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DISCRETE QUANTUM SUBGROUPS OF FREE UNITARY QUANTUM GROUPS

AMAURY FRESLON AND MORITZ WEBER

Abstract. We classify all compact quantum groups whose C*-algebra sits inside that of the free unitary
quantum groups U

+
N . In other words, we classify all discrete quantum subgroups of Û

+
N , thereby proving a

quantum variant of Kurosh’s theorem to some extent. This yields interesting families which can be described
using free wreath products and free complexifications. They can also be seen as quantum automorphism
groups of specific quantum graphs which generalize finite rooted regular trees, providing explicit examples of
quantum trees.

1. Introduction

It is one of the most natural questions, once an algebraic structure is defined, to try to understand its
sub-objects. For instance, as soon as finite groups are defined, one tries to classify all subgroups of a given
one. However, for infinite groups the question quickly becomes very complicated, as the following fact shows:
given an integer N , any group with N generators gives rise to a quotient of the free group FN , which then
also yields a normal subgroup of FN . Classifying all subgroups of FN therefore seems an untractable problem.
Nevertheless, a lot can be said about the structure of these subgroups: by a theorem of Kurosh, they are all
free groups.

The purpose of this work is to consider similar questions in the setting of discrete quantum groups. It has
long been recognized that the free unitary quantum groups U+N , see [37], or more precisely their dual discrete

quantum groups Û+N , play a role in the quantum theory analogous to that of free groups; see for instance
[3, 1, 34, 36] and many more articles. We therefore simply ask the following question: what are the discrete

quantum subgroups of Û+N , and what can be said about them? The notion of a free quantum group is not
rigorously defined in the setting of discrete quantum groups, but there is a wealth of examples sharing some
kind of freeness properties which are based on the combinatorics of non-crossing partitions (or on free fusion

semi-rings). Our first result is that discrete quantum subgroups of Û+N all belong to that class, which is, in
a way, a quantum analogue of Kurosh’s theorem. However, note a subtle difference: In Kurosh’s theorem,
all subgroups of FN are free groups – and vice versa, all free groups are subgroups of FN . In the quantum
setting, we only have that all discrete quantum subgroups of Û+N have free fusion semi-rings, but not all free
fusion semi-rings coming from quantum groups arise in this way. In any case, we can completely classify all
discrete quantum subgroups of Û+N and describe them explicitely.

As it turns out, we will work these result backwards. First, we will make use of the rich combinatorial
structure underlying U+N , which involves non-crossing partitions, to give an abstract classification result for

discrete quantum subgroups of Û+N . In this context, we will also make use of the theory of easy quantum
groups, see [5, 43, 42, 30, 20] amongst others. The key tool for our classification is the notion of module of
projection partitions, introduced in [21] for a completely different purpose. We prove that this notion exactly
captures dual quantum subgroups, and admits a simple combinatorial description which is easier to work
with. Based on this, we will then proceed to give an explicit description of all the quantum subgroups that
we found. It is a rather surprising consequence of our work that they can be described from the quantum
automorphism group of MN(C) using two standard quantum group constructions: the free wreath product
and the free complexification. Also, it links with recent work on (quantum) graphs [39, 10], as we will show,
allowing for a definition of quantum rooted regular trees.

Let us now outline the contents of the paper. Section 2 contains preliminary material concerning partitions,
compact quantum groups and easy quantum groups, mainly to fix notations and terminology. Note that
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for practicality, we take the compact point of view and therefore focus on the notion of “dual quantum
subgroup” (see Definition 3.5) instead of talking about discrete quantum subgroups of the dual, even though
this is equivalent. Then, Section 3 makes the connection between dual quantum subgroups and the modules
of projective partitions introduced in [21], our first main result being Theorem 3.9. As an illustration of
the power of modules of projective partitions, we first classify in Section 4 the dual quantum subgroups
of orthogonal easy quantum groups, see the overview on page 11. Once this is done, we turn in Section 5
to the heart of this work and classify all dual quantum subgroups of the free unitary quantum groups, see
Theorem 5.10. In Section 6, we then provide an explicit description of all discrete quantum subgroups of
Û+N involving free wreath products and free complexifications, our second main result being Theorem 6.9.
Subsequently, we define (rooted tracial MN(C)-regular) quantum trees in Section 7 and we conclude with
yet another description of the main one-parameter family of dual quantum subgroups of U+N as quantum
automorphism groups of such rooted quantum trees, see Theorem 7.4.

2. Preliminaries

In this preliminary section we will recall the basics concerning easy quantum groups first defined by Banica
and Speicher [5], see also [43, 20], starting with the notion of a partition which is at the heart of the theory.

2.1. Colored partitions. Easy quantum groups are based on the combinatorics of partitions, and in par-
ticular noncrossing ones. A partition consists in two integers k and l, and a partition of the set {1, . . . , k+ l}.
We think of it as an upper row of k points, a lower row of l points and some strings connecting these points.
If the strings may be drawn in such a way that they do not cross, the partition will be said to be noncrossing.
The set of all partitions is denoted by P and the set of all noncrossing partitions is denoted by NC.

A maximal set of points which are all connected in a partition is called a block. We denote by b(p) the
number of blocks of a partition p, by t(p) the number of through-blocks, i.e. blocks containing both upper
and lower points, and by β(p) = b(p) − t(p) the number of non-through-blocks. This work is concerned with
a refinement of the notion of partitions: colored partitions.

Definition 2.1. A (two-)colored partition is a partition with the additional data of a color (black or white)
for each point. The set of all colored partitions is denoted by P ○● and the set of noncrossing colored partitions
is denoted by NC○●.

In the example below, p1 has crossings while p2 is a noncrossing colored partition.

