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Abstract
The complexity of biological systems and processes, spanning molecular to macroscopic scales,
necessitates the use of multiscale simulations to get a comprehensive understanding. Quantum
mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) simulations are crucial for
capturing processes beyond the reach of classical MD simulations. The advent of exascale
computing offers unprecedented opportunities for scientific exploration, not least within life
sciences, where simulations are essential to unravel intricate molecular mechanisms underlying
biological processes. However, leveraging the immense computational power of exascale
computing requires innovative algorithms and software designs. In this context, we discuss the
current status and future prospects of multiscale biomolecular simulations on exascale
supercomputers with a focus on QM/MM MD. We highlight our own efforts in developing a
versatile and high-performance multiscale simulation framework with the aim of efficient
utilization of state-of-the-art supercomputers. We showcase its application in uncovering
complex biological mechanisms and its potential for leveraging exascale computing.

Introduction
Biological processes extend across wide scales in space and time due to the hierarchical organi-
zation of biological matter [1]. The characteristic dimensions span from the molecular scale of
a few ångströms with ultrafast electronic processes on the order of atto- and femtoseconds and
rapid chemical reactions that occur within pico- to microseconds, to the macroscopic scale of cells
and organs that are visible to the naked eye and where processes extend to seconds and even
days and years. The complexity in living organisms largely stems from this hierarchical structure,
where a local process may trigger a cascade of events across multiple spatial and temporal scales.
Thus, multiscale approaches integrating different resolutions and methodologies are essential for
capturing the entire spectrum of biological events [2, 3].

The continuous development ofmultiscalemethods in computational structural biology is driven
by simultaneous advancements in algorithms, software implementations, and hardware technol-
ogy that push the boundaries of molecular simulations in terms of accessible time scales and
system sizes, capturing biological systems from the atomistic to the cellular level. In particular,
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quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) simulations have
become increasingly important in the last decades for studying processes where a description of
electronic degrees of freedom is paramount and thus beyond the capabilities of classical MDbased
on standard analytical force fields. Examples of such events encompass all types of chemical re-
actions, including proton-coupled electron transfers [4, 5], photochemistry [6], and the manifold
of chemical transformations observed in enzymatic reactions [7, 8], especially those involving tran-
sition metals [9]. A detailed characterization of these phenomena, including reactants, transition
states, intermediates, and products, as well as the involved relative free energies, reaction rates,
and binding affinities in both electronic ground and excited states, also has direct implications for
drug design [10]. In QM/MM models of biomolecular systems, a smaller part (the QM subsystem),
such as the active site of an enzyme or a chromophore embedded in a protein or lipid bilayer, is
described at the quantum mechanical level, while the remainder (the MM subsystem) is modeled
using molecular mechanics. This multiscale strategy balances a detailed and accurate but compu-
tationally costly description of the essential part of a system with a coarser but computationally
expedient approach for the much larger MM part. The dynamic aspect of QM/MMMD is crucial to
accurately capture the behavior and function of complex proteins [11, 12]. However, QM/MM MD
simulations have a substantially higher computational cost than classical (i.e., MM)MD simulations,
severely limiting the accessible time scales. Typically, for a density functional theory (DFT)-based
QM/MM MD simulation with around 100 atoms in the QM subsystem, accessible time scales are
limited to a few hundred picoseconds [8, 13].

The advent of exascale computing marks a pivotal moment for all simulation-based scientific
fields [14, 15]. This remarkable technological achievement was accomplished by connecting thou-
sands of computing nodes through high-speed network interconnects. Each node combines tra-
ditional general-purpose central processing units (CPUs) with powerful graphics processing units
(GPUs). However, exascale supercomputer architectures also introduce new challenges since pro-
gramming software applications for these heterogeneous machines requires a judicious decom-
position of the computational work to exploit each component of the machines optimally [16].
Therefore, to fully exploit the computational power of present and future heterogeneous HPC ar-
chitectures, a high degree of concurrent parallelism is needed, where different parts of the su-
percomputer work on different subdomains of the computational model, each described within a
different theoretical method. Together, exascale computing and the development of novel com-
putational methods and software can enable longer and more accurate simulations on larger and
more complex systems. This opens up new opportunities for discovery and innovation in the life
and health sciences, potentially revolutionizing areas such as drug design and bioengineering.

