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Deep Learning-based Design of Uplink Integrated

Sensing and Communication
Qiao Qi, Xiaoming Chen, Caijun Zhong, Chau Yuen, and Zhaoyang Zhang

Abstract—In this paper, we investigate the issue of uplink
integrated sensing and communication (ISAC) in 6G wireless
networks where the sensing echo signal and the communication
signal are received simultaneously at the base station (BS). To
effectively mitigate the mutual interference between sensing and
communication caused by the sharing of spectrum and hardware
resources, we provide a joint sensing transmit waveform and
communication receive beamforming design with the objective
of maximizing the weighted sum of normalized sensing rate
and normalized communication rate. It is formulated as a
computationally complicated non-convex optimization problem,
which is quite difficult to be solved by conventional optimization
methods. To this end, we first make a series of equivalent
transformation on the optimization problem to reduce the design
complexity, and then develop a deep learning (DL)-based scheme
to enhance the overall performance of ISAC. Both theoretical
analysis and simulation results confirm the effectiveness and
robustness of the proposed DL-based scheme for ISAC in 6G
wireless networks.

Index Terms—6G, integrated sensing and communication, deep
learning, waveform and beamforming design.

I. INTRODUCTION

Integrated sensing and communication (ISAC) has been

widely recognized as one of main use cases of the sixth-

generation (6G) wireless networks, which provides wide ap-

plication prospects in the fields of smart city, smart medical,

automatic driving, etc. In general, ISAC integrates sensing

and communication functions into an identical system with

limited radio spectrum by sharing wireless and hardware

resources [1]-[4]. However, it is quite challenging to achieve

an appropriate performance balance between sensing and com-

munication for ISAC in 6G wireless networks. In particular,

the ISAC system may suffer from severe inter-functionality

interference between sensing and communication caused by

resources sharing, resulting in performance degradation. Thus,

how to effectively coordinate the inter-functionality interfer-

ence between sensing and communication has become one

of the most important issues for ISAC systems. Traditionally,

it is usual to allocate different orthogonal radio resources to

sensing and communication functions, respectively. For exam-

ple, the authors studied time/frequency/code-division enabled

ISAC systems to avoid the inter-functionality interference [5]-

[7]. Although the transmission process is interference-free,
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orthogonal-enabled ISAC leads to a low spectrum efficiency.

Therefore, it is desired to develop non-orthogonal ISAC sys-

tems for improving the spectrum utilization [8].

In non-orthogonal ISAC systems, the base station (BS) is a

multi-functional network node with the ability to handle sens-

ing and communication simultaneously. Most of the existing

non-orthogonal ISAC works pay more attention to downlink

ISAC systems, where the BS first broadcasts the sensing wave-

form to the targets and the communication signals to the users

simultaneously, and then received the echo signals form targets

for sensing information extraction [9]-[11]. In this context,

there is no communication-to-sensing interference since the

BS has a prior knowledge about communication message.

Thus, the key of design for the downlink non-orthogonal

ISAC systems is to mitigate the sensing-to-communication

interference and the inter-user communication interference.

To this end, joint design of signal waveform and transmit

beamforming for the BS has been extensively studied. For

example, the optimal waveform design was proposed in [9]

for minimizing the downlink multi-user interference for ISAC

systems. In [10], a transmit beamforming design was put

forward to achieve the performance trade-off between sensing

and communication for ISAC systems. The authors in [11]

studied a joint beamforming design for ISAC system by

maximizing communication rate while meeting the accuracy

of radar beam pattern.

Compared to downlink ISAC systems, there are few lit-

eratures on uplink non-orthogonal ISAC systems, where the

sensing echo signal and communication signal are received

at the BS simultaneously, and the BS should recover the

communication information from communication signal and

estimate the targets parameters from sensing echo signal. Dif-

ferent from downlink non-orthogonal ISAC systems, the BS in

uplink non-orthogonal ISAC systems has no prior knowledge

about communication signal. That is to say, the BS needs

to process the mixed received signal that exists the severe

mutual interference between sensing and communication. In

this context, efficient interference coordination schemes play

a crucial role in unleashing the full potential of non-orthogonal

uplink ISAC systems. Inspired by non-orthogonal multiple ac-

cess (NOMA)-based multi-user communication systems [12],

[13], previous works employed the successive interference

cancellation (SIC) technique to decode the communication

signals first and then performed sensing information estimation

without communication interference [14], [15]. However, there

exists some limitations. The communication signal decoding

is always under the sensing interference, leading to a limited

communication rate. Moreover, imperfect SIC implementation

http://arxiv.org/abs/2403.01480v1
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can result in residual communication interference during the

sensing information extraction, leading to a low sensing rate.

Although it would make sense to consider another SIC order

where the sensing information is estimated first by treating

the communication signal as interference, quantifying the

influence of the communication signal on estimating sensing

information and evaluating the statistics of the residual error

becomes challenging, which makes subsequent analyses in-

tractable. This is because the power of the sensing echo signal

is typically much weaker than the communication signal.

The sensing echo signal is reflected off from distant targets,

experiencing double pathloss, while the communication signal

is directly transmitted from the communication users (CUs).

As a result, if the BS tries to decode the sensing signal first,

it would be heavily distorted due to the interference from the

stronger communication signal.

Considering the potential limitations and uncertainties in-

troduced by the use of SIC technique, this paper proposes

a novel framework for simultaneously implementing sensing

information extraction and communication signal decoding

in practical uplink ISAC systems facing mutual interference

caused by resource sharing. To effectively mitigate the mu-

tual interference between sensing and communication, it is

necessary to select appropriate performance indicators for

ISAC system. Note that although the sensing performance is

usually evaluated by estimation theory-based metrics, such as

the Cramer-Rao bound, mean squared error (MSE), detection

probability, etc., they all depend on special estimation methods

[16], [17]. For example, the well-known Cramer-Rao bound

was derived according to the unbiased estimation method

[18]. Instead, mutual information (MI)-based metrics is more

general for performance evaluation. Besides, it was validated

in [19] that maximizing the sensing MI can achieve the

minimum MSE of target response matrix and improve the

detection probability. To unify performance metrics of sensing

and communication, this paper proposes a uplink ISAC design

with the objective of maximizing the weighted sum of the

normalized sensing rate and the normalized communication

rate. In order to reduce the influence of mutual interference, it

is required to make a joint optimization of the sensing transmit

waveform at the BS transmitter and the communication receive

beamforming at the BS receiver.

