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Abstract. The main respiratory muscle, the diaphragm, is an example of a thin structure. We
aim to perform detailed numerical simulations of the muscle mechanics based on individual patient
data. This requires a representation of the diaphragm geometry extracted from medical image data.
We design an adaptive reconstruction method based on a least-squares radial basis function partition
of unity method. The method is adapted to thin structures by subdividing the structure rather than
the surrounding space, and by introducing an anisotropic scaling of local subproblems. The resulting
representation is an infinitely smooth level set function, which is stabilized such that there are no
spurious zero level sets. We show reconstruction results for 2D cross sections of the diaphragm
geometry as well as for the full 3D geometry. We also show solutions to basic PDE test problems in
the reconstructed geometries.
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1. Introduction. This work has been performed with a particular application
in mind. We aim to build a realistic model of the human respiratory system, with
a special focus on the respiratory muscles, to enable in silico investigation of the
adverse effects of mechanical ventilation on the muscle tissue, as well as the benefits
of potential improvements to the mechanical ventilation process [17]. To meet the
specific challenges of this application we develop numerical tools that also have a
wider use. The types of problems that we consider have the following characteristics:

• The problem can be formulated as (a system of) partial differential equations
(PDE). Furthermore, PDE coefficents, boundary data, and, if present, inital
values, are smooth and compatible such that they admit a smooth solution.

• The PDE is formulated in a smooth, not easily parametrized geometry.
• The geometry has a high aspect ratio. For the diaphragm, which is the main
respiratory muscle, the ratio is approximately 1:100.

The simulation probem consists of two main parts. First, the geometry needs to
be represented in such a way that its properties, such as boundary location and surface
normal, can be incorporated into the PDE formulation. Then, the PDE is solved, to
generate data of interest for the application specialist. The assumed smoothness,
present also for other biomechanical problems, suggests that we may benefit from
using a high order method. Coupled with a non-trivial geometry, methods based on
radial basis functions (RBF) have an advantage regarding the flexibility and ease of
implementation. In this paper, we have chosen to use an unfitted least-squares RBF
partition of unity method [23] both for the reconstruction and for the PDE solution
to create a unified framework for the whole simulation problem.
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In our previous work on the diaphragm application [2, 36, 38], we used the RBF-
FD method [12] and an unfitted least-squares RBF-FD method [37, 36], that has
improved numerical stability properties in the presence of derivative boundary con-
ditions compared with collocation RBF-FD. In [2] and [38], linear elasticity model
problems were solved and we investigated the need for resolution of the thin dimen-
sion and how to handle mixed boundary conditions in a smooth setting, respectively.
In [36] the focus is on the unfitted method, Possion model problems are solved, and
the diaphragm geometry is used as a demonstrator.

Reconstruction of a thin structure has many similarities with surface reconstruc-
tion, but with the added complication of interference between the two nearby sur-
faces [1]. RBF-based methods (kernel methods) have been used for surface reconstruc-
tion for more than two decades [3, 29]. As in these references, we focus on implicit
surface representations, where a level set function determines which points are on the
surface (zero level set), outside (positive values), or inside (negative values). Due
to the typically large data sets, localized methods with low computational complex-
ity are preferred. Popular approaches include using compactly supported RBFs [28],
using a partion of unity method combined with an adaptive oct tree subdivision of
space [27, 44, 45], or using quasi interpolation [25]. Least-squares approximation, reg-
ularization, and smoothing are used to suppress noise in the data [4, 27, 45, 25]. Data
on the surface is often complemented by exterior and interior data points to guide the
direction of the level set function [3, 29], whereas our work is inspired by [30], where
gradient information is incorporated using a Hermite type RBF approximation. In
the recent paper [9], the gradient field is instead approximated by a curl-free RBF
partition of unity method, which then implicitly provides the level set function. An-
other recent paper [42], considers reconstruction of thin plant leaves. However, in this
case the aspect ratio is high enough that the leaves are considered as surfaces.

Our objective is to create an infinitely (or high-order) smooth geometry recon-
struction in the form of an implicit surface representation, starting from a noisy point
cloud representation. Furthermore, to facilitate the use of the geometry in the PDE
problem, we require the level set function to be free from spurious zero level sets
inside and outside the geometry. We do this using the least-squares RBF partition of
unity method (RBF-PUM) from [23], where node generation is decoupled from the
geometry of the computational domain, with the following specific adaptions:

• The thin structure is adaptiviely subdivided instead of the space.
• The same type of gradient conditions as in [30], but without the Hermite
basis, are combined with exterior and interior stabilizing conditions.

• The risk of interference between nearby surfaces is reduced by anisotropic
scaling of the local subproblems. For a somewhat related approach, see [5].

Least-squares RBF-PUM was applied to elliptic PDEs in [23]. Model problems
with parametrized geometries were solved. Furthermore, a uniform grid-based distri-
bution of spherical patches covering the domain was used. In this paper, we evaluate
the performance of least-squares RBF-PUM combined with our smooth geometry re-
construction and with a non-uniform distribution of cylindrical patches. To achieve
convergence in a finite precision setting when using infinitely smooth RBFs, a stable
evaluation method, such as the RBF-QR method [14, 13, 20], is needed. The 3D RBF-
QR implementation [20] previously did not contain all second derivative operators.
For the experiments in this paper, we have updated the method with the full set [22].
As for the reconstruction problem, in the PDE solver, we allow anisotropic scaling
of the local subproblems. However, in this case the scaling is employed to balance
the resolution across the thin dimension against the resolution along the other two
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dimensions.
A convergence estimate for least-squares RBF-PUM was derived in [23]. The

estimate contains a stability norm, that was investigated numerically, and the inter-
polation error, for which theoretical estimates are available. The convergence rate is
provided by the interpolation error and we could show numerically that the stability
norm for least-squares RBF-PUM stays constant under patch refinement, which is not
the case for collocation RBF-PUM. Recently, in [37], we used a different technique
to analyze the stability of a least-squares RBF-FD method. This allowed us to prove
stability, and we plan to revisit the analysis of least-squares RBF-PUM using this
technique. In this paper, we adapt the interpolation error estimates to our specific
setting, to explain the observed convergence rates.

The outline of the paper is as follows. In section 2 we describe the data sets we
use for the geometry reconstruction. Section 3 briefly introduces the least-squares
RBF-PUM method. Section 4 and section 5 provide details on how we generate the
partition of unity cover and weight functions. Section 6 describes how we use least-
squares RBF-PUM for geometry reconstruction with results in section 7. Section 8
describes how the method is applied to the PDE problem with numerical results in
section 9. The paper ends with conclusions in section 10.