The heterogeneous CPU/GPU technology highlighted above is taken to the next level with mod-
ular supercomputer architectures that integrate a variety of hardware technologies into intercon-
nected partitions [17, 18]. A prime example of this is the LUMI supercomputer [19], along with
the upcoming exascale JUPITER supercomputer [20], both procured by the European HPC Joint
Undertaking (EuroHPC JU). Currently, LUMI consists of two primary number-crunching partitions: a
general-purpose CPU partition and a high-performance GPU-accelerated partition. Additionally, it
features an interactive data analytics partition and an accelerated storage partition. Looking ahead,
the integration of prospective technologies like quantum and neuromorphic computing into tradi-
tional HPC infrastructure is expected [17, 18]. Indeed, the procurement of a quantum computing
partition for LUMI is already underway [21], and the Jülich Supercomputing Center in Germany is al-
ready experimenting with this kind of integration [22]. Modular supercomputer architectures offer
substantial benefits, particularly in allowing calculations to run on the most suitable hardware for
the specific problem. Moreover, existing software packages that have yet to be optimized for new
hardware remain useful for solving important scientific problems. Fully exploiting the capabilities
of complex modular supercomputers for exceptionally challenging scientific problems, which re-
quire the full computing power of themachine, necessitates a new computational paradigm. Here,
we highlight an approach recently introduced in the field of multiscale biomolecular simulations.
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Multiscale methods, especially the QM/MM approach, have proven indispensable for exploring
complex biological phenomena. Interestingly, QM/MM is not only a robust technique in itself but
also offers a route to overcome some of the existing limitations in the development of software for
atomistic simulations on modern hybrid computer architectures [14]. Beyond QM/MM, multiscale
methods can also be extended to incorporate multiple layers ranging from coarse-grained (CG) to
continuummodels of matter where parts of a system, e.g., membrane regions that are sufficiently
distant from an embedded protein of interest, are treated by techniques usually employed for
meso- and macroscopic systems [23–27].

To reach the full potential offered by exascale supercomputers, it is imperative that multi-
scale interfaces scale efficiently, fully leveraging the extensive network of CPUs and GPUs. That
is one of the main objectives of MiMiC (multiscale modeling in computational chemistry), a high-
performance and versatile framework for multiscale simulations [28]. The program-agnosticMiMiC
framework is designed to combine virtually any QM and MM (or other) program without compro-
mising the computational efficiency and scalability of the simulation. Indeed, MiMiC, although still
in its nascent stages, has demonstrated its ability to efficiently scaleQM/MMMDsimulations across
thousands of CPU-based computing nodes [13, 29]. Here we will showcase the MiMiC framework
for biomolecular simulations, illustrating its potentiality in leveraging state-of-the-art supercom-
puting resources and its capability to address complex biochemical and biophysical problems.

Current Status of Multiscale Biomolecular Simulation Software
Multiscale QM/MM capabilities are often implemented by either extending dedicated QM or MM
programs with the functionalities of the other [30–37] or by creating ad hoc interfaces between
stand-alone QM and MM programs [38–41]. Additionally, some programs offer flexible interfaces
that facilitate easy coupling with other programs [42–44]. Beyond these, there are integrative
frameworks that do not contain inherent QM, MM, or similar functionalities, but instead depend
entirely on other programs for these capabilities [45–59].

The interface between QM and MM components can be classified as tightly or loosely cou-
pled, reflecting the degree of interdependence between the components. Loose coupling is pre-
ferred for its flexibility and ease of maintenance, enabling straightforward integration of indepen-
dent programs. This approach supports the quick incorporation of new functionalities and ad-
vancements within individual programs without necessitating alterations to other coupled com-
ponents. Crucially, loose coupling permits independent optimization of each program for peak
performance. However, this flexibility can come at the cost of computational efficiency due to
slower inter-program communication, particularly when compared to the tight coupling approach
that allows for direct in-memory data sharing.