Nevertheless, it is not a trivial task to design the joint

scheme in the presence of mutual interference by using tradi-

tional optimization methods due to ultra-complicated expres-

sions, coupled variables and high-dimensional computational

complexity. For example, some approximate methods and the

alternating direction method of multipliers (ADMM) algorithm

was applied to iteratively obtain a sub-optimal solution for

joint waveform and beamforming design in the co-existence of

multi-input multi-output (MIMO) communication and MIMO

radar systems [20]. The author in [21] employed an alternating

optimization (AO)-based algorithm to design waveform and

passive beamforming for reflected intelligence surface (RIS)-

aided ISAC system. Actually, it is seen that the traditional

optimization methods for joint waveform and beamforming

design mainly rely on some approximate methods to address

the nonconvexity of the optimization problem and problem

decomposition to decouple the variables. This will undoubt-

edly lead to a high complexity due to the numerous algorithm

iterations and the high dimensional matrix operations, even

may not achieve the feasible performance or not meet the

real-time requirements of ISAC systems. Moreover, not all

complex problems can be solved by traditional optimization

methods. To address theses issues, deep learning (DL) offers

a novel approach for joint optimization design, because it can

transfer complex computational tasks to the offline training

phase with rich training samples [22], [23]. Based on this

significant benefit, DL technique has been used to solve many

classical wireless communication problems, such as channel

estimation and signal detection [24], beamforming design [25]

and resource allocation [26]. Motivated by it, this paper is

dedicated to provide a novel DL-based joint waveform and

beamforming design framework for uplink ISAC to reduce

the mutual interference as well as achieve the desired ISAC

performance. The contributions of this paper are three-fold:

1) We present a general design framework for non-

orthogonal uplink ISAC system, where a dual-function

BS is deployed to sense nearby targets and serve multiple

CUs simultaneously.

2) We propose a joint sensing transmit waveform and com-

munication receive beamforming design to mitigate the

mutual interference for implementing sensing informa-

tion extraction and communication signal decoding at

the same time, which is formulated as the weighted

sum of the normalized sensing rate and the normalized

communication rate maximization problem.

3) We make some equivalent problem transformation to

reduce the design complexity, and then design a cus-

tomized deep neural network (DNN) structure called

“ISACNN” with unsupervised learning according to the

characteristics of non-orthogonal uplink ISAC system.

The rest of this paper is outlined as follows. Section II

introduces uplink ISAC systems and defines the performance

metrics of sensing and communication. Then, Section III

formulates the joint optimization design problem and makes

equivalent problem transformation. Next, Section IV provides

a DL-based scheme and Section V gives the numerical simu-

lation to validate the effectiveness of the proposed DL-based

scheme. Finally, Section VI concludes the paper.

Notations: We use bold upper (lower) letters to denote

matrices (column vectors), (·)H to denote conjugate transpose,

‖ · ‖1 to denote the ℓ1-norm of a vector, ‖ · ‖ to denote the

ℓ2-norm of a vector or the F -norm of a matrix, | · | to denote

the absolute value of a scalar or the determinant of a matrix,

[·]⇓ to denote the descending operation on the elements of

a vector, E{·} to denote the expectation, CM×N to denote

the set of M -by-N dimensional complex matrix, Rm×n to

denote the set of m-by-n dimensional real matrix, ⊗ to denote

the Kronecker product, vec(·) to denote the vectorization of

matrix, diag(x) to denote a diagonal matrix with the diagonal

elements being vector x, I(A|B;C) to denote the MI between

A and B conditioned on C, and CN (µ, σ2) to denote the

circularly symmetric complex Gaussian (CSCG) distribution

with mean µ and variance σ2.
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II. SYSTEM MODEL

Fig. 1. An uplink ISAC system.

As shown in Fig. 1, this ISAC system deploys a dual-

function BS with Nt transmit antennas and Nr receive anten-

nas, serving K single-antenna CUs and sensing nearby several

targets at the same time. Specifically, the dual-function BS first

broadcasts the sensing signal S = [sT1 , . . . , s
T
L] ∈ CL×Nt for

nearby environmental sensing, where L is the length of sensing

signal waveform with L > Nt. Then, the dual-function BS

receives the communication signal from the CUs via uplink

and the echo signals reflected from targets simultaneously. The

received signal Y = [yT
1 , . . . ,y

T
L ] ∈ C

L×Nr at the BS can be

expressed as

Y = SG+XPHT +N, (1)

where H = [h1, . . . ,hK ] ∈ CNr×K , P =
diag[

√
p1, . . . ,

√
pK ] ∈ RK×K and X = [x1, . . . ,xK ] ∈

CL×K with hk ∈ CNr×1 being channel state information

(CSI) between the BS and the k-th CU, pk and xk ∈ CL×1

being the transmit power and transmit signal of the k-th CU,

respectively. Moreover, N = [n1, . . . ,nL] ∈ C
Nr×L is the

additive white Gaussian noise (AWGN) with nl ∼ CN (0, σ2
n),

and G ∈ CNt×Nr is the target response matrix (TRM) that

needs to be sensed, which can be expressed as

G =
∑

i

βia (θi)b
T (θi) , (2)

where βi and θi are the reflection coefficient and the direc-

tion of arrival (DoA) for the i-th target, respectively. a (θi)
and b (θi) are associated transmit and receive array steering

vectors, respectively. Finally, the BS sends the received signal

into the estimator and the decoder for sensing information

extraction and communication signal decoding, respectively.

The detailed system flowchart is summarized in Fig. 2.

Remark 1: For the widely distributed antennas at the BS,

the difference of column correlations of the TRM G can be

ignored. In this case, we assume that the columns of the TRM

G have the identical correlations for ease of analysis, i.e.,

RT = E
{
gig

H
i

}
, i = 1, . . . , Nr, where gi ∈ CNt×1 denotes

the i-th column of the TRM G [19].

A. Sensing Information Extraction

After receiving the signal, the BS recovers the TRM G for

nearby targets. Through extracting sensing information from

G, the detailed environmental parameters can be obtained,

such as the reflection coefficient and the DoA of each target.

Considering the MSE minimization of the TRM G estimation

is equivalent to the sensing rate maximization [14], [19], we

focus on the maximization of sensing rate. To derive the

sensing rate, we first give the following useful lemma:

Lemma 1: For arbitrary matrice A ∈ Cm×n, B ∈ Cn×p

and C ∈ Cp×q , we have vec (ABC) = (CT ⊗A)vec (B).

Proof: Please refer to Appendix A.

Based on Lemma 1, we vectorize the received signal Y in (1),

and have

ỹ = S̃g̃ +
(
HPT ⊗ IL

)
vec(X) + ñ, (3)

where ỹ = vec(Y) ∈ CLNr×1, S̃ = INr
⊗ S ∈ CNrL×NrNt ,

g̃ = vec(G) ∈ CNtNr×1 and ñ = vec(N) ∈ CLNr×1.

Then, the sensing MI between the vectorized TRM g̃ and the

vectorized receive signal ỹ with known waveform S̃ can be

computed as

I
(
ỹ; g̃ | S̃

)
= h

(
ỹ | S̃

)
− h

(
ỹ | g̃, S̃

)

= log2

∣∣∣S̃RgS̃
H +RI

∣∣∣− log2 |RI |

= log2

∣∣∣ILNr
+R−1

I S̃RgS̃
H
∣∣∣ ,

(4)

where h (y|x) =
∫
̺ (y|x) log2̺ (y|x) dy is the conditional

differential entropy of y for a given x and ̺ (y|x) denotes the

conditional probability density function of y for a given x.

RI =
(
HP̃HH

)
⊗IL+σ2

nILNr
with P̃ = diag[p1, . . . , pK ] ∈

RK×K represents the covariance matrix of communication

interference plus noise and Rg = INr
⊗ RT denotes the

covariance matrix of the vectorized TRM g̃. As a result, the

sensing rate can be expressed as

Rs(S) = I
(
ỹ; g̃ | S̃

)
/L. (5)

B. Communication Signal Decoding

Meanwhile, the decoder at the BS conducts communica-

tion signal decoding. As a common indicator, the achievable

communication rate is selected as communication performance

metric for evaluating communication quality. During the l-th
time slot, the received signal at the BS is given by

yT
l =

K∑

k=1

√
pkxk,lh

T
k + sTl G+ nT

l , (6)

where xk,l denotes the transmit signal from the k-th CU at the

l-th time slot. To reduce the interference, receive beamforming

is employed at the BS for the communication signal from CUs.