○ ● ○

○ ● ● ○○

p1 =

○ ● ● ○○

○ ○

p2 =

From now on, the word “partition” will always mean “two-colored partition”. Partitions can be combined
using the following category operations:

● If p ∈ P ○●(k, l) and q ∈ P ○●(k′, l′), then p⊙ q ∈ P ○●(k + k′, l + l′) is their horizontal concatenation, i.e.
the first k of the k+k′ upper points are connected by p to the first l of the l+ l′ lower points, whereas
q connects the remaining k′ upper points with the remaining l′ lower points.
● If p ∈ P ○●(k, l) and q ∈ P ○●(l,m) are such that the coloring of the lower row of p is the same as the

coloring of the upper row of q, then qp ∈ P ○●(k,m) is their vertical concatenation, i.e. k upper points
are connected by p to l middle points and the lines are then continued by q to m lower points. This
process may produce loops in the partition. More precisely, consider the set L of elements in {1, . . . , l}
which are not connected to an upper point of p nor to a lower point of q. The lower row of p and
the upper row of q both induce partitions of the set L. The maximum (with respect to inclusion) of
these two partitions is the loop partition of L, its blocks are called loops and their number is denoted
by rl(q, p). To complete the operation, we remove all the loops.
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● If p ∈ P ○●(k, l), then p∗ ∈ P ○●(l, k) is the partition obtained by reflecting p with respect to the
horizontal axis (without changing the colors).
● If p ∈ P ○●(k, l), then we can shift the very left upper point to the left of the lower row (or the converse)

and change its color. We do not change the strings connecting the points in this process. This gives
rise to a partition in P ○●(k − 1, l + 1) (or in P ○●(k + 1, l − 1)), called a rotated version of p. We can
also rotate partitions on the right.
● Using, the category operations above, one can reverse a partition p by rotating all its upper points to

the lower row and all its lower points to the upper row. This gives a new partition p. Equivalently,
p is obtained by reflecting p with respect to a vertical axis and then inverting the colors.

As an example, we give the vertical concatenation of the two partitions p1 and p2 defined above:

○ ● ○

○ ○

p2p1 =

There are four ways of coloring the partition ∣ ∈ P ○●(1,1). If the two points are white (resp. black), we
will call it the white identity (resp. black identity) partition and denote it by id○ (resp. id●). Note that these
two partitions are rotated versions of one another.

Definition 2.2. A category of partitions C is the data of a collection of sets C(k, l) of colored partitions,
for all integers k and l, which is stable under the above category operations and contains the white identity
partition (hence also the black identity partition).

Let us further introduce two specific partitions which will play an important role hereafter. We define the
duality partitions as

○ ●
D○● =

and

● ○
D●○ =

The crucial notion for the study of the representation theory of easy quantum groups is that of a projective
partition.

Definition 2.3. A partition p ∈ P ○●(k, k) is said to be projective if it satisfies pp = p = p∗. We denote by
ProjC the set of projective partitions in a category of partitions C.

There are actually many of them, according to the following result (see [22, Prop 2.12]):

Proposition 2.4. A partition p ∈ P ○●(k, k) is projective if and only if there exists a partition r ∈ P ○●(k, k)
such that r∗r = p.

2.2. Easy quantum groups. Easy quantum groups are a family of compact quantum groups which can
be constructed using categories of partitions. To explain how, we will first explain how partitions can give
rise to linear maps between Hilbert spaces, and then briefly recall some notions on compact quantum groups
before turning to the main definition.

2.2.1. Partitions and linear maps. The link between partitions and quantum groups lies in the following
definition [5, Def 1.6]. Note that this definition does not involve the coloring of the partitions.

Definition 2.5. Let N be an integer and let (e1, . . . , eN ) be the canonical basis of CN . For any partition
p ∈ P ○●(k, l), we define a linear map

Tp ∶ (CN)⊗k ↦ (CN)⊗l

by the following formula:

Tp(ei1 ⊗ ⋅ ⋅ ⋅ ⊗ eik) =
n

∑
j1,...,jl=1

δp(i, j)ej1 ⊗ ⋅ ⋅ ⋅ ⊗ ejl ,

where δp(i, j) = 1 if and only if as soon as two points are connected by a string of the partition p, the
corresponding indices of the multi-index i = (i1, . . . , ik) are equal. Otherwise, δp(i, j) = 0.
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The interplay between these maps and the category operations are given by the following rules proven in
[5, Prop. 1.9]:

● T ∗p = Tp∗ ;
● Tp ⊗ Tq = Tp⊗q;
● Tpq = N rl(p,q)Tp ○ Tq.

In particular, by Proposition 2.4, Tr is always a multiple of a partial isometry, which is an orthogonal
projection if and only if r is projective. It should be stressed that the maps Tp are not linearly independent
in general. However, restricting to the noncrossing case rules out this problem (see e.g. [22, Lem 4.16] for a
proof).

Proposition 2.6. Let C be a category of noncrossing partitions and fix an integer N ⩾ 4. Then, for any
w,w′ ∈ F , the maps (Tp)p∈C(w,w′) are linearly independent.

2.2.2. Tannaka-Krein duality and compact quantum groups. We refer the reader to [33] and [27] for detailed
treatments of the theory of compact quantum groups, and to [20] for an account emphasizing the combina-
torial aspects. It is known since the work of M. Dijkhuizen and T. Koornwinder [15] that compact quantum
groups can be treated algebraically through the following notion of a CQG-algebra:

Definition 2.7. A CQG-algebra is a Hopf ∗-algebra which is spanned by the coefficients of its finite-
dimensional unitary corepresentations.

