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Abstract

Quasi-2D Coulomb systems are of fundamental importance and have attracted much
attention in many areas nowadays. Their reduced symmetry gives rise to interesting col-
lective behaviors, but also brings great challenges for particle-based simulations. Here,
we propose a novel algorithm framework to address the O(N2) simulation complexity
associated with the long-range nature of Coulomb interactions. First, we introduce an
efficient Sum-of-Exponentials (SOE) approximation for the long-range kernel associated
with Ewald splitting, achieving uniform convergence in terms of inter-particle distance,
which reduces the complexity to O(N7/5). We then introduce a random batch sam-
pling method in the periodic dimensions, the stochastic approximation is proven to be
both unbiased and with reduced variance via a tailored importance sampling strategy,
further reducing the computational cost to O(N). The performance of our algorithm
is demonstrated via varies numerical examples. Notably, it achieves a speedup of 2 ∼ 3
orders of magnitude comparing with Ewald2D method, enabling molecular dynamics
(MD) simulations with up to 106 particles on a single core. The present approach is
therefore well-suited for large-scale particle-based simulations of Coulomb systems un-
der confinement, making it possible to investigate the role of Coulomb interaction in
many practical situations.

AMS subject classifications. 82M37; 65D15; 65C35

1 Introduction

In various fields such as electromagnetics, fluid dynamics, computational soft matter and
materials science [1, 2, 3], it is of great importance to evaluate lattice kernel summations in
the form of

ϕ(x) =
∑
m

N∑
j=1

ρjK(x− yj +m ◦L) , (1.1)

where x,yj ∈ Rd are d-dimensional vectors in a rectangular box Ω with L the vector of

its edge lengths, ρj refers to the density or weight, m ∈ Zd′ ⊗ {0}d−d′
exerts periodicity

in the first d′ directions (with d′ ≤ d), “◦” represents the Hadamard product, and K(x) is
the kernel function whose form depends on the interested physical problem. If d′ = d, the
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system is called fully-periodic, d′ = 0, it is in a free-space, otherwise it is called partially-
periodic. In this work, we focus on the doubly-periodic case (where d = 3 and d′ = 2),
characterizing a confined system with nanometer/angstrom length scale in one direction;
bulk and periodic in the other two directions. In literature, this type of systems are also
referred as quasi-2D systems, which have caught much attention in studies of magnetic and
liquid crystal films, super-capacitors, crystal phase transitions, dusty plasmas, ion channels,
superconductive materials and quantum devices [4, 5, 6, 7, 8, 9, 3].

The reduced symmetry of quasi-2D systems gives rise to new phenomena, but also brings
formidable challenges in both theory and computation. The first challenge comes from the
involved long-range interaction kernels, including but not limited to Coulomb and dipolar
kernels in electrostatics, Oseen and Rotne-Prager-Yamakawa kernels in hydrodynamics and
the static exchange-correlation kernels in density functional theory calculations. For fully-
periodic or free-space systems, O(N) fast algorithms have been developed; but the field is still
under developing for partially-periodic systems. The anisotropy of such systems poses extra
challenges for simulations: 1) the periodic and non-periodic directions need to be handled
separately due to their different boundary conditions and length scales; 2) the convergence
properties of the lattice kernel summation Eq. (1.1) requires careful consideration, which
largely depend on the well-poseness of the underlying PDEs. Another challenge comes from
practical applications. To accurately determine the phase diagram of a many-body system
may require thousands of simulation runs under different conditions [10], each with billions
of time steps to sample ensemble averages. Moreover, to eliminate the finite size effect,
millions of free particles need to be simulated. Such large-scale simulations are especially
required for quasi-2D systems, so as to accommodate its strong anisotropy, and resolving
possible boundary layers forming near the confinement surfaces [8]. The cumulative impact
of these considerations poses significant challenges for numerical simulations for quasi-2D
systems.

To address these issues associated with the particle-based simulation of quasi-2D sys-
tems, a variety of numerical methods have been developed. Most of them fall into two cat-
egories: (1) Fourier spectral methods [11, 12, 13, 14], where particles are first smeared onto
grids, and subsequently the underlying PDE is solved in Fourier domain where fast Fourier
transform (FFT) can be used for acceleration; (2) adaptive tree-based methods, where fast
multipole method (FMM) [15] or tree code [16] orginally proposed for free-space systems
can be extended to quasi-2D systems by careful extension to match the partially-periodic
boundary conditions [17, 18]. Alternative methods have also been proposed, such as the
Lekner summation-based MMM2D method [19], multilevel summation methods [20, 21], and
correction-based approaches such as Ewald3DC [22] and EwaldELC [23], which first solve
a fully-periodic system and then add the partially-periodic correction terms. By combining
with either FFT or FMM, these methods achieve O(N logN) or even O(N) complexity.

However, the issue of large-scale simulation of quasi-2D systems is still far from settled.
A few challenges remains. First, FFT-based methods need extra techniques to properly
handle the non-periodic direction, such as truncation [24], regularization [12], or periodic
extension [11], which may lead to algebraic convergence or require extra zero-padding to
guarantee accuracy. Recent advancements by Shamshirgar et al. [25], combining spectral
solvers with kernel truncation methods (TKM) [26], have reduced the zero-padding fac-
tor from 6 to 2 [11], which still requires doubling the number of grids with zero-padding.
Second, the periodization of FMM needs to encompass more near-field contributions from
surrounding cells [17, 27]. The recently proposed 2D-periodic FMM [28] may offer a promis-
ing avenue; however, it has not yet been extended to partially-periodic problems. Finally,
it is worth noting that most of the aforementioned issues will become more serious when
Lz ≪ min{Lx, Ly}, in which case the Ewald series summation will converge much slower [23],
and the zero-padding issue of FFT-based methods also becomes worse [14].

In this work, we introduce a novel algorithm for particle-based simulations of quasi-2D
systems with long-range interactions (typically, the 1/r Coulomb kernel). Our approach
connects Ewald splitting with a sum-of-exponentials (SOE) approximation, which ensures
uniform convergence along the whole non-periodic dimension. We further incorporate impor-
tance sampling in Fourier space over the periodic dimensions, achieving an overall O(N) sim-
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ulation complexity. The algorithm has distinct features over the other existing approaches:

1. A unified PDE-based framework is established, which is well-defined for systems com-
prising both discrete ions and continuous surface charge densities under different en-
sembles.

2. The simulation algorithm has linear complexity with small prefactor, and it does not
depend on either FFT or FMM for its asymptotic complexity.

3. Instead of modifying FFT and FMM-based methods, which are originally proposed
for periodic/free-space systems, our scheme is tailored for partially-periodic systems,
it perfectly handles the anisotropy of such systems without any loss of efficiency.

4. Our method is mesh free, and can be flexibly extended to other partially-periodic
lattice kernel summations in arbitrary dimensions, thanks to the SOE approximation
and random batch sampling method.

Our approach builds upon the Ewald2D formula and incorporates an SOE approximation
for the kernel function in the non-periodic dimension. By utilizing the SOE form, we are
able to reformulate Ewald2D into a recursive summation, reducing the computational com-
plexity from O(N2) to O(N7/5). We also address the issue of catastrophic error cancellation
associated with the original Ewald2D method. Additionally, we introduce a random batch
importance sampling technique in Fourier space to accelerate the computation in the periodic
dimensions, without the need for costly direct summation or FFT. The resulting method,
named RBSE2D, maintains numerical stability and achieves optimal O(N) complexity in
both CPU and memory consumptions. Rigorous error estimates and complexity analysis are
provided, further validated by numerical tests. In particular, numerical results demonstrate
that RBSE2D-based MD simuations can accurately reproduce the spatiotemporal properties
of quasi-2D Coulomb systems, along with a significant improvement in computational effi-
ciency with a speedup of approximately 2−3 orders of magnitude compared to the standard
Ewald2D method, allowing large-scale simulations of quasi-2D systems.

We refer to the RBSE2D as a framework for partially-periodic summation problems with
arbitrary non-oscillatory kernels since the method is highly kernel/dimension independent.
The details of this framework, however, are showcased by the specific Coulomb kernel under
the quasi-2D setup, which is both physically important and concise to be mathematically
clarified. The remaining sections of the paper are organized as follows. Section 2 introduces
the quasi-2D electrostatic model and revisits the Ewald2D summation formula for quasi-2D
Coulomb systems. Section 3 introduces the SOE approximation for the Ewald2D summation
in the non-periodic dimension. Section 4 introduces the random batch sampling method
for further accelerating the comptations in periodic dimensions. Finally, to validate the
accuracy and efficiency of our proposed method, numerical results are presented in Section 5.
Concluding remarks are provided in Section 6.

2 Ewald summation for quasi-2D Coulomb systems

In this section, we introduce the physical model and mathematical notations for quasi-2D
Coulomb systems, and provide a concise overview of the Ewald2D lattice summation formula,
along with the extension to confinement with charged interfaces.

2.1 Quasi-2D Coulomb systems

Quasi-2D Coulomb systems are usually modelled via the so-called doubly-periodic boundary
conditions (DPBCs), i.e., periodic in xy directions to mimic the environment of bulk, and
non-periodic in the z direction, indicating confined particles in z at nano-/micro scales either
by soft or hard potential constraints [8]. In literature, this type of model is often referred
as the “slab geometry” [22] or the “slit channel” geometry [14].
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Consider a simulation domain Ω = [0, Lx] × [0, Ly] × [0, Lz] ⊂ R3, which comprises N
particles with positions ri = (xi, yi, zi) ∈ Ω and charges qi, i = 1, · · · , N . The electrostatic
potential ϕ(r) for such systems, assuming uniform background dielectric media, is governed
by the following Poisson’s equation with DPBCs:

−∆ϕ(r) = 4πg(r), with g(r) =
∑
m

N∑
j=1

qjδ(r − rj +M), (2.1)

where m = (mx,my, 0) with (mx,my) ∈ Z2, L = (Lx, Ly, Lz), and M := m ◦ L. The
solution to Eq. (2.1) is doubly-periodic ϕ(r) = ϕ(r+M) and unique up to a linear function
in z. The uniqueness will be satisfied by incorporating a suitable boundary condition as
z → ±∞.

In many practical situations, the potential is defined via the following Coulomb summa-
tion formulation,

ϕ(r) =
∑
m

N∑
j=1

qj
|r − rj +M|

, (2.2)

where one should notice that the potential is singular when r = rj and m = 0, the sin-
gularity comes from the Dirac delta source. It is important to note that Eq. (2.2) is not
well defined without specifying the shape of summation region [29, 30] and the total charge
neutrality condition. Theorem 2.1 clarifies the necessary conditions to guarantee absolute
convergence of the series.

Theorem 2.1. The “S-shaped” summation region is defined as a fixed, simply connected,
closed manifold S in R2 enclosing the origin and having radius 1. Let R ∈ R be a truncation
parameter. The summation in Eq. (2.2) truncating within region RS is absolute convergent
as R→ ∞ if (1) the shape S is symmetric around the origin (meaning that if M/R ∈ S, then
−M/R ∈ S); and (2) the system within the central box is charge neutral, i.e.,

∑N
j=1 qj = 0.

Proof. By the Taylor expansion, one has for large |m|

1

|r +M|
=

1

|M|
− r ·M

|M|3
+O
Å

1

|M|3

ã
. (2.3)

In the right-hand side of Eq. (2.3), the second term is odd with respect tom and thus sums
to zero due to the symmetry of S. The last O(|M|−3) term is absolutely convergent as
R→ ∞. Therefore, it is sufficient to analyze the convergence behavior of the expression:

J = lim
R→∞

∑
M∈S

1

|M|

N∑
j=1

qj . (2.4)

Eq. (2.4) can be viewed as a Riemann sum multiplied by the total net charges. If the charge

neutrality condition is satisfied, i.e.,
∑N

j=1 qj = 0, then J vanishes and the series summation
of ϕ in Eq. (2.2) is absolutely convergent. If the charge neutrality condition is violated,

the Riemann sum can be approximated as an integral, J ∼ 2π(LxLy)
−1R

∑N
j=1 qj , which

diverges as R → ∞. This implies that the total charge neutrality condition is a necessary
requirement for the existence of ϕ(r) in Eq. (2.2).

As long as Eq. (2.2) is well defined, Proposition 2.2 establishes a precise relationship
between Eq. (2.2) and the solution to Poisson’s equation Eq. (2.1) with a properly chosen
boundary condition as z → ∞.