Thus, the decoded communication signal related to the k-th

CU at the l-th time slot can be expressed as

x̂k,l =
√
pkxk,lh

T
kwk+

K∑

i6=k

√
pixi,lh

T
i wk+sTl Gwk+nT

l wk,
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Fig. 2. System flowchart, where “Info.” denotes information.

where wk ∈ RNr×1 is the receive beamforming for the

k-th CU. As a result, the corresponding receive signal-to-

interference-plus-noise-ratio (SINR) is given by

γk =
pk
∣∣hT

k wk

∣∣2
∑K

i6=k pi
∣∣hT

i wk

∣∣2 + (‖SRTSH‖ /L+ σ2
n) ‖wk‖2

, ∀k,

(7)

and the achievable communication rate of CUs can be ex-

pressed as

Rc(wk,S) =
1

K

K∑

k=1

log2(1 + γk). (8)

As is seen from (5) and (8), the sensing rate and the

communication rate are jointly affected by sensing transmit

waveform S and the communication receive beamforming

wk, ∀k. Therefore, it makes sense to design a joint waveform

and beamforming scheme to improve the overall performance

of ISAC system.

III. PROBLEM FORMULATION AND TRANSFORMATION

In this paper, we aim to optimize both sensing and com-

munication performance under the same resources in ISAC

system. On the one hand, maximizing the sensing rate is

equal to minimizing the sensing MSE, and thus sensing rate

maximization is selected as the objective of sensing function.

On the other hand, maximizing average communication sum-

rate can improve the overall throughput by appropriately

allocating resources to different users under varying channel

conditions. In order to balance communication and sensing,

it is more appropriate to choose the maximization of average

sum-rate as the objective of communication function. Based

on the principle of multi-objective optimization, we take

the weighted sum of the normalized sensing rate and the

normalized communication rate as the ultimate optimization

objective function. In particular, the joint waveform and beam-

forming design is formulated as the following multi-objective

optimization problem (MOOP).

S&C-MOOP:

max
S,wk

α

Ms
Rs(S) +

(1− α)

Mc
Rc(wk,S) (9a)

s.t. tr
(
SSH

)
≤ Ps, (9b)

where Ps is the transmit power budget for sensing signal

and α is the weight to adjust the system preferences between

functions of sensing and communication. Moreover, Ms and

Mc are the maximum sensing rate and the maximum com-

munication rate, which are used to make a normalization to

respectively scale Rs and Rc proportionally and bring them

within a specific range, i.e., [0,1], ensuring a balanced impact

of each objective function throughout the optimization process.

Such that, the range of weight α can also be simplified to

[0, 1], where α and (1 − α) denote the weights for sensing

function and communication function, respectively. Obviously,

since the objective function in (9a) is computationally difficult

and non-convex, it is very tricky to solve problem (9). In this

context, it is necessary to transform the optimization problem

for reducing the design complexity. In particular, we first

divide this MOOP (9) into two single-objective optimization

problems (SOOPs), and then address the problems of sensing

rate maximization and communication rate maximization, re-

spectively. Finally, we recombine the two transformed SOOPs

and obtain an equivalent but more manageable MOOP. In the

following, we process the sensing SOOP and communication

SOOP, respectively.

Remark 2: For flexibility of different application scenar-

ios, we do not set QoS constraints, e.g., sensing MSE (or

CRB) and communication SINR (or rate), in the proposed

MOOP. Specifically, the formulated MOOP is the weighted

combination of sensing MOOP and communication SOOP.

Meanwhile, sensing SOOP and communication SOOP are also

special examples of MOOP. For instance, by setting function

weight α = 1, the MOOP can be reduced to a sensing

SOOP. In this scenario, there should be no communication

QoS constraint. Similarly, the sensing QoS constraint should

not exist when α = 0 since the MOOP is simplified as

a communication SOOP. Although such optimization cannot

guarantee the threshold of sensing accuracy and non-zero
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rate for all CUs, it can achieve a certain level of QoS for

sensing and communication by changing the function weight.

It is noted that based on the requirements of the application

scenario, future research can also explore other forms of

joint optimization problems, such as the joint problem with

minimizing the sensing MSE and maximizing the minimum

communication rate.

A. Sensing Rate Maximization

The SOOP for sensing rate maximization is given by

S-SOOP: max
S

Rs(S), (10)

s.t. (9b).

It is known from Rs(S) in (5) that the sensing rate maximiza-

tion is equivalent to the sensing MI maximization. Thus, we

only need to handle the sensing MI, which can be rewritten

as

I
(
ỹ; g̃ | S̃

)
= log2

∣∣∣ILNr
+R−1

I S̃RgS̃
H
∣∣∣

= log2
∣∣ILNr

+ (RH ⊗ IL)(INr
⊗ SRTS

H)
∣∣

= log2
∣∣ILNr

+RH ⊗ SRTS
H
∣∣ , (11)

where RH = (HP̃HH + σ2
nINr

)−1. In order to re-

duce the computational dimension, let the singular value

decomposition (SVD) of S be S = UsΣsV
H
s , where

Σs =
[(
Σ↓

s

)1/2
,0Nt×(L−Nt)

)]T
is the diagonal matrix of

S with Σ↓
s = diag

(
[σs,1, . . . , σs,Nt

]
T
)

,
√
σs,k is the k-th

singular value of S with σs,1 ≥ σs,2 ≥ · · · ≥ σs,Nt
, Us

and Vs are left and right singular vectors of S, respectively.

Meanwhile, the eigenvalue decomposition (EVD) is conducted

on RT and RH . Specifically, RT can be expressed as RT =

UTΣTU
H
T , where ΣT = diag

(
[σt,1, . . . , σt,Nt

]T
)

, σt,i is the

i-th eigenvalue of RT with σt,1 ≥ σt,2 ≥ · · · ≥ σt,Nt
and UT

is the corresponding eigenvector. RH is decomposed as RH =

UhΣhU
−1
h , where Σh = diag

(
[σh,1, . . . , σh,Nr

]T
)

, σh,j is

the j-th eigenvalue of RH with σh,1 ≥ σh,2 ≥ · · · ≥ σt,Nr

and Uh is the corresponding eigenvector. Thus, the sensing

MI can be transformed as

I
(
ỹ; g̃ | S̃

)
= (12)

log2
∣∣ILNr

+UhΣhU
−1
h ⊗UsΣsV

H
s UTΣTU

H
T VsΣ

H
s UH

s

∣∣ .

To further process the sensing MI in (12), we propose the

following lemma:

Lemma 2: For square matrices A ∈ C
m×m,B ∈ C

m×m,

C ∈ Cn×n and D ∈ Cn×n, we have |Imn +AB⊗CD| =
|Imn +BA⊗DC|.

Proof: Please refer to Appendix B.

