neutron λfΔt+0(Δt) (λf=vΣf, v —neutron speed, Σf—macroscopic 

fission cross section), s= , where   is the mathematical expectation of the number of secondary 

neutrons in one fission event. Effective neutron multiplication factor kef=p . The probability c=p from 

(1) is associated with an important value of the percolation threshold, which is associated with the critical 

point of the reactor. Relations (1), as shown in [1], allow us to determine the critical point.  

 

Pn-1= Pn+ Nn
-1w(Pn), (2) 

 

where Pn is the intensity of a hierarchical object at level n, which for a stochastic system is reduced to 

probability density, this is the joint probability of the formation of an ensemble of hierarchical levels, an 

n-level hierarchical structure, w is the degree of hierarchical connection of objects corresponding to tree 

nodes at a given level, Nn is the number nodes at level n. The degree of hierarchical connection w of 

objects corresponding to tree nodes at a given level is determined by the number of steps n to the common 

ancestor, which specifies the distance in ultrametric space. The value n in our case corresponds to the 

number of generations of neutrons in the fission chain reaction. The value w corresponds to kinship in 

genealogy. Comparing expressions (1) and (2), we find that 
 

w(Pn)=Nn [1-Pn-(1-Pn/c)1/s],     s= . (3) 
 

In [9] and [1], the value P(n,c) denotes the probability of percolation from the root vertex to a 

distance n. In [1], this value is compared with the probability of a self-sustaining chain reaction. The 

quantity n, the number of generations of neutrons in a chain reaction, is proportional to time with a 

proportionality coefficient depending on the type of reactor. For thermal neutron reactors, the lifetime of 

one generation of neutrons is 0.1 sec; for fast neutron reactors, the lifetime of one generation of neutrons 

is 3-7 orders of magnitude less. The value Nn, - the number of nodes at level n, corresponding to the 

number of neutrons of the n-th generation, for a regular tree (Fig. 1a) is equal to 
 

Nn= n. (4) 
 

The main feature of hierarchical systems is the property of self-similarity [8]. Let us consider the 

degree of hierarchical connection w(Pn) (3) for small values of the argument. Expanding quantity (3) into 
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a series in the region of small values Pn→0, for the value Pn0→0, Pn0<Pn, we find the maximum term of 

the expansion, which is equal to 
 

w(Pn)=NnAPn
1/s, (5) 

 

where A=Pn0
(s-1)/s(1-Pn0/c)(1/s)-1/c, Pn0 is some fixed value of Pn, close to 0. 

If we compare (5) with the expression obtained in [8] for the case n>>1, when Pn-1~Pn 

 

w(P)=WPβ,     P→0, (6) 

 

where W=w(1) is a positive constant, β=1-D, D≤1 is the fractal dimension of a self-similar object such as 

an indented coastline [10, 11], we obtain that 1/s= β, D=1-1/s=ln /lnq-1, q<1 is the similarity parameter, 

and Pn~qn, the connection function satisfies the homogeneity condition w(qP)=qβw(P). We find that at 

 =2.4, lnq-1=ln /(1-1/ )≈1.5, 
1

-
1-1/q=( )  . From a comparison of (5) and (6), since W=w(1)=1-с, we 

also obtain that 
0

0

-1

n

-1 -1
n

[(1-c)c]
P =

1
(N ) [(1-c)c]

c





 

 +

. Assuming in equalities (2), (4) that for arbitrary values of Pn 

the scaling relation Pn=xnq
n=xns

-n/D is satisfied, we arrive at the recurrent equality for the function xn: 

 

xn-1=Φ(xn),        Φ(x)=q(x+Wx1-D). (7) 

 

The mapping Φ(x) has two stationary points corresponding to the condition x=Φ(x): stable хs=0 and 

critical 
 

хс=(W/(q-1-1))1/D,           q=s-1/D. (8) 
 

The behavior of the system is represented by homogeneous functions 
 

Pn=xcs
-n/D;              wn=W1/D(q-1-1)-Δs-Δn, (9) 

 

where Δ=(1-D)/D is the decrement that determines the scale of the hierarchical connection in ultrametric 

space [8, 11], which takes into account the vertices of hierarchical trees. 