2. The noisy input geometry data. For our target application, the input
data is extracted from 3D medical images. The extraction process is partly based
on manual segmentation using physiological knowledge [39], and partly automatic
processing using the Marching Cube algorithm to create a mesh representing the
geometry, followed by the decimation method in [24] to generate the final data set.
These steps are described in more detail in [2]. The data consists of a point cloud Y =
{y
k
}Mk=1 ∈ Rd, for d = 2 or d = 3, representing the curve/surface and approximate

surface normals nk, k = 1, . . . ,M at the corresponding points. These algorithms
generate data that is quasi uniformly distributed over the surface. For simplicity, we
assume this property in the algorithms that are derived in the following sections, but
non-uniform distributions could also be taken into account.

In addition to the data, we make use of the initial approximate surface representa-
tion as a mesh provided by the extraction algorithm. If an initial mesh representation
was not available, we could instead create local triangulations, on demand, that would
serve our purposes.

An example of a point cloud representing a diaphragm geometry is shown in the
left part of Figure 2.1. In the numerical experiments we also use a 2D cross section of
the diaphragm. This data is shown in the right part of the figure. It is visually clear
from the normals in the 2D case that the data is noisy and contains artifacts from
the manual segmentation, taking the form of bumps.

3. Least-squares RBF-PUM. In a partition of unity (PU) method, the com-
putational domain Ω ⊂ Rd is covered by a set of overlapping patches {Ωj}Pj=1, such

that Ω̄ ⊂ ∪Pj=1Ω̄j . We require each point x = (x1, . . . , xd) ∈ Ω̄ to be in the interior
of at least one patch. We also require the overlap to be mild in the sense that no
more than K patches overlap at any given point. We construct a set of non-negative
partition of unity weight functions {wj(x)}Pj=1, where wj is compactly supported on

Ωj . The partition of unity property implies that
∑P
j=1 wj(x) = 1, for x ∈ ∪Pj=1Ωj .

A global PU approximation ũ(x) is constructed from local approximations ũj(x)
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Fig. 2.1. The initial point cloud data in 3D (left) and 2D (right), together with the initial
normal data. The surface is divided into an inner and outer part whose normals are displayed in
different colors.

on each patch and the weight functions as

(3.1) ũ(x) =

P∑
j=1

wj(x)ũj(x).

The smoothness of the global approximation is determined by the smoothness of the
weight functions and of the local approximations. In this paper, we use RBF-PUM
both for the geometry representation and for solving a PDE problem formulated in
that geometry. For the PDE problem it is enough if the smoothness of the weight
function supports the differential operators of the PDE. However, to construct a high-
order method for the PDE problem, we need high-order smoothness of the geometry.
That is, for the geometry representation, we require high-order smoothnes also of the
weight functions.

For the local RBF approximations, we make use of a template node layout in
a reference patch Ω0, see [23]. The patches Ωj are allowed to have different sizes,
different aspect ratios, and different orientations. For each patch, we introduce a map
Tj : Ωj 7→ Ω0 that takes points in Ωj into the reference patch. We let the local
approximations be given by

(3.2) ũj(x) = ṽj(Tj(x)) ≜ ṽj(x
′),

where ṽj(x
′) is an RBF approximation in the reference patch, of the form

(3.3) ṽj(x
′) =

n∑
i=1

λjiϕ(∥x
′ − x′i∥) ≜

n∑
i=1

λjiϕi(x
′),

where λji are unknown coefficients, ϕ(r) is an RBF, and X ′ = {x′i}ni=1 is the set of
RBF center points in the reference patch, with fill distance h′. The correspond-
ing points in Ωj are xji = T−1

j (x′i), i = 1, . . . , n, with fill distance h. We let

uj = (ũj(x
j
1), . . . , ũj(x

j
n))

⊺ = (ṽj(x
′
1), . . . , ṽj(x

′
n))

⊺ and λj = (λj1, . . . , λ
j
n)

⊺. Then,
using (3.3), we have uj = Aλj , where the local interpolation matrix A has elements
aki = ϕ(∥x′k − x′i∥). For commonly used infinitely smooth RBFs such as the multi-

quadric with ϕ(r) =
√
1 + r2, the Gaussian with ϕ(r) = e−r

2

, and the inverse multi-
quadric with ϕ(r) = 1/

√
1 + r2, the interpolation matrix A is non-singular [34, 26].

This implies that we can safely use λj = A−1uj in (3.3) to get the local RBF approx-
imations expressed in terms of the nodal values as

(3.4) ṽj(x
′) = (ϕ1(x

′), . . . , ϕn(x
′))A−1uj .
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Note that in this formulation of RBF-PUM, each local approximation has its own
nodal values, also in the overlapping regions. The total number of nodal unknowns
to determine is N = nP .

When we use RBF-PUM to approximate a function, the local subproblems can
be solved independently, and are then blended into the global approximation. For a
PDE, we instead need to assemble a global system of equations to get a well-posed
discretized problem. We describe a generic time-independent linear PDE by

(3.5) L(x)u(x) = f(x), x ∈ Ω̄.

where L(x) represents the differential operators of the PDE and its boundary con-
ditions, and f(x) represents all right hand side functions. To form the global least-
squares system of equations, we sample the PDE problem at the points {y

k
}Mk=1,

where M > N . If we let Lk = L(y
k
), then the equations are given by

(3.6) Lkũ(yk) =
P∑
j=1

Lk(wj(yk)ũj(yk)) = f(y
k
).

Practically, the matrix is assembled by adding the contributions from each patch.
We write the global system as Lu = f , where the vector u = (u⊺1 , . . . , u

⊺
P )

⊺ and
the vector f = (f(y

1
), . . . , f(y

M
))⊺. Note that we differentiate the product of the

weight functions and the local approximations such that each differential operator is
expanded into several terms.

When solving the least squares system of equations, the scaling of the equations
corresponding to different operators becomes important for convergence. Here, we
use the insights from [37], where we dereived and analyzed a least-squares RBF-FD
method. First we group the equations according to the type of operator. If there
are Mi equations of type i, then we scale these equations with 1/

√
Mi. With this

scaling, the discrete least-squares problem is a discrete quadrature approximation of
the corresponding continuous least-squares problem. Then, we increase the weight of
the lower order boundary equations by multiplying these with a small negative power
of the fill distance h of the reference node set X. This improves stability without
affecting the rate of convergence.

4. Adaptive cover generation for thin structures. Common choices of
patch shapes for RBF-PUM in the literature are discs and spheres or their anisotropic
counterparts, see, e.g., [32, 23, 8, 7, 6]. These work well when the computational do-
main is isotropic or has a fixed direction of anisotropy. Here, we are considering
thin curved structures, and it becomes relevant to use a patch shape that adheres to
this property. We have chosen to use cylindrical patches that are radial in directions
tangential to the surface and with a height that is related to the thickness of the
domain. We also make the assumption that there is only one layer of patches in the
thickness direction. We let the reference patch, centered at the origin, have radius
R0 and height H0. An example of two-dimensional cylindrical patches can be seen
in Figure 4.1 and three-dimensional cylindrical patches are shown in Figure 4.2.