Based on Lemma 2, the sensing MI can be converted as

I
(
ỹ; g̃ | S̃

)

= log2
∣∣ILNr

+Σh ⊗Σs

(
VH

s UT

)
ΣT

(
UH

T Vs

)
ΣH

s

∣∣
≤ log2 |ILNr

+Σh ⊗Λ| , (13)

where Λ = ΣsΣTΣ
H
s =

[
Σ↓

sΣT 0

0 0

]
∈ RL×L. Note that

the upper bound in (13) is achieved if and only if Vs = UT

[19]. In this context, the sensing rate can be rewritten as

R̄s(σs) =
1

L

Nt∑

i=1

Nr∑

j=1

log2(1 + σt,iσs,iσh,j), (14)

where σs = [σs,1, . . . , σs,Nt
]T . Meanwhile, the power con-

straint (9b) is replaced by

tr
(
SSH

)
=

Nt∑

i=1

σs,i = ‖σs‖1 ≤ Ps. (15)

Thus, the sensing SOOP can be transformed as

T-S-SOOP: max
σs

R̄s(σs), (16)

s.t. (15).

B. Communication Rate Maximization

On the other hand, the SOOP for communication rate

maximization can be expressed as

C-SOOP: max
S,wk

Rc(wk,S) (17)

s.t. (9b).

It is found from Rc(wk,S) in (8) that the variables S and

wk are separable from each other. Thus, we can consider the

communication rate maximization in terms of sensing transmit

waveform and communication receive beamforming, respec-

tively. For a given S, the communication rate maximization in

terms of wk is equivalent to SINR maximization for each CU

as follows

max
wk

γk. (18)

By utilizing
∥∥SRTS

H
∥∥ = tr(Λ) =

∑Nt

i=1 σs,iσt,i, the com-

munication SINR γk in (18) can be rewritten as

γk(σs) =
pk
∣∣hT

kwk

∣∣2
∑K

i6=k pi
∣∣hT

i wk

∣∣2 + (
∑Nt

i=1 σs,iσt,i/L+ σ2
n) ‖wk‖2

.

(19)

Then, let the numerator be equal to 1 in (19), problem (18)

can be transformed as the denominator minimization problem,

which can be expressed as

min
wk

wH
k R̃kwk (20a)

s.t.
√
pkw

H
k h∗

k = 1, (20b)

where R̃k =
∑K

i6=k pih
∗
ih

T
i +(

∑Nt

i=1 σs,iσt,i/L+ σ2
n)INr

. To

solve this problem, we can adopt the commonly used Lagrange

multiplier method. Specifically, we first construct the Lagrange

function of wk as

Lc(wk) = wH
k R̃kwk + λ(

√
pkw

H
k h∗

k − 1), (21)

where λ > 0 is the Lagrange multiplier. Then, let the first

derivative of Lc(wk) be 0, we have

∂Lc(wk)

∂wk
= 2R̃kwk + λ

√
pkh

∗
k = 0. (22)



6

Thus, wk can be expressed as

wk = −
√
p
k

2
λR̃−1

k h∗
k. (23)

By left-multiplying
√
pkh

T
k on (23), we can obtain

λ = − 2

pkhT
k R̃

−1
k h∗

k

. (24)

Taking (24) into (23), the optimal communication receive

beam for communication rate maximization is given by

w
opt

k =
1

√
pkhT

k R̃
−1
k h∗

k

R̃−1
k h∗

k. (25)

It is found from (25) that the optimal communication receive

beam w
opt

k can be viewed as the function of the sensing

transmit waveform S. As a result, the communication rate can

be rewritten as

R̄c(σs) =
1

K

K∑

k=1

log2(1 + γopt

k ), (26)

where γopt

k = pkh
T
k R̃

−1
k h∗

k is the SINR for the optimal

communication receive beam w
opt

k at the k-th CU. Thus, the

communication SOOP is transformed as

T-C-SOOP: max
σs

R̄c(σs), (27)

s.t. (15).

C. Problem Transformation

By recombining SOOPs (16) and (27), problem (9) can be

equivalently converted as

T-S&C-SOOP:

max
σs

α

Ms
R̄s(σs) +

(1 − α)

Mc
R̄c(σs) (28)

s.t. (15),

where the detailed derivations of the maximum sensing rate

Ms and the maximum communication rate Mc are shown in

Appendix B. For more intuitive, the problem transformation

process is presented in Fig. 3.

Although the computational dimension and design complex-

ity are greatly reduced compared to the original problem (9),

the transformed problem (28) is still very difficult to be solved

by traditional optimization approaches, due to the extremely

complicated structure of objective function. In this context, we

turn to develop an efficient DL-based scheme to address this

problem for improving the overall performance of ISAC.

IV. DL-BASED SCHEME DESIGN

To solve the transformed optimization problem (28), we

propose a DL-based joint design scheme to obtain a feasible

solution. It is known that the sensing transmit waveform S and

the communication receive beamforming wk, ∀k are mainly

affected by the sensing transmit covariance matrix (TCM)

RT and the communication CSI H. Thus, the input of the

proposed DL-based scheme are sensing TCM RT and the

communication CSI H, while its output are the sensing transit

waveform S and the communication receive beamforming wk.

As shown in Fig. 4, the core of DL-based joint design scheme

is the DL network, called “ISACNN”, which mainly includes

pre-processing, network structure and post-precessing, c.f. Fig.

5. Finally, for a given predicted vector from “ISACNN”, the

recover module based on the derivation of Section III is used

to obtain the desired solutions S and wk. In the following,

we will give the detail discussion of the proposed DL-based

scheme.

A. Pre-processing

As mentioned above, the input of the proposed DL-based

scheme are sensing TCM RT and the communication CSI H.

However, the current DL network can not process the complex

input vector. In this context, we adopt the commonly used

I/Q transformation to divide the complex channel vector hk

into in-phase component R(hT
k ) and quadrature component

I(hT
k ), where R(·) and I(·) denote the real part and the

imaginary part, respectively. Meanwhile, based on the trans-

formed optimization problem (28), the input of sensing TCM

can be replaced by its eigenvalue σt,i, i = 1, . . . , Nt. Thus, we

contact the real part and imaginary part of hk, k = 1, . . . ,K
and the eigenvalue of the sensing TCM σt,i, i = 1, . . . , Nt as

a feature input vector F ∈ R(2NrK+Nt)×1 for “ISACNN”, i.e.,

F = [R(hT
1 ), . . . ,R(hT

K), I(hT
1 ), . . . , I(h

T
K), σ1,i, . . . , σt,Nt

]T .
(29)

B. Post-processing

According to the transformed optimization problem, we

select the square of the singular value for the sensing transmit

waveform σs,i, i = 1, . . . , Nt as the output of “ISACNN”. In

order to ensure that network output vector meets the sensing

transmit power constraint (15), we turn to train two feature

parameters. One is a vector θs, the other is a scale scalar ηs.

Then, the two feature parameters are contacted to send to the

Lambda layer for satisfying the constraint. Specifically, the

function of the Lambda layer can be realized by the following

steps:

1) Separate out the vector θs and the scalar ηs;

2) Normalize the vector θs and sort its elements from largest

to smallest, i.e., θs =
[

θs

‖θs‖

]⇓
;

3) Multiply the scalar ηs by Ps, i.e., ηs = ηs × Ps;

4) Multiply the θs by ηs to obtain the output vector, i.e.,

σ
pred
s = θs × ηs.