Proposition 2.2. If the the series summation of ϕ(r) in Eq. (2.2) satisfies both conditions
stated in Theorem 2.1, then it is a unique solution to Poisson’s equation Eq. (2.1) given the
far-field boundary condition

lim
z→±∞

ϕ(r) = ± 2π

LxLy

N∑
j=1

qjzj . (2.5)
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Proof. Let ρ = (x, y) and k = (kx, ky) denote the periodic dimensions of position and
Fourier frequency, respectively, where ρ ∈ R2 and k ∈ K2 with

R2 := {ρ ∈ [0, Lx]× [0, Ly]}, and K2 :=

ß
k ∈ 2π

Lx
Z× 2π

Ly
Z
™
. (2.6)

The Poisson’s summation formula (see Appendix A) indicates

∑
m

N∑
j=1

qj
|r − rj +M|

=

N∑
j=1

qj

 2π

LxLy

∑
k ̸=0

e−k|z−zj |

k
e−ik·(ρ−ρj) + ϕ0(z − zj)

 , (2.7)

where k = |k| and

ϕ0(z − zj) =

N∑
j=1

2π

LxLy

∫ ∞

0

ρ√
ρ2 + |z − zj |2

dρ (2.8)

represents the k = 0 term. Note that Eq. (2.8) is equivalent to a uniformly charged infinite
plane in the real space. As z → ∞, all k ̸= 0 modes vanish, so that

lim
z→±∞

ϕ(r) = lim
z→±∞

N∑
j=1

qjϕ0(z − zj). (2.9)

One can then integrate out Eq. (2.8) and arrives at

lim
z→±∞

ϕ(r) = − lim
z→±∞

2π

LxLy

N∑
j=1

qj |z − zj | . (2.10)

Finally, the charge neutrality condition results in Eq. (2.5).
Eq. (2.5) indicates that lim

z→±∞
ϕ(r) is a finite constant, and thus can be regarded as a

properly chosen Dirichlet-type boundary condition at z → ±∞ to guarantee the uniqueness
and well-definedness of Eq. (2.1), with Eq. (2.2) being its solution.

For such a well-defined quasi-2D Coulomb system, the electrostatic interaction energy U
is given by

U(r1, . . . , rN ) =
1

2

∑
m

N∑
i=1

N∑
j=1

′ qiqj
|ri − rj +M|

, (2.11)

where the notation “′” represents that the i = j case is excluded when m = 0. The
corresponding force on each particle is F i = −∇ri

U , for i = 1, 2, . . . , N . It is remarked
that, though the quasi-2D Coulomb summation is absolutely convergent, due to the long-
range nature of Coulomb interaction, directly truncating the series for computing energy or
force will lead to slow convergence with a complexity of O(N2).

2.2 Ewald2D summation revisited

Throughout the remainder sections, we will extensively use Fourier transforms for the DP-
BCs. For ease of discussion, the mathematical notations and definitions are first provided.

Definition 2.3. (Quasi-2D Fourier transform) Let f(ρ, z) be a function that is doubly-
periodic in xy-dimensions, its quasi-2D Fourier transform is defined by

f̃(k, κ) :=

∫
R2

∫
R
f(ρ, z)e−ik·ρe−iκzdzdρ. (2.12)

The function f(ρ, z) can be recovered from the corresponding inverse quasi-2D Fourier trans-
form:

f(ρ, z) =
1

2πLxLy

∑
k∈K2

∫
R
f̃(k, κ)eik·ρeiκzdκ . (2.13)
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In order to calculate Eq. (2.2), the Ewald splitting based methods [31] are often adopted.
The idea of the Ewald splitting technique can be understood as decomposing the source term
g(r) of Eq. (2.1) into the sum of short-range and long-range components:

g(r) = [g(r)− (g ∗ τ)(r)] + (g ∗ τ)(r) := gs(r) + gℓ(r), (2.14)

where the symbol “∗” denotes the convolution operator, and τ(r) is the screening function.
In the standard Ewald splitting [31], τ is chosen to be a Gaussian, hence τ̃ is also a Gaussian,

τ(ρ, z) = π−3/2α3e−α2r2 , τ̃(k, κ) = e−(k2+κ2)/(4α2), (2.15)

where r =
√
ρ2 + z2, ρ = |ρ|, and α > 0 is a parameter to be optimized for balancing the

computational cost in short-range and long-range components. The electrostatic potential
at the ith particle location can be expressed as

ϕ(ri) := ϕs(ri) + ϕℓ(ri)− ϕiself , (2.16)

where the short-range (ϕs) and long-range (ϕℓ) components are given as:

ϕs(ri) =
∑
m

N∑
j=1

′ qjerfc(α |rij +M|)
|rij +M|

, (2.17)

ϕℓ(ri) =
∑
m

N∑
j=1

qjerf(α |rij +M|)
|rij +M|

, (2.18)

with rij := ri − rj and the error function erf(·) and complementary error function erfc(·)
defined as

erf(x) :=
2√
π

∫ x

0

e−t2dt and erfc(x) := 1− erf(x), (2.19)

respectively. In Eq. (2.17),
∑′

indicates that the sum excludes the self interaction term
when j = i and m = 0; and in Eq. (2.16), ϕiself is the unwanted interaction between the
Gaussian and point source, which should also be subtracted for consistency,

ϕiself = lim
r→0

qierf(αr)

r
=

2α√
π
qi. (2.20)

It is clear that ϕs converges absolutely and rapidly due to the Gaussian screening, one
can efficiently evaluate it in real space by simple truncation. Conversely, ϕℓ is still slowly
decaying in real space but the interaction becomes smooth – the singularity of 1/r as r → 0
is removed, making ϕℓ fast convergent in the Fourier space. The detailed formulation for
the 2D Fourier expansion of ϕℓ is provided below.

Lemma 2.4. By Fourier transform in the periodic xy dimensions, ϕℓ can be written as the
following series summation in k-space:

ϕℓ(ri) =
∑
k ̸=0

ϕkℓ (ri) + ϕ0ℓ (ri) , (2.21)

where the non-zero modes read

ϕkℓ (ri) =
π

LxLy

N∑
j=1

qj
eik·ρij

k

[
ξ+(k, zij) + ξ−(k, zij)

]
, (2.22)

with ρij = (xi − xj , yi − yj), zij = |zi − zj |, and

ξ±(k, zij) := e±kzijerfc

Å
k

2α
± αzij

ã
, (2.23)

and the 0-th mode is

ϕ0ℓ (ri) = − 2π

LxLy

N∑
j=1

qj

ñ
zijerf(αzij) +

e−(αzij)
2

α
√
π

ô
. (2.24)
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Eqs.(2.17), (2.20) and (2.21) constitute the well-known Ewald2D summation, which has
been derived through various methods [24, 32, 33, 34, 35]. An alternative derivation is
provided in Appendix B.

One can naturally extend the system to overall non-neutral particle systems confined by
charged slabs. In such cases, the charge neutrality condition of the system reads

N∑
i=1

qi +

∫
R2

[σtop(ρ) + σbot(ρ)] dρ = 0, (2.25)

where σtop and σbot are the surface charge density on the upper and lower substrates,
respectively. Effect of the charged slabs is given by an external term ϕp-s:

ϕp-s(ri) =
2π

LxLy

∑
k ̸=0

eik·ρi

k

î
σ̂bot(k)e

−k|zi| + σ̂top(k)e
−k|zi−Lz|

ó
+ ϕ0p-s(ri) , (2.26)

where the 0-th mode reads

ϕ0p-s(ri) = − 2π

LxLy

[
σ̂bot(0)|zi|+ σ̂top(0)|zi − Lz|

]
. (2.27)

For the ideal case, where both σbot and σtop are uniformly distributed, the external potential
is directly given by

ϕp-s(ri) = ϕ0p-s(ri) = −2π [σtop(Lz − zi) + σbot(zi − 0))] , (2.28)

for all zi ∈ [0, Lz], and the zero is retained to indicate the location of bottom slab. For more
details, one may refer to Appendix C.

The Ewald2D summation is the exact solution and does not involve any uncontrolled
approximation. However, two significant drawbacks limit its application for large-scale sim-
ulations:

• Even with optimal choice of parameter α, computing the interaction energy U for
an N -particle system through Eqs. (2.17), (2.20) and (2.21) takes O(N2) complexity,
which is worse than O(N3/2) for that of the Ewald3D, the fully-periodic case.

• The function ξ±(k, zij) is ill-conditioned: It grows exponentially as kzij grows, leading
to catastrophic error cancellation in actual computations with prescribed machine
precision.

In this work, we develop an algorithm framework to address these two issues. As will be
shown in Section 3, we introduce the SOE approximation and a forward recursive approach,
which reduce the computational complexity fromO(N2) toO(N7/5) without losing accuracy,
while the ill-conditioning issue is also properly handled. We further introduce a random
batch importance sampling technique, outlined in Section 4, yielding an optimal complexity
of O(N), allowing large-scale simulations of quasi-2D Coulomb systems.

2.3 Error estimates for the Ewald2D summation

In this section, we provide a truncation error analysis for the Ewald2D summation. The
truncation error is clearly configuration dependent. Here the estimation is analyzed based
on the ideal-gas assumption [36], which was used by Kolafa and Perram [37] in analyzing the
Ewald3D case. Details of the ideal-gas assumption are summarized in Appendix D, where
the root mean square (RMS) error (Eq. (D.1)) is used to measure the truncation error in a
given physical quantity.

In the following analysis, we denote the cutoff radii in real and Fourier spaces as rc and
kc, i.e., one only calculate the terms satisfying |rij +M| ≤ rc and |k| ≤ kc in real and
Fourier spaces, respectively. Our main findings are summarized as follows.
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Theorem 2.5. Under the ideal-gas assumption, the real space and Fourier space truncation
errors for the Ewald2D summation can be estimated by

Eϕs(rc, α) ≈
…

4πQ

V
Qs(α, rc) , Eϕℓ

(kc, α) ≈
…

8α2Q

πV
k−3/2
c e−k2

c/(4α
2) , (2.29)

where Q =
∑N

i=1 q
2
i and

Qs(α, rc) :=
2e−α2r2c erfc(αrc)

α
√
π

− rcerfc(αrc)
2 −
…

2

πα2
erfc(

√
2αrc). (2.30)

Notably,

Qs(α, rc) →
1

4π
α−4r−3

c e−2α2r2c as αrc → ∞ . (2.31)

The proof of Theorem 2.5 is provided in Appendix E. An interesting observation is that
at the limit αrc → ∞, the truncation error estimates for Ewald2D sum become identical as
that for Ewald3D derived in [37]. Same observation has been made by Tornberg and her
coworkers through numerical tests [11, 25]. Here, Theorem 2.5 justifies this phenomenon.

Based on Theorem 2.5, one can further obtain the error estimates of the interaction
energy and forces, summarized in Proposition 2.6.

Proposition 2.6. Under the ideal-gas assumption, the real space and Fourier space RMS
errors of energy and forces by the truncated Ewald2D summation can be estimated by

EUs(rc, α) ≈ Q

…
1

2V
α−2r−3/2

c e−α2r2c , EUℓ
(kc, α) ≈ Q

…
8α2

πV
k−3/2
c e−k2

c/(4α
2) , (2.32)

and

EF i
s
(rc, α) ≈ 2|qi|

…
Q

V
r−1/2
c e−α2r2c , EF i

ℓ
(kc, α) ≈ 4|qi|

…
Q

πV
αk−1/2

c e−k2
c/(4α

2) , (2.33)

as αrc → ∞ and kc/2α→ ∞, respectively.

Remark 2.7. In practice, one needs to pick the pair of rc and kc such that the series in
real and Fourier spaces converge with the same speed. By Theorem 2.5, they can be chosen
as

rc =
s

α
, and kc = 2sα , (2.34)

such that both truncation errors decay as

Eϕs
(rc, α) ≈ Eϕℓ

(kc, α) ∼ Q

…
s

αV

e−s2

s2
. (2.35)

This indicates that the trunction error can be well controlled by the prescribed parameter s.

It should be noticed that, since the real space interaction is short-ranged, it only requires
computation of neighboring pairs within the cutoff radius rc. Many powerful techniques have
been developed to reduce the cost for such short-range interactions into O(N) complexity,
including the Verlet list [38], the linked cell list [39] and more recently the random batch
list [40] algorithms. Consequently, the main challenge lies in the long-range component
calculation, which will be discussed in the next section.