The starting point for the adaptive cover generation is the input data Y with
M points and the user defined parameter P0 corresponding to the initial number of
patches. After the adaptive refinement, the final number of patches is P ≥ P0. The
cover algorithm consists of the following steps:

1. Generate and adaptively refine patches until a volume criterion is met.
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(a) Use k-means clustering to form non-overlapping subsets Yj = {yj
i
}mj

i=1 of
the input data with corresponding patch centers Cj .

(b) Use principal component analysis (PCA) on each Yj to find the patch
radius Rj , the vertical range [Zj,1 Zj,2], and the transformation Tj to
the reference patch.

(c) Evaluate the volume criterion, flag patches for refinement that fail the
criteria, and return to 1(a) if not done.

2. Ensure that each boundary segment or surface triangle is entirely covered.
3. Ensure an overlap δ between the patches.

The volume criterion that we use in Step 1 aims to have a similar resolution (fill
distance) in each patch. This also means that we refine where the curvature of the
domain is large within a patch, since this increases the volume. We denote the initial
mean volume by V̄0 and the initial sample standard deviation by sV0

, and set the
(absolute) target volume V ∗ as

(4.1) V ∗ = V̄0 +max(V̄0/10, sV0
),

where the constant 10 is chosen to prevent excessive refinement when patches are
already similar in volume. When patches for which Vi > V ∗ have been flagged for
refinement, we first add also the neighbours of each of these patches to the flagged
set. Then for each connected set of p flagged patches, we take the union of the
corresponding p node subsets, change the required number of patches to p + 1 for
this subset of the data and construct these p+ 1 new patches locally. This process is
illustrated by the first tree panels of Figure 4.1.

Fig. 4.1. The adaptive cover generation with the initial patches (top left), the intermediate
result (top right), and the final non-overlapping patches (bottom left). In each step, patches that
that are marked for refinement (dashed lines) and the previous iteration (dotted lines) are indicated.
The data points (dot markers) are shown for reference. Finally, the resulting patches after ensuring
an overlap δ ≈ 0.15 are shown (bottom right).

The first step of the patch construction for a node set is k-means clustering. The
algorithm aims to create clusters that are of almost equal size and with a minimal
sum of square distances to the centroid. An example of a clustering is shown in the
left part of Figure 4.2. The initial patch centers Cj are taken as the centroids of the
clusters.

In the local patch coordinate system, we let Cj be the origin. We let Ỹj =

{yj
i
− Cj}

mj

i=1, and we denote the matrix of size mj × d containing the points by
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Fig. 4.2. The result of k-means clustering of 10 276 nodes into 75 clusters (left) and the
P = 79 final patches generated by the 3 steps of the cover algorithm (right). Only the mantle of the
cylindrical patches is drawn to make the intersections visible.

[Ỹj ]. A principal component analysis of the data amounts to finding the eigenvalues

µ1 ≥ · · · ≥ µd of [Ỹj ]
⊺[Ỹj ] and the corresponding eigenvectors q1, . . . , qd. The first

d−1 principal components (eigenvectors) represent the main components of the data,
i.e., the tangent (plane) direction(s), while the dth eigenvector is the direction normal
to the tangent plane.

We form the orthogonal matrix Qj with the eigenvectors as columns. We trans-

form the local points into the patch coordinate system and get Ŷj = {ỹj
i
Qj}

mj

i=1, which
allows us to compute the radius and vertical range of the patch:

Rj = max
i

(∑d−1
k=1(ŷ

j

i,k
)2
) 1

2

,(4.2)

Zj,1 = min
i
ŷj
i,d
,(4.3)

Zj,2 = max
i
ŷj
i,d
.(4.4)

We denote the center of the patch in the local coordinate system by Zj , which has

d − 1 zero components and 1
2 (Zj,1 + Zj,2) in the last position. We also define the

diagonal scaling matrix Sj with diagonal elements sii =
R0

Rj
for i = 1, . . . , d − 1 and

sdd = H0

Hj
. The local points in the reference patch coordinate system then become

Y ′
j = {(ŷj

i
− Z̄j)Sj}

mj

i=1. We now have all the steps to write down the transformation
from the global coordinate system to the reference patch for the points in patch j

(4.5) Tj(x) = ((x− Cj)Qj − Zj)Sj = x′.

When expressing conditions on functions in the physical domain in terms of the ap-
proximations in the reference patch, we need to differentiate this map. If we define
the gradient as a row vector, then for a function f(x) = g(Tj(x)) = g(x′)

∇f = ∇′gS⊺Q⊺,

Hf = QSH′
gS

⊺Q⊺,(4.6)

∆f = Tr(SH′
gS

⊺) =

d∑
i=1

s2ii
∂2g

∂x′2i
,

where H denotes the Hessian matrix, primed operators refer to the reference coordi-
nate system, and the Laplacian has been simplified using rotational invariance.
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The patches that have been generated so far cover all data points, but to ensure a
cover of the whole geometry, we also need to cover the potential gaps between the data
points. Here we use the initial approximate surface representation, see section 2. We
extend the patches such that each surface element is covered. The surface elements
are planar objects, while patches are convex regions. This implies that if all corners
of an element are covered by a patch, then the whole element is covered. For elements
with their corners in different patches, we divide the element into d Voronoi regions
associated with the d corners, and then extend the closest patch that covers a corner
to cover also the Voronoi region of that corner. When all boundary elements are
covered, we have ensured that the whole initial object is covered.

The final step of the cover algorithm ensures that there is sufficient overlap be-
tween the patches. The overlap is important because it affects the steepness of the
weight functions. Across an overlap region, the involved weight functions need to
transition smoothly from 0 to 1. To handle this practically, we require that all data
points have at least a at relative distance δ0 from the inside of the patch to any patch
boundary. For each point where this is not satisfied, we extend the patch that requires
the smallest volume increase for including that point. The resulting relative overlap
will not be precisely δ0, but close enough as long as the data points are dense enough.
The result of the overlap algorithm is shown in the last panel of Figure 4.1 for the
two-dimensional diaphragm geometry.

Remark 4.1. If the surface data is too sparse in relation to the thickness of the
geometry, the clustering can be performed only on the inner or outer surface in order
to acheive the desired result with one layer of patches. We have implemented an
automatic approach to label the edge, the inner surface, and the outer surface.