Based on the function of Lambda layer, the norm of vector

θs is always 1 and the range of scalar ηs is scaled to [0, Ps].
Thus, the output vector σ

pred
s = θs × ηs always meets the

constraint, i.e., ‖σpred
s ‖ ≤ Ps.

C. Network Structure

With the preprocessing and the post-processing, the adopted

architecture of the neural network for “ISACNN” is composed

of input layer (feature input vector), convolution (CL) layers,

batch-normalization (BN) layers, flatten (FL) layers, fully-

connected (FC) layers, activation layers with rectified linear
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Fig. 5. Framework of “ISACNN”.

unit (ReLU) or Sigmoid functions, and Lambda layer (output).

Specifically, the CL layer is used to extract the features from

the input vector, while the FC layer can integrate the feature

information from the CL layer. This is because each neuron

in the FC layer is fully connected to all the neurons in the

layer before it. In our proposed NN, two FC layers with Nt

and 1 neurons are used to predict the vector θs and the scalar

ηs, respectively. The FL layer is commonly used in transitions

from the CL layer to the FC layer, whose purpose is to ”flatten”

the input, i.e., turning multi-dimensional inputs into one-

dimensional inputs. For the activation functions, the CL layers

all use the ReLU function, while the two FC layers both adopt

the Sigmoid function, which are mainly determined based on

the empirical experiment. To accelerate the convergence, each

CL layer and each FC layer are preceded by a BN layer. In the

end, the output layer is imposed by a Lambda layer to scale

and sort the training output result for ensuring the constraint.

Unlike traditional supervised learning designs, no training

labels are required in our proposed “ISACNN” framework.

To directly improve the system performance, we adopt the

negative objective in (28) as the loss function. In this context,

the decrease of the training loss exactly corresponds to the

increase of the average weighted sum of normalized sensing

rate and normalized communication rate. The defined loss

function can be expressed as

Loss = − 1

Ns

Ns∑

q=1

[
α

Ms,q
R̄s(σ

pred
s,q ) +

(1 − α)

Mc,q
R̄c(σ

pred
s,q )

]
,

(30)

where Ns is the number of training samples, σs,q is the predict

output vector with the q-th sample, Ms,q and Mc,q are the

maximum sensing rate and maximum communication rate for

the q-th sample, respectively.
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D. Recover Module

Finally, the recover module is used to obtain the desired

sensing transmit waveform and the communication receive

beamforming based on the output vector σ
pred
s . In particular,

the sensing transmit waveform can be computed by

S = UsΣ
pred
s UH

T , (31)

where Us is any L-dimensional unitary matrix and Σs
pred =

[diag
(
(σpred

s )1/2
)
,0Nt×(L−Nt)]

T . Moreover, the communica-

tion receive beamforming is given by

wk =
1

√
pkhT

k

(
Ω

pred

k

)−1

h∗
k

(
Ω

pred

k

)−1

h∗
k, (32)

where Ω
pred

k =
K∑
i6=k

pih
∗
ih

T
i + (σT

t σ
pred
s /L + σ2

n)INr
.

E. Complexity Analysis

Herein, we analyze the computational complexity of the

proposed DL-based scheme, which mainly includes pre-

processing, prediction and recovery. For pre-processing stage,

EVD operation is used to acquire the eigenvalue, whose

complexity is C1 = O(N3
t ). Then, for prediction stage,

based on [28] and [29], the complexity for the forward

calculation of the network can be expressed as C2 =

O
(

NL−2∑
l=1

CF
l CK

l Fl−1Fl +
NL∑

l=NL−1

Fl−1Fl

)
, where NL is the

number of layers, CF
l , CK

l , Fl−1, Fl are the area of the feature

map for the l-th CL layer, the area of the convolution kernel

for the l-th CL layer, the number of the input channel for

the l-th layer and the number of the output channel for the

l-th layer, respectively. For recovery stage, the complexity

of recovering sensing transmit waveform and communication

receive beamforming is given by C3 = O(KN3
r + L2N2

t ).
Thus, the complexity for our proposed “ISACNN” is given

by C1 + C2 + C3. To make it more vivid, we list the real

average runtime (ms) of the proposed DL-based scheme in

Tab. I, where the default setting is according to Section V.

V. SIMULATION RESULTS

In this section, we give some numerical results to val-

idate the effectiveness of the proposed DL-based scheme.

For system setting, the main parameters are listed in Tab.

II1. It is assumed that all CUs and STs are randomly dis-

tributed beyond the cell radius d0 and the pathloss model is

PLdB = 128.1 + 37.6 log10(d) [30], where d (km) denotes

the distance. The Rayleigh fading is considered as the small-

scale fading of communication channels. Specifically, the

channel of the k-th CU is modeled as hk =
√
ξkh̄k, where

h̄k ∼ CN (0, I) and ξk is the pathloss coefficient from the

k-th CU to the BS. For example, with dk being the distance

1It is worth pointing out that our proposed model and scheme are applicable
to any number of CUs. In practical scenarios, the number of activated CUs
accessing the same BS over the same resource block in a time slot is
usually limited. Thus, we chose an appropriate number of CUs in simulation
experiments to evaluate the system’s performance.

between the k-th CU to the BS, the related pathloss coefficient

is given by ξk = 10(−PLk/10) = 10(−12.81−3.76 log
10

(dk)) =
10(−12.81)/(dk)

3.76. As the distance is equal to the cell

radius d0, the pathloss coefficient ξ0 can be computed as

ξ0 = 10(−12.81)/(d0)
3.76. The sensing TCM RT is randomly

generated according to [31], whose eigenvector is obtained by

performing SVD of random Gaussian matrix with i.i.d. entries

whereas the eigenvalues are generated by considering i.i.d.

uniform (positive) random variables. Here, we use SNRs =
10 log10(Ps ·ξ0/σ2

n) to denote the sensing signal-to-noise ratio

(SNR) (in dB) of the BS and SNRk = 10 log10(pk · ξk/σ2
n) to

denote the communication SNR (in dB) of the CUs, where all

CUs are assumed to have the same SNRc for ease of analysis.

For DL training setting, we generate 10000 training samples

and set the validation split factor as 0.2 (i.e., 8000 samples

for training and 2000 samples for validation) to evaluate the

training effect at the offline training phase. Note that through

a series of equivalent transformation, the design complexity

of optimization problem is reduced effectively. Thus, it is

possible to obtain the desired result even with a not so large

number of training samples. Meanwhile, we yield 2000 testing

samples to obtain the predicted results at the online prediction

phase. The proposed “ISACNN” has 3 CL layers with 2, 4,

8 filters and kernels size (5, 1), (3, 1), (3, 1), respectively. To

train the proposed “ISACNN”, the learning rate is initialized at

0.001 and the Adam optimizer is adopted with the maximum

number of epoches being 500 and mini-batch size being

256. Besides, the EarlyStopping with patience 20 is used

to prevent overfitting for enhancing the training efficiency,

while ReduceLROnPlateau with patience 10 and factor 0.33

is applied to update the learning rate for accelerating the

convergence.