In [8], the continuum limit n→∞ is used, the finite difference Pn-Pn-1 is replaced by the derivative 

dPn/dn, and an equation of the form (2) is written in continuous form. A comparison of the exact 

numerical calculation and solutions of approximate analytical expressions shows their convergence as n 

increases, and coincidence already at values of n of the order of 10-20. Let us consider solutions 

separately for different types of hierarchical trees with different behavior of the function Nn, the number 

of nodes at level n, corresponding to the number of neutrons of the nth generation. For small values of P, 

in asymptotics (6) for a regular tree with Nn of the form (4), an explicit solution of this equation of the 

form 
 

P=W-1/(1-D)[(1-u)+ueζ-ζ
0]

1/D, 
 

u=DW1/(1-D)/lns,  
 

ζ=(n0-n)lns,  
 

ζ0=n0lns,     n≤n0, 
 

w=[(1-u)+ ueζ-ζ
0]Δ,  

 

ζ≤ ζ0,           w(ζ0)=1, 

(10) 

 

where ζ is the distance in ultrametric space, n0 >>1 is the total number of hierarchical levels. The 

argument c from (1) enters into (10), (13), (14) through w from (3) and (5) and W=w(1). For a given 

configuration of a hierarchical tree, an important role is played by the fractal dimension D, the value of 
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which determines the strength of the hierarchical connection w(ζ). In nonstationary systems, the similarity 

parameter q changes with time, and D(q) also changes. For such complex systems as the system of 

multiplying neutrons in a reactor, the hierarchical connection is multifractal in nature [12]. An essential 

role is played by the spectrum of values of q, over which the coupling strength wq(ζ) is distributed with 

density ρ(q). The total value of the coupling force is determined by the equality w(ζ)=∫-∞
∞wq(ζ)ρ(q)dq. An 

expression of the form (10) with a variable value of the fractal dimension D(q) is used as the kernel wq(ζ). 

The behavior of this function for the reactor, obtained by calculation, is shown in Fig. 1 in [12] and Fig. 

2b in [1]. The given relations determine only the asymptotic behavior of the hierarchical system in the 

limit 1<<ζ≤ζ0. The resulting asymptotics represents the qualitative nature of the behavior of the 

hierarchical system. To obtain exact solutions, one must proceed from finite-difference equations of the 

form (1), (2), using numerical methods, as in [1]. The distribution over hierarchical levels was studied in 

[8] and is given below; it is shown that the stationary probability distribution takes the form of Tsallis. 

Note that when using a distribution containing the lifetime [13], it is possible to obtain more general 

distributions, in particular, superstatistics and their generalizations [14]. 

Tsallis distributions are only a special case of superstatistics and their generalizations. The probability 

of the formation of a self-similar network, in our case, the occurrence of a self-sustaining chain reaction 

of nuclear fission, increases monotonically with decreasing n, taking a maximum value at the upper level 

n=0 (initial neutron), corresponding to the entire system. The single initial neutron in the reactor has the 

maximum probability of causing a chain reaction, although its real possibilities for this are not yet so 

significant. The evolution of hierarchical structures is considered in [8] as a process of diffusion on 

randomly branching trees, the structure of which is determined by the heterogeneity parameter, which is a 

measure of their complexity. The complexity of a system, by analogy with entropy, characterizes the 

disorder of hierarchical communication [8]. But if entropy characterizes the disorder in the distribution of 

atoms, then when determining complexity, their role passes to sub-ensembles, into which the complete 

statistical ensemble is divided. 