If G is a compact group, then its algebra of regular functions O(G) is a CQG-algebra. Based on that
example, and in an attempt to retain the intuition coming from the classical setting, we will denote a general
CQG-algebra by O(G) and say that it corresponds to the compact quantum group G. If Γ is a discrete group
and C[Γ] denotes its group algebra, it is easy to endow it with a Hopf ∗-algebra structure with coproduct
given by ∆(g) = g⊗g for all g ∈ Γ. Since this turns each g ∈ Γ ⊂ C[Γ] into a one-dimensional corepresentation,

it yields a CQG-algebra. The resulting compact quantum group is called the dual of Γ and is denoted by Γ̂.
The main feature of compact quantum groups is their nice representation theory, which is just another

point of view on the corepresentation theory of the corresponding CQG-algebra. Let us give a definition to
make this clear.

Definition 2.8. An n-dimensional representation of G is an element v ∈Mn(O(G)) which is invertible and
such that for all 1 ⩽ i, j ⩽ n,

∆(vij) =
n

∑
k=1

vik ⊗ vkj.

It is said to be unitary if it is unitary as an element of the ∗-algebra Mn(O(G)).
Example 2.9. Let 1G denote the unit ofO(G) seen as an element ofM1(O(G)). It satisfies ∆(1G) = 1G⊗1G,
hence is a (unitary) representation, called the trivial representation of G.

Given two representations v and w, one can form their direct sum by considering a block diagonal matrix
with blocks v and w respectively, and their tensor product by considering the matrix with coefficients

(v ⊗w)(i,k),(j,l) = vijwkl.

Moreover, the conjugate of v is the representation v with coefficients (v∗ij)1⩽i,j⩽n. In this setting, an intertwiner
between two representations v and w of dimension n andm respectively will be a linear map T ∶ Cn → C

m such
that Tv = wT (we are here identifying Mn(C) with Mn(C.1O(G)) ⊂Mn(O(G))). The set of all intertwiners
between v and w will be denoted by MorG(v,w).

Two representations are said to be equivalent if there exists an invertible intertwiner between them. If
T is injective, then v is said to be a subrepresentation of w, and if w admits no subrepresentation apart
from itself, then it is said to be irreducible. One of the fundamental results in the representation theory of
compact quantum groups is due to S.L. Woronowicz in [45] and can be summarized as follows.

Theorem 2.10 (Woronowicz). Any finite-dimensional representation of a compact quantum group splits as
a direct sum of irreducible ones, and any irreducible representation is equivalent to a unitary one.
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Let us now consider a compact quantum group G with a fundamental representation, i.e. a finite-
dimensional representation u whose coefficients generate O(G). This implies that any irreducible repre-
sentation of G arises as a subrepresentation of some tensor product of u and its conjugate u. Let us associate
to any word w = w1 . . . wk in the free monoid F over {○,●} a representation u⊗w by setting

u⊗w = uw1 ⊗ ⋅ ⋅ ⋅ ⊗ uwk ,

where by convention u○ = u and u● = u. We can now define a categorical object which encapsulates the whole
quantum group.

Definition 2.11. The category of representations of (G, u) is the rigid C*-tensor category (see [27, Def
2.1.1] for the definition) Rep(G) with object set F and morphism spaces

MorRep(G)(w,w′) =MorG(w,w′).
Conversely, given a family (Mor(w,w′))w,w′ of finite-dimensional vector spaces with sufficiently nice prop-

erties, one can reconstruct a compact quantum group G using S.L. Woronowicz’s Tannaka-Krein theorem
[44, Thm 1.3]. Let us state this theorem in the particular case which is relevant for us, going back to Banica
and Speicher in this particular version [5]. If C is a category of partitions and if w,w′ ∈ F , we will denote by
C(w,w′) the set of partitions p ∈ C(∣w∣, ∣w′ ∣) such that the upper coloring of p is w and the lower coloring of
p is w′ (here ∣w∣ denotes the length of the word w).

Theorem 2.12 (Woronowicz, Banica-Speicher). Let C be a category of partitions and let N be an integer.
Then, there exists a unique (up to isomorphism) pair (G, u), where G is a compact quantum group and u is a

fundamental representation of G such that Mor(u⊗w, u⊗w′) is the linear span of the maps Tp for p ∈ C(w,w′).
Such a G = GN(C) will be called a (unitary) easy quantum group or a partition quantum group.

Let CU be the smallest category of partitions (i.e. the one generated by the white identity partition).
The associated quantum group is the free unitary quantum group U+N introduced by S. Wang in [37]. Since
inclusion of categories of partitions translates into quotients of the corresponding CQG-algebras, and since
quotients of O(G) for a compact group of matrices G correspond to closed subgroups of G, we see that
any easy quantum group is a closed quantum subgroup of U+N . The other extreme case is the category of all
partitions P ○●, which yields the symmetric group SN . Thus, easy quantum groups form a special class of
quantum groups G in the range

SN ⊂ G ⊂ U+N .

Other examples of easy quantum groups include S. Wang’s free quantum permutation group S+N (C = NC○●)
and free orthogonal quantum group O+N (C = all partitions with blocks of size 2). We refer the reader to [37]
and [38] for the definition of these quantum groups and to [5] for proofs of these facts and to [30, 32, 31, 42]
for more on the classification of these objects.

We conclude with a description of the representation theory of U+N , since this will be central in this work.
Let M be the free monoid over the set {○,●}, that is, the set of all words on these two letters. We define
a map w ↦ w from M to M by ○ = ●, ● = ○ and for a word w = w1⋯wn, w = wn⋯w1. Then, according to
[1], the irreducible representations of U+N can be indexed by the elements of M in such a way that u○ = u,
uw = uw and

uw ⊗ uw
′

= ∑
w=az,w′=zb

uab.