First, we exhibit the training and testing performance with

different NNs in Fig. 6, where “Train num” in the legend

denotes the number of training samples, the “Train loss” and

“Val loss” in the y-label denote the training loss in the training

sample set and the validation loss in the validation sample set,

respectively. The baseline FC-NN is a classical full-connected

neural network [25], which is mainly consists of four FC

layers respectively with 8Nt, 4Nt, 2Nt and Nt neurons. Like

ISACNN, the BN layer is also adopted before each FC layer

in FC-NN for better training. It is seen from Fig. 6 that in

the case of no overfitting, the more training samples, the less

epoches required for convergence, and the better the training

effect. Moreover, it is worthy noticing that even in the case of

small sample training (such as train num = 1000, 2000, 5000),

ISACNN performs well on both the training set and the

verification set, while the training loss curve and the validation

loss curve for FC-NN both oscillate violently. This indicates

that the proposed ISACNN is a high-powered NN with strong

ability of data feature extraction, which is very suitable for

ISAC systems.

Further, we present the performance of the proposed DL-

based scheme over baseline schemes in Fig. 7, i.e., Traditional

Scheme with AO method and the use of successive convex

approximation (SCA), Average Scheme with σs,i = Ps

Nt

, ∀i,
and ZFBF Scheme with zero-forcing communication receive

beamforming and SIC [14]. It can be seen that the weighted
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TABLE I
THE REAL AVERAGE RUNTIME (MS) OF PROPOSED DL SCHEME

Nt 4 6 8 10 12 14 16

Time (ms) 0.2330 0.2360 0.2404 0.2418 0.2422 0.2447 0.2457

Nr 4 6 8 10 12 14 16

Time (ms) 0.1413 0.1572 0.1732 0.1943 0.2052 0.2206 0.2504

K 2 3 4 5 6 7 8

Time (ms) 0.1653 0.1897 0.2169 0.2504 0.2687 0.2812 0.2934

TABLE II
SIMULATION PARAMETERS

Parameters Values

Number of transmit antennas at the BS Nt = 16

Number of receive antennas at the BS Nr = 16

Number of CUs K = 5

Cell radius d0 = 200 m

Weight of sensing rate α = 0.5

Length of sensing signal waveform L = 20

Maximum sensing transmit SNR at the BS SNRs = 10 dB

Maximum communication transmit SNR at the CUs SNRc = 0 dB

sum of normalized sensing rate and normalized communica-

tion rate (WSNR) of the proposed DL-based scheme achieves

1 on the point of α = 0 (namely only for communication),

which means the solution obtained by the proposed DL scheme

is equal to the maximum communication rate Mc. In other

words, this solution is optimal and our proposed DL-based

scheme is effective. Moreover, the WSNR of three schemes

all decreases as the weight of sensing α increases. This is

because when the weight of sensing α increases, the system

optimization focuses more on the sensing rate maximization,

while the interference of CUs is inevitable for sensing perfor-

mance, resulting in the decrease of the WSNR. This can also

be verified from the point α = 1 (namely only for sensing)

that the performance of the proposed DL-based scheme, the

traditional scheme and the ZFBF scheme are all the same. Be-

sides, it is found that the performance of the Average scheme

is worse than that of the ZFBF scheme at low sensing weight

region but better than the ZFBF scheme at high sensing weight

region, and the proposed DL-based scheme always performs

best in the whole region of α. Although the performance

gap between the traditional scheme and the proposed DL-

based scheme is small when α is within the range of [0, 0.1]
and [0.6, 1], the traditional scheme requires two layers of

iteration (using SCA technique to handle non-convexity and

using AO method to handle coupled optimization variables),

whose computational complexity is significantly higher than

that of the proposed DL-based scheme. That also verifies the

superiority of proposed DL-based scheme.

Then, we investigate the impacts of the sensing SNR and

the communication SNR on the performance of the proposed

DL-based scheme. It is seen from Fig. 8 that the sensing rate

(SR) increases while the communication rate (CR) decreases

as the maximum sensing transmit power increases. This is

because more sensing transmit power brings in more MI on

sensing, but leads to more interference on communication.

Conversely, it is observed that the case with more communi-

cation transmit power leads to more communication rate and

less sensing rate. Moreover, it is found that the increment

of communication transmit power produces more influence

on the communication performance but less effect on the

sensing performance. Similarly, the change of sensing transmit

power has a great impact on sensing performance but affect

a little on communication performance. Therefore, the desired

performance of ISAC systems can be achieved by adjusting

the sensing transmit power and the communication transmit

power.

In Fig. 9, we study the influence of the number of BS

antennas and the number of CUs on the sensing rate (SR) and

communication rate (CR) of the proposed DL-based scheme.

It is observed that the sum of communication rate (SCR)

increases while the sensing rate and the communication rate

both decrease with the increase of number of CUs. This is

because more CUs means more communication interference.

On the one hand, the more communication-to-sensing inter-

ference leads to the decrease of sensing rate. On the other

hand, more inter-user interference degrades the performance

of communication. Moreover, as the number of BS antennas

increases, the sensing rate and the communication rate both

increase substantially thanks to the gain provided by more

antennas. However, the gain obtained by increasing the number

of BS antennas is limited and the addition of BS antennas

causes relatively large overhead. Thus, it makes sense to

resist interference by properly increasing the number of BS

transmit/receive antennas in the ISAC systems.

Next, we show the impact of the weight of sensing and the

number of CUs on the performance of the system performance.

As is seen from Fig. 10 (a), when the weight of sensing α is

less than or equal to 0.4, the WCSR decreases with the increase

of α. When α is greater than 0.4, the WCSR in the case of

fewer CUs (K = 3) increases slowly, but decreases in the

case of more CUs (K = 5, 7), and the more CUs, the faster

the decline. This is because the sensing rate maximization and
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Fig. 6. The training and testing performance versus epoch with different NNs.
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the communication rate maximization are competitive rather

than mutually beneficial relations under limited resources.

When the number of CUs is small, it can be known that the

lowest point of the WSNR curve is the maximum competition

between sensing and communication. However, when there
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Fig. 8. The performance versus the maximum sensing transmit SNR under
different communication transmit SNR.

are a large number of CUs, the performance of sensing and

communication both are seriously degraded, resulting in a

monotonous decline of WSNR curve. From Fig. 10 (b), we

can know that the weight of sensing α has a great impact
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on the sensing rate and communication rate at the region of

[0, 0.5], but a small impact at the region of [0.5, 1]. This

is because when the optimization focuses on communication,

the overall performance can be improved by adjusting the

sensing transmit power, while when the optimization focuses

on sensing, the impact of communication interference greatly

limits the improvement of performance. Thus, choosing a

suitable sensing weight is critical to the ISAC performance.

Finally, we consider the case of imperfect CSI, where the

communication channel estimation is not perfect, which fits

most practical systems. Here, we use β ∈ [0, 1] to denote the

CSI accuracy. In order to characterize the communication CSI,

we adopt the commonly used imperfect CSI model [32], i.e.,

H =
√
βĤ+E, where H is the real CSI, Ĥ is the estimated

CSI and E ∼ CN (0, (1 − β)I) is the channel estimation

error matrix. It is assumed that the estimated CSI and the

real estimated are acquired by practical channel estimator

and ideal channel estimator, respectively. During the offline

training process, the estimated CSI is fed into ISACNN and the

real CSI is used to calculate the training loss for unsupervised

learning. On the online prediction process, only the estimated

CSI is required to obtain the desired solution. Comparing the

cases (β = 0.3, 0.7) and the case with perfect CSI (β = 1) in

Fig. 11, it is seen that the performance loss caused by channel

estimation error almost can be ignored. This is because the

ISACNN learns the relationship between the real CSI and

the estimated CSI in the training process, and presents its

robustness in the prediction process. This also reflects the

advantage of DL-based scheme for uncertainty optimization

compared with the traditional optimization methods. More-

over, it is found that the performance gap decreases as the

number of BS receive antennas increases, which means the

antennas gain can effectively compensate for the performance

loss due to imperfect channel estimation in ISAC systems.