5. Tensor product partition of unity weight functions. The partition of
unity weight functions are tightly connected with the cover. To build the weight
functions, we start from a set of non-negative generating functions supported on the
respective patches. The cylindrical patch shape that we have chosen suggests a tensor
product form. Let ψ0(r) be a positive radial function supported on [0, 1), and let

∥x∥r =
√
x21 + · · ·+ x2d−1. Then the product

(5.1) ψ(x′) = ψ0

(
∥x′∥r
R0

)
ψ0

(
2|xd|
H0

)
is compactly supported on the reference patch with radius R0 and height H0. The
generating function for patch j is then given by

(5.2) ψj(x) = ψ(Tj(x)) = ψ(x′).

The generating functions we use in this paper are the infinitely smooth bump function

(5.3) ψ0(r) = exp

(
− 1

(1− r2)+

)
,

for the geometry reconstruction, and the C2 Wendland function [40]

(5.4) ψ0(r) = (4r + 1)(1− r)4+,

for the PDE solutions.
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To construct the weight functions from the generating functions, we use Shepard’s
method [35]. We first define the sum

(5.5) s(x) =

P∑
j=1

ψj(x),

which is positive for all x ∈ ∪Pj=1Ωj . Even though the sum is over all patches, it never
has more than K non-zero terms at any given point due to the overlap condition. The
weight function wj supported on the patch Ωj is given by

(5.6) wj(x) =
ψj(x)

s(x)
.

Using a recursive differentiation rule for rational functions, we furthermore have

∇wj =
∇ψj − wj∇s

s
,

∆wj =
∆ψj − 2∇wj · ∇s− w∆s

s
,(5.7)

Hwj
=

Hψj −∇w⊺
j∇s−∇s⊺∇wj − wHs

s
.

An example with two weight functions is shown in Figure 5.1. Within the regions
where there is no overlap, the local weight function is identically 1 and all derivatives
are zero. The formulas above are therfore only needed in the overlap regions. At the
outer boundary of ∪Pi=1Ωj , at the points where two (or more) patches intersect, the
weight functions are discontinuous, since the effective overlap at these points is 0. In
the interior the weight functions have the full smoothness of the generating function.

Fig. 5.1. Contour plots of the weight functions of two adjacent 2D patches.

6. The smooth implicit geometry representation. We represent the geom-
etry of the thin structures we are studying implicitly, through a level set function ℓ(x)
that is zero at the object surface. The gradient of the level set function at the ob-
ject surface provides the normal direction, but we only require ℓ(x) to approximately
represent the distance to the object surface with negative values inside and positive
outside.
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To construct ℓ(x) we use an RBF-PUM approximation of form (3.1)

(6.1) ℓ(x) =

P∑
j=1

wj(x)ℓj(x) =

P∑
j=1

wj(x)γj(Tj(x)),

where γj are functions of form (3.3)–(3.4) defined over the reference patch. The least
squares approximation problems for the functions γj(x) are solved independently. By
using the infinitely smooth multiquadric RBF for the local approximation and the
infinitely smooth weight function (5.3), the geometry reconstruction also becomes
infinitely smooth. We need to choose the number of basis functions n in the reference
patch such that we ensure oversampling in all patches. The mj data points in patch j
generate 2mj conditions based on the locations and normal directions. This provides
the bound

(6.2) n ≤ min
j

2mj .

We are in fact adding some extra conditions as described below, but we keep this
bound since it is the limit when considering only the data.

The local subproblems contain three types of conditions. The conditions are
formulated in the physical domain, but implemented in the reference patch, where all
local problems are solved. The first condition is the zero value at the object surface

(6.3) ℓj(y
j
i
) = γj(Tj(y

j
i
)) = 0, yj

i
∈ Y ρj ,

where Y ρj is an extension of the local data set Yj with the data points of distance at
most ρh outside the patch. By adding the extra conditions outside we improve the
approximation at the intersection of the radial patch boundary and the object.

The second set of conditions guides the gradient of the level set function. We
follow the approach in [30] and require the gradient to have a unit component in the
initial normal direction. However, since we are working with local patch approxima-
tions and not stencils, we enforce these conditions at all data points instead of only
at the stencil center as was done in [30]. We use (4.6) to transform the gradient to
get

(6.4) nji∇ℓj(y
j
i
)⊺ = njiQS∇

′γj(Tj(y
j
i
))⊺ = 1, yj

i
∈ Y ρj ,

where nji is the initial normal at yj
i
.

The conditions (6.3) and (6.4) are all positioned at the object surface. This
implies that in regions of the patch that are far from the object, the level set func-
tion may misbehave, and for example introduce spurious zero level set curves. To
stabilize the approximation, we add a third set of conditions. We start from the
set X ′ of RBF centers in the reference patch. We compute the average node dis-
tance h′ = 1

n

∑n
i=1 minj ̸=i ∥x′i − x′j∥ (which we use as an approximation of the fill

distance) and use this to construct a node set X ′
b with approximate node distance

h′ at the reference patch surface. We combine the boundary nodes with centers
that are at least a distance αh′ away from the object to get the set X ′

j,e = X ′
b ∪{

x′k ∈ X ′ | mini ∥x′k − Tj(y
j
i
)∥ > αh′

}
. Then, for each yj,e

i
such that Tj(y

j,e
i
) ∈ X ′

j,e

we find the index of the closest data point on the object πi,j = argmink ∥yj,ei − y
k
∥,

where y
k
∈ Y . We use the approximate distance from the boundary data in the

normal direction as a condition for the value of the level set function at that point

(6.5) ℓj

(
yj,e
i

)
= γj(Tj(y

j,e
i
)) =

(
yj,e
i

− y
πi,j

)
· nπi,j

, Tj(y
j,e
i
) ∈ X ′

j,e.



RBF-PUM FOR THIN GEOMETRIES AND PDES 11

The three types of conditions are illustrated for a two-dimensional patch in Figure 6.1.
Equations (6.3), (6.4), and (6.5) form the local least-squares problems. Solving these
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2R0

H0

Fig. 6.1. The local least-squares problem for one patch in the approximation of the 2D di-
aphragm data. The center points (×), the data points (colored dot and arrow), and the additional
points Xj,e (colored dot) are shown. The color corresponds to the function value and the arrows are
the normal directions used in conditions (6.4) and (6.5).

gives the vectors uj of patch nodal values, which allows us to evaluate the local RBF
approximation (3.3). Using (3.2) and (3.1) then provides the global level set function
at all points within the union of patches.

The algorithm that we have derived has a number of parameters that we discuss
qualitatively here, and more quantitatively in section 7. The number of patches P
together with the relative overlap δ0 determine the number of data points mj within
a patch. Furthermore, δ0 governs the transition between the solutions in adjacent
patches. A small δ0 can lead to large gradients in the transition regions, while a large
δ0 increases the computational cost. The number of center points n in the reference
patch and the overlap δ0, together with the number of patches P , determine the
oversampling, and accordingly how closely the local data is fitted.