Relation (10) is written for the number of nodes Nn at level n, corresponding to the number of 

neutrons of the n-th generation of type (4), Nn=sn, where s=  is the branching index of the tree. We now 

use the above-mentioned proportionality of the number of generations of neutrons to time. Let us 

compare the expressions for the number of nodes Nn at level n with the temporal behavior of the number 

of neutrons, determined, for example, from the theory of branching processes [15, 16]. Expression (4) 

was written in [8] for the case of a regular tree shown in Fig. 1a and, since n~t, corresponds to the time 

behavior for the number of neutrons of the exponential form e-αt, valid outside the critical region [15]. It 

was shown in [16] that in the critical region the dependence is power-law, tα, which coincides with the 

power-law approximation of the form 
 

Nn=(1+n)а, (11) 
 

used in [8] for the case of a self-similar irregular tree, Fig. 1d. This corresponds to a power-law 

dependence obtained in [1] numerically for the boundaries of the critical region. The behavior inherent in 

simple statistical systems is observed when the branching of the hierarchical tree exceeds the golden ratio 

а+=(51/2+1)/2≈1,61803, and the decrease in complexity with increasing dispersion of the hierarchical 

connection, characteristic of complex systems, appears only with weak branching, limited to the interval 

1< a <1.618. For a degenerate tree, Fig. 1c, 
 

Nn=1+(s-1)n≈sn, (12) 
 

which is close to (11) at a=1 and corresponds to a linear dependence on time and temporal behavior at the 

critical point [15, 16]. The question remains open whether movement along the Fibonacci tree 

corresponds to some physical situation in reactors, Fig. 1b [8]. In this case, fissile nuclei must be such that 

the average number of secondary neutrons produced during their fission is equal to the golden ratio 

τ=(51/2+1)/2≈1,61803. 

For a degenerate tree with the number of nodes (12), for behavior at the critical point, instead of the 

exponential dependence in (10), we obtain a logarithmic dependence of the form 
 

P=W-1/(1-D)[1-uln(1+(s-1)(ζ0-ζ)/lns)]1/D, 
 

u=DW1/(1-D)/(s-1),   
(13) 
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ζ=(n0-n)lns,  ζ0=n0lns,   
 

w=[1-uln(1+(s-1)(ζ0-ζ)/lns)]Δ,           ζ≤ ζ0.  
 

In the intermediate case of an irregular tree with power-law growth (11) in the number of nodes (and 

neutrons), the intensity and strength of the hierarchical connection also behave in a power-law manner 

depending on the distance ζ in ultrametric space, proportional to the number of neutron generations: 
 

P=W-1/(1-D)[1+u(1-ζ/ζ0)
-(a-1)]1/D,  

 

u=DW1/(1-D)n0
-(a-1)/(a-1),   

 

ζ=(n0-n)lns,  ζ0=n0lns,  n≤n0, 
 

w=[1+u(1-ζ/ζ0)
-(a-1)]Δ,   ζ≤ ζ0. 

(14) 

 

The behavior of the probabilities of a chain reaction occurring is determined by the probabilities with, 

the degree of criticality, and the proximity to the critical point. Depending on this proximity, three (more 

precisely, four) main modes of behavior are distinguished: subcritical and supercritical (in them the laws 

of behavior (4) and (10) differ only in sign), critical (11), (14), and critical point (12 ), (13). In the 

traditional theory of nuclear reactors, only subcritical and supercritical regimes and the critical point are 

studied, although in the general theory of phase transitions a critical region is necessarily present. This is 

due to the fact that neutrons do not interact; the values of classical critical indices are valid for them (as 

for a self-consistent field) [12]. In the stationary operating state of reactors there are many neutrons, their 

number can be considered infinitely large. In this case, the critical region contracts to a critical point. 

Note that the explicit form of the expression w(Pn) (2) is known, and the equation for P in the continuum 

limit can be solved exactly. But the integrals are complex, and it is difficult to express the function P 

explicitly. 

The critical region itself has a complex three-member structure. In [16], three modes of critical 

behavior of nuclear reactors were discovered, depending on the sign of control actions and feedbacks, the 

boundaries of these modes were found, and it was shown that in the region of the critical point the time 

behavior is power-law. Time is proportional to the number of generations, and this behavior is 

characteristic of (11), self-similar irregular trees [8]. At the most critical point, the total number of 

neutrons is proportional to time (12), which corresponds to a degenerate tree. Thus, neutron trajectories 

vary depending on the probability c and the multiplication factor. In the subcritical (and supercritical) 

region the movement occurs along regular trees, in the critical region along self-similar irregular trees, at 

the critical point along a degenerate tree. Above the critical point, but in the critical region - again using 

self-similar irregular trees. In the supercritical region - again using regular trees. 