The above simulation results demonstrate that the proposed

DL-based scheme has several advantages over traditional op-

timization schemes in terms of both system performance and

computational complexity. Moreover, it outperforms baselines

consistently and is effective even with limited training sam-

ples. The trade-offs between sensing and communication rates

are observed when adjusting transmit powers and function

weight. Increasing the number of base station antennas im-

proves performance, although there are diminishing returns.

The proposed DL-based scheme also shows robustness to

imperfect CSI, and additional receive antennas can help com-

pensate for this imperfection. Overall, these findings validate

the feasible, effectiveness and robustness of the proposed DL-

based scheme for ISAC systems.

VI. CONCLUSION

This paper provided a novel DL-based uplink ISAC design

framework for 6G wireless networks. To mitigate the mutual

interference and enhance the overall system performance, a

joint sensing transmit waveform and communication receive

beamforming design for the weighted sum of normalized

sensing rate and normalized communication rate maximization

was put forward. The design was formulated as a complicated

non-convex optimization problem, which is not suitable to be

directely solved by traditional optimization methods. To this

end, we implemented a series of equivalent transformation of

the original problem to reduce the complexity and provided a

DL-based scheme to obtain a feasible solution. The effective-

ness and robustness of the proposed DL-based scheme were

verified by both theoretical analysis and numerical simulation.

APPENDIX A

THE PROOF OF LEMMA 1

For ease of derivation, we define bi as the i-th column

vector of B, cj as the j-th column vector of C and ci,j as the

element in i-th low, j-th column of C. Based on the definition

of Kronecker product, we can obtain

(CT ⊗A)vec (B) =




c11A c21A · · · cp1A
c12A c21A · · · cp2A

...
...

...
...

c1qA c21A · · · cpqA







b1

b2

...

bp




=




A
p∑

j=1

cj1b1

A
p∑

j=1

cj2b2

...

A
p∑

j=1

cjbp




=




ABc1
ABc2
. . .

ABcq




= vec(ABC). (33)

The proof is completed.

APPENDIX B

THE PROOF OF LEMMA 2

According to the properties of the Kronecker product and

the matrix determinant, we have

|Imn +AB⊗CD|
= |Imn + (A⊗C) (B⊗D)|
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Fig. 10. The performance versus the weight of sensing with different numbers of CUs.
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= 1×
∣∣∣∣
Imn + (A⊗C) (B⊗D) 0

B⊗D Imn

∣∣∣∣× 1

=

∣∣∣∣
Imn −A⊗C

0 Imn

∣∣∣∣

∣∣∣∣
Imn + (A⊗C) (B⊗D) 0

B⊗D Imn

∣∣∣∣× 1

=

∣∣∣∣
Imn −A⊗C

B⊗D Imn

∣∣∣∣
∣∣∣∣
Imn A⊗C

0 Imn

∣∣∣∣

=

∣∣∣∣
Imn 0

B⊗D (B⊗D) (A⊗C) + Imn

∣∣∣∣
= |Imn + (B⊗D) (A⊗C)|
= |Imn +BA⊗DC| . (34)

The proof is completed.

APPENDIX C

THE DERIVATIONS OF Ms AND Mc

We first derive the maximum sensing rate Ms. It is known

that the maximum sensing rate can be achieved when there

not exists any CU. In this context, σh,j = 1
σ2
n

, ∀j. Thus, the

optimization problem for sensing rate maximization can be

formulated as

max
σs

Nr

L

Nt∑

i=1

log2(1 +
σt,i

σ2
n

σs,i), (35)

s.t.

Nt∑

i=1

σs,i ≤ Ps.

For this problem, we can make use of the well-known water-

filling strategy to effectively obtain the solution of σs,i [27].

Specifically, we construct the Lagrange function of σs,i as

Ls(σs,i) =
Nr

L

Nt∑

i=1

log2(1+
σt,i

σ2
n

σs,i)+µ(Ps−
Nt∑

i=1

σs,i). (36)

Then, let the first derivative of Ls(σs,i) be 0, we have

σs,i =
L

Nrµ
− σ2

n

σt,i
= µ̂− σ2

n

σt,i
. (37)

By taking (37) into the condition Ps =
∑Nt

i=1 σs,i, we can

obtain the solution for the maximum sensing rate as

σopt
s,i = max(µ̂− σ2

n/σt,i, 0), (38)

where µ̂ = (Ps+
∑Nt

i=1 σ
2
n/σt,i)/Nt. As a result, the maximum

sensing rate is given by

Ms =
Nr

L

Nt∑

i=1

log2(1 + σt,iσ
opt
s,i/σ

2
n). (39)

Then, for the maximum communication rate Mc, it is intuitive

that Mc can be achieved when no sensing signal is transmitted,

i.e., σs,i = 0, ∀i. Take it into (26), the maximum communica-

tion rate is given by

Mc =
1

K

K∑

k=1

log2(1 + pkh
T
k R̂

−1
k h∗

k), (40)

where R̂k =
∑K

i6=k pih
∗
ih

T
i + σ2

nINr
.



13

REFERENCES

[1] Q. Qi, X. Chen, C. Zhong, C. Yuen, and Z. Zhang, “DL-based joint wave-
form and beamforming design for integrated sensing and communication,”
in Proc. IEEE GC Wkshps, Dec. 2023, pp. 1-6.

[2] Z. Zhang, Y. Xiao, Z. Ma, M. Xiao, Z. Ding, X. Lei, G. K. Karagiannidis,
and P. Fan, “6G wireless networks: Vision, requirements, architecture, and
key technologies,” IEEE Veh. Technol. Mag., vol. 14, no. 3, pp. 28-41,
Sep. 2019.

[3] F. Liu, Y. Cui , C. Masouros, J. Xu, T. X. Han, Y. C. Eldar, and S.
Buzzi, “Integrated sensing and communications: Towards dual-functional
wireless networks for 6G and beyond”, IEEE J. Sel. Areas Commun. ,
vol. 40, no. 6, pp. 1728-1767, Jun. 2022.

[4] D. K. P. Tan, J. He, Y. Li, A. Bayesteh, Y. Chen, P. Zhu, and W. Tong,
“Integrated sensing and communication in 6G: Motivation, use cases,
requirements, challenges and future directions,” in Proc. IEEE Inter.

Symp. Joint Commun. Sensing (JC&S), Feb. 2021, pp. 1-6.

[5] Q. Zhang, H. Sun, X. Gao, X. Wang, and Z. Feng, “Time-division ISAC
enabled connected automated vehicles cooperation algorithm design and
performance evaluation,” IEEE J. Sel. Areas Commun., vol. 40, no. 7, pp.
2206-2218, Jul. 2022.