The reference patch dimensions R0 and H0 are coupled parameters. Therefore,
we use a scale parameter Rs, such that R0 = RsR̄ and an anisotropy parameter Hs,
such that H0 = HsRsH̄. When performing numerical experiments, we fix the scale
parameter, and only vary the anisotropy parameter.

The multiquadric RBF ϕ(r) =
√
1 + r2 can be equipped with a shape parameter

ε by using ϕ(εr) as the basis functions. A small shape parameter is appropriate when
approximating a function that is smooth in the sense that it mainly/only contains low
frequency Fourier modes. At the same time, the conditioning of the local problem
grows with an inverse power of ε [33, 19]. The ill-conditioning issues can be removed
by using a stable evaluation method [15, 14, 13, 11, 20, 43, 18]. However, here we
choose to use the multiqadric RBF with an intermediate shape parameter value that
gives a reasonable condition number. This makes the local approximations robust
and well-behaved also away from the object surface.

The parameters ρ and α that determine which extra conditions to use outside and
inside the domain are less crucial for the results, but the existence of extra conditions
is important for the robustness of the local problem.

The effect of the most important parameters are shown in Figure 6.2. We see
that increasing n leads to a closer fit of the data, which in this case means fitting the
noise. When Hs < 1, it becomes hard to differentiate between the two surfaces, and
the algorithm makes a mistake at the lower right part and creates a disconnected zero
level set. When we remove the extra conditions inside the patch and use a large n
the resulting level set function has spurious zero level sets both inside and outside the
actual geometry. This effect is almost invisible for n = 21, but worsens with increasing
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n. In these experiments, the local node set X ′ consisted of Halton nodes [16].

Fig. 6.2. Level set functions for the 2D diaphragm for different parameter choices. The zero
level set, i.e., the surface of the reconstructed geometry is the black curve. The result for H0 = 1,
R0 = 1, n = 21, P = 12, δ0 = 0.25, ε = 1, ρ = 0.25, α = 0.5 is shown at the back. From back to
front, for the other cases, the differences are for the first case n = 91, for the second case H0 = 0.25,
and for the third case n = 91 and Xj,e = ∅.

6.1. Geometry quality measures. To evaluate the reconstructed geometries
numerically, we introduce two different quality measures. As a measure of smoothness,
we use the mean Frobenius norm of the surface Hessian of the geometry, which is
computed using the following steps:

1. The data points {y
k
}Mk=1 are iteratively moved onto the geometry surface

using the values and gradients of the levelset function ℓ(y).

2. The Hessian Hℓ(y) is computed at each surface point {yS
k
}Mk=1 using (4.6).

3. For each surface point, we find a rotation Qy, such that the normal at y
becomes the dth unit vector. The surface Hessian is then given by

HS
ℓ (y) =

(
QyHℓ(y)Q

⊺
y

)
1:d−1,1:d−1

.

4. Finally, the mean Frobenius norm, FH is computed as

FH =
1

M

M∑
k=1

∥HS
ℓ (y

S
k
)∥F .

When least-squares approximation is employed for smoothing, the resulting smooth-
ness is coupled to the amount of oversampling. That is, we expect FH to decrease
if we decrease the number of degrees of freedom. However, there is also a problem
dependent lower bound for how many degrees of freedom we need, to capture the true
structure behind the noisy data. The second quality measure is an indicator specific
to thin structures, which we have found to be effective in detecting when issues related
to lack of resolution appear. It requires the nodes to be annotated with inner, outer
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and edge, which can be done automatically. We let Kin be the index set corresponding
to data points on the inner surface, and we let τ(y

k
) be the distance to the closest

data point on the outer surface. We measure the relative loss of thickness TL as

(6.6) TL = 1− min
k∈Kin

τ(yS
k
)

τ(y
k
)
.

The loss is not expected to become zero, but in a well-resolved situation it is on the
order of the noise size.

7. Numerical results for the geometry reconstruction. The implementa-
tion is written in MATLAB and all experiments have been performed on standard
laptop computers.

In the experiments we have chosen to use Halton nodes [16] for the RBF center
points X ′ in the reference patch. The main reason is that low discrepancy points are
insensitive to scaling and are therefore well-distributed both in the reference patch
and in the physical domain. In the experiments, we have fixed Rs such that R0 = 1
for P = 10 in 2D, and for P = 20 in 3D.

The set of parameters we can use to optimize the quality of the reconstructed
geometry are listed and described in Table 7.1

Table 7.1
The tunable parameters and their descriptions

α Determines the mimimum distance from the surface to the extra points in (6.5).
Increasing α will slightly decrease the oversampling factor.

ρ decides how far outside the patch boundaries data is collected for the local prob-
lems to form the data conditions (6.3) and (6.4). Increasing ρ increases the
oversampling slightly, but the main and desired effect is to stabilize the behavior
of the level set function where the patch intersects the geometry.

Hs Controls the aspect ratio of the reference patch. By increasing Hs we make the
contribution to the residual from the distance normal to the surface larger than
the contribution from the distance tangential to the surface. That is, we increase
the amount of surface smoothing. Also, the distance between the two surfaces
as well as the end curvature is decreased in the computational domain.

n This is the number of RBF center points in each patch, which has the strongest
influence on the total number of degrees of freedom.

P This is the number of patches, which is the second most important parameter in
terms of degrees of freedom.

δ0 is the relative overlap between patches. When δ0 = 1 patch neighbors on opposite
sides of one patch meet in the middle. Increasing δ0 increases the oversampling,
since more data points are included in the local subproblems, while the number
of RBF center points in the patch is the same. The resolution of the geometry is
however decreased, since the same number of basis functions cover a larger area
in the physical domain.

ε The RBF shape parameter affects the surface Frobenius norm. With a larger
shape parameter more variations in the data, including the noise, are picked up.

7.1. Results for 2D cross sections. For the 2D cross section data shown
in Figure 2.1 one parameter at a time was varied to study its behavior for all combi-
nations of n = 21, 28, and 36 and P = 10, 20, 30, and 40. In this phase, we mainly
focus on the smoothness measure FH .