 

3. Probabilities of formation of hierarchical levels, distribution by hierarchical levels 

and by neutron generations. 
 

Self-similar distributions are described by a power law of the form (11) 
 

( )p k k −  (15) 

 

with exponent > 0 , where k is the degree of the tree vertex, which plays the role of scale in complex 

networks. Dependencies of this kind are widespread in systems of various natures. The form of such a 

dependence does not change with variation in the scale of the variable k , which determines the order 

distribution of the vertices of the hierarchical tree of a certain graph. Indeed, replacing the variable k  

with a value /k a  scaled by a positive constant a  keeps the form of distribution (15) unchanged. 

Division chains lead to a hierarchical structure, the geometric image of which is the Cayley tree (Fig. 1). 

In the general case, the cluster structure of all levels determines the behavior of the hierarchical 

system, but the self-similarity property allows us to limit ourselves to specifying the structure of the 

minimal cluster and finding the number of the hierarchical level. A hierarchical tree is a geometric image 
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of ultrametric space [17], and in [3] it is shown that the description of hierarchical structures comes down 

to considering the process of diffusion in this space. 

The evolution of complex hierarchical systems represents anomalous diffusion across hierarchical 

levels, which leads to a stationary distribution in the form of Tsallis (or Rényi distribution). Following 

[18], we consider the probability density of the distribution u u= ( )p p t  of the system along the 

coordinates of ultrametric space at time t . This distribution obeys the kinetic equation [19, 20] 
 

( )u u u u u

u

= ,u up f p f p   



−  (16) 

 

where the dot means differentiation with respect to time,   is the relaxation time, uuf   represents the 

frequency of transitions from u  to u . To determine the form of dependence on ultrametric coordinates, 

consider a regular hierarchical tree, which is characterized by a fixed branching index s>1 and a variable 

number of hierarchical levels n>>1. In this case, the ultrametric coordinate represents an n-digit number 

in the number system with base s: u=u0u1…um…un-1un, um=0,1…,s-1. The intensity of transitions can be 

written in the form of a power series u =0
= ( )

n n m

u m mm
f f u u s −

 − , where the first term ( = 0m ) 

corresponds to the upper level of the hierarchy, which determines the behavior of the entire system - the 

fission chain, while the last term with m=n corresponds to the lowest level, corresponding to the smallest 

clusters, the last branches of the chain.  

According to the definition, the distance between points u  and u  is equal to 0≤l≤n if the conditions 

=m mu u   for m=0,1,…,n-(l+1) and m mu u   for m=n-l, n-l+1,…, n are met [11]. Thus, for a fixed 

distance l, the first n-l terms of the indicated series are equal to zero by definition, while the last, the 

number of which is equal to l, contain the factor sn-m, the value of which for s>1 is much less than the 

factor sl, which is the first of the remaining terms. As a result, only the term with m=n-l and fuu`~sl=sn-m is 

significant in the series under consideration. Similarly, it can be shown that the probability density is 

estimated as pu~sn-l=sm. For a random tree, the branching index s becomes variable, as a result of which 

the frequency of transitions fuu` →fn-m and the probability density pu→pm take the form of the Mellin 

transformation [20] 

 

where f(s) and p(s) represent weight functions. Thus, from the general coordinates u=u0u1…um…un-1un, 

um=0,1…,s-1 of ultrametric space we move on to the coordinates of the level number, the number of 

neutron generations, which were used in the previous section. 