[6] M. Temiz, E. Alsusa, and M. W. Baidas, “A dual-function massive
MIMO uplink OFDM communication and radar architecture,” IEEE

Trans. Cognit. Commun. Networking, vol. 8, no. 2, pp. 750-762, Jun.
2022.

[7] X. Chen, Z. Feng, Z. Wei, P. Zhang, and X. Yuan, “Code-division
OFDM joint communication and sensing system for 6G machine-type
communication,” IEEE Internet Things J., vol. 8, no. 15, pp. 12093-
12105, Aug. 2021.

[8] X. Mu, Z. Wang, and Y. Liu, “NOMA for integrating sensing and
communications towards 6G: A multiple access perspective,” [Online]:
https://arxiv.org/abs/2206.00377, 2022.

[9] F. Liu, L. Zhou, C. Masouros, A. Li, W. Luo, and A. Petropulu, “To-
ward dual-functional radar-communication systems: Optimal waveform
design,” IEEE Trans. Signal Process., vol. 66, no. 16, pp. 4264-4279,
Jun. 2018.

[10] Z. Wang, Y. Liu, X. Mu, Z. Ding, and O. A. Dobre, “NOMA empowered
integrated sensing and communication,” IEEE Commun. Lett., vol. 26, no.
3, pp. 677-681, Mar. 2022.

[11] X. Mu, Y. Liu, L. Guo, J. Lin, and L. Hanzo, “NOMA-aided joint
radar and multicast-unicast communication systems,” IEEE J. Sel. Areas

Commun., vol. 40, no. 6, pp. 1978-1992, Jun. 2022.
[12] Z. Zhang, H. Sun, and R. Q. Hu, “Downlink and uplink non-orthogonal

multiple access in a dense wireless network,” IEEE J. Sel. Areas Com-

mun., vol. 35, no. 12, pp. 2771-2784, Dec. 2017.
[13] X. Chen, Z. Zhang, C. Zhong, and D. W. K. Ng, “Exploiting multiple-

antenna techniques for non-orthogonal multiple access,” IEEE J. Sel.

Areas Commun., vol. 35, no. 10, pp. 2207-2220, Oct. 2017.
[14] C. Ouyang, Y. Liu, and H. Yang, “On the performance of uplink ISAC

systems,” IEEE Commun. Lett., vol. 26, no. 8, pp. 1769-1773, Aug. 2022.

[15] Z. Wang, X. Mu, Y. Liu, X. Xu, and P. Zhang, “NOMA-aided joint
communication, sensing, and multi-tier computing systems,” [Online]:
https://arxiv.org/abs/2205.08272, 2022.

[16] A. Tajer, G. Jajamovich, and X. Wang, “Optimal joint target detection
and parameter estimation by MIMO radar,” IEEE J. Sel. Topics Signal

Process., vol. 4, no. 1, pp. 127-145, Feb. 2010.

[17] Y. Fu and Z. Tian, “Cramer-Rao bounds for hybrid TOA/DOA-based
location estimation in sensor networks,” IEEE Signal Process. Lett., vol.
16, no. 8, pp. 655-658, Aug. 2009.

[18] H. L. V. Trees and K. L. Bell, Bayesian bounds for parameter estimation

and nonlinear filtering/tracking. New York: Wiley-Intersci., 2007.

[19] B. Tang and J. Li, “Spectrally constrained MIMO radar waveform design
based on mutual information,” IEEE Trans. Signal Process., vol. 67, no.
3, pp. 821-834, Feb. 2019.

[20] S. Shi, Z. He, Q. He, and Z. Cheng, “Co-design for MU-MIMO
communication and MIMO radar systems based on mutual information,”
in Proc. 2022 IEEE Radar Conference, 2022, pp. 1-6.

[21] X. Wang, Z. Fei, J. Huang, and H. Yu, “Joint waveform and discrete
phase shift design for RIS-assisted integrated sensing and communication
system under Cramer-Rao bound constraint,” IEEE Trans. Veh. Technol.,
vol. 71, no. 1, pp. 1004-1009, Jan. 2022.

[22] H. Lee, S. H. Lee, T. Q. S. Quek, and I. Lee, “Deep learning framework
for wireless systems: Applications to optical wireless communications,”
IEEE Commun. Mag., vol. 57, no. 3, pp. 35-41, Mar. 2019.

[23] G. Zhu, D. Liu, Y. Du, C. You, J. Zhang, and K. Huang, “Towards an
intelligent edge: Wireless communication meets machine learning,” IEEE

Commun. Mag., vol. 58, no. 1, pp. 19-25, Jan. 2020.

[24] Y. Zhang, J. Sun, J. Xue, G. Y. Li, and Z. Xu, “Deep expectation-
maximization for joint MIMO channel estimation and signal detection,”
IEEE Trans. Signal Process., vol. 70, pp. 4483-4497, 2022.

[25] T. Lin and Y. Zhu, “Beamforming design for large-scale antenna arrays
using deep learning,” IEEE Wireless Commun. Lett., vol. 9, no. 1, pp.
103-107, Jan. 2020.

[26] J. Tian, Q. Liu, H. Zhang, and D. Wu, “Multiagent deep-reinforcement-
learning-based resource allocation for heterogeneous QoS guarantees for
vehicular networks,”IEEE Internet Things J., vol. 9, no. 3, pp. 1683-1695,
Feb. 2022.

[27] G. Scutari, D. P. Palomar, and S. Barbarossa, “The MIMO iterative
waterfilling algorithm,” IEEE Trans. Signal Process., vol. 57, no. 5, pp.
1917-1935, May 2009.

[28] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz, “Pruning
convolutional neural networks for resource effcient inference,” [Online].
Available: https://arxiv.org/abs/1611.06440.

[29] W. Xia, G. Zheng, Y. Zhu, J. Zhang, J. Wang, and A. P. Petropulu, “A
deep learning framework for optimization of MISO downlink beamform-
ing,” IEEE Trans. Commun., vol. 68, no. 3, pp. 1866-1880, Mar. 2020.

[30] 3GPP, “Coordinated multi-point operation for LTE physical layer aspects
(Rel. 11),” Feb. 2011.

[31] B. Tang, M. M. Naghsh, and J. Tang, “Relative entropy-based waveform
design for MIMO radar detection in the presence of clutter and interfer-
ence,” IEEE Trans. Signal Process., vol. 63, no. 14, pp. 3783-3796, Jul.
2015.

[32] Q. Qi, X. Chen, L. Lei, C. Zhong and Z. Zhang, “Outage-constrained
robust design for sustainable B5G cellular internet of things,” IEEE Trans.

Wireless Commun., vol. 18, no. 12, pp. 5780-5790, Dec. 2019.


	Introduction
	System Model
	Sensing Information Extraction
	Communication Signal Decoding

	Problem Formulation and Transformation
	Sensing Rate Maximization
	Communication Rate Maximization
	Problem Transformation

	DL-based Scheme Design
	Pre-processing
	Post-processing
	Network Structure
	Recover Module
	Complexity Analysis

	Simulation Results
	Conclusion
	Appendix A: The Proof of Lemma 1
	Appendix B: The Proof of Lemma 2
	Appendix C: The Derivations of Ms and Mc 
	References

