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ABSTRACT

In this paper, we propose Prosody-aware VITS (PAVITS) for emo-
tional voice conversion (EVC), aiming to achieve two major objec-
tives of EVC: high content naturalness and high emotional natu-
ralness, which are crucial for meeting the demands of human per-
ception. To improve the content naturalness of converted audio, we
have developed an end-to-end EVC architecture inspired by the high
audio quality of VITS. By seamlessly integrating an acoustic con-
verter and vocoder, we effectively address the common issue of mis-
match between emotional prosody training and run-time conversion
that is prevalent in existing EVC models. To further enhance the
emotional naturalness, we introduce an emotion descriptor to model
the subtle prosody variations of different speech emotions. Addi-
tionally, we propose a prosody predictor, which predicts prosody
features from text based on the provided emotion label. Notably,
we introduce a prosody alignment loss to establish a connection
between latent prosody features from two distinct modalities, en-
suring effective training. Experimental results show that the per-
formance of PAVITS is superior to the state-of-the-art EVC meth-
ods. Speech Samples are available at https://jeremychee4.
github.io/pavits4EVC/.

Index Terms— Emotional voice conversion, end-to-end model,
prosody, emotional speech, multi-task learning

1. INTRODUCTION

Emotional voice conversion (EVC) endeavors to transform the state
of a spoken utterance from one emotion to another, while preserving
the linguistic content and speaker identity [1]. It brings the capabil-
ity to facilitate emotional communication between individuals [2],
enhancing the user experience in human-computer interaction [3],
and even achieving a seamless integration of human presence within
the virtual world [4].

There are two distinct challenges in EVC: one is low content
naturalness, and the other is that the converted audio lacks the rich-
ness of emotion compared to human voice [1]. Previous studies were
focused on frame-based solutions, such as CycleGAN [5] and Star-
GAN [6, 7]. However, due to the fixed-length nature and poor train-
ing stability, the naturalness of converted audio is quite low to apply
in practice. To address this challenge, autoencoder-based [8,9] espe-
cially for sequence-to-sequence (seq2seq) [10, 11] frameworks raise

This work was supported in part by the National Key R & D Project
under the Grant 2022YFC2405600, in part by the NSFC under the Grant
U2003207 and 61921004, and in part by the Jiangsu Frontier Technology
Basic Research Project under the Grant BK20192004.

much interests for its variable-length speech generation. It achieves
an acceptable naturalness through the joint training with Text-to-
speech (TTS) [12], which is used to capture linguistic information
and avoid mispronunciation as well as skipping-words. Since speech
emotion is inherently supra-segmental [13], it is difficult to learn
emotional representation from the spectrogram. To tackle this, var-
ious pretraining methods, such as leveraging speech emotion recog-
nition (SER) model [14] and 2-stage training strategy [15], are intro-
duced to extract emotional feature for EVC system.

Despite these works have achieved great success in EVC, the
converted audio still falls short in meeting human’s perceptual needs,
which implies that these two challenges still remain to be effectively
addressed. Remarkably, current EVC models generally operate in
a cascade manner, i.e., the acoustic converter and the vocoder [1, 5,
7, 8], resulting in a mismatch between emotional prosody training
and run-time conversion, ultimately leading to a degradation in au-
dio quality, which is vital to evaluate content naturalness and impacts
the perceptual experience of emotional utterance. However, there is
no EVC model that attempt to bridge this gap, let alone models that
aim to capture prosody variations at a finer granularity. To handle
the similar issue, multiple solutions have been explored in TTS, in-
cluding FastSpeech2s [16], EATS [17], VITS [18, 19], etc., seeking
to alleviate the mismatch between acoustic feature generation and
waveform reconstruction by integrating these two stages together.