3. Modules of projective partitions

3.1. Definition and first properties. This work is concerned with the following combinatorial object,
introduced in [21]. Recall the definition of projective partitions from Definition 2.3 and the operations from
Definition 2.2.

Definition 3.1. Let C be a category of partitions. A module of projective partitions over C is a set P of
projective partitions such that

(1) For any p, q ∈ P, p⊙ q ∈ P;
(2) For any p ∈ P, p ∈ P;
(3) For any p ∈ P and r ∈ C, rpr∗ ∈ P as soon as the composition makes sense.
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The definition above is the original one and was established with a view towards the construction of weak
unitary tensor functors on Rep(GN(C)) (see [21, Sec 4] for details). Nevertheless, we will in the present work
be interested in another application of modules of projective partitions for which an alternate characterization
will prove useful. To state it, we need some notions on projective partitions from [22, Sec 2.5].

Definition 3.2. Let p and q be two projective partitions. We say that p is equivalent to q in C, and write
p ∼C q, if there exists r ∈ C such that p = r∗r and q = rr∗. Moreover, we say that q is dominated by p, and
write q ≺ p, if qp = q = pq.

We are now ready for some elementary but very useful properties of modules of projective partitions.

Proposition 3.3. Let P ⊂ ProjC be a module of projective partitions over C. Then, for any p ∈ P and
q ∈ ProjC,

(1) If p ∼C q, then q ∈ P;
(2) If q ≺ p, then q ∈ P.

Conversely, let P ⊂ ProjC be such that P ⊙ P ⊂ P, P = P and the two properties above hold. Then, P is a
module of projective partitions over C.

Proof. Let p, q ∈ P.

(1) If p ∼ q, consider r ∈ C such that r∗r = p and rr∗ = q. Then,

q = qq = rr∗rr∗ = rpr∗ ∈ P.

(2) Observe that if q ≺ p, then qp = q = pq hence

q = qq = (qp)(pq) = qpq ∈ P
by definition.

To prove the second claim, it is enough to prove that for r ∈ C and p ∈ P, we obtain rpr∗ ∈ P if the composition
makes sense. This follows from the fact that rpr∗ = (rp)(rp)∗ is equivalent in C (the assumption P ⊂ ProjC
ensures that rp ∈ C) to (rp)∗(rp) = pr∗rp, which is dominated by p. �

For convenience and since this is the case of interest for us, we will say that a module of projective
partitions over C is standard if it is contained in ProjC and we will only consider standard modules in the
sequel.

Example 3.4. For any category of partitions C, ProjC is of course a standard module of projective partitions
over C. Moreover, let Proj0C be the set of all projective partitions with no through-block. Then, this is also
a standard module of projective partitions over C.

3.2. Link with dual quantum subgroups. Our aim is now to describe a correspondence between standard
modules of projective partitions over a category of partitions C and quantum groups associated to GN(C).
Let us introduce a bit of terminology for that purpose.

Definition 3.5. A dual quantum subgroup of a compact quantum group G is a compact quantum group H

such that O(H) ⊂ O(G) as Hopf ∗-algebra.

Remark 3.6. If G = Γ̂ is dual to a discrete group, then a dual quantum subgroup is of the form H = Λ̂ for
some subgroup Λ < Γ, hence the name. More generally, once a suitable notion of discrete quantum group
is introduced together with the appropriate extension of Pontryagin duality, one may define dual quantum
subgroups as duals of quantum subgroups of the discrete dual of G.

The main result of this section is that dual quantum subgroups and standard modules of projective
partitions are in one-to-one correspondence. The proof uses the fact that the representation theory of
GN(C) can be described, at least in the non-crossing case, purely from the combinatorics of C. This was
done in [22] and we now recall some of the main results of that work. First observe that for any partition
r, the fact that r∗r is projective implies that Tr is a multiple of a partial isometry, which we denote by Sr.
Then, for a projective partition p, we set

Pp = Sp − ⋁
q≺p

Sq,

which is a projection in MorGN(C)(w,w), where w is the upper colouring of p. This yields a subrepresentation
up ⊂ uw and the following holds if C is non-crossing (see [22, Sec 4 and 5]):
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● up is irreducible for all p ∈ ProjC ;
● Any irreducible representation of GN(C) is equivalent to up for some p ∈ ProjC ;
● up ∼ uq as representations of GN(C) if and only if p ∼C q.

Let us now consider a dual quantum subgroup H of GN(C). As explained in [35, Lem 2.1], associating to
H its category of representations Rep(H) ⊂ Rep(GN(C)) yields a one-to-one correspondence between dual
quantum subgroups and C*-tensor subcategories of Rep(GN(C)). We may therefore define

P(H) = {p ∈ ProjC ∣ up ∈ Rep(H)} ⊂ ProjC
as a natural candidate for a module of projective partitions. Some properties are straightforward to check.

Lemma 3.7. We have P(H)⊙P(H) ⊂ P(H) and P(H) = P(H).
Proof. The first inclusion comes from the fact that up⊙q is a subrepresentation of up ⊗ uq by [22, Thm 4.27]
hence in Rep(H). The second one comes from the fact that up is the conjugate of up, by [22, Rem 6.12],
hence in Rep(H). �

As for the third property, we will instead use the characterization of Proposition 3.3 and this will require
a few facts concerning non-crossing projective partitions. We refer to [22, Def 5.6] for the definition of the
binary operations ◻ and q on partitions.

Lemma 3.8. Let C be a category of non-crossing partitions and let p ∈ ProjC. Then, there exists b1,⋯, bt(p) ∈
ProjNC such that t(bi) = 1 for all 1 ⩽ i ⩽ t(p) and

p = b1 ⊙⋯⊙ bt(p).