As a result, the basic kinetic equation for the probability of formation of the n-th hierarchical level 

takes the form 

> <

= ,n m n n n m m

m n m n

p f p f p − −−   (18) 

 

where, in contrast to expression (16), which represents a continuous ultrametric space, a discrete 

representation is used that corresponds to hierarchical trees of the type shown in Fig. 1. The first term on 

the right side of (18) takes into account the hierarchical connection of a given level n with lower levels 

m>n, the second with upper m<n. Noteworthy is the fact that the right side of equation (18) has the 

opposite sign to that in conventional statistical systems [21]. This is due to the fact that autonomous 

systems are characterized by the spontaneous establishment of a hierarchical connection, and not its 

destruction [3].  

Expanding the probability mp  in (18) into a series in powers of the difference n-m, in the limit n>>1 

we obtain 
 

2 2= ( / ) ,n n n np D p n D p −   +  (19) 

 

 

0 0
( ) ds, ( ) ds,n m m

n m mf f s s p p s s
 

−

−                                (17)  
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where the lowest moments 
<

( ) = 0n m

m n

n m f −−  and 2

<

( ) 2n m

m n

n m f D−−   are taken into account; the operator 

> <
:=n m n n mm n m n

D f f− −−   determines the difference in the intensities of transitions from a given level n  

to lower and upper levels. If there is no hierarchy, then there are no conditions >m n , <m n  from (18), 

and the operator = 0nD . In hierarchical systems, the intensity of transitions depends significantly on 

whether they occur up or down the hierarchical tree. We further use the assumption about the form of the 

function nD . 

 
1:= / ,q

n nD dqp n−−    (20) 

 

where q , d  are positive parameters. The formal basis of the assumption is that, up to a factor ( 1)d q− − , 

the integral dn
qn

n n
n

D p  reduces to the Jackson derivative 

 

:= ,
1

q q

qn nq

n n

p p
D p

q

−

−
 (21) 

 

representing the archetype of self-similar hierarchical systems [4]. As a result, control equation (19) takes 

the final form  
 

( )= ( / ) ( / ) .q

n n n np n dp D p n −   +    (22) 

 

The stationary solution of this equation is written in the form of the Tsallis distribution [7] 
1

1/ 1
2

( 1)

0 0

1 2
; , / .

q
q

q

n

q q
p p n p D d

− −
−

− − − −   
+      

    

 (23) 

 

According to (23), as the level number n  increases, the probability of its formation np  decreases in a 

power-law manner from the maximum value 0p  corresponding to the upper level = 0n . 

Using the deformed exponential  
11

( ) = 1 (1 )exp
q

q
x q x

−

+
+ − ,   m ( ,0)y ax y

+
  and the effective energy 

1

22
=

q

q

n

q
n

−

−− 
 

 
, probability (23) takes the canonical Tsallis form 

 

0= .exp n
n q

p p
 

− 
 

 (24) 

 

According to [22], the effective temperature   satisfies standard thermodynamic relations, provided 

that the distribution over levels of a hierarchical self-similar set is determined by the escort probability 

:=
q

l
l q

ll

p

p
 and not the initial one lp . It was noted in [23] and [8] that if we set q`=1/q, then the Tsallis 

escort distribution coincides with the Rényi distribution obtained by applying the maximum entropy 

principle to the Rényi entropy. In [24] it is shown that Renyi entropy serves as a negative indicator of the 

degree of conformal transformation of information discrepancy (divergence). The effective temperature 

  is related to the probability of nuclear fission from (1). 

The probability of the formation of a hierarchical level and a self-similar chain (chain reaction) 

associated with this level increases monotonically with decreasing n. Calculation [8] demonstrates that 

the increase in dispersion Δ=D/d, determined by the ratio of the diffusion coefficient D to the energy d, 

significantly expands the spread of the stationary probability across hierarchical levels. For Δ>>1, 

distribution (23) differs slightly from exponential at high levels n<<Δ1/(2-q, but as n increases, the power 

tail begins to manifest itself in an increasingly significant way. 

Comparing distribution (23) with distribution (14), we see that one is an escort in relation to the other 

when а = 0; these are the Tsallis and Rényi distributions. As already noted, these distributions will 
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coincide when replacing the physical deformation parameter Q=2-q with the value 2-q`, q`=1/q. In this 

case, the dispersion Δ of the distribution (23) and the parameter W in expression (14) are related by the 

dependence Δ=1/W. The fractal dimension of ultrametric space in (14) is expressed through the 

deformation parameter Q: 
 

D=q`-1=(Q-1)/(2-Q). 
 