In this paper, inspired by the high audio quality of VITS [18],
we propose Prosody-aware VITS (PAVITS) for EVC, a novel end-to-
end system with implicit prosody modeling to enhance content natu-
ralness and emotional naturalness. To our best knowledge, PAVITS
is the first EVC method in solving the mismatch between acoustic
feature conversion and waveform reconstruction. Compared to orig-
inal VITS, our approach involves several key innovations. In order
to improve content naturalness with speech quality, we build upon
VITS to solve the two-stage mismatch in EVC, and apply multi-task
learning since TTS can significantly reduce the mispronunciation.
To enhance emotional naturalness, we introduce an emotion descrip-
tor to capture prosody differences associated with different emo-
tional states in speech. By utilizing Valence-Arousal-Dominance
values as condition, emotional representation at utterance-level is
learned. Latent code is further refined by a prosody integrator, which
incorporates with speaker identity and linguistic content to model
finer-grained prosody variations. Then frame-level prosody features
are obtained from normalizing flow. We also introduce a prosody
predictor that leverages emotion labels and phoneme-level text em-
bedding to predict frame-level emotional prosody features. Finally,
we devise a prosody alignment loss to connect two modalities, align-
ing prosody features obtained from audio and text, respectively.
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Fig. 1. Architecture of PAVITS.

2. PROPOSED METHOD

As shown in Figure 1, inspired by VITS [18], the proposed model is
constructed based on conditional variational autoencoder (CVAE),
consisting of four parts: a textual prosody prediction module, an
acoustic prosody modeling module, an information alignment mod-
ule, and an emotional speech synthesis module.

The textual prosody prediction (TPP) module predicts the prior
distribution p (z1 | c1) as:

z1 = TPP (c1) ∼ p (z1 | c1) (1)

where c1 including text t and emotion label e.
The acoustic prosody modeling (APM) module disentangles

emotional features with intricate prosody variation, speaker identity,
and linguistic content from the source audio given emotion label,
forming the posterior distribution q (z2 | c2) as:

z2 = APM (c2) ∼ q (z2 | c2) (2)

where c2 including audio y and emotion label e.
The information alignment module facilitates the alignment of

text and speech, as well as the alignment of textual and acoustic
prosody representations. In emotional speech synthesis (ESS) mod-
ule, the decoder reconstructs waveform ŷ according to latent repre-
sentation z.

ŷ = Decoder (z) ∼ p (y | z) (3)

where z comes from z1 or z2.
While the proposed model can perform both EVC and emotional

TTS after training, EVC will be the main focus of this paper. In the
following, we will introduce the details of the four modules.

2.1. Textual prosody prediction module

Given condition c1 including text t and emotion label e, the
textual prosody prediction module provides the prior distribution
p (z1 | c1) of CVAE. The text encoder takes phonemes as input and

extracts linguistic information htext at first. Considering the exten-

sive prosody variation associated with each phoneme, we employ
a prosody predictor to extend the representation to frame-level and
predict the prosody variation (a fine-grained prior normal distribu-
tion with mean µθ and variance σθ generated by a normalizing
flow fθ) based on emotion label.

p (z1 | c1) = N (fθ (z1) ;µθ (c1) ;σθ (c1))

∣∣∣∣det ∂fθ (z1)∂z

∣∣∣∣ (4)

Text Encoder: Since the training process is constrained by the
volume of textual content within parallel datasets, we initially con-
vert text or characters into a phoneme sequence as a preprocessing
step to maximize the utility of the available data, resulting in im-
proved compatibility with the acoustic prosody modeling module.
Similar to VITS [18], text encoder comprises multiple Feed-Forward
Transformer (FFT) blocks with a linear projection layer for repre-
senting linguistic information.

Prosody Predictor: Prosody predictor leverages phoneme-level
linguistic information extracted by the text encoder to anticipate
frame-level prosody variation given discrete emotion label. It has
been observed that simply increasing the depth of stacked flow
does not yield satisfactory emotional prosody variations, unlike the
prosody predictor. Therefore, the inclusion of the prosody predictor
guarantees a continuous enhancement in prosody modeling for both
the TPP and APM modules. The prosody predictor comprises multi-
ple one-dimensional convolution layers and a linear projection layer.
Furthermore, we integrate predicted emotional prosody information
with linguistic information as input for the duration predictor, which
significantly benefits the modeling of emotional speech duration.