Moreover, let p◻i be the partition obtained by replacing bi ⊙ bi+1 by bi ◻ bi+1 and similarly for pqi . Then q ≺ p
if and only if q ⪯ pqi or q ⪯ p◻i for some 1 ⩽ i ⩽ t(p) − 1.
Proof. The first part of the statement is [18, Lem 4.4]. As for the second part, this is simply a rewriting
of [22, Prop 2.23] (note that even though that article is written in the setting of uncoloured partitions, the
proofs carry on to the coloured setting verbatim, see also [19, Sec 3.3]). �

We are now ready to prove our first main result, connecting modules of projective partitions and dual
quantum subgroups.

Theorem 3.9. There is a one-to-one correspondence between dual quantum subgroups of GN(C) and standard
modules of projective partitions over C.

Proof. Let H be a dual quantum subgroup. If p ∼C q and p ∈ P(H), then uq ∼ up as representations of GN(C).
This means that there exists a linear isomorphism T such that Tup = uqT . In particular, the coefficients
of uq are linear combinations of those of up, so that they belong to O(H). This means that uq is in fact a
representation of H, hence q ∈ P(H). We will now prove by induction on the number of through-blocks that
if p ∈ P(H) and q ≺ p, then q ∈ P(H). If t(p) = 0 there is nothing to prove, we will therefore assume that
the result holds as soon as t(p) ⩽ n for some n ∈N and consider p ∈ P(H) with t(p) = n + 1. By Lemma 3.8,
it is enough to prove that pqi , p

◻
i ∈ P(H) for all 1 ⩽ i ⩽ t(p) as soon as these partitions are in C. To do this,

observe first that up ⊗ up contains a subrepresentation equivalent to us, where

s = b1 ⊙⋯⊙ bi ⊙ bi⋯⊙ b1

so that s ∈ P(H). But now, us ⊗ up contains a subrepresentation equivalent to pqi and one equivalent to p◻i
(if these are in C), and the proof is complete.

Conversely, let P ⊂ ProjC be a standard module of projective partitions and consider the full sub-category
Rep(P) of Rep(GN(C)) with objects up for all p ∈ P. By [22, Thm 4.27], the subrepresentations of up⊗uq are
all equivalent to some us with s ≺ p⊙ q, thus by Proposition 3.3 they are all in Rep(P) and this shows that
Rep(P) is a tensor category. Because P = P, Rep(P) is also a C*-category so that this is the representation
category of a dual quantum subgroup H of GN(C), and the proof is complete. �

Let illustrate this with the two modules of projective partitions of Example 3.4:

● ProjC is by definition equal to P(GN (C));
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● It is proven in [18, Lem 5.1] that t(p) = 0 if and only if up is one-dimensional. A one-dimensional
representation is the same as a group-like element, i.e. x ∈ C(GN(C)) such that ∆(x) = x⊗x. These

form a group G and the ∗-subalgebra that they generate is isomorphic to C[G] = O(Ĝ). Thus, the

dual quantum subgroup corresponding to Proj0C of Example 3.4 is Ĝ.

Let us conclude this section with an elementary fact which will be useful later on, which is the simple
observation that the correspondance H↔ P(H) respects inclusions merely by definition.

Lemma 3.10. Let H and K be dual quantum subgroups of GN(C). Then, K is a dual quantum subgroup of
H if and only if P(K) ⊂ P(H).
3.3. Standard modules. Before turning to the main part of this work, let us comment on a side question. It
is natural to wonder how restrictive the assumption P ⊂ ProjC is. We will make two observations concerning
that question. The first one is that one can slightly loosen the constraint by considering an inclusion of
categories of partitions C ⊂ C′ and a standard module of projective partitions P ⊂ ProjC′ . This still is a
module of projective partitions over C, but all of its structure can be understood by looking at it as a
standard module over C′. The second observation is that the previous weak form of standardness can be
characterised in terms of P only.

Proposition 3.11. Let P be a module of projective partitions over a category of partitions C. Then, there
exists C ⊂ C′ such that P ⊂ ProjC′ is a module of projective partitions over C′ if and only if, for all p, q ∈ P,
we have qpq ∈ P as soon as the composition makes sense.

Proof. If P ⊂ ProjC′ is a module of projective partitions over C′, then for any p, q ∈ P we have q ∈ C′, hence
qpq ∈ P by definition. Conversely, let C′ = ⟨C,P⟩ be the category of partitions generated by C and P. By
construction, P ⊂ ProjC′ . Moreover, let p ∈ P and r ∈ C ∪P. Then,

● If r ∈ C, then rpr∗ ∈ P if the composition makes sense, by definition of a module of projective
partitions;
● If r ∈ P, then rpr∗ ∈ P if the composition makes sense, by assumption.

As a consequence, for any r ∈ C′ = ⟨C ∪ P⟩, rpr∗ ∈ P if the composition makes sense, proving that P is a
module of projective partitions over C′. �

Let us call a module of projective partitions stable if it satisfies the condition in the proposition above. We
do not have an example of a non-stable module of projective partitions, and the question whether stability
follows from the definition therefore remains open.

4. Classification in the orthogonal case

As an illustration of the results of Section 3, let us treat the case of orthogonal easy quantum groups.
By this, we mean that we consider categories of partitions C containing the partition ∣ with a white upper
point and a black lower point. It is easy to see that using this, we can change the color of any partition in
C as we like, so that in the end we can forget about colors. The corresponding categories of partitions were
completely classified in a series of works [5], [4], [42], [29], [28] and [30]. If the partitions are furthermore
assumed to be non-crossing, then there are exactly seven possibilities which were classified in [5] and [42].