3 Sum-of-exponentials Ewald2D method

In this section, we introduce a novel summation method by using the SOE approximation in
evaluating ξ±(k, z) and ∂zξ

±(k, z). This method significantly reduces the overall complexity
of Ewald2D to O(N7/5) without compromising accuracy. Error and complexity analyses are
also provided.
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We first give a brief overview of the SOE kernel approximation method. For a given pre-
cision ε, the objective of an SOE approximation is to find suitable weights wl and exponents
sl such that ∀x ∈ R, the following inequality holds:∣∣∣∣∣f(x)−

M∑
l=1

wle
−sl|x|

∣∣∣∣∣ ≤ ε, (3.1)

where M is the number of exponentials. Various efforts have been made in literature to
approximate different kernel functions using SOE, as documented in works such as [41, 42,

43, 44, 45]. For instance, the Gaussian kernel f(x) = e−x2

is widely celebrated and plays a
crucial role in numerical PDEs [46, 47], and is particularly relevant for the purpose of this
work. The SOE approximation for Gaussians can be understood as discretizing its inverse
Laplace transform representation, denoted as

e−x2

=
1

2πi

∫
Γ

ez
…
π

z
e−

√
z|x|dz , (3.2)

where Γ is a suitably chosen contour.
To achieve higher accuracy, several classes of contours have been studied, such as Talbot

contours [48], parabolic contours [49], and hyperbolic contours [50]. An alternative approach
is developed by Trefethen, et al. [51], where a sum-of-poles expansion is constructed by the
best supremum-norm rational approximants. A comprehensive review of these techniques
has been discussed by Jiang and Greengard [52]. Since the Laplace transform of an SOE
is a sum-of-poles expansion [53], the model reduction (MR) technique can be employed to
further reduce the number of exponentials M while achieving a specified accuracy ϵ. When
combining with the MR, convergence rates at O(6−M ) ∼ O(7−M ) can be achieved [52].

Additionally, kernel-independent SOE methods have been developed, such as the black-
box method [53] and Vallée-Poussin model reduction (VPMR) method [54]. Specially, the
VPMR method integrates the flexibility of Vallée-Poussin sums into the MR technique,
demonstrating the highest convergence rate of O(9−M ) in constructing SOE approximation
for Gaussians. This method is also bandwidth-controllable and uniformly convergent [55].
Due to these advantages, we will utilize the VPMR as the SOE construction tool in all the
numerical experiments throughout this paper.

3.1 SOE approximations of ξ±(k, z)

To start with, we introduce a useful identity which is a special case of the Laplace trans-
form ([56], pp. 374-375; [57], pp. 688).

Lemma 3.1. Suppose that a, b, and c are three complex parameters where the real part of
a satisfies R(a) > 0. For an arbitrary real variable x, the following identity holds:∫ ∞

x

e−(at2+2bt+c)dt =
1

2

…
π

a
e(b

2−ac)/aerfc

Å√
ax+

b√
a

ã
. (3.3)

Substituting a = α2, b = k/2, c = 0, x = ±z into Eq. (3.3) yields the integral represen-
tations of ξ±(k, z):

ξ±(k, z) =
2α√
π
e−k2/(4α2)e±kz

∫ ∞

±z

e−α2t2−ktdt . (3.4)

We then approximate the Gaussian factor e−α2t2 in the integrand of Eq. (3.4) by anM -term
SOE on the whole real axis, as

e−α2t2 ≈
M∑
l=1

wle
−slα|t| . (3.5)
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Inserting Eq. (3.5) into Eq. (3.4) results in an approximation to ξ±(k, z):

ξ±M (k, z) :=
2α√
π
e−k2/(4α2)e±kz

∫ ∞

±z

M∑
l=1

wle
−slα|t|e−ktdt . (3.6)

The integral can be calculated analytically (with α, z > 0), yielding

ξ+M (k, z) =
2α√
π
e−k2/(4α2)

M∑
l=1

wl
e−αslz

αsl + k
(3.7)

and

ξ−M (k, z) =
2α√
π
e−k2/(4α2)

M∑
l=1

wl

ñ
− e−αslz

αsl − k
+

2αsle
−kz

(αsl)2 − k2

ô
. (3.8)

Similarly, one can also obtain the approximation of ∂zξ
±(k, z), given by

∂zξ
+
M (k, z) := −2α2

√
π
e−k2/(4α2)

M∑
l=1

wlsl
e−αslz

αsl + k
(3.9)

and

∂zξ
−
M (k, z) := −2α2

√
π
e−k2/(4α2)

M∑
l=1

wlsl

ñ
− e−αslz

αsl − k
+

2ke−kz

(αsl)2 − k2

ô
. (3.10)

The approximation error, which relies on the prescribed precision ε of the SOE, also has
spectral convergence in k. This is summarized in Theorem 3.2.

Theorem 3.2. Given an M -term SOE expansion satisfying Eq. (3.1), the approximation
of ξ± using Eqs. (3.7)-(3.8) has a global error bound∣∣ξ±(k, z)− ξ±M (k, z)

∣∣ ≤ 2αe−k2/(4α2)

√
πk

ε , (3.11)

and for the approximation of ∂zξ
± using Eqs. (3.9)-(3.10), the error bound is given by∣∣∂zξ±(k, z)− ∂zξ

±
M (k, z)

∣∣ ≤ 4αe−k2/(4α2)

√
π

ε , (3.12)

which is independent of z and decays rapidly with k.

Proof. To prove Eq. (3.11), one can directly use Eqs. (3.4) and (3.6) to obtain:∣∣ξ±(k, z)− ξ±M (k, z)
∣∣

≤ 2α√
π
e−k2/(4α2)

∫ ∞

±z

e±kz−kt

∣∣∣∣∣e−α2t2 −
M∑
l=1

wle
−αsl|t|

∣∣∣∣∣ dt
≤ 2α√

π
e−k2/(4α2)ε

∫ ∞

−∞
e±kz−ktdt

=
2αe−k2/(4α2)

√
πk

ε ,

(3.13)

where in the second to the third lines one uses the property given in Eq. (3.1). For Eq. (3.12),
the proof is similar:∣∣∂zξ±(k, z)− ∂zξ

±
M (k, z)

∣∣
≤ 2α√

π
e−k2/(4α2)

(∫ ∞

±z

ke±kz−kt

∣∣∣∣∣e−α2t2 −
M∑
l=1

wle
−αsl|t|

∣∣∣∣∣ dt+
∣∣∣∣∣e−α2z2

−
M∑
l=1

wle
−αsl|z|

∣∣∣∣∣
)

≤ 2α√
π
e−k2/(4α2)ε

Å
k

∫ ∞

−∞
e±kz−ktdt+ 1

ã
=
4αe−k2/(4α2)

√
π

ε .

(3.14)
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Again one uses Eq. (3.1).

Remark 3.3. Theorem 3.2 ensures that the approximation error is uniform in z and ex-
ponentially decays in k. These properties are crucial for subsequent algorithm design. A
more straightforward approach is by directly expanding the complementary error function
in ξ± by the SOE. However, this introduces an error proportional to ekzε, which increases
exponentially in k, resulting in substantial errors in the Fourier sum.

For the 0-th frequency term Eq. (2.24) consisting of erf(·) and Gaussian functions, a
similar approach can be employed to construct the corresponding SOE expansions. One has

erf(αz) ≈ 2√
π

∫ αz

0

M∑
l=1

wle
−sltdt =

2√
π

M∑
l=1

wl

sl
(1− e−αslz) . (3.15)

One can prove that ∣∣∣∣∣erf(αz)− 2√
π

M∑
l=1

wl

sl
(1− e−αslz)

∣∣∣∣∣ ≤ 2αLz√
π
ε , (3.16)

where one assumes that z ∈ [0, Lz], as for quasi-2D systems all particles are confined within
a narrow region in z.

To demonstrate the performance of the SOE approximations proposed above, here we
validate the accuracy of ξ±M numerically as an example. The error of ξ±M against the ξ±

for varying M are shown in Fig. 1 (a) and (b), respectively. Clearly, using M = 4, 8, 16
terms of exponentials provides about 4, 8, and 15 decimal digits of accuracy, respectively.
And it validates that the error is uniformly bounded in z. Moreover, we examine the SOE
approximation error of ξ±(k, z) with respect to k. The results presented in Fig. 1 (c) and

(d) clearly demonstrate the asymptotic convergence rate of e−k2

, which is in consistent with
the error bound given in Theorem 3.2.

3.2 SOEwald2D summation and its fast evaluation

In this section, we derive the SOE-reformulated Ewald2D (SOEwald2D) summation, and
the corresponding fast evaluation scheme. Let us first consider the contribution of the k-th
mode (k ̸= 0) to the long-range interaction energy, denoted as Uk

ℓ , which can be written in
the following pairwise summation form

Uk
ℓ =

1

2

N∑
i=1

qiϕ
k
ℓ (ri) =

π

LxLy

∑
1≤j<i≤N

qiqjφ
k(ri, rj) +

Qπ

kLxLy
erfc

Å
k

2α

ã
, (3.17)

where we define

φk(ri, rj) :=
eik·ρij

k

[
ξ+(k, zij) + ξ−(k, zij)

]
. (3.18)

Substituting the SOE approximation of ξ±(k, z) described in Eqs. (3.7) and (3.8), a new
SOE-based formulation can be obtained, denoted as Uk

ℓ,SOE. This approximation is achieved

by substituting φk(ri, rj) with

φk
SOE(ri, rj) :=

eik·ρij

k

[
ξ+M (k, zij) + ξ−M (k, zij)

]
=

2αe−k2/(4α2)

√
πk

eik·ρij

M∑
ℓ=1

wl

α2s2l − k2
(
2αsle

−kzij − 2ke−αslzij
)
.

(3.19)

For the 0-th mode contribution U0
ℓ , an SOE-based reformulation can be similarly ob-

tained according to Eq. (3.15):

U0
ℓ,SOE =

1

2

N∑
i=1

qiϕ
0
ℓ (ri) = − 2π

LxLy

∑
1≤j<i≤N

qiqjφ
0
SOE(ri, rj)−

πQ

αLxLy
, (3.20)
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Figure 1: The absolute error of the SOE expansion for (a) ξ±(k, z) and (b) erf(αz) is plotted as a
function of z, while fixing k = α = 1; absolute error of the SOE expansion of (c) ξ+(k, z) and (d)
ξ−(k, z) as a function of k2, while fixing z = 1. Data are presented for SOEs with varying numbers
of exponentials, M = 4, 8 and 16.

where

φ0
SOE(ri, rj) :=

M∑
l=1

wl√
π

ï
2zij
sl

+

Å
1

α
− 2zij

sl

ã
e−αslzij

ò
. (3.21)

We now present an iterative approach to compute Uk
ℓ,SOE for each k with O(N) com-

plexity. For simplicity, consider pairwise sum in the following form:

S =
∑

1≤j<i≤N

qiqje
ik·ρije−βzij , (3.22)

where β is a parameter satisfying R(β) > 0. It is clear that the pairwise sums in both
Uk
ℓ,SOE and U0

ℓ,SOE are in the form of Eq. (3.22), and direct evaluation takes O(N2) cost.
To efficiently evaluate S, we initially sort the particle indices based on their z coordinates,

such that i > j ⇐⇒ zi > zj . Subsequently, the summation can be rearranged into a
separable and numerically stable form:

S =

N∑
i=1

qie
ik·ρie−βzi

i−1∑
j=1

qje
−ik·ρjeβzj (3.23)

=

N∑
i=1

qie
ik·ρie−β(zi−zi−1)Ai(β) , (3.24)

with coefficients

Ai(β) =

i−1∑
j=1

qje
−ik·ρje−β(zi−1−zj) . (3.25)
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Clearly, A1(β) = 0, A2(β) = q1e
−ik·ρ1 , and for i ≥ 3, a recursive algorithm can be con-

structed to achieve O(N) complexity in computing all the coeffcients:

Ai(β) = Ai−1(β)e
−β(zi−1−zi−2) + qi−1e

−ik·ρi−1 , i = 3, · · · , N. (3.26)

One can thus efficiently evaluate S with another O(N) operations by Eq. (3.24) and using
the computed coefficients A(β) = (A1(β), ..., AN (β)). Consequently, the overall cost for
evaluating the pairwise summation in forms of Eq. (3.22) is reduced to O(N). Besides the
iterative method discussed above, it is remarked that different fast algorithms based on SOE
for 1D kernel summations have been developed [52, 58], which can also be used under the
framework described in this article for the summation in the non-periodic direction.

Remark 3.4. A similar iterative evaluation strategy can be developed based on Eq. (3.23)
instead of Eq. (3.24), which may seem more straightforward. However, it will lead to un-
controlled exponential terms such as eβzj , affecting the numerical stability. The same issue
occurs in the original Ewald2D summation, as has been discussed in Section 2.2. In our
recursive scheme, by prior sorting of all particles in z, it follows that zi − zi−1 > 0 and
zi−1 − zj ≥ 0 for all j ≤ i− 1, thus making all exponential terms in Eq. (3.24) with negative
exponents, resolving the exponential blowup issue.

Finally, the long-range component of Coulomb interaction energy in Ewald2D summation
is approximated via:

Uℓ ≈ Uℓ,SOE :=
∑
k ̸=0

Uk
ℓ,SOE + U0

ℓ,SOE, (3.27)

where both Uk
ℓ,SOE and U0

ℓ,SOE can be evaluated efficiently and accurately with linear com-
plexity. In MD simulations, the force exerts on the i-th particle, Fi, plays a significant role
in the numerical integration of Newton’s equations. One can similarly develop fast recur-
sive algorithms to evaluate the SOE-reformulated forces, the detailed expressions for Fi is
summarized in Appendx F. We finally summarize the SOEwald2D in Algorithm 1. Its error
and complexity analysis will be discussed in the next sections.