2.2. Acoustic prosody modeling module

The acoustic prosody modeling module provides emotional features
with fine-grained prosody variation based on dimensional emotion
representation, i.e., Valence-Arousal-Dominance values. Speaker
identity and speech content information are also disentangled from
the source audio and then complete feature fusion through the
prosody integrator as the posterior distribution q (z2 | c2).

q (z2 | c2) = N (fθ (z2) ;µθ (c2) ;σθ (c2)) (5)

Speaker encoder: Considering the APM module’s increased
focus on understanding emotional prosody more thoroughly com-
pared to previous models, it’s apparent that speaker characteristics
could unintentionally be overlooked during conversion. Recog-
nizing the critical role of fundamental frequency (F0) in speaker
modeling [20], we augment the F0 predictor of [21] by adding
multiple one-dimensional convolutional layers and a linear layer to
construct the speaker encoder, which tackles the issue effectively.

Emotion descriptor: To enhance PAVITS’s emotional natural-
ness, we employ a specific SER system rooted in Russell’s cir-
cumplex theory [22] to predict dimensional emotion representation,
encompassing Valence-Arousal-Dominance values as a conditional
input. This input guides the capture of nuanced prosody variations,
which ensures that while satisfying human perception of emotions
at utterance-level, natural prosody variations are retained from
segment-level down to frame-level, preserving intricate details. It
consists of a SER module [23] and a linear projection layer.

Prosody Integrator: The prosody integrator incorporates a com-
bination of speaker identity attributes, emotional prosody charac-
teristics, and intrinsic content properties extracted from the linear
spectrogram. It is constructed using multiple convolution layers,
Wavenet residual blocks, and a linear projection layer.



2.3. Information alignment module

In VITS [18], the existing alignment mechanism, which is called
Monotonic Alignment Search (MAS), solely relies on textual and
acoustic features from parallel datasets. Thus, it is insufficient in
capturing emotional prosody nuances, hindering effective linkage
between the TPP and APM modules. To overcome this limitation,
we propose an additional prosody alignment loss function based on
Kullback-Leibler divergence, to facilitate joint training for frame-
level prosody modeling across the TPP and APM modules, with the
goal of enhancing prosody information integration and synchroniza-
tion within our model.

Lpsd = DKL (q (z2 | c2) ∥ p (z1 | c1)) (6)

2.4. Emotional speech synthesis module

In the emotional speech synthesis module, the decoder generates a
waveform based on latent z, employing adversarial learning to con-
tinuously enhance naturalness in both content and emotion. To im-
prove the naturalness of content, Lrecon cls minimizes the L1 distance
between predicted and target spectrograms, Lrecon fm minimizes the
L1 distance between feature maps extracted from intermediate layers
in each discriminator, aimed at enhancing training stability. Since
the former predominantly influences the early-to-mid stage, while
the latter assumes a more prominent role in mid-to-late stage, we
introduce two coefficients to balance their contributions as follows.

Lrecon = γLrecon cls + βLrecon fm(G) (7)

To enhance the perception of emotions, Lemo cls represents the loss
function for emotional classification, while Lemo fm denotes the loss
associated with feature mapping for emotion discrimination.

Lemo = Lemo cls + Lemo fm(G) (8)

2.5. Final loss

By combining CVAE with adversarial training, we formulate the
overall loss function as follows:

L = Lrecon + Ladv(G) + Lemo + Lpsd + LF0 + Ldur (9)

L(D) = Ladv(D) (10)

where Ladv(G) and Ladv(D) represent the adversarial loss for the
Generator and Discriminator respectively, LF0 minimizes the L2
distance between the predicted F0 and corresponding ground truth,
Ldur minimizes the L2 distance between the predicted duration and
ground truth which is obtained through estimated alignment.