Theorem 4.1 (Banica-Speicher, Weber). The uncoloured categories of non-crossing partitions are the fol-
lowing ones

● NC2 : all non-crossing partitions with all blocks of size 2;
● NC1,2 : all non-crossing partitions with all blocks of size at most 2;
● NC ′1,2 : all partitions in NC1,2 with an even number of blocks of singletons;

● NC♯1,2 : all partitions in NC ′1,2 with an even number of singletons between any two connected points;
● NCeven : all non-crossing partitions with all blocks of even size;
● NC ′ : all non-crossing partitions with an even number of blocks of odd size;
● NC : all non-crossing partitions.

Before entering the details, let us introduce one additional example. We have already noticed that any
category of partitions has at least two standard modules of projective partitions, namely Proj0C and ProjC .
There is in fact a third one, namely

Proj2C = ⟨∣⊙ ∣⟩,
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where the brackets denote the module of projective partitions generated by a set of projective partitions.
Note however that it may in some cases coincide with ProjC . The corresponding dual quantum subgroup
is called the projective version of GN(C) and denoted by PGN(C). It is usually defined as the compact
quantum group whose Hopf ∗-algebra is the sub-∗-algebra of O(GN(C)) generated by the coefficients of

u⊗ u. Since u⊗ u = u∣⊙∣, we see that indeed P(PGN(C)) = Proj2C .
4.1. Blocks of size at most two. Let us start with the simplest case.

Proposition 4.2. For C = NC2, there are exactly three standard modules of projective partitions, namely
Proj0NC2

, Proj2NC2
and ProjNC2

.

Proof. As shown in [19, Ex 5.10], any projective partition in NC2 is equivalent to ∣⊙k for some integer k. Let
us consider the set S(P) = {k ∣ ∣⊙k ∈ P}. This set is stable under addition and letting the duality partition
⊔ act, we see that if k ∈ S and k ⩾ 2, then k − 2 ∈ S. As a consequence, there are only three prossibilities:
{0}, 2N and N. Since by Proposition 2.4 a standard module of projective partitions is determined by the
equivalence classes of its elements, hence by S, the proof is complete. �

Next, we study categories of partitions with blocks of size at most two. For NC1,2, it is known that the
corresponding compact quantum group is isomorphic to O+N−1, hence by Theorem 3.9 the result is the same
as for NC2 (and it can be proven by the same argument).

Corollary 4.3. For C = NC1,2, there are exactly three modules of projective partitions, namely Proj0NC1,2
,

Proj2NC1,2
and ProjNC1,2

.

Remark 4.4. In both cases above, Proj0C will correspond to the trivial subgroup, while the two other ones
correspond, as already mentioned, to the whole quantum group and to its projective version.

There are two more examples of categories of non-crossing partitions with blocks of size at most two.
Nevertheless, observing that they have the same projective partitions suggests that the classification will be
the same for both, and it indeed is. The difference with the previous cases is that there are non-trough-block
projective partitions which are not equivalent to one another. More precisely, if s ∈ P (0,1) denotes the
singleton partition, then there are exactly two equivalence classes of non-through-block projective partitions,
that of ⊓⊓∗ and that of ss∗. This gives rise to an additional module of projective partitions.

Proposition 4.5. For C = NC ′1,2 and C = NC♯1,2, there are exactly four standard modules of projective

partitions, namely Proj0C, ⟨⊓⊓∗⟩, Proj2C and ProjC.

Proof. Let us first assume that P contains a partition p with a through-block, and observe that the only
possible through-block in C is ∣. If there is such a p with an odd number of points in each row, then letting
the duality partition ⊔ act, we get that either ∣ ∈ P or ss∗ ⊙ ∣⊙ ss∗ ∈ P. In the first case, we have P = ProjC
while in the second one, we can further reduce to obtain ss∗ ∈ P. But then, ss∗⊙ ss∗ ⊙ ∣⊙ ss∗ ⊙ ss∗ ∈ P and
we then conclude again that ∣ ∈ P, hence P = ProjC .

We will therefore assume now that any partition in P with a through-bock has an even number of points
in each row, and we claim that the same must hold for all partitions in P. Indeed, if there is a partition
with an odd number of points, then we can reduce it to ss∗ ∈ P. But then, if p has a through-block, so
does p ⊙ ss∗ and the parity of the number of points has changed. This is a contradiction, hence the claim.
Based on this, a partition p ∈ P can be written as p = p1 ⊙⋯⊙ p2n with pi = ∣ or pi = ss∗ for all 1 ⩽ i ⩽ 2n.
Equivalently, p is an horizontal concatenation of the following partitions: ∣⊙ ∣, ss∗ ⊙ ss∗, ∣⊙ ss∗ and ss∗ ⊙ ∣.
The last one is conjugate to its predecessor, hence if we prove that the first three partitions are in Proj2C , we
will have P = Proj2C . But ∣⊗ ∣ ∈ Proj2C by definition and the other two can be obtained from it by letting ∣⊙ s
act.

To conclude, we still have to consider the case P ⊂ ProjC0 . Then, either P contains only partitions
equivalent to ⊓⊓∗, in which case it contains all of them by Proposition 2.4 and therefore P = ⟨⊓⊓∗⟩, or P
contains a partition equivalent to ss∗, in which case it contains up to equivalence all non-through-block
projective partitions and the proof is complete. �

It is well known (see for instance [42, Prop 3.2]) that the group of one-dimensional representations of
GN(C) is Z2 for C = NC ′1,2 and C = NC♯1,2. This corresponds to Proj0C and contains the trivial subgroup,
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which corresponds to the module of all projective partitions which are equivalent to the empty partition,
that is to say ⟨⊓⊓∗⟩.