In the general case 0a  , and the indicated relations are of a particular nature. It is shown in [18] that 

the probabilities nP  of an ensemble of hierarchical levels and the probabilities of the formation of each 

level np  are related by expressions of the so-called deformed (using the exponent q) algebra, when 

 

0

ln ln
n

q n q n

m

P p
=

= , 

 
1 1

ln
1

q

q

x
x

q

− −
=

−
, 0 ...n q q q q nP p p p=    , 

1

1 1 1[ 1]q q q

qx y x y− − −

+ = + − ,  

 

1
1

1 10

0

( 1)

= ( )exp
1

n
q

m n
q qm

n mq

m

p n

P p n
q

−

− −=
+

=

 
− + 

  = −
− 

 
 


 ,  

 
1 1 1

1 1q q q

n n nP P p− − −

− − = − . 
 

The non-stationary case was considered in [8] in a self-similar mode, when the behavior of the system 

is determined by the power-law dependence nc(t) of the characteristic hierarchy scale (for example, the 

number of generations at which a percolation phase transition occurs, the critical point of the reactor), and 

the probability distribution is represented by a homogeneous function ( ) ( ) ( / )n c cp t n t n n = . Since in 

our case n~t, then depending on the type of pn(t) it is the self-similar regime that turns out to be significant. 

 

3. Conclusion  

 
The work presents a new approach to the study of complex processes in a nuclear reactor, based on 

synergetic methods associated with fractal and percolation methods for describing complex systems, and 

the theory of hierarchical subordination. New research methods make it possible to discover more 

detailed aspects of the behavior of reactor systems. Their comparison with traditional methods of studying 

neutron-nuclear processes in reactors will make it possible to find more subtle aspects of the behavior of 

these processes, take them into account and increase the safety of reactors. 

Thus, the complexity of hierarchical trees in [25] was characterized by the silhouette sl=ln(Ml/Ml-1), 

where Ml is the number of nodes at level l. These expressions are given in (4), (11), (12). In a reactor, the 

ratio Ml/Ml-1 between the number of neutrons of neighboring generations characterizes the neutron 

multiplication factor. For regular trees (4) sl =ln . At the most critical point Ml=Ml-1, and sl=0, which 

corresponds to one neutron born in each generation and the picture of a degenerate hierarchical tree. For 

degenerate trees where s =  
 

( 1) ( 1)
ln[1 ]

1 ( 1)( 1) 1 ( 1)( 1)
l

s s
s

s n s n

− −
= + 

+ − − + − −
. 

 

This value tends to zero at 1 =  or at n → . For self-similar trees (11) sl=ln(1+1/l)a≈a/l. This value 

tends to 0 as l→∞, which was noted in [1]. It is shown in [8] that a more adequate characteristic of the 
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silhouette of a self-similar tree and the neutron multiplication coefficient corresponding to this value for a 

breeding reactor system is the Jackson derivative (21). 

Let us also note that a powerful method for studying complex systems of this kind is the information 

geometry of probability distributions [26, 27]. The Rényi and Tsallis distributions discussed above are 

obtained by applying the maximum entropy principle to the Rényi ( ) 1
( ) log( ( ) ( ))

1
RH p p x d x  


=

−   

species and Tsallis ( ) 1
( ) ( ( ) ( ) 1)

1
TH p p x d x  


= −

−   entropy. These entropies correspond to Renyi 

information deviations (divergences) ( ) 1/1
( ) log( ( ) ( ))

1
R

p
D p q q d x

q

  


=
−   and Tsallis type 

( ) 11
( ) (1 ( ))

1
TD p q p q d x   



−= −
−   (p and q probability distributions). The generalized Pythagorean 

theorem [26, 27] is applicable to these quantities, to which expressions for the maximum entropy and 

other important physical results are attached, the application of which is essential for a detailed study of 

reactor systems. 
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