The smoothness of the reconstruction is relatively insensitive to the distance ρh at
which we pick up data outside the patch. The choice ρ = 0.5 performs well in all cases,
and is significantly better than ρ < 0.5, especially for larger numbers of patches. We
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keep this parameter fixed in all subsequent experiments. The reconstruction is even
less sensitive to the distance αh between the object and the extra conditions inside the
patch. We fix this parameter to α = 1.5. For the overlap, the smoothness increases
significantly for the range from δ0 = 0.1 to 0.9. However it is worth noticing that the
loss in thickness increases with δ0. Depending on the data, different overlaps may be
optimal. In the later experiments, we use both δ0 = 0.5 and δ0 = 0.9. The curvature
measure FH decreases with the shape parameter down to ε ≈ 0.2 for the tested cases.
For small values the thickness loss increases and the computations gradually become
ill-conditioned, since we are solving the local systems directly. To stay on the robust
side, we use ε = 0.5 in the subsequent experiments. The patch scaling is fixed to
Rs ≈ 0.0215, which makes R0 = 1 for P = 10 patches. An increase of the anisotropy
factor Hs leads to a smoother result, especially for larger P , whereas loss of thickness
occurs to a larger degree for small Hs. In the later experiments, we use both Hs = 1
and Hs = 2.

To find reconstruction parameters that minimize the quality measures we opti-
mized FH+TL over P0 for different n and the four combinations of overlap and aspect
ratios. Since TL is an order of magnitude larger than FH , the priority becomes to find
a reconstruction that keeps an even width throughout. The resulting parameters are
reported in Table 7.2. We note that all choices of n gave good reconstruction results.
If the even smaller n = 6 is used, we also get a good result in terms of quality, but
points move more with respect to the given data.

Table 7.2
The best results for different n if FH + TL is minimized over P0 for the four combinations of

δ0 and Hs.

n P0 P δ0 Hs FH TL

10 30 34 0.5 1 0.024 0.20
15 33 37 0.5 1 0.022 0.14
21 22 24 0.5 1 0.016 0.11
28 12 12 0.5 1 0.013 0.13
36 11 11 0.5 1 0.014 0.12
45 11 11 0.5 1 0.014 0.12

The best result according to the objective function is for n = 21. The geometry
and the quality measures are illustrated in Figure 7.1. In the left side of the domain,
the loss of thickness seems to be correlated with the patch overlap regions, while this
is less clear in the rest of the domain. In the right part of the figure, we can observe
that if we allowed for a higher thickness loss, we could reach an overall smoother
result.

To show that the reconstruction algorithm can handle different geometries, we
run the same code with the same objective function for two other cross sections with
n = 21. The results including best parameters and quality measures are shown in
Figure 7.2.

7.2. Results for 3D reconstruction. We reconstruct 3D diaphragm geome-
tries from two different patients. The reconstructions are shown in Figure 7.3 and
Figure 7.4. Similarly to the reconstruction of the 2D cross sections we optimize for
each parameter separately while fixing all others. We choose parameters that min-
imize the quality measure FH + TL and all parameter choices are made using the
geometry shown in Figure Figure 7.3. The same parameters are used to reconstruct
the more complex geometry.

The reconstruction is quite robust in terms of the distance for which we pick points
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Fig. 7.1. The best reconstruction for n = 21 and P = 24 with FH = 0.016 and LT = 0.11 is
shown together with the spatial distribution of the quality measures to the left. The black curve is
the zero level set. Negative losses are set to zero and correspond to dark blue. The quality measures
are shown as a function of the number of patches P to the right.

 

 

Fig. 7.2. Reconstructed diaphragm cross sections for n = 21 in two other planes. The best
parameters for the left case are P0 = 40, P = 46, δ0 = 0.9, and Hs = 1, leading to FH = 0.008 and
TL = 0.22. The best parameters for the right case with two loops are P0 = 21, P = 23, δ0 = 0.5,
and Hs = 1, leading to FH = 0.013 and TL = 0.14.

outside the patch, ρh and the distance αh between the object and the extra conditions
inside the patch. Here, the quality measure is minimized when α = 0 and ρ = 0. We
additionally find that the quality measure is fairly constant with respect to the chosen
anisotropy ratio Hs of the reference patch, with slightly better results provided when
Hs = 1. Moreover, similar to the 2D reconstruction, an increase in relative overlap
δ0 results in a significant increase in smoothness. However, it also results in a loss of
thickness and the optimal value based on our metric is δ0 = 0.4. The optimal shape
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Fig. 7.3. The best 3D diaphragm reconstruction, using n = 120 and P = 393 leading to
FH = 0.053 and TL = 0.18 (left). The quality measures are shown as a function of the number of
patches, with n = 120 (right).

parameter ε with respect to the resulting smoothness is relatively small (ε = 0.25),
however the loss of thickness is at a maximum (TL = 1). This means that some data
points originally annotated with being on the inner surface have moved to the outer
surface or vise versa. The optimal quality measure is obtained when ε = 0.9.

We note that point flipping between inner and outer surfaces is unique to the
3D reconstruction problems, were the distance between the inner and outer surface
data points, as well as the inner and outer surface reconstruction, can be very small
in specific areas. This can indicate different issues, either relating to the annotation
of points, the data quality, or the reconstruction quality. Hence, in cases when this
happens at isolated points, which indicates bad data quality or annotation, we do
not include these points in the thickness loss measure TL. However, in cases where
multiple points in the same neighborhood exhibit the same issue, they cannot be
ignored.

With the aforementioned parameters fixed, we vary the degrees of freedom to see
how the quality measures are affected. We find the optimal number of patches P0 for
each choice of RBF center points n. Results are provided in Table 7.3.

Table 7.3
The best results for different n if FH +TL is minimized over P0 for fixed values of α = 0, ρ = 0,

δ0 = 0.4, Hs = 1 and ε = 0.9.

n P0 P FH TL

35 300 393 0.031 0.32
56 420 507 0.039 0.28
84 300 393 0.044 0.21

120 300 393 0.053 0.18
165 180 227 0.046 0.21
220 180 227 0.050 0.19

We obtain the optimal result according to the objective function when n = 120.
The two reconstructed diaphragm geometries are shown in Figure 7.3 and Figure 7.4.
In Figure 7.3 it is also shown how the two quality measures change when the patch
number is increased. As is expected from the 2D examples, an increase in the number
of patches P results in an increase in the Frobenius norm FH , but a decrease in
thickness loss TL. For the more complex diaphragm geometry we also provide the
smoothness measure over the surface. Note the high FH values around the holes,
where the vena cava and esophagus pass through the diaphragm, which make this a
more challenging geometry to reconstruct.
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Fig. 7.4. The second 3D diaphragm geometry reconstruction for n = 120 and P = 393 with
FH = 0.067 and TL = 0.72 (left). The Frobenius norm plotted on the reconstructed surface of the
diaphragm (left).