There are three communication mechanisms for exchanging data between programs, namely
the file-, library-, and network-based approaches. Most commonly utilized for general interfaces
and integrative frameworks is the file-based approach, which does not requiremodifications to the
source code of the interfaced programs,making it the simplest to implement. Here, themain driver
programgenerates input files for the interfaced programs, executes them, and subsequently reads
their output files. However, it is notably the least efficient communication mechanism, primarily
due to slow disk write/read operations and overhead associated with executing and terminating
the interfaced programs. Both drawbacks are avoided in the library-based approach, where the in-
terfaced programs are converted into a library that is linked to themain program, thus enabling effi-
cient in-memory data exchange. The disadvantages are the rather intrusive modifications needed
in the source codes of the interfaced programs, and the risk of ending up with a tight coupling
focused on a few specific programs. Moreover, a critical aspect of multiscale implementations is
parallel scalability and efficiency. The optimal parallel algorithms for QM and MM components,
or even among different QM methods, may differ significantly and may not seamlessly integrate
within the more tightly coupled environments.
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The network-based approach, on the other hand, offers a solution that potentially circumvents
the limitations inherent in both file- and library-based methods. It achieves a balance between
flexibility and communication efficiency by enabling data exchange over a network. This facilitates
seamless communication between programs running on different processors (CPUs and GPUs),
across computing nodes, or even among supercomputer partitions. Such an approach retains the
benefits of loose coupling, i.e., ease of integration and maintenance, while surpassing file-based
approaches in performance through the use of fast network protocols and remote direct memory
access (RDMA) technologies. Crucially, it can be implemented so as not to disrupt the normal ex-
ecution of interfaced programs, thus preserving their performance. However, the network-based
approach requires a more sophisticated design and management strategy to reduce latency and
enhance throughput. Despite these challenges, with proper implementation, the network-based
approach substantially improves the efficiency and scalability of multiscale simulations by facilitat-
ing high-speed communication between diverse computational models.

Toward Multiscale Biomolecular Simulations on Exascale Architectures
Formultiscale simulations to run efficiently on state-of-the-art supercomputers, first and foremost,
it is imperative that the programs dedicated to a specific methodology, such as QM and MM, are
able to take advantage of the strengths of both CPUs and GPUs. Moreover, these programs must
be capable of using the vast parallel processing capabilities of exascale architectures. Considerable
efforts are underway to pushQM- andMM-based programs towards exascale [60–67] with support
from EuroHPC JU through its HPC Centres of Excellence [68] and the Exascale Computing Project
(ECP) led by the US Department of Energy [69].

For a multiscale simulation framework to fully exploit the capabilities of these QM andMM pro-
grams, itmust seamlessly integratewith their optimal parallelization strategieswithout introducing
inefficiencies. This entails enabling the concurrent execution of interfaced programs, eliminating
the need for their repeated startup and shutdown, and reducing communication overhead to a
minimum. Crucially, the calculation of subsystem interactions, such as those between QM and
MM particles, needs to be highly parallel and efficient to prevent it from becoming a computa-
tional bottleneck. Implementing effective and automatic load balancing is also critical to ensure
that computational resources are utilized optimally, thereby maximizing the throughput of individ-
ual simulations.

The versatile and high-performance MiMiC framework for multiscale simulations was designed
with the aim of addressing the criteria outlined above [28]. The strategy used by the MiMiC frame-
work is illustrated in Figure 1. On one side, MiMiC connects to a simulation driver that manages
the overall simulation process, including the integration of the equations of motion and the main-
tenance of temperature and pressure. On the other side, it interfaces multiple external programs
using a client-server approach combined with a multiple-program multiple-data (MPMD) model.
Each external program is tasked with calculations belonging to a given subsystem, while MiMiC cal-
culates subsystem interactions. Importantly, the external programs run concurrently on separate
computational resources using their own optimal parallelization capabilities. Communication be-
tweenMiMiC and the external programs is facilitated by theMiMiC Communication Library (MCL), a
dedicated lightweight library that ensures efficient network-based communication and simplifies
the interfacing with external programs. An illustration of a MiMiC-based simulation workflow is

Figure 1. Illustration of the strategy used by the MiMiC framework
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Figure 2. Illustration of MiMiC-based simulation workflow

shown in Figure 2. The scope of the MiMiC framework is broad, extending beyond QM/MM. This
includes QM/QM, which integrates different levels of QM theory, QM/MM/CG, and even models
that incorporate machine-learning (ML) techniques like ML/MM or QM/ML.