Algorithm 1 The sum-of-exponentials Ewald2D method

1: Input: Initialize the size of the simulation box (Lx, Ly, Lz), as well as the positions,

velocities, and charges of all particles. Choose a precision requirement ε.

2: Precomputation stage: Determine Ewald splitting parameters α and s according to

Eq. (2.35). Generate real and Fourier space cutoffs by rc = s/α and kc = 2sα, respec-

tively. Construct the SOE approximations of ξ±(k, z) and erf(αz) following Section 3.1.

3: procedure (SOEwald2D)

4: Sort all the particles according to their z coordinates, as z1 < z2 < · · · < zN .

5: Compute Uk
ℓ,SOE for |k| ≤ kc as well as U0

ℓ,SOE according to Section 3.2.

6: Compute Us by direct truncation in real space according to Eq. (2.17) with cutoff

rc.

7: Compute Uself according to Eqs. (2.20).

8: Compute U =
∑

|k|≤kc
Uk
ℓ,SOE + U0

ℓ,SOE − Uself + Us + Up-s.

9: Compute forces Fi using a similar procedure as that of U .

10: end procedure

11: Output: Total electrostatic energy U and forces Fi.

3.3 Error analysis for the SOEwald2D algorithm

Here we derive error estimates for the SOEwald2D summation. The total error in the
interaction energy U consists of the truncation error and the SOE approximation error:

EU := EUs(rc, α) + EUℓ
(rc, α) +

∑
k ̸=0

E k
Uℓ,SOE + E 0

Uℓ,SOE , (3.28)

13



where the first two terms are the truncation error of Ewald2D summation and have already
been provided in Proposition 2.6. The remainder two terms are the error due to the SOE
approximation for the Fourier space components, where

E k
Uℓ,SOE := Uk

ℓ − Uk
ℓ,SOE, and E 0

Uℓ,SOE := U0
ℓ − U0

ℓ,SOE. (3.29)

Theorem 3.5 provides upper bound error estimates, when the Debye-Hückel (DH) theory is
assumed (see [10], and also Appendix G) to approximate the charge distribution at equilib-
rium.

Theorem 3.5. Given a set of SOE parameters wl and sl satisfying Eq. (3.1) and a charge
distribution satisfying the DH theory, the SOE approximation error for the Fourier compo-
nent of interaction energy satisfies:∑

k ̸=0

E k
Uℓ,SOE ≤ 2λ2Dα

3Q√
π

ε, and E 0
Uℓ,SOE ≤

√
πλ2D(1 + 2α2Lz)Q

αLxLy
ε, (3.30)

respectively, where λD is the Debye length of the Coulomb system.

Proof. By definitions of Uk
ℓ and Uk

ℓ,SOE, one has

Uk
ℓ − Uk

ℓ,SOE =
π

2LxLy

N∑
i=1

∑
j ̸=i

qiqj
eik·ρij

k
Eξ± , (3.31)

where
Eξ± :=

∣∣ξ+(k, zij)− ξ+M (k, zij)
∣∣+ ∣∣ξ−(k, zij)− ξ−M (k, zij)

∣∣ , (3.32)

By Theorem 3.2, one has

|Eξ± | ≤
4αe−k2/(4α2)

√
πk

ε . (3.33)

Substituting Eq. (3.32) into Eq. (3.31) and using the DH approximation, one gets∣∣∣E k
Uℓ,SOE

∣∣∣ ≤ 2
√
πλ2DαQ

LxLy

e−k2/(4α2)

k2
ε. (3.34)

To adequately consider the error in Fourier space, the thermodynamic limit is commonly
considered [37, 59], wherein the sum over wave vectors is replaced by an integral over k:∑

k ̸=0

≈ LxLy

(2π)2

∫ ∞

2π
L

kdk

∫ 2π

0

dθ, (3.35)

where (k, θ) are the polar coordinates and L = max{Lx, Ly}. It then follows that∑
k ̸=0

E k
Uℓ,SOE ≤ 2λ2Dα

3Q√
π

ε. (3.36)

Finally, recalling the SOE approximation errors of erf(·) and Gaussian functions given by
Eqs. (3.16) and (3.1), one obtains

∣∣E 0
Uℓ,SOE

∣∣ ≤ √
πλ2D(1 + 2α2Lz)Q

αLxLy
ε . (3.37)

This finishes the proof.

Based on Proposition 2.6 and Theorems 3.5, we conclude that the overall absolute error
in U scales as EU ∼ O(εN). Notably, for systems sharing the same charge distribution, the
Coulomb interaction energy U ∼ O(N). Thus we anticipate that our method will maintain
a fixed relative error in U . This will be verified through numerical tests in Section 5.1.
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3.4 Complexity analysis for the SOEwald2D

In this section, we analyze the complexity of the SOEwald2D method summarized in Al-
gorithm 1. The main computational cost is contributed by the following steps: N particle
sorting in z, the real and reciprocal space summations. For sorting (Step 4 in Algorithm 1),
taking advantage of the quasi-2D confinement, various sorting algorithm are suitable, for
example, the bucket sorting algorithm [60] results in an O(N) complexity. To achieve an
optimal complexity, the cost of the real and reciprocal space summations (Steps 5 and 6)
need to be balanced. To analyze it, we first define ρs and ρℓ by the average densities in the
real and Fourier spaces

ρs =
N

LxLyLz
, and ρℓ =

LxLy

(2π)2
, (3.38)

respectively. The cost Cs for computing the short-range interaction Us scales as

Cs =
4π

3
r3cρsN =

4πs3N2

3α3LxLyLz
. (3.39)

Meanwhile, the total cost Cℓ in computing Uk
ℓ,SOE for all 0 < |k| ≤ kc and U0

ℓ,SOE is given
by

Cℓ = πk2cρℓMN =
1

π
s2α2LxLyMN (3.40)

since the recursive computation requires O(MN) operations for each k. To balance Cs

and Cℓ, one takes

α ∼ N1/5

L
2/5
x L

2/5
y L

1/5
z

, (3.41)

leading to the optimal complexity

Cs = Cℓ ∼ O(N7/5). (3.42)

The self interaction Uself (Step 7) can be directly calculated with a complexity of O(N), and
cost of summing up the total energy (Step 8) is clearly O(1). By taking into consideration
that the force calculation (Step 9) requires asymptotically the same cost as the energy
calculation (Steps 4-8), it can be concluded that the overall computational complexity of
the SOEwald2D algorithm is O(N7/5). It is clearly much faster than the original Ewald2D
method which scales as O(N2); and surprisingly, it is even slightly faster than Ewald3D for
fully-periodic systems, which scales as O(N3/2).

Remark 3.6. For the extreme case, Lz ≪ min{Lx, Ly}, the neighboring region for the
short-range interaction reduces to a cylinder with radius rc due to the strong confinement,
rather than a spherical region. In this case, one has:

Cs ∼ 2πr2c
N

LxLy
N =

2πs2N2

α2LxLyLz
. (3.43)

By simple calculation, the optimal complexity is found to be O(N3/2), which is the same as
that of the Ewald3D summation for fully-periodic problems.

4 Random batch SOEwald2D method

In this section, we will introduce a stochastic algorithm designed to accelerate the SOE-
wald2D method in particle simulations, reducing the complexity to O(N). Unlike existing
methods relying on either FFT or FMM-based techniques to reduce the complexity, our idea
involves adopting mini-batch stochastic approximation over Fourier modes, with importance
sampling for variance reduction. More precisely, let us consider the Fourier sum over k ∈ K2

for a given kernel f(k), one can alternatively understand the Fourier sum as an expectation

µ :=
∑
k∈K2

f(k)

h(k)
h(k) = Ek∼h(k)

ï
f(k)

h(k)

ò
, (4.1)
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where Ek∼h(k) denotes the expectation with k sampled from a chosen probability measure
h(k) defined on the lattice k ∈ K2. Instead of calculating the summation directly or using
FFT, a mini-batch of Fourier modes (with batch size P ) sampled from h(k) are employed
to estimate the expectation, resulting in an efficient stochastic algorithm.

It is worth noting that the random mini-batch strategy originated from stochastic gra-
dient descent [61] in machine learning and was first introduced in the study of interacting
particle systems by Jin, et al. [62], called the random batch method (RBM). The method
was proved to be successful in various areas, including nonconvex optimization [63], Monte
Carlo simulations [64], optimal control [65], and quantum simulations [66]. Recently, this
idea has been applied to fully-periodic Lennard-Jones and Coulomb systems [40, 67], demon-
strating superscalability in large-scale simulations [68, 69]. For long-range interactions such
as Coulomb, to accurately reproduce the long-range electrostatic correlations, the so-called
symmetry-preserving mean-field (SPMF) condition [70] has been proposed. The SPMF is
originated from the local molecular field theory for Coulomb systems [71, 72], which states
that algorithms must share a mean-field property, that is the averaged integration for the
computed potential over certain directions should equal that of the exact 1/r Coulomb po-
tential. For fully-periodic systems, by carefully imposing the SPMF in the random batch
approximation, it has been shown that the long-range electrostatic correlations can be ac-
curately captured [73].

However, when formulating algorithms for quasi-2D systems, the direct application of the
random mini-batch idea introduces formidable challenges. The classical Ewald2D, either in
the closed form (Eq. (2.22)) or the integral form (Eq. (B.3)), are unsuitable for random batch
sampling: (1) the closed form demands O(N2) complexity even with batch size P ∼ O(1);
(2) the integral form is singular at k = κ = 0, giving rise to significant variance. In this
section, we will show that the idea of random mini-batch can now be easily incorporated into
the SOEwald2D algorithm based on the reformulation of Ewald2D proposed in Section 3.2,
resulting in the Random Batch SOEwald2D (RBSE2D) method, which can accurately satisfy
the SPMF condition for quasi-2D geometry. Detailed analyses will also be provided.

4.1 The O(N) stochastic algorithm

It has been shown in Eqs. (3.17), (3.18) and (3.19) that, after applying the SOE approxi-
mation to Uk

ℓ , the Fourier space summation in the SOEwald2D can be compactly written
as ∑

k ̸=0

Uk
ℓ,SOE =

∑
k ̸=0

φ̃(k) , (4.2)

where φ̃(k) is defined as

φ̃(k) := e−
k2

4α

[
2α

√
π

LxLy

M∑
ℓ=1

wl

∑
1≤j<i≤N qiqje

ik·ρij
(
2αsle

−kzij − 2ke−αslzij
)

k(α2s2l − k2)

]
. (4.3)

Comparing to the original Ewald2D formula given in Section 2.2, one finds a Gaussian decay
factor explicitly, which can be normalized for the purpose of importance sampling. Thus,
we take

h(k) :=
e−k2/(4α2)

H
with H :=

∑
k ̸=0

e−k2/(4α2), (4.4)

whereH serves as a normalization factor. By the Poisson summation formula (see Lemma A.2),
one has

H =
αLxLy

π

∑
mx,my∈Z

e−α(m2
xL

2
x+m2

yL
2
y) − 1, (4.5)

where mξ = Lξkξ/2π with ξ ∈ {x, y}. The computation of H is cheap, since Eq. (4.5) can be
simply truncated to obtain a good approximation. Generally speaking, mξ = ±2 is enough
since αLξ ≫ 1. Then using the Metropolis algorithm [74, 75] (see Appendix H), a random
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mini-batch of frequencies {kη}Pη=1 is sampled, and the Fourier component of energy can be
approximated as: ∑

k ̸=0

Uk
ℓ,SOE ≈ Uk ̸=0

ℓ,∗ :=
H

P

P∑
η=1

φ̃RB(kη) (4.6)

where φ̃RB(k) satisfies

φ̃RB(k)e−
k2

4α = φ̃(k) , (4.7)

and the corresponding estimator of the force in Fourier space is given by

∑
k ̸=0

F k,i
ℓ,SOE ≈ F k ̸=0,i

ℓ,∗ = −H
P

P∑
η=1

∇ri
φ̃RB(kη) . (4.8)

Each φ̃RB(k) and∇ri
φ̃RB(k) are pairwise summations, fit into the general form of Eq. (3.22),

and can be efficiently computed using the recursive procedure outlined in Eqs. (3.24)-(3.26).
Due to the use of importance sampling, it is ensured that the aforementioned random esti-
mators are unbiased and have reduced variances, which will be proven in Section 4.2. It is
also worth noting that (1) the k = 0 mode is excluded in the stochastic approximation and
is always computed in an actual MD simulation. Since the averaged potential for the 0th
mode over the xy-plane equal to that of the exact 1/r potential, the SPMF condition [70] is
satisfied (only up to an O(ε) SOE approximation error); (2) for the k ̸= 0 modes, random
batch sampling is adopted, and it will be justified that P can be chosen independent of N ;
typically, one can choose P ∼ O(1).