8. The PDE solution. Given the smooth geometry reconstruction, we want
to use it for solving a PDE problem. In particular, we eventually want to model
the biomechanical action of the diaphragm during respiration, see also [2, 38]. The
base method, RBF-PUM, is the same as for the reconstruction, but there are some
differences which we describe in detail in this section. In this paper we solve a Poisson
problem with Dirichlet boundary conditions as a proof of concept. We manufacture
the right hand side functions based on an infinitely smooth solution function u and
write the problem as

∆u(x) = fi(x), x ∈ Ω,(8.1)

u(x) = fb(x), x ∈ ∂Ω.(8.2)

We sample the PDE and boundary condition at the point sets Yi and Yb, respectively.
To form the global linear system, we use (3.6) with Lk = ∆ and f = fi for yk ∈ Yi
and Lk = I and f = fb for yk ∈ Yb. For the derivatives of the local approximations we
use (4.6) and for the derivatives of the weight function we also use (5.7). The scaling
of the equations is implemented as described in section 3, using the power h−1/2 for
the Dirichlet conditions.

To generate a cover for the PDE computation, we need a point set on the com-
puted object surface. We use the initial data point cloud from the reconstruction
problem, and move these points iteratively onto the surface using the gradient of the
level set function. This works well when the level set function is free of spurious zero
level set curves. Then we run the cover algorithm derived in section 4.

To form the interior node set Yi, we first generate Halton nodes within each patch.
Then we use the level set function to determine which points are inside and which
are outside, and finally we remove points that are close to each other. Least-squares
RBF methods are not sensitive to the exact distribution of the sampling points as
long as these are quasi uniform [23, 37, 21]. For the surface point set Yb, we use the
mesh representation of the initial point cloud. We refine or decimate the mesh and
move all new points onto the surface. It would be possible to construct a surface
node generation algorithm that uses the level set function directly, but we have not
investigated this aspect here.

Using RBF-PUM, there are two standard modes of refinement. Patch refine-
ment with a fixed number of nodes per patch leads to algebraic convergence and
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node refinement with fixed patches leads to spectral convergence for infinitely smooth
RBFs [23]. For both refinement modes, the shape parameter should be kept fixed. If
a stable evaluation method is not used, the ill-conditioning of the local subproblems
increases with the refinement level [23]. Therefore, we use Gaussian RBFs and the
RBF-QR method [13, 20] for stable evaluation when solving PDEs. We note that
to derive the transformed Laplacian section 4, we need the second derivatives with
respect to each coordinate direction. These derivatives were not present in the 3D
RBF-QR implementation derived in [20], but we have now upgraded the implemen-
tation with all second derivatives [22]. Furthermore, we replace the infinitely smooth
bump function with the C2 Wendland function (5.4) as generating function for the
weights. This implies that we only require C2 continuity of the global solution, while
retaining the global high-order convergence arising from the high-order local approx-
imations [41, 10, 23].

In the convergence tests performed here we use the patch refinement approach
which is the most appropriate for large scale problems. It was shown numerically
in [23] that least-squares RBF-PUM is stable under patch refinement. For our par-
ticular setting, we need to keep in mind that the computational domain is (several
instances of) the reference patch. By keeping the scale factors Rs and Hs constant
under refinement, we ensure that refining the physical domain corresponds to refining
the computational domain. We choose to do the refinment only in the radial direc-
tion. That is, we keep the structure with one layer of patches. The node layout in
the reference patch as well as the physical domain is quasi uniform, and as a practical
measure of the worst case fill distance in the physical domain, we use

(8.3) h = max
1≤j≤P

(
|Ωj |
n

) 1
d

= Cd max
1≤j≤P

(
HjR

d−1
j

n

) 1
d

.

Since Hj should be proportional to the width of the geometry and almost constant,

the fill distance is approximately proportional to R
(d−1)/d
j . That is, by dividing a

patch in half in 2D, we only reduce the fill distance by 1/
√
2.

Let Ih(u) =
∑P
j=1 wjIh(uj), where uj = u|Ωj

, be the RBF-PUM interpolant of

the function u, and note that u(x) =
∑P
j=1 wjuj , x ∈ Ω due to the partition of unity

property. Then we can express the interpolation error as

(8.4) EI = Ih(u)− u =

P∑
j=1

wj(Ih(uj)− uj) ≡
P∑
j=1

wjej , x ∈ Ω.

Similarly, the consistency error for the Laplacian operator becomes [41, 23]

(8.5) E∆ = ∆

P∑
j=1

wjej =

P∑
j=1

(∆wjej + 2∇wj · ∇ej + wj∆ej), x ∈ Ω.

The derivatives of the Ck partition of unity weight functions are typically expressed in
terms of the radius of the patch, especially in a setting with spherical patches [41, 23].
In our context with a non-uniform distribution of cylindrical patches, we need to be
more careful. The largest size of the derivatives depends on the smallest absolute
overlap δ between patches. We use the following estimate

(8.6) ∥Dβw∥∞ = G|β|δ
−β , |β| ≤ k.
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For the local interpolation error, we use results derived in [31]. For our specific
setting, we first make the estimate in the computational domain, and in a second step
include the transformation. We let vj(x

′) = uj(x) and define np as the dimension
of a polynomial space of degree p in d dimensions. Then we use the following error
estimate;

(8.7) ∥Dβ(Ih(vj)− vj)∥∞ ≤ C|β|h
p+1−|β|− d

2 ∥vj∥N (Ω0),

where np ≤ n < np+1, the constant C|β| depends on the shape of the reference patch
and on d, and ∥ · ∥N (·) denotes the native space of the infinitely smooth radial basis
function that is used.

Remark 8.1. From the theoretical perspective, the results in [31] require h to be
small enough for the estimates to be valid. In our setting h is related to n and cannot
be decreased independently. The theoretical upper bound on h is restrictive, while in
numerical experiments the optimal rate is achieved also for larger h [23].

We finally use (4.6) to provide estimates for ej in the physical domain

(8.8) ∥∇ej∥∞ ≤ ∥∇′(Ih(vj)− vj)S
⊺Q⊺∥∞ ≤ d max

1≤i≤d
siiC1h

p− d
2 ∥vj∥N (Ω0),

(8.9) ∥∆ej∥∞ ≤
d∑
i=1

s2ii∥∂2/∂x′2i (Ih(vj)− vj)∥∞ ≤ d max
1≤i≤d

siiC2h
p−1− d

2 ∥vj∥N (Ω0).