TheMiMiC framework has beenused to implement aDFT-based electrostatic embeddingQM/MM
method, employing the CPMD program [70] as both the MD driver and QM engine, and GRO-
MACS [61] as the MM engine [28, 29]. In electrostatic embedding, the (external) electric field from
the point charges in the MM subsystem is included in the Hamiltonian of the QM subsystem, thus
directly polarizing its electronic density. The calculation of electrostatic QM/MM interactions is
based on a dense grid representation of the electronic density, which is computationally expen-
sive, especially for large systems, because the number of integrals over the electron density scales
linearly with the number of atoms in the MM subsystem. The MiMiC framework has implemented
an efficient approach that substantially speeds up the calculation essentially without compromis-
ing the accuracy of the forces, thus reducing the computational cost by about 80 % for small sys-
tems (e.g., small solvated proteins) and up to 99 % for larger systems (e.g., membrane-embedded
proteins) [28]. Furthermore, MiMiC implements a hybrid shared- and distributed-memory (OpenM-
P/MPI) parallelization strategy to ensure that these calculations remain efficient and do not hinder
performance, even under highly parallel conditions [29]. A powerful example of this is shown in
Figure 3, where the extreme scalability of the CPMD program is harnessed to achieve strong scala-
bility beyond 80,000 CPU cores with a parallel efficiency of 70 % for a single MiMiC-based QM/MM
MD simulation of the human isocitrate dehydrogenase-1 (IDH1) [13]. Table 1 shows examples of
the computational performance and cost of MiMiC-based QM/MM MD simulations using CPMD
and GROMACS. It is clear that the simulation throughput depends first and foremost on the cho-
sen exchange-correlation functional and the size of the QM subsystem. This reflects the fact that
the QM calculation is by far themost computationally demanding part of a QM/MMMD simulation.
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Figure 3. Parallel scalability and efficiency of MiMiC-based QM/MMMD simulations of IDH1. The IDH1
system has a total of 130,828 atoms with 142 QM atoms [13]. The simulations were run on the CPU partition
of JUWELS [71]. The speedup is given in terms of the time per MD step normalized against a reference run
using seven nodes. Adapted from Raghavan et al. [13], licensed under CC BY 4.0.

Hybrid exchange-correlation functionals are particularly expensive in a plane-wave basis set such
as the one employed by the CPMD program. Still, due to the excellent parallelism in CPMD, the
simulation throughput can be pushed to 4.8 ps/day for the small QM region (46 atoms) and 0.7
ps/day for the larger QM subsystem (142 atoms). Using instead a non-hybrid functional pushes
the performance to 21 and 5.4 ps/day for the small and large QM subsystems, respectively.

Table 1. Computational performance and cost of MiMiC-based QM/MMMD simulations. All simulations
were run with a 0.5 fs timestep on the CPU partition of JUWELS [71] at the scaling limit (parallel efficiency
≥ 70%). The systems are p38𝛼 mitogen-activated protein kinase (169,550 atoms) and human isocitrate
dehydrogenase-1 (130,828 atoms). We refer to the original work for full computational details [13].

System p38𝛼 IDH1
QM atoms 46 142
XC functional BLYP B3LYP BLYP B3LYP
Throughput (ps/day) 21 4.8 5.4 0.7
Cost (node-hours/ps) 9 1280 480 60480

Biological Applications
TheMiMiC framework has enabled a number of recent computational studies that demonstrate its
utility and efficiency across a broad spectrum of systems with biological relevance. In this section,
we showcase select examples that highlight the impactful contributions of MiMiC-based QM/MM
MD simulations in advancing our understanding of complex biological processes.

Among the pioneering uses of MiMiC-based QM/MM MD simulations were studies of CLC pro-
teins, a large family of anion channels and transporters. Chiariello et al. studied the molecular
mechanism of fluoride inhibition of the anion/proton exchanger ClC-ec1 from E. coli (Fig. 4A) [72].
The use of QM/MM for this study was mandatory as ion translocation involves proton transfer pro-
cesses. On the basis of QM/MMMD and well-tempered metadynamics (wtMTD) simulations at the
B3LYP and BLYP levels of theory, Chiariello et al. were able to report proton affinities of the fluoride
ion and the gating glutamate residue E148, thus providing valuable insights into transport inhibi-
tion. In a second study, the mechanisms of proton transfer and release by the fluoride/proton
antiporter CLCF-eca were investigated (Fig. 4B) [73]. Employing the same simulation techniques, it
could be shown that a triad is formed between fluoride, glutamate E318, and the gating glutamate
E118, eventually releasing protons and fluoride as hydrogen fluoride.