4.2. Blocks of arbitrary size. If we now allow blocks of arbitrary size, it is natural to start with the
category of all partitions with all blocks of even size, denoted by NCeven. Let p4 ∈ P (2,2) be the partition

with one block and set Proj
1/2
NCeven

= ⟨p4⟩.

Proposition 4.6. For C = NCeven, there are exactly four standard modules of projective partitions, namely

Proj0NCeven

, Proj
1/2
NCeven

, Proj2NCeven

and ProjNCeven

.

Proof. LetQ be the set of all projective partitions inNCeven such that each through block has an even number

of points on each row. This is a module of projective partitions and we claim that it equals Proj
1/2
NCeven

. One
inclusion follows from the definition of Q. As for the converse one, let p ∈ Q. Up to equivalence, we can
remove all its non-through-blocks so that p = p1⊙⋯⊙ pn with t(pi) = 1 and pi has an even number of points

on each row. By [22, Lem 5.12], each pi is equivalent to p4, hence p ∈ Proj1/2
NCeven

.
Let us now consider a standard module of projective partitions P over NCeven which is not contained in

Proj0NCeven

. Any projective partition in it is equivalent to one of the form p1 ⊙⋯⊙ pn with pi ∈ {∣, p4} for all
1 ⩽ i ⩽ n. If there is such a partition with an odd number of points on each row, then letting ⊔ act we get
∣ ∈ P, hence P = ProjNCeven

. Let us therefore assume that the number of points in each row is even. Then,

if pi = p4 for all 1 ⩽ i ⩽ n and all partitions p, we have P ⊂ Proj1/2NCeven

. Since we can also produce p4 from p

by letting ⊔ act, we conclude that P = Proj1/2
NCeven

. Otherwise, using ⊔ again we can reduce the partition to

∣⊙ ∣, so that P = Proj2NCeven

.

If P ⊂ Proj0NCeven

, then since any non-through-block projective partition is equivalent to the empty one,
we have equality and the proof is complete. �

Remark 4.7. The additional module of projective partitions Proj
1/2
NCeven

corresponds to the dual quantum
subgroup whose Hopf ∗-algebra is generated by the coefficients of the representation up4 . An analysis of the
fusion rules shows that this quantum group is in fact isomorphic to S+N = GN(NC).

The last two cases can be treated as the previous ones.

Proposition 4.8. For C = NC ′, there are exactly three modules of projective partitions, namely Proj0NC′,
⟨⊓⊓∗⟩, ProjNC′ . As for C = NC, there are exactly two modules of projective partitions, namely Proj0NC and
ProjNC .

Proof. The first case is done as in the proof of Proposition 4.5. As for the second one, note that using the
partition p3 ∈ NC(2,1) with one block, we can turn a projective partition with an even number of through-
blocks into a partition with an odd number of through blocks. Since any projective partition is equivalent in
NC to ∣⊙n for some integer n by [22, Ex 5.9], we conclude that Proj2NC = ProjNC and the proof is completed
as that of Proposition 4.2. �

If crossings are allowed, then the proof of Theorem 3.9 breaks down. More precisely, standard modules of
projective partitions still yield dual quantum subgroups of GN(C), but the converse does not hold any more.
For instance, projective partition in the category P2 of all partitions with blocks of size 2 are classified up to
equivalence by their number of through-blocks, so that the same proof as in Proposition 4.2 shows that there
are exactly three standard modules of projective partitions over P2. Nevertheless, dual quantum subgroups
of a classical compact group correspond to quotients, and the orthogonal group ON has four quotients. The
one which does not come from a module of projective partitions is Z2, which is the quotient by the normal
subgroup SON .

We summarize the results of this section in the following table referring to [42] for the notation of the
quantum groups.
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Category of partitions Modules of projective partitions Quantum groups References

NC2 and NC1,2 ProjNC2
and ProjNC1,2

Ô+
N

and B̂+
N

Prop. 4.2,

Proj2NC2
and Proj2NC1,2

P̂O+N and P̂B+N Cor. 4.3,

Proj0NC2
and Proj0NC1,2

trivial group Rem. 4.4

NC ′1,2 and NC♯1,2 ProjNC′
1,2

and ProjNC♯
1,2

B̂′
N
+ and B̂♯+

N
Prop. 4.5

Proj2NC′
1,2

and Proj2
NC♯

1,2

P̂B′
N
+ and P̂BN

♯+

Proj0NC′
1,2

and Proj0
NC♯

1,2

Z2

⟨⊓⊓∗⟩ trivial group

NCeven ProjNCeven

ĤN
+ Prop. 4.6,

Proj2NCeven

P̂HN
+ Rem. 4.7

Proj
1/2
NCeven

Ŝ+
N

Proj0NCeven

trivial group

NC ProjNC ŜN
+ Prop. 4.8

Proj0NC trivial group

NC ′ ProjNC′ Ŝ′N
+ Prop. 4.8

Proj0NC′ Z2

⟨⊓⊓∗⟩ trivial group

5. Classification of modules in the unitary case

We will now apply our tools to the study of the free unitary quantum groups U+N . So far, nothing is
known concerning the dual quantum subgroups of U+N , except for the projective versions (see below). As we
will see, the combinatorics of modules of projective partitions is in that case quite elementary and enables a
full classification. Once that classification is done, we will study in more detail the corresponding compact
quantum groups.

We will first classify the standard modules of projective partitions over the category of partitions CU of
U+N . To do this, let us recall some basic facts concerning this object (see for instance [31, Thm 4.16] for a
proof).