In an actual MD simulation, one will utilize these unbiased estimators along with an
appropriate heat bath to complete the particle evolution. Except for the summation over
Fourier modes k, the methods of the RBSE2D for other components of both energy and force
are the same as those in the SOEwald2D, and the algorithm is outlined in Algorithm 2.

We now analyze the complexity of the RBSE2D method per time step. Similar to the
strategy in some FFT-based solvers [59, 11], one may choose α such that the time cost in
real space is cheap and the computation in the Fourier space is accelerated. More precisely,
one chooses

α ∼ N1/3

L
1/3
x L

1/3
y L

1/3
z

(4.9)

so that the complexity for the real space part is Cs ∼ O(N). By using the random batch
approximation Eq. (4.6), the number of frequencies to be considered is then reduced to O(P )
per step, and the complexity for the Fourier part is O(PN), even for the challenging cases
where the system is untra-thin, i.e., Lz ≪ min{Lx, Ly}. These imply that the RBSE2D
method has linear complexity per time step if one chooses P ∼ O(1), then by selecting
α according to Eq. (4.9), the overall complexity of the RBSE2D is O(N) for all quasi-2D
system setups.

4.2 Consistency and variance analysis

In this section, we provide theoretical analysis for the RBSE2D method. We start with
considering the fluctuations, i.e., the stochastic error introduced by the importance sampling
at each time step. The fluctuations for the Fourier space components of the energy and the
force acting on the ith particle are defined as follows:

Ξ :=
∑
k ̸=0

(
Uk
ℓ − Uk

ℓ,∗
)
, and χi :=

∑
k ̸=0

Ä
F k,i
ℓ − F k,i

ℓ,∗

ä
. (4.10)

Proposition 4.1 is obtained directly by the definition of the importance sampling:
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Algorithm 2 The random batch sum-of-exponentials Ewald2D method

1: Input: Initialize the size of the simulation box (Lx, Ly, Lz), as well as the positions,
velocities, and charges of all particles. Choose a precision requirement ε as well as batch
size P .

2: Precomputation: Determine Ewald splitting parameters α and s according to
Eqs. (4.9) and (2.35), respectively. Generate real space cutoff by rc = s/α. Construct
the SOE approximation of ξ±(k, z) and erf(αz) following Section 3.1.

3: procedure (RBSE2D)
4: Draw P frequencies {kη}Pη=1 using the Metropolis algorithm;
5: Sort all the particles according to their z coordinates, such that z1 < z2 < · · · < zN ;
6: Compute unbiased Fourier space energy Uk ̸=0,∗

ℓ by importance sampling Eq. (4.6);
7: Compute SOE-approximated zero-frequency part U0

ℓ,SOE according to Section 3.2.
8: Compute Uself and Up-s via Eqs. (2.20) and (C.10), respectively.
9: Compute Us by direct truncation in real space via Eq. (2.17) with cutoff rc.

10: Compute U∗ = Uk ̸=0,∗
ℓ + U0

ℓ,SOE − Uself + Us + Up-s.
11: Compute forces F ∗

i via a similar procedure as that of U∗.
12: end procedure
13: Output: Unbiased electrostatic energy U∗ and forces F ∗

i .

Proposition 4.1. Uk ̸=0
ℓ,∗ and F k ̸=0,i

ℓ,∗ are unbiased estimators, i.e. EΞ = 0, Eχi = 0, and
their variances can be expressed by

EΞ2 =
H

P

∑
k1 ̸=0

e−k2
1/(4α

2)

∣∣∣∣∣∣φ̃RB(k1)−
1

H

∑
k2 ̸=0

φ̃RB(k2)e
−k2

2/(4α
2)

∣∣∣∣∣∣
2

(4.11)

and

E|χi|2 =
H

P

∑
k1 ̸=0

e−k2
1/(4α

2)

∣∣∣∣∣∣∇ri
φ̃RB(k1)−

1

H

∑
k2 ̸=0

∇ri
φ̃RB(k2)e

−k2
2/(4α

2)

∣∣∣∣∣∣
2

. (4.12)

Furthermore, under the Debye-Hückel approximation, one has the following Lemma 4.2
for the upper bounds of random batch approximations.

Lemma 4.2. Under the assumption of the DH theory, |φ̃RB(k)| and |∇ri
φ̃RB(k)| have upper

bounds∣∣φ̃RB(k)
∣∣ ≤ 2

√
πλ2DQ

LxLyk

(√
π +

αε

k

)
,
∣∣∇ri

φ̃RB(k)
∣∣ ≤ πλ2Dq

2
i

LxLy

ñ
3 +

α√
π

Ç
1 +

2
√
2ε

k

åô
,

(4.13)
where λD represents the Debye length.

Proof. By the definition of φ̃RB(k), one has∣∣φ̃RB(k)
∣∣ ≤ 1

e−k2/(4α2)

(∣∣∣Uk
ℓ,SOE − Uk

ℓ

∣∣∣+ ∣∣∣Uk
ℓ

∣∣∣) . (4.14)

An estimation for the first term is given in Theorem 3.5. To estimate the second term, one
may write Eq. (3.17) as

Uk
ℓ =

π

2LxLy

N∑
i,j=1

qiqj
eik·ρij

k

[
ξ+(k, zij) + ξ−(k, zij)

]
. (4.15)

Then using the integral representation of ξ± Eq. (3.4), one obtains the following estimate

e
k2

4α2
[
ξ+(k, z) + ξ−(k, z)

]
=

2α√
π

Å
ekz
∫ ∞

z

e−α2t2−ktdt+ e−kz

∫ ∞

−z

e−α2t2−ktdt

ã
≤ 4α√

π

∫ ∞

−∞
e−α2t2dt = 4 .

(4.16)
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By employing the DH approximation, one has∣∣φ̃RB(k)
∣∣ ≤ 2

√
πλ2DQ

LxLyk

(√
π +

αε

k

)
. (4.17)

Similarly, by taking z-derivative of the integral form of ξ±, the following estimate holds:

e
k2

4α2 ∂z
[
ξ+(k, z) + ξ−(k, z)

]
=

2α√
π
∂z

Å
e±kz

∫ ∞

±z

e−α2t2−ktdt

ã
≤ 2α√

π
k

Å
e±kz

∫ ∞

−∞
e−α2t2−ktdt+ e−α2z2

ã
≤
Å
2 +

2α√
π

ã
k .

(4.18)

Combining Lemma F.1 with Eq. (4.18) and using the DH approximation again give∣∣∇ri
φ̃RB(k)

∣∣ ≤ 1

e−k2/(4α2)

(∣∣∣∇ri
Uk
ℓ,SOE −∇ri

Uk
ℓ

∣∣∣+ ∣∣∣∇ri
Uk
ℓ

∣∣∣)
≤ πλ2Dq

2
i

LxLy

ñ
3 +

α√
π

Ç
1 +

2
√
2ε

k

åô
.

(4.19)

Finally, by Lemma 4.2, one has the following Theorem 4.3 for the boundness and con-
vergence in the fluctuations originated from the random batch approximation.

Theorem 4.3. Under the assumption of the DH theory, further assume that the SOE ap-
proximation error ε ≪ 1. Then the variances of the estimators of energy and forces have
closed upper bounds

EΞ2 ≤ H

P

16π3/2λ4DαQ
2

LxLy
, E|χi|2 ≤ H

P

4
√
πα3(3

√
π + α)λ4Dq

4
i

LxLy
. (4.20)

Proof. By Proposition 4.1 and the definition of normalization factor H, one has

EΞ2 =
1

P

∑
k1 ̸=0

∑
k2 ̸=0

e−(k2
1+k2

2)/(4α
2)
[
φ̃RB(k1)− φ̃RB(k2)

]2

=
2

P

∑
k1 ̸=0

∑
k2 ̸=0

e−(k2
1+k2

2)/(4α
2)φ̃RB(k1)

2 − 2

P

∑
k ̸=0

e−k2/(4α2)φ̃RB(k)

2

≤ 2H

P

∑
k ̸=0

e−k2/(4α2)
∣∣φ̃RB(k)

∣∣2 .
(4.21)

Then by using the upper bound of
∣∣φ̃RB(k)

∣∣ given in Lemma 4.2, one has

EΞ2 ≤ 2λ4DQ
2H

πPLxLy

∫ ∞

2π
L

e−k2/(4α2)

k2

(√
π +

αε

k

)2
4πk2dk

≤ H

P

16π3/2λ4DαQ
2

LxLy
,

(4.22)

where the O(ε) and O(ε2) terms are omitted. Analogously, the variance of force can be
estimated by

E|χi|2 ≤ 2H

P

∑
k ̸=0

e−k2/(4α2)
∣∣∇ri φ̃

RB(k)
∣∣2

≤ λ4DHq
4
i

2PLxLy

∫ ∞

2π
L

e−k2/(4α2)

ñ
3 +

α√
π

Ç
1 +

2
√
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k

åô2
4πk2dk
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P

4
√
πα3(3

√
π + α)λ4Dq

4
i

LxLy
.

(4.23)
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Finally, by definition Eq. 4.4, H has the following estimate:

H =
∑
k ̸=0

e−k2/(4α2) ≤ LxLy

(2π)2

∫ ∞

2π
L

e−k2/(4α2)4πk2dk ≤ 2α2LxLy√
π

. (4.24)

Substituting Eq. (4.24) into Eq. (4.23) gives E|χi|2 = O(1/P ), and Eq. (4.23) clearly shows
the independence of the estimate on the particle number N .

Theorem 4.3 has demonstrated that the variance of force scales as O(1/P ), unaffected
by the growth of the system size N , provided the same particle density ρs or Debye length
λD. This is crucial for its practical usage in MD simulations, where the dynamical evolution
typically relies on force calculations rather than energy. In the next section, analyses for the
strong convergence and geometric ergodicity for the random batch MD will be discussed,
which further supports this observation.

4.3 Strong convergence and geometric ergodicity

In this section, the convergence and ergodicity of the random batch accelerated MD method,
the RBSE2D, will be discussed based on the conclusions given in Section 4.2.

One first introduces some additional notations. Let ∆t be the discretized time step, and
ri, mi, and pi represent the position, mass, and momentum of the ith particle, respectively.
In each time step of the simulation, the forces (energies) are computed, and the dynamics are
subsequently evolved. For the ease of discussion, consider the widely used NVT ensemble, a
thermostat is introduced to control the system’s temperature, which ensures sampling from
the correct distribution. Here, one considers the dynamics with Langevin thermostat [2]:

dri =
pi
mi

dt,

dpi =

ï
Fi − γ

pi
mi

ò
dt+

 
2γ

β
dWi,

(4.25)

whereWi are i.i.d. Wiener processes, γ is the reciprocal characteristic time associated with
the thermostat. Let (r∗i ,p

∗
i ) be the phase space trajectory to Eq. (4.25), where the exact

force Fi is replaced by the random batch approximated stochastic force F ∗
i = Fi − χi. We

further suppose that masses mi for all i are uniformly bounded. The geometric ergodicity
is crucial for assessing how quickly the distribution converges to the invariant distribution.
Let W1(µ, ν) represent the Wasserstein-1 distance:

W1(µ, ν) := inf
Γ∈Π(µ,ν)

∫
RdN×RdN

(
1

N

N∑
i=1

|xi − yi|

)
dΓ , (4.26)

where Π(µ, ν) includes all joint distributions with marginal distributions µ and ν, and
{x1, . . . ,xN} ∼ µ, {y1, . . . ,yN} ∼ ν. With these notations, the following theorems are
introduced.

Theorem 4.4. (Strong Convergence) Suppose for ∀i, the force Fi is bounded and Lipschitz
and Eχi = 0. Under the synchronization coupling assumption that the same initial values
as well as the same Wiener process Wi are used, then for any T > 0, there exists C(T ) > 0
such that

sup
t∈[0,T ]

(
E

[
1

N

N∑
i=1

Ä
|ri − r∗i |

2
+ |pi − p∗i |

2
ä])1/2

≤ C(T )
»
Λ(N)∆t , (4.27)

where Λ(N) = ∥E |χi|2 ∥∞ is the upper bound for the variance in the random batch approx-
imated force. In the Debye-Hückel regime, Λ(N) is independent of N (see Theorem 4.3).
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In practice, Euler-Maruyama (EM) scheme [76]) is usually used for time discretization for
such SDEs. The error introduced by the EM scheme is no better than O(

√
∆t), eliminating

the need to varying ∆t for RBSE2D-based MD simulations. The error analysis for the
resulting discrete-time dynamics in Theorem 4.4 can be readily established following [77, 78].
For long-time simulations, a uniform-in-time error estimate can be established similar to [79],
under some stronger force regularity assumptions.

Theorem 4.5. (Geometric Ergodicity) Suppose that for ∀i the force Fi is Lipschitz and
its derivatives up to third order are bounded, and the stochastic force F ∗

i is an unbiased
estimate with variance ∼ O(1/P ). Then the dynamics evolved by F ∗

i has a unique invariant
distribution Q∗(dx) satisfying

W1(Q,Q∗) ≤ C1

…
∆t

P
+∆t2. (4.28)

The constant C1 does not depend on the number of particles N, the time step ∆t or the batch
size P .

Moreover, under the reflection coupling assumption [80], and let Y ∗
t be the transition

kernel of the RBSE2D-based dynamics, one has

W1(νY
∗
T ,Q

∗) ≤ e−C2TW1(ν,Q
∗) (4.29)

and

W1(νY
∗
T ,Q) ≤ C3

ñ
e−C2TW1(ν,Q) +

…
∆t

P
+∆t2

ô
(4.30)

for some initial distributions ν, constants C2 and C3, and time T > 0.

The proofs of Theorems 4.4 and 4.5 follow from previous works [81, 77, 82], developed
for the original random batch method [62]. Theorem 4.4 indicates that the random batch
method is valid in capturing the finite time structure and dynamic properties. Theorem 4.5
states the existence of the invariant distribution in the RBSE2D-based MD, providing a
reliable approximation to the correct NVT ensemble Q(dx) ∝ e−βHdx with H being the
Hamiltonian. It also ensures efficient exploration of the entire state space and rapid attain-
ment of the desired equilibrium distribution. These theorems indicate that the introduced
stochastic errors tend to cancel out over time due to the consistent force approximation.
This “law of large numbers” effect enables the random batch method to perform well in dy-
namical simulations, despite its single-step error not being as accurate as other deterministic
methods.

It should be noted that, for quasi-2D Coulomb systems, a rigorous proof remains chal-
lenging. Since the required conditions for Theorem 4.4, namely, the Lipschitz and boundness
in forces, does not hold for the Coulomb interaction at r = 0. However, we expect Theo-
rems 4.4 and 4.5 still hold due to (1) the common use of Lennard-Jones (LJ) interaction in
MD simulations to model the strong inter-particle repulsion at short distance and (2) the
significant variance reduction achieved through the importance sampling technique.

4.4 Further discussions

In this section, further discussions about using the RBSE2D method for MD simulations
under other thermostats and ensembles are provided.

In practice, the Nosé-Hoover (NH) thermostat [83] is often adopted for the heat bath,
instead of the Langevin thermostat. The rigorous proof for the convergence of random
batch approximated dynamics with the NH thermostat remains open, whereas we expect
Theorems 4.4 and 4.5 still hold. This is because the damping factor introduced in the NH
allows adaptively dissipating artificial heat [84], while preserving ergodicity and maintaining
the desired Gibbs distribution under the NVT ensemble [85].

In line with discussions in [86], the RBSE2D-accelerated Langevin and NH dynamics
can be extended to the NPT ensemble by incorporating the approximation of the virial
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tensor. Other well-known integrators, such as Berendsen [87] and Martyna-Tuckerman-
Tobias-Klein [88], are also compatible with the RBSE2D. However, extending the RBSE2D
to the NVE ensemble poses extra challenge since the Hamiltonian system is disrupted by
the random batch sampling, which can be resolved by a modified Newtonian dynamics [89]:

dri =
pi
mi

dt, dpi = [Fi − χi] dt,

dK =
1

γ
[H0 −H+ Ξ] dt.

(4.31)

Here, Ξ and χi represent the fluctuations of energy and force, as defined in Eq. (4.10).
K =

∑
|pi|2/2mi denotes the instantaneous kinetic energy, and H0 and H represent the

Hamiltonian at the initial and current time steps, respectively. The parameter γ represents
the relaxation time, determining the interval between successive dissipations of artificial heat
within the system. An optimal choice for γ typically falls in the range of 10 ∼ 100∆t. It
is worth noting that the distributions obtained using Eq. (4.31) have a small deviation of
O(∆t2/P ) compared to the correct NVE ensemble [89].

5 Numerical results

In this section, numerical results are presented to verify the accuracy and efficiency of the
proposed methods. The accuracy of the SOEwald2D method is first assessed by compar-
ing it with the original Ewald2D summation. This analysis demonstrates the convergence
properties of the SOEwald2D method and its ability to maintain a uniformly controlled
error bound. Subsequently, we employ both the SOEwald2D and RBSE2D methods in MD
simulations for three prototypical systems. These systems include 1 : 1 electrolytes confined
by charge-neutral or charged slabs, as well as simulations of cation-only solvent confined
by negatively charged slabs. Finally, the CPU performance of the proposed methods is
presented. All these calculations demonstrate the attractive features of the new methods.

5.1 Accuracy of the SOEwald2D method

In order to verify the convergence of the SOEwald2D method discussed in Section 3.3, one
considers a system with equal dimensions of Lx = Ly = Lz = 100, containing randomly
distributed 50 cations and 50 anions with strengths q = ±1, and confined by neutral slabs.
The original Ewald2D summation (outlined in Section 2.2) serves as a reference method.
The Ewald splitting parameter α is fixed as 0.1 for both the SOEwald2D and Ewald2D, and
the cutoffs rc and kc are determined by Eq. (2.34).

The absolute error in electrostatic energy as a function of s is calculated. The results are
presented in Figure 2(a) for different number of exponentials in the SOE. Specifically,M = 4,
8 and 16 correspond to SOE approximation errors ε = 10−4, 10−8, and 10−14, respectively.
The convergence behavior depicted in Figure 2(a) is consistent with our theoretical findings,

demonstrating both a decaying rate of O(e−s2/s2) and a saturated precision of O(ε) for
the SOEwald2D method. We also investigate how the relative error in energy varies as
the system size scales, while keeping the density ρs constant. The results presented in
Figure 2(b) reveal that the error is nearly unaffected by the size of the system, which aligns
with the analysis presented in Section 3.3.

As discussed at the end of Section 2.2, one notable drawback of the original Ewald2D
method is the occurrence of catastrophic error cancellation when the size of the non-periodic
dimension increases. To quantify this effect, one shall study the absolute error in electro-
static energy as a function of Lz. The Ewald2D truncation parameter s = 3, 4, 5 are chosen
for M = 4, 8, 16, respectively, to obtain optimal accuracy as is guided by Figure 2 (a). The
system consists of 100 uniformly distributed particles, with dimensions Lx = Ly = 100
along the periodic dimensions, and the Ewald parameter is set to be α = 0.1. A double-
precision floating-point (FP64) arithmetic for both the Ewald2D and SOEwald2D methods
is employed, while the reference solution is obtained using the Ewald2D with a quadruple-
precision floating-point (FP128) arithmetic, ensuring a sufficient number of significant digits.

22



Figure 2: Accuracy in the electrostatic energy by the SOEwald2D method. (a): absolute error as a
function of s; (b): relative error as a function of total number of ions N with fixed ion density ρs.
Results with different number of exponentials M are considered.

Figure 3: The absolute error in electrostatic energy is evaluated for the SOEwald2D method using
three sets of parameters, as well as for the Ewald2D method with s = 5, as a function of the system’s
thickness Lz.

The results presented in Figure 3 clearly illustrate that the error of the Ewald2D method
increases rapidly with Lz. In contrast, the error of the SOEwald2D method remains in-
dependent of Lz for various values of s and M , thanks to its stable and well-conditioned
summation procedure.

For many existing methods, the accurate evaluation of the forces exert on particles can
be strongly influenced by the particle’s location in z. Due to the uniform convergence of
SOE approximation, our method does not suffer from this issue, which is illustrated by two
commonly employed examples that have been extensively studied in literature [11, 90]. In
the first example, one considers a system consisting of 50 anions and 50 cations arranged in
a cubic geometry with a side length of 100, along with neutral slabs. The pointwise error

of the force, represented as
»

E 2
x + E 2

y + E 2
z , is calculated as a function of the particles’ z-

coordinates. This evaluation is conducted for various (s,M) pairs, with the Ewald splitting
parameter α = 0.1. Figure 4(a) clearly demonstrates that the pointwise error in force is
independent with its relative position in z. In the second example, one considers a system
of the same size but with two non-neutral slabs. The surface charge densities are set as
σtop = σbot = −0.005, and the system contains 100 monovalent cations such that the
neutrality condition Eq. (2.25) is satisfied. Figure 4(b) indicates that for such non-neutral
slabs case, the pointwise error in forces calculated by the SOEwald2D method remains
independent with z.
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Figure 4: The absolute error in the pointwise electrostatic forces calculated using the SOEwald2D
versus particles’ z-coordinates. Two different scenarios are considered: (a) uniformly distributed
50 anions and 50 cations and (b) uniformly distributed 100 cations with surface charge densities
σtop = σbot = −0.005.

5.2 Accuracy of the RBSE2D method

In contrast to the deterministic SOEwald2D and Ewald2D methods, the RBSE2D employs
unbiased stochastic approximations and its convergence should be investigated in the sense
of ensemble averages, as has been carefully discussed in Sec. 4. Therefore, we conduct a
series of MD simulations to validate the accuracy of the ensemble averaged equilibrium
and dynamical quantities such as particles’ concentrations and mean-squared displacements
(MSD) computed using the RBSE2D algorithm.

The first benchmark example is a coarse-grained MD simulation of 1 : 1 electrolytes in the
NVT ensemble. Following the primitive model [2], ions are represented as soft spheres with
diameter σ and mass m, interacting through the Coulomb potential and a purely repulsive
shifted-truncated Lennard Jones (LJ) potential. The LJ potential is given by

ULJ(r) =

4ϵ

ï(σ
r

)12
−
(σ
r

)6
+

1

4

ò
, r < rLJ,

0, r ≥ rLJ,
(5.1)

where rLJ = 21/6σ is the LJ cutoff, ϵ = kBT is the coupling strength, kB is the Boltzmann
constant, and T is the external temperature. The simulation box has dimensions Lx = Ly =
100σ and Lz = 30σ, where the ions confined within the central region by purely repulsive LJ
walls located at z = 0 and z = 30σ with ϵwall = ϵLJ and σwall = 0.5σ. The system contains
218 cations and anions, and both two walls are neutral. The simulation is performed with the
time step ∆ = 0.001τ , where τ =

√
mσ2/ϵLJ denotes the LJ unit of time. The temperature

is maintained by using a Nosé-Hoover thermostat [2] with relaxation times 0.1τ , fluctuating
near the reduce external temperature T = 1. The system is first equilibrated for 5 × 105

steps, and the production phase lasts another 1×107 steps. The configurations are recorded
every 100 steps for statistics. Results produced by the SOEwald2D method with parameters
α = 0.1, s = 4, and M = 8 serve as the reference solution, where ε ∼ 10−8.

The ion concentration along the z-direction is measured, and presented in Figure 5. For
the RBSE2D method, simulations with varying batch sizes P are performed, while keeping
other parameters fixed at α = 0.3, s = 4, and M = 8. It is observed that the results for
all choices of P are in excellent agreement with those obtained using the accurate SOE-
wald2D method. Furthermore, one evaluates the MSDs along both the periodic dimensions
(Figure 5(a)) and the non-periodic dimension (Figure 5(b)), which describe the particles’
anisotropic dynamic properties across a wide range of time scales. The RBSE2D methods
for all P yield almost identical MSD results as the SOEwald2D method. The confinement
effect in z leads to a MSDz profile that clearly indicates a subdiffusion, while MSDxy ex-
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Figure 5: (a) The concentration of cations along z, with subplot indicating the convergence in the
relative error of the average electrostatic energy as a function of batch size P ; (b) and (c) the MSD
profiles in xy and z against time for a 1 : 1 electrolyte confined by neutral slabs. Results by using
different batch sizes P = 20, 30, 60, 120 are shown.

hibits a normal diffusion process. Clearly, the RBSE2D method successfully captures this
anisotropic collective phenomenon.

To assess the performance of our RBSE2D method for systems with non-neutral slabs,
one studies a 1 : 1 electrolyte containing 218 anions and 218 cations with q = ±1, and with
surface charge densities σbot = 0.0218 and σtop = −0.0218. The simulation box is set to be
Lx = Ly = 100σ and Lz = 30σ. The resulting equilibrium concentration of cations is shown
in Figure 6(a), indicating that results of RBSE2D method with different batch sizes are in
good agreement with that of the reference SOEwald2D method.

We further investigate the most challenging scenario for a system with free cations only,
which are confined by non-neutral slabs, so that boundary layers can form at the vicinity
of the slabs. In particular, the system consists of 436 monovalent cations and is confined
by slabs with surface charge densities σbot = 0 and σtop = −0.0436 to ensure overall charge
neutrality. The concentration of free ions is depicted in Figure 6(b), exhibiting excellent
agreement with the results obtained using the SOEwald2D method. These findings indicate
that choosing a small batch size P ∼ O(1) is sufficient for generating accurate MD results
by using the RBSE2D method.

5.3 CPU performance

The CPU performance comparisons among the SOEwald2D, RBSE2D, and the original
Ewald2D methods are conducted for MD simulations of 1 : 1 electrolyte systems with varying
system sizes. All calculations are performed on a Linux system equipped with an Intel
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Figure 6: Concentration of cations in z for (a) a 1 : 1 electrolyte confined between two charged slabs
and (b) a cations-only system confined between two slabs, one of which is charged to neutralize the
system.

Xeon Platinum 8358 CPU (2.6 GHz, 1 single core); and by using a self-developed package
developed in Julia language. To guarantee a fair comparison, for all the methods, we fix the
same accuracy by setting s = 4, and setM = 8 for SOE approximation, P = 120 for random
batch sampling, so that both approximations will not affect the accuracy of the MD results,
as has been illustrated in the previous numerical results. Finally, for each of the methods,
the Ewald splitting parameter α is always adjusted to achieve optimal efficiency. The CPU
time comparison results are summarized in Figure 7. It is evident that the CPU cost of
the Ewald2D, SOEwald2D, and RBSE2D methods scale as O(N2), O(N7/5), and O(N),
respectively, which is consistent with our complexity analysis. Remarkably, the RBSE2D
method demonstrates a significant speedup of 3× 103-fold compared to the Ewald2D for a
system with N = 104 particles, enabling large-scale MD simulations on a single core.

An additional observation is regarding the memory consumption and data input/output
(I/O) on the maximum system size that can be simulated using the same computational
resources. In Figure 7, it is demonstrated that when utilizing a single CPU core, the Ewald2D
and SOEwald2D methods are limited to simulating system sizes of up to about 3× 104 and
3 × 105 particles, respectively. In contrast, the RBSOEwald method can handle systems
containing about 5× 106 particles. This is attributed to the reduced number of interacting
neighbors that need to be stored in the RBSE2D algorithm, allowing a much smaller real
space cutoff rc. This significant saving in memory consumption is achieved by the algorithm
developed in this study, highlighting its potential as an effective algorithm framework for
large-scale simulations of quasi-2D Coulomb systems.

6 Conclusions

We have proposed the random batch SOEwald2D (RBSE2D) method for MD simulations
of doubly periodic systems confined by charged slabs. The method utilizes Ewald splitting,
and employs the SOE approximation in the non-periodic dimensions and the random batch
importance sampling technique for efficient treatment of the Fourier sum in the periodic di-
mensions. Compared to the original Ewald2D summation, the RBSE2D avoids exponential
blowup, and reduces the computational complexity from O(N2) to O(N) as well as mem-
ory consumption. Extensive MD simulations are performed to demonstrate the excellent
accuracy and performance of the RBSE2D method.

The SOEwald2D can be easily extended to handle other interaction kernels, such as
dipolar crystals and Yukawa potentials [7, 91], by utilizing kernel-independent SOE methods
such as the VPMR [54]. Our future work will focus on incorporating such techniques into
large scale numerical simulations involving long-range interaction kernels. We also aim to
address the issue of dielectric mismatch, important in investigating the interfacial phenomena
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Figure 7: The CPU time cost for the Ewald2D, SOEwald2D, and RBSE2D methods versus the
number of particles N , with fixed particle density ρs.

in electrodes and polyelectrolyte materials [92, 93]. Additionally, we will explore CPU/GPU-
based parallelization to further enhance our research.
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A Fundamental results from Fourier analysis

In this appendix, we state several fundamental results from Fourier analysis for doubly
periodic functions, associated with the Fourier transform pair defined in Definition 2.3.
These results are useful for us, and their proofs are well established and can be referenced
in classical literature, such as in the work of Stein and Shakarchi [94].

Lemma A.1. (Convolution theorem) Let f(ρ, z) and g(ρ, z) be two functions which are

periodic in ρ and non-periodic in z. Suppose that f and g have Fourier transform f̃ and g̃,
respectively. Their convolution is defined by

u(ρ, z) := (f ∗ g)(ρ, z) =
∫
R2

∫
R
f(ρ− ρ′, z − z′)g(ρ′, z′)dz′dρ′, (A.1)

satisfying
ũ(k, κ) = f̃(k, κ)g̃(k, κ). (A.2)

Lemma A.2. (Poisson summation formula) Let f(ρ, z) be a function which is periodic in

ρ and non-periodic in z. Suppose that f has Fourier transform f̃ and r = (ρ, z). Then one
has ∑

m∈Z2×{0}

f(r +M) =
1

2πLxLy

∑
k∈K2

∫
R
f̃(k, κ)eik·ρeiκzdκ. (A.3)
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Lemma A.3. (Radially symmetric functions) Suppose that f(ρ, z) is periodic and radi-

ally symmetric in ρ, i.e., f(ρ, z) = f(ρ, z). Then its Fourier transform f̃ is also radially
symmetric. Indeed, one has

f̃(ρ, z) = 2π

∫ ∞

0

J0(kρ)f(ρ, z)ρdρ. (A.4)

B Proof of Lemma 2.4

By applying the Fourier transform to Poisson’s equation

−∆ϕℓ(ρ, z) = 4πg(ρ, z) ∗ τ(ρ, z), (B.1)

one obtains

ϕ̃ℓ(k, κ) =
4π

k2 + κ2
g̃(k, κ)τ̃(k, κ) with g̃(k, κ) =

N∑
j=1

qje
−ik·ρje−iκzj (B.2)

via the convolution theorem and the Poisson summation formula (see Lemmas A.1 and A.2,
respectively). Applying the inverse Fourier transform to Eq. (B.2) yields

ϕℓ(ρ, z) =
2

LxLy

N∑
j=1

qj
∑
k ̸=0

∫
R

e−(k2+κ2)/(4α2)

k2 + κ2
e−ik·(ρ−ρj)e−iκ(z−zj)dκ+ ϕ0ℓ (z), (B.3)

where ϕ0ℓ (z) is the contribution from zero mode. From [56], one has∫
R

e−(k2+κ2)/(4α2)

k2 + κ2
e−iκzdκ =

π

2k

[
ξ+(k, z) + ξ−(k, z)

]
(B.4)

for k ̸= 0, where ξ±(k, z) are defined via Eq. (3.4). Substituting Eq. (B.4) into the first
term of Eq. (B.3) yields ϕkℓ (r) defined via Eq. (2.22).

By Theorem 2.1, the zero-frequency term ϕ0ℓ (z) always exists and its derivation is very
subtle. Let us apply the 2D Fourier transform (see Lemma A.3) to Poisson’s equation
Eq. (B.1) only on periodic dimensions, and then obtain

(−∂2z + k2)ϕ̂ℓ(k, z) = 4πĝ(k, z) ∗z τ̂(k, z), (B.5)

where ∗z indicates the convolution operator along z dimension. Simple calculations suggest

ĝ(k, z) =

N∑
j=1

qje
−ik·ρjδ(z − zj), and τ̂(k, z) =

α√
π
e−k2/(4α2)e−α2z2

. (B.6)

The solution of Eq. (B.5) for k = 0 can be written as the form of double integral that is
only correct up to a linear mode,

ϕ0ℓ (z) = − 4π

LxLy

∫ z

−∞

∫ z1

−∞
ĝ(0, z2) ∗z2 τ̂(0, z2)dz2dz1 +A0z +B0

= − 2π

LxLy

N∑
j=1

qj

ñ
z − zj + (z − zj)erf (α(z − zj)) +

e−α2(z−zj)
2

√
πα

ô
+A0z +B0.

(B.7)

To analyze the short-range component ϕs(ρ, z) using a procedure similar to Eqs. (B.1)-(B.4),
one obtains

ϕ0s (z) =
π

LxLy

N∑
j=1

lim
k→0

1

k

î
2e−k|z| − ξ+(k, z)− ξ−(k, z)

ó
=

2π

LxLy

N∑
j=1

qj

ñ
−|z − zj |+ (z − zj)erf (α(z − zj)) +

e−α2(z−zj)
2

√
πα

ô
.

(B.8)
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Since ϕ0s (z)+ϕ
0
ℓ (z) matches the boundary condition Eq. (2.5) as z → ±∞ and by the charge

neutrality condition, one solves

A0 =
2π

LxLy

N∑
j=1

qjz ≡ 0, and B0 = − 2π

LxLy

N∑
j=1

qjzj . (B.9)

This result finally gives

ϕ0ℓ (z) = − 2π

LxLy

N∑
j=1

qj

ñ
(z − zj)erf (α(z − zj)) +

e−α2(z−zj)
2

√
πα

ô
. (B.10)

C Systems with charged slabs

In the presence of charged slabs, boundary layers naturally arise – opposite ions accumulate
near the interface, forming an electric double layer. The structure of electric double layers
plays essential role for properties of interfaces and has caught much attention [95, 96, 97].
Since charges on the slabs are often represented as a continuous surface charge density, we
present the Ewald2D formulation with such a situation can be well treated.

Without loss of generality, one assumes that the two charged slab walls are located at
z = 0 and z = Lz and with smooth surface charge densities σbot(ρ) and σtop(ρ), respectively.
Note that both σbot(ρ) and σtop(ρ) are doubly-periodic according to the quasi-2D geometry.
Under such setups, the potential ϕ can be written as the sum of particle-particle and particle-
slab contributions,

ϕ(r) = ϕp-p(r) + ϕp-s(r). (C.1)

Here, ϕp-p satisfies Eq. (2.1) associated with the boundary condition Eq. (2.10). Note that
Eq. (2.5) does not apply since the particles are overall non-neutral. ϕp-s satisfies

−∆ϕp-s(r) = 4πh(r), with h(r) = σbot(ρ)δ(z) + σtop(ρ)δ(z − Lz), (C.2)

with the boundary condition

lim
z→±∞

ϕp-s(r) = ∓ 2π

LxLy

Å∫
R2

σbot(ρ)|z|dρ+

∫
R2

σtop(ρ)|z − Lz|dρ
ã

(C.3)

which is simply the continuous analog of Eq. (2.10).
The potential ϕp-p then follows immediately from Lemma 2.4

ϕp-p(ri) = ϕs(ri) +
∑
k ̸=0

ϕkℓ (ri) + ϕ0ℓ (ri)− ϕiself, (C.4)

with each components given by Eqs. (2.17), (2.22), (2.24), and (2.20), respectively. The
2D Fourier series expansion of ϕp-s is provided in the following Theorem C.1, where its
convergence rate is controlled by the smoothness of surface charge densities.

Theorem C.1. Suppose that σ̂bot and σ̂top are two-dimensional Fourier transform (see
Lemma A.3) of σbot and σtop, respectively. By Fourier analysis, the particle-slab component
of the electric potential is given by

ϕp-s(ri) =
2π

LxLy

∑
k ̸=0

eik·ρi

k

î
σ̂bot(k)e

−k|zi| + σ̂top(k)e
−k|zi−Lz|

ó
+ ϕ0p-s(ri) , (C.5)

where the 0-th mode reads

ϕ0p-s(ri) = − 2π

LxLy

[
σ̂bot(0)|zi|+ σ̂top(0)|zi − Lz|

]
. (C.6)
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Proof. For k ̸= 0, applying the quasi-2D Fourier transform to both sides of Eq. (C.2) yields

ϕ̃p-s(k, κ) =
4π

k2 + κ2
[
σ̂bot(k) + σ̂top(k)e

−iκLz
]
. (C.7)

For k = 0, one first applys the 2D Fourier transform in xy to obtain(
−∂2z + k2

)
ϕ̂(k, z) = 4π [σ̂bot(k)δ(z) + σ̂top(k)δ(z − Lz)] . (C.8)

By integrating both sides twice and taking k = 0, the 0-th mode follows

ϕ̂(0, z) = −2π [σ̂bot(0)|z|+ σ̂top(0)|z − Lz|] +A0z +B0 , (C.9)

where A0 and B0 are undetermined constants. Finally, applying the corresponding inverse
transforms to ϕ̃p-s(k, κ) and ϕ̂(0, z) such that the boundary conditions Eq. (C.3) is matched,
one has A0 = B0 = 0. The proof of Eqs. (C.5)-(C.6) is then completed.

Consider the ideal case that both σbot and σtop are uniformly distributed. This simple
setup is widely used in many studies on interface properties. Since in this case all nonzero
modes vanish, one has

ϕp-s(ri) = ϕ0p-s(ri) = −2π [σtop(Lz − zi) + σbot(zi − 0))] , (C.10)

for all zi ∈ [0, Lz]. Here zero is retained to indicate the location of bottom slab.
For completeness, Proposition C.2 provides the result of the well-definedness.

Proposition C.2. The total electrostatic potential ϕ is well-defined.

Proof. For any finite z, ϕ is clearly well defined. Consider the case of z → ±∞. By boundary
conditions (2.10) and (C.3) and the charge neutrality condition Eq. (2.25), one has

lim
z→±∞

ϕ(r) = lim
z→±∞

[ϕp-p(r) + ϕp-s(r)]

= ± 2π

LxLy

 N∑
j=1

qjzj +

∫
R2

(0σbot(ρ) + Lzσtop(ρ)) dρ

 (C.11)

which is a finite constant. Thus the proof is completed.

For the the particle-slab interaction formulation, we observe a constant discrepancy be-
tween Eq. (C.10) derived here and those in literature [98, 99]. It is because here one starts
with the precise Ewald2D summation approach, different from the approach of employing
approximation techniques to transform the original doubly-periodic problem into a triply-
periodic problem first, and subsequently introducing charged surfaces. This constant dis-
crepancy makes no difference in force calculations for canonical ensembles. However, for
simulations under isothermal-isobaric ensembles, this Lz-dependent value is important for
the pressure calculations. And one should use Eq. (C.10) derived here for correct simulations.

Based on the expression of electrostatic potential ϕ derived above, the total electrostatic
energy can be computed via the Ewald2D summation formula:

U = Up-p + Up-s, with Up-p := Us +
∑
k ̸=0

Uk
ℓ + U0

ℓ − Uself , (C.12)

where U∗ =
∑

i ϕ∗ with ∗ representing any of the subscripts used in Eq.(C.12).

D The ideal-gas assumption for error analysis

Let ψ represent a statistical quantity in an interacting particle system, and we aim to analyze
its root mean square value given by

δψ :=

Ã
1

N

N∑
i=1

∥ψi∥2, (D.1)
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where Si denotes the quantity associated with particle i (e.g., energy for one dimension or
force for three dimensions). Assume that ψi takes the form

ψi = qi
∑
j ̸=i

qjζij , (D.2)

due to the superposition principle of particle interactions, which implies that the total effect
on particle i can be expressed as the sum of contributions from each i − j pair (including
periodic images). Here, ζij represents the interaction between two particles. The ideal-gas
assumption leads to the following relation

⟨ζijζik⟩ = δjk
〈
ζ2ij
〉
:= δjkζ

2, (D.3)

where the expectation is taken over all particle configurations, and ζ is a constant. This
assumption indicates that any two different particle pairs are uncorrelated, and the variance
of each pair is expected to be uniform. In the context of computing the force variance of a
charged system, this assumption implies that〈

∥ψi∥2
〉
= q2i

∑
j,k ̸=i

qjqk ⟨ζijζik⟩ ≈ q2i ζ
2Q, (D.4)

where Q represents the total charge of the system. By applying the law of large numbers, one
obtains δψ ≈ ζQ/

√
N , which can be utilized for the mean-field estimation of the truncation

error.

E Proof of Theorem 2.5

We begin by considering the real space truncation error of electrostatic potential

Eϕs
(rc, α)(ri) =

∑
|rij+M|>rc

qj
erfc(α|rij +M|)

|rij +M|
(E.1)

for ith particle, which involves neglecting interactions beyond rc. By the analysis in D, this
part of error can be approximated by δEϕs

with

δ2Eϕs
=

1

V

N∑
j=1

q2j

∫ ∞

rc

erfc(αr)2

r2
4πr2dr =

4πQ

V
Qs(α, rc), (E.2)

where Qs(α, rc) is defined via Eq. (2.30). Note that the erfc(r) function satisfies ([100], pp.
109-112)

erfc(r) =
e−r2

√
π

∞∑
m=0

(−1)m
Å
1

2

ã
m

z−(2m+1) (E.3)

as r → ∞, where (x)m = x(x− 1) · · · (x−m+ 1) = x!/(x−m)! denotes the Pochhammer’s
symbol. Substituting Eq. (E.3) into Eq. (E.2) and truncating at m = 1 yields Eq. (2.31).

The Fourier space error, by Appendix B, is given by

Eϕℓ
(kc, α)(ri) =

2

LxLy

N∑
j=1

qj
∑

|k|>kc

∫
R

e−(k2+κ2)/(4α2)

k2 + κ2
e−ik·(ρ−ρj)e−iκ(z−zj)dκ. (E.4)

For a large kc, one can safely replace the truncation condition with |k + κ| > kc, resulting
in

Eϕℓ
(kc, α)(ri) ≈

1

2π2

N∑
j=1

qj

∫ ∞

kc

∫ 1

−1

∫ 2π

0

e−k2/(4α2)e−ikrij cosφdθd cosφdk

=
2

π

∫ ∞

kc

N∑
j=1

qj
sin(krij)

krij
e−k2/(4α2)dk.

(E.5)
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Here, the summation over Fourier modes is approximated using an integral similar to
Eq. (3.35), and one chooses a specific (k, θ, φ) so that the coordinate along cos θ of k is
in the direction of a specific vector r, and k ·r = kr cosφ. The resulting formula is identical
to Eq. (21) in [37] for the fully-periodic case, and δEϕℓ

can be derived following the approach
in [37].

F Force expression of the SOEwald2D

The Fourier component of force acting on the ith particle can be evaluated by taking the
gradient of the energy with respect to the particle’s position vector ri,

F i
ℓ ≈ F i

l,SOE = −∇riUℓ,SOE = −
∑
k ̸=0

∇riU
k
ℓ,SOE −∇riU

0
ℓ,SOE (F.1)

where

∇ri
Uk
ℓ,SOE = − πqi

LxLy

 ∑
1≤j<i

qj∇ri
φk
SOE(ri, rj) +

∑
i<j≤N

qj∇ri
φk
SOE(rj , ri)

 , (F.2)

∇riU
0
ℓ,SOE = − 2πqi

LxLy

 ∑
1≤j<i

qj∇riφ
0
SOE(ri, rj) +

∑
i<j≤N

qj∇riφ
0
SOE(rj , ri)

 . (F.3)

Using the approximation Eqs. (3.19), (3.9) and (3.10), one can write the derivative in periodic
directions as

∂ρiφ
k
SOE(ri, rj) =

ikeik·ρij

k

[
ξ+M (k, zij) + ξ−M (k, zij)

]
=

2αe−k2/(4α2)

√
πk

ikeik·ρij

M∑
ℓ=1

wl

α2s2l − k2
(
2αsle

−kzij − 2ke−αslzij
)
,

(F.4)

and in z direction as

∂ziφ
k
SOE(ri, rj) =

eik·ρij

k

[
∂ziξ

+
M (k, zij) + ∂ziξ

−
M (k, zij)

]
=

2αe−k2/(4α2)

√
π

eik·ρij

M∑
ℓ=1

wl

α2s2l − k2
(
−2αsle

−kzij + 2αsle
−αslzij

)
.

(F.5)

The partial derivatives of zero-frequency mode with respect to the periodic directions are
zero, and the SOE approximation of its z-derivative is given by

∂ziφ
0
SOE(ri, rj) =

M∑
l=1

wl√
π
∂zi

ï
2zij
sl

+

Å
1

α
− 2zij

sl

ã
e−αslzij

ò
=

M∑
l=1

wl√
π

ï
2

sl
−
Å
sl +

2

sl
− 2αzij

ã
e−αslzij

ò
.

(F.6)

It is important to note that the computation of Fourier space forces using Eq. (F.1)
follows a common recursive procedure with energy, since it has the same structure as given
in Eq. (3.22), and the overall cost for evaluating force on all N particles for each k point also
amounts to O(N), and the resulting SOEwald2D method is summarized in Algorithm 1.

Moreover, Lemma F.1 establishes the overall error on forces Fi, and the proof follows an
almost similar approach to what was done for the energy.

Lemma F.1. The total error of force by the SOEwald2D is given by

EFi
:= EF i

s
+ EF i

l
+
∑
k ̸=0

E k
F i

l ,SOE + E 0
F i

l ,SOE (F.7)
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where the first two terms are the truncation error and provided in Proposition 2.6. The
remainder terms

E k
F i

l ,SOE := F k,i
l − F k,i

l,SOE, and E 0
F i

l ,SOE := F 0,i
l − F 0,i

l,SOE (F.8)

are the error due to the SOE approximation as Eqs. (F.1)-(F.5). Given SOE parameters wl

and sl along with the ideal-gas assumption, one has the following estimate:∑
k ̸=0

E k
F i

l ,SOE ≤
√
2λ2Dα

2q2i ε, and E 0
F i

l ,SOE ≤ 4
√
πλ2D(1 + 2α)Lz

LxLy
q2i ε. (F.9)

G The Debye-Hückel approximation

Under the DH approximation, one is able to estimate functions associated with the i-th
particle in the form:

G (ri) =
∑
j ̸=i

qje
ik·ρijf(zij), (G.1)

where |f(zij)| is bounded by a constant Cf independent of zij . The DH theory considers
the simplest model of an electrolyte solution confined to the simulation cell, where all N
ions are idealized as hard spheres of diameter ra carrying charge ±q at their centers. The
charge neutrality condition requires that N+ = N− = N/2. Let us fix one ion of charge +q
at the origin r = 0 and consider the distribution of the other ions around it.

In the region 0 < r ≤ ra, the electrostatic potential ϕ(r) satisfies the Laplace equation
−∆ϕ(r) = 0. For r ≥ ra, the charge density of each species is described by the Boltzmann
distribution ρ±(r) = ±qe∓βqϕ(r)ρr/2 with number density ρr = N/V . In this region, the
electrostatic potential satisfies the linearized Poisson-Boltzmann equation [10]:

−∆ϕ(r) = 2π
î
qρre

−βqϕ(r) − qρre
+βqϕ(r)

ó
≈ −4πβq2ρrϕ(r), (G.2)

and its solution is given by

ϕ(r) =


q

4πr
− qκ

4π(1 + κa)
, r < ra,

qeκae−κr

4πr(1 + κa)
, r ≥ ra,

(G.3)

where κ =
√
βq2ρ denotes the inverse of Debye length λD. By this definition, the net

charge density for r > ra is ρ>(r) = −κ2ϕ(r). Let us fix ri at the origin. Given these
considerations, for r ≥ ra, one obtains the following estimate:

|G (ri)| ≈
∣∣∣∣∣
∫
R3\B(ri,ra)

ρ>(r)e
−ik·ρf(z)dr

∣∣∣∣∣
≤ qiCfe

κa

4π(1 + κa)

∫ ∞

a

e−κr

r
4πr2dr

= qiCfλ
2
D.

(G.4)

It is remarked that upper bound Eq. (G.4) is derived under the continuum approximation.
In the presence of surface charges, the charge distribution along the z-direction may lack
spatial uniformity. However, due to the confinement of particle distribution between two
parallel plates, the integral in Eq. (G.4) along the z-direction remains bounded. An upper
bound in the form of |G (ri)| ≤ CsCfqi can still be expected, where Cs is a constant related
to the thermodynamic properties of the system.
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H The Metropolis algorithm

In practice, the Metropolis algorithm [74, 75] is employed to generate a sequence {kη}Pη=1

from h(k). Since k ◦ L = 2πm with m an integer vector, one can conveniently sample
from the discrete distribution H(m) = h(k) to equivalently generate k. Once the current
state of the Markov chain mη =mold is known, the algorithm generates a random variable
m∗ with m∗

ξ ∼ N [0, (αLξ)
2/2π2], which is the normal distribution with mean zero and

variance (αLξ)
2/2π2. The new proposal is taken as mnew = round(m∗

x,m
∗
y). To determine

the acceptance rate, one obtains the proposal probability

q(mnew|mold) =
∏

ξ∈{x,y}

q(mnew
ξ |mold

ξ ) (H.1)

where

q(mnew
ξ |mold

ξ ) =

…
π

(αLξ)2

∫ mnew
ξ + 1

2

mnew
ξ − 1

2

e−π2t2/(αLξ)
2

dt

=


erf

Å
π

2αLξ

ã
, mnew

ξ = 0,

1

2

ñ
erf

Ç
π(2|mnew

ξ |+ 1)

2αLξ

å
− erf

Ç
π(2|mnew

ξ | − 1)

2αLξ

åô
, mnew

ξ ̸= 0.

(H.2)

It is worth noting that the proposal distribution q(mnew|mold) in the Metropolis algorithm
presented here does not depend on the current state mold. The Metropolis acceptance
probability is computed using the formula:

a(mnew|mold) := min

®
H(mnew)q(mold|mnew)

H(mold)q(mnew|mold)
, 1

´
. (H.3)

If the proposal is rejected, then mη+1 = mη. If mnew is accepted, then mη+1 = mnew.
The sampling procedure has a small error since H(mnew) ≈ q(mnew|mold). Our numerical
experiments show an average acceptance rate of over 90%. Additionally, one can set an
integer downsampling rate D , where only one sample is taken from every D samples, to
reduce the correlation between batches in the Metropolis process.
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