2.6. Run-time conversion

At runtime, there are two converting methods: a fixed-length ap-
proach (Audio-z2-Audio, named PAVITS-FL) and a variable-length
approach (Audio-Text-z1-Audio, named PAVITS-VL). The former
uses APM module for latent z prediction from audio, ensuring ro-
bustness as it remains unaffected by text encoding, but is constrained
by a fixed spectrum length due to Dynamic Time Warping (DTW)
limitations. The latter employs TPP module to predict latent z from
corresponding text obtained through automatic speech recognition
(ASR) techinique, which is not bound by duration modeling and of-
fers greater naturalness. Finally, the ESS module’s decoder takes
latent z (either z1 or z2) as input and synthesizes the converted wave-
form without a separate vocoder.

Table 1. A comparison of MCD [dB] values.

Model
MCD [dB]

Neu-Ang Neu-Hap Neu-Sad Neu-Sur
CycleGAN 4.41 4.24 4.32 5.68
StarGAN 4.52 4.46 4.31 5.79
Seq2seq-WA2 3.73 3.72 3.77 5.60
VITS 3.68 3.70 3.69 5.41
PAVITS-FL (proposed) 3.42 3.63 3.40 4.61
PAVITS-VL (proposed) 3.58 3.62 2.98 3.96

3. EXPERIMENTS

3.1. Dataset

We perform emotional conversion on a Mandarin corpus belonged to
Emotional Speech Dataset (ESD) [24] from neutral to angry, happy,
sad, and surprise, denoted as Neu-Ang, Neu-Hap, Neu-Sad, Neu-
Sur respectively. For each emotion pair, we use 300 utterances for
training, 30 utterances for evaluation, and 20 utterances for test. The
total duration of training data is around 80 minutes (16 minutes per
emotion category), which is absolutely small compared to others.

3.2. Experimental Setup

We train the following models for comparison.

• CycleGAN [25] (baseline): CycleGAN-based EVC model
with WORLD vocoder.

• StarGAN [26] (baseline): StarGAN-based EVC model with
WORLD vocoder.

• Seq2seq-WA2 [15] (baseline): Seq2seq-based EVC model
employing 2-stage training strategy with WaveRNN vocoder.

• VITS [18] (baseline): EVC model constructed by origi-
nal VITS, operating independently in both fixed-length and
variable-length, take the average as the result.

• PAVITS-FL (proposed): the proposed model based on VITS,
incorporates all the contributions outlined in the paper, but
operate within a fixed-length framework.

• PAVITS-VL (proposed): the proposed model based on VITS,
incorporates all the contributions outlined in the paper, but
operate within a variable-length framework leveraging ASR
to obtain text from source audio.

3.3. Results & Discussion

Mel-cepstral distortion (MCD) was calculated for objective evalu-
ation, as depicted in Table 1. In terms of subjective evaluation,
Mean Opinion Score (MOS) tests were conducted to appraise both
the quality and naturalness of speech as shown in Table 2. The nat-
uralness score was derived by averaging the scores for content nat-
uralness and emotional prosody naturalness, as rated by 24 partici-
pants, each of whom assessed a total of 148 utterances. We further
report emotional similarity results between converted audio and hu-
man voice to gauge emotional naturalness as illustrated in Figure 2.

Through the above-mentioned metrics, it is obvious that the pro-
posed PAVITS achieves competitive performance on both objective
and subjective evaluation. From the perspective of objective MCD
and subjective MOS, both original VITS and our proposed PAVITS
models always outperform other models with traditional vocoder or
neural vocoder, which proves that the integration of neural acoustic



Table 2. Experimental results in terms of subjective mean opinion score (MOS)

EVC Model
MOS

Speech Quality Naturalness
Neu-Ang Neu-Hap Neu-Sad Neu-Sur Neu-Ang Neu-Hap Neu-Sad Neu-Sur

CycleGAN 3.91±0.19 4.04±0.16 3.95±0.13 3.84±0.12 3.83±0.19 4.01±0.21 3.86±0.20 3.90±0.14
StarGAN 3.53±0.10 3.50±0.12 3.46±0.14 3.49±0.07 3.56±0.20 3.61±0.14 3.71±0.18 3.70±0.17

Seq2seq-WA2 3.95±0.14 4.03±0.24 4.14±0.29 4.03±0.16 3.72±0.14 3.67±0.15 3.72±0.17 3.89±0.20
VITS 4.49±0.06 4.40±0.13 4.55±0.12 4.51±0.06 4.00±0.19 4.15±0.12 4.23±0.20 4.26±0.15

PAVITS-FL (proposed) 4.62±0.04 4.62±0.04 4.64±0.04 4.66±0.02 4.25±0.19 4.44±0.09 4.48±0.07 4.40±0.13
PAVITS-VL (proposed) 4.72±0.02 4.72±0.01 4.63±0.03 4.66±0.03 4.39±0.14 4.60±0.11 4.59±0.05 4.61±0.10

Ground Truth 4.78±0.02 4.81±0.01 4.82±0.01 4.86±0.01 4.71±0.06 4.78±0.05 4.83±0.02 4.80±0.04

Table 3. Ablation study with MOS test
EVC Model Speech Quality Naturalness

PAVITS (proposed) 4.67±0.04 4.60±0.07
w/o Prosody Predictor 4.48±0.10 4.16±0.13
w/o Prosody Alignment 4.38±0.05 4.08±0.10
w/o Prosody Integrator 4.56±0.09 4.37±0.17

converter and vocoder is suitable for EVC task to enhance speech
quality and naturalness. It is worth noting that even in the case of
the fixed-length PAVITS-FL model, there is a reduction of over 0.4
in MCD when compared to the variable-length seq2seq model and
the original VITS model. Furthermore, there has been an enhance-
ment of 0.6 and 0.2 in MOS, respectively. To some extent, it reflects
how human tend to be influenced by audio quality when assessing
model naturalness, especially when there are significant differences
in quality being compared.

As depicted in Figure 2, our proposed PAVITS-VL (variable-
length) model aligns more closely with human perception in the
converted audio, which attributed to the model’s capacity for fine-
grained granularity in modeling speech emotion, incorporating
implicit prosody cues. To further show the effectiveness of our
method, we visualize the spectrogram of testing clips, as exempli-
fied in Figure 3. It is readily apparent that the spectrogram converted
by PAVITS exhibits finer details in prosody variations within the per-
tinent frequency bands, while simultaneously preserving descriptive
information for other frequency bands. Consequently, the audio gen-
erated by PAVITS possesses a prosody naturalness and emotional
accuracy that closely approximates the ground truth spectrogram.

Fig. 2. Emotional similarity test with 95% confidence interval fol-
lowing [15].

Fig. 3. Spectrogram of a testing clip (happy), from top to bottom are
ground truth, converted by original VITS, and proposed PAVITS.

3.4. Ablation Study

We further conduct an ablation study to validate different contri-
butions. We remove prosody predictor, prosody alignment, and
prosody integrator in turn and let the subjects evaluate quality and
naturalness of converted audio. From Table 3, we can see that all
scores are degraded with the removal of different components. When
remove prosody predictor, the speech quality does not undergo sig-
nificant changes, as the original VITS primarily relies on textual
features as input. However, a significant decrease in naturalness is
observed, attributed to the loss of explicit emotion label for TPP
module as a conditioning factor. This highlights the importance of
aligning with APM module on the basis of information asymmetry,
which reflects the ingenious design of prosody modeling structure.
Note that the performance of PAVITS is worse than VITS after
deleting prosody alignment, it might be attributed the fact that latent
prosody representations are not constrained during training, which
damages the original MAS mechanism present in VITS. To further
show the contribution from the prosody integrator, we replace it
with a simple concatenation. Both speech quality and naturalness
show a slight decrease, indicating that utilizing prosody integrator
for information fusion is quite effective for APM module.

4. CONCLUSION

In this paper, we propose Prosody-aware VITS (PAVITS) for emo-
tional voice conversion (EVC). By integrating acoustic prosody
modeling (APM) module with textual prosody prediction (TPP)
module through prosody alignment, the fine-grained emotional
prosody features across various scales of emotional speech can be
learned effectively. Experimental results on ESD corpus demon-
strate the superiority of our proposed PAVITS for content natural-
ness and emotional naturalness, even when dealing with limited data
scenarios. In the future, we will explore the controllable emotional
prosody modeling to allow better interpretability of EVC.
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