Combining (8.4)–(8.9) we get the consistency estimates

(8.10) ∥EI∥∞ ≤ KG0C0h
p+1− d

2 max
j

∥vj∥N (Ω0),

∥E∆∥∞ ≤ K
(
dG2δ

−2C0h
p+1− d

2 + 2dG1δ
−1dmax

i
siiC1h

p− d
2

+ G0dmax
i
siiC2h

p−1− d
2

)
max
j

∥vj∥N (Ω0),(8.11)

where K is the maximum number of patches overlapping at any given point. The
best convergence rate that can be achieved is O(hp−1− d

2 ). This requires the absolute
overlap δ to go to zero with the same rate as h or slower than h. We see from (8.3)

that h ∝ R
d−1
d

j , which with δ = δ0Rj means that the relative overlap δ0 must increase

as 1/ d
√
Rj during refinement to achieve the optimal rate. This is an effect of the

refinement mode we have chosen where patches are split only in d − 1 directions.
When patches are split uniformly, keeping δ0 constant is instead optimal. The scaling
of the Dirichlet conditions with h−1/2 is small enough to not affect the optimal rate.

In the convergence experiments, the relative maximum norm error is approxi-
mated as

(8.12) E =
∥ũ− u∥ℓ∞(Y )

∥u∥ℓ∞(Y )
.

9. Numerical results for the PDE solution. As the first test problem, we
solve the Poisson problem (8.1)–(8.2) in the 2D cross section of the diaphragm, with
right hand side data generated from the solution function

(9.1) u2D =
sin(24(x̃1 − 0.1)2) cos((x̃2 − 0.3)2) + sin2(6(x̃2 − 0.5)2)

1 + 2x̃21 + x̃22
,
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and in the 3D geometry with right hand side data generated from

(9.2) u3D =
sin(4πx̃1x̃2x̃3) + cos(4π(x̃2 − 0.3)2)

1 + 2x̃21 + x̃22 + 0.5x̃23
.

These functions provide variation both along and across the diaphragm. The scaled
variables are given by x̃i = xi/maxx∈Ω |xi|. The solution functions are illustrated in
Figure 9.1.

Fig. 9.1. The manufactured solution functions u2D (9.1) and u3D (9.2). For the latter, bright
yellow corresponds to +1 and dark blue to -1.

In the 2D experiments, which run up to a large number of patches, we have not
increased the relative overlap as fast as suggested by the theory. The reason is that if
the overlap becomes too large, patches that are not neighbours start to overlap, and
this is an overlap that we cannot control, and which can produce large gradients in
the weight functions. Instead of using δ0 ∝ R̄−1/d, we have used δ0 ∝ R̄− 1

2d for this
case.

The purpose of the 2D experiment is to investigate how the result depends on
the method parameters and how sensitive the parameter choices are. The left subplot
of Figure 9.2 shows convergence as a function of the fill distance and the right one
shows error as a function of time. The best theoretical convergence rates from (8.11)
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Fig. 9.2. The relative maximum error for the 2D problem is shown for different numbers of
local points n as a function of the fill distance h (left subplot) and as a function of the run time
in seconds (right subplot). The parameters not indicated in the subplots are chosen as the default
values q = 3, ε = 1, Hs = 1, and δ0 = 0.1.

become 3, 5, 7, and 9 for these n. The numerical results seem to be around one order
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better. We note that increasing the number of local points allows us to reach smaller
errors for the same fill distance. To reach a smaller error in the most efficient way
also requires gradually increasing n.

To investigate the parameter dependence, we have solved the PDE problem for
all combinations of n = 21, 28, 36, 45, 55, 78, and 91 and all 24 values of P used for
the plots for different parameter combinations. A measure of goodness was defined by
looking for results that are more accurate and/or faster than the average performance
when the other parameters are equal. Then for a selection of parameter values we
compute in which percentage of cases each choice was the best and in what percentage
of cases it failed, where fail means that the result is at least 5 orders of magnitude
less accurate than for other parameter values. Note that a smaller shape parameter

Table 9.1
The percentage of wins B(·), and fails F (·) for each tested parameter value. The shaded row

indicates the default values used in the experiments.

ε B(ε) Hs B(Hs) δ0 B(δ0) F (δ0) q B(q) F (q)
0.50 27 2.0 51 5
0.75 39 0.75 37 0.05 23 1 2.5 31 0
1.00 34 1 51 0.1 61 0 3.0 18 0

1.25 12 0.2 16 0

value than 1 performs a little bit better, but the trend of the convergence curve was
a bit more erratic, and we therefore picked ε = 1 for improved stability. A smaller
oversampling factor q improves the efficiency, but the method can fail, so also here, we
picked q = 3 for stability. Also for the overlap, a small overlap is efficient, but when
too small, the method can fail. It should also be noted that for all stable choices
of parameters, we got a similar convergence and performance. That is, the main
sensitivities can be understood and for the rest, the penalty for making a suboptimal
choice is not too large.

The error for two different numbers of patches is illustrated in Figure 9.3. Es-
pecially in the left subfigure, it is clear that the error is a bit larger in the overlap
regions, where the weight functions have large gradients.

Fig. 9.3. The logarithm in base 10 of the error in the RBF solutions for n = 78 and P = 25
(left) and P = 69 (right).

Convergence and efficiency for the 3D problem are shown in Figure 9.4. The
theoretical convergence rates from (8.11) here become 0.5, 2.5, 4.5, and 6.5. Note
that here the amount of RAM in the laptop limits how large problems can be solved.
Therefore the curves for larger n have fewer points. The values of P0 that were used
are 40, 60:10:90, 100:20:300, 360, 400. The numerical convergence rates are also here
better than expected, but in a less systematic way. We would need to run a larger
range of problem sizes to really see the trends. The behavior with respect to efficiency
is similar to that for the 2D case. The number of local points n should increase when
the error tolerance is lowered.
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Fig. 9.4. The relative maximum error for the 3D problem is shown for different numbers of
local points n as a function of the fill distance h (left subplot) and as a function of the run time in
seconds (right subplot) using q = 5, ε = 1.2, Hs = 1, and δ0 = 0.1.

The errors in the 3D solution for one set of parameters is shown in different slices
in Figure 9.5. As can be seen in the left subplot, the patch structure in 3D becomes
non-trivial, making it hard to say if and how the error is affected by the patch overlaps.
However, the error distribution appears to be relatively even within each slice.

Fig. 9.5. The logarithm in base 10 of the errors in one slice (left) and in ten slices (right) in
the RBF-PUM solutions to the 3D problem for n = 220 and P = 100. In the left subfigure, also the
intersections of the plane with the cover is shown.

10. Conclusions. In this paper, we have developed an geometry adaptive least
squares RBF-PUM. We first used the method for reconstruction of a geometry from
a noisy point cloud. The reconstruction is stable enough that it can produce good
results for different parameter choices, and it does not produce spurious zero level
sets. We showed how the parameters can be optimized using quality measures. This
approach can be used for different types of thin geometries, but a similar method
could also be defined for general surfaces, where the patch layer would then follow
the surface, not the geometry. In the second part of the paper we showed that we
can achieve a sustained and predictable convergence behaviour in our reconstructed
2D and 3D geometries, in spite of the irregular patch and node layouts.
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