Proposition 5.1. Let CU be the set of all pair partitions such that when two points are connected, they have
the same color if they are in different rows and different colors if they are in the same row. Then, CU is a
category of partitions, and the corresponding compact quantum group is U+N .

The classification will be done in two steps: first, we will define three one-parameter families of modules
of projective partitions, and then we will use them to describe all the other modules. For the sake of clarity,
we will use a number of notations and conventions in the sequel, which we now detail.

Given a word w on {○,●}, its color balance c(w) is the difference between the number of white points and
the number of black points. For a word w = w1⋯wn, we will write w⩾l = wl⋯wn, and define similarly w>l,
w⩽l and w<l. Given a word w = w1⋯wn, we define the following projective partition:

pw = idw1
⊙⋯⊙ idwn .

We start with an equivalent description of standard modules of projective partitions in terms of very
elementary combinatorial objects. To do this, we will need some further shorthand notations. If w = w1⋯wn

is a word on {○,●}, we set ○ = ●, ● = ○ and define the conjugate of w to be

w = wn⋯w1.

Moreover, given two words w and w′, we will denote by w.w′ their concatenation.

Definition 5.2. A set of words on {○,●} is said to be admissible if it is invariant under the following
operations:

● Concatenation of words;
● Conjugation;
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● Cancellation of a subword of the form ○● or ●○.

The cancellations above will be called elementary in the sequel.

Lemma 5.3. Standard modules of projective partitions over CU are in one-to-one correspondance with ad-
missible sets of words.

Proof. Let P be a standard module of partitions and let p ∈ P. Then, as explained in [22, Sec 6.3], there
exists a unique word w such that p ∼ pw. The set W (P) of all such words is stable under concatenation since
pw.w′ = pw ⊙ pw′, as well as under conjugation since pw = pw. Moreover, letting D○● or D●○ act shows that
W (P) is also stable under elementary cancellations, hence W (P) is admissible.

Let now W be an admissible set of words and let P(W ) be the set of all projective partitions in CU which
are equivalent to pw for some w ∈ W . Because W is stable under concatenation, P(W ) is stable under ⊙

and because W is stable under conjugation, P(W ) = P(W ). Moreover, if p ∈ P(W ) and q ≺ p, then there
exists w ∈ W such that q is equivalent to a projective partition q′ ≺ pw. But q′ can then be written as
b0 ⊙ idv1 ⊙b1 ⊙⋯⊙ idvl ⊙bl where v1⋯vl is a subword of w and bi is projective with t(bi) = 0 for all 0 ⩽ i ⩽ l.
Now, by Proposition 5.1, each bi is a nesting of duality partitions, so that v is obtained from w by applying
the corresponding cancellations, which are elementary, and the proof is complete. �

5.0.1. The three series. We now introduce the main objects of this section, namely three infinite series of
admissible sets of words (equivalently, standard modules of projective partitions over CU ). A natural idea to
produce such sets is to take a word and try to describe the smallest admissible set that contains it, which
will be said to be generated by it. For convenience, we will however first define abstract admissible sets, and
then give explicit generators. Let us start with the simplest case:

Definition 5.4. For k > 0, we set W (k) = {w ∣ c(w) = 0 mod k}.
By definition, ○k ∈W (k) hence one may hope for an equality of the corresponding admissible sets of words.

That this is indeed the case is the subject of the next result.

Proposition 5.5. The set W (k) is admissible and generated by ○k.

Proof. It is clear that W (k) is stable under concatenation and conjugation, and since elementary cancellations
remove to different letters, they do not change the color balance, hence W (k) is admissible.

Obviously, ○k ∈W (k), hence W = ⟨○k⟩ ⊂W (k). Conversely, let w ∈W (k). It can be written as

w = wi1
1 w

i2
1 ⋯w

i2l−1
1 w

i2l
1 .

Consider the euclidean division i1 = d1k + j1 and set, for t ⩾ 1, i′t+1 = it+1 + k − jt and i′t+1 = dt+1k − jt+1 with
0 ⩽ jt+1 < k. Then, w can be obtained through elementary cancellations from the word

wi1
1 w

k−j1
1 w

k−j1
1 wi2

1 w
k−j2
1 w

k−j2
1 ⋯w

i2l−1
1 w

k−j2l−1
1 w

k−j2l−1
1 w

i2l
1 = w

i1+k−j1
1 w

i′
2
+k−j2

1 ⋯w
i′
2l−1
+k−j2l−1

1 w
i2l+k−j2l−1
1 .

This is a concatenation of elements of W , except perhaps for the last term w
i2l+k−j2l−1
1 . We therefore have to

prove that i′2l = i2l + k − j2l−1 = 0 mod k.
To show this, we first claim that we have, for all 1 ⩽ t ⩽ l,

i′2t =
2t

∑
s=1

(−1)sis mod k

i′2t−1 = −
2t−1

∑
s=1

(−1)sis mod k.

Let us prove this by induction.

● If t = 1, then

i′2 = i2 + k − j1 = i2 + k + (d1k − i1) = (d1 + 1)k + i2 − i1 = i2 − i1 mod k.

● Assume that the result holds for some t ⩾ 1. Then

i′t+1 = it+1 + k − jt = it+1 − i
′
t mod k

and the claim follows.
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The claim now yields

i′2l =
k

∑
t=1

i2t − i2t−1 mod k.

The sum above is nothing but the opposite of the color balance c(w), which is a multiple of k by assumption.
The proof is therefore complete. �

This gives us our first infinite series of admissible sets of words, and we note that, by definition, W (k) ⊂
W (k′) if and only if k′ ∣ k. The two other series are somehow dual to each other, and are given by generators
with vanishing color balance.

Definition 5.