In a recent study, the ligand iperoxo (routinely used in neuroimaging) targeting the human
muscarinic acetylcholine receptor 2 was investigated [75]. The work focuses on the calculation of
the drug unbinding rate constant 𝑘off , a very difficult parameter to correctly estimate with force
field-based approaches. In fact, while methods based on modern force fields are nowadays able
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Figure 4. Illustrations of biological systems that have been studied using the MiMiC framework. A:
ClC-ec1 anion/proton antiporter embedded in a solvated lipid bilayer with a total of 150,925 atoms (19 QM
atoms) [72]. Reprinted with permission from Ref. [72]. Copyright 2020 American Chemical Society. B:
CLCF-eca fluoride/proton antiporter embedded in a solvated lipid bilayer with a total of around 174,000
atoms (36 QM atoms) [73]. Reprinted with permission from Ref. [73]. Copyright 2021 American Chemical
Society. C: AMPAR cation channel embedded in a solvated lipid bilayer where the transmembrane domain
was included in the simulations (22 QM atoms) [74]. Figure by Schackert et al. [74], licensed under CC BY 4.0.

to predict accurate binding free energies and affinities, this is often not the case for rate constants
such as 𝑘off , which also require a correct estimation of the free energy of transition states. The
study shows how sensitive this estimation is to values of the partial charges of the ligand and that
while results obtained with a QM/MM MD simulation are in good agreement with experimental
findings, standard force field-based procedures lead to qualitatively wrong results, most likely due
to the lack of explicit electronic polarization and charge transfer, which are included in QM/MM.

Another important application of QM/MM MD simulations is in scenarios where parts of a sys-
tem cannot be adequately described using simplified analytical force fields. Notable examples are
metal ions, in particular transition metals or divalent alkaline-earth ions. The absence of accurate
parameters for the latter hinders a thorough understanding of many biological processes related
to, e.g., ion channels, transporters, and pumps. Recently, Schackert et al. studied themechanismof
calciumpermeation in 𝛼-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs),
which are key to rapid synaptic transmission in the central nervous system (Fig. 4C) [74]. In that
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study, the calcium-binding sites within the channel, initially identified through classical MD, were
further confirmed using QM/MM MD. This step was crucial for validating a newly developed clas-
sical force field specifically designed for calcium ions. Interestingly, they observed charge transfer
between the calcium ion and the water molecules in the first solvation shell, which underlines the
importance of a QM/MM description for such systems.

Outlook
The exascale era is poised to radically change life sciences. With the ability to conduct longer and
more accurate simulations on larger and more complex molecular systems than ever before, we
will be able to tackle scientific questions that are currently beyond our reach, deepening our under-
standing of biological processes. This opens up new opportunities for discovery and innovation,
potentially revolutionizing fields such as drug design and bioengineering. However, fully realizing
the potential of exascale computing is contingent upon overcoming substantial challenges in soft-
ware design, algorithm optimization, and the efficient utilization of modular and heterogeneous
HPC architectures.

The versatility of the MiMiC framework makes it ideal for pushing multiscale biomolecular sim-
ulations towards the exascale. It is capable of exploiting the results of the large-scale initiatives
by EuroHPC JU and ECP for individual domains such as QM and MM. Indeed, work is already un-
derway to couple a diverse set of QM programs to MiMiC, namely, Quantum ESPRESSO, CP2K, and
DFT-FE, all of which are being developed to exploit state-of-the-art HPC technology [67]. Addition-
ally, it is likely that MD simulations will benefit greatly from future ML-based force fields [76, 77],
whichMiMiC is fully able to integrate into advanced simulation workflows [78]. For instance, hybrid
ML/MMmodels facilitate long simulations of biological systems usingML-based force fields, achiev-
ing near QM/MM precision at a substantially reduced computational cost [79], while ML-enhanced
free-energy methods significantly accelerate QM/MM calculations of ligand binding affinities for
drug discovery [80]. These and other novel methods are expected to aid in accurately predict-
ing key biophysical properties like drug-protein binding free energies and complete free-energy
profiles. We anticipate that the integration of MiMiC-based multiscale simulations with ML and
enhanced sampling techniques will further catalyze a quantum leap in the fundamental atomistic
understanding of biological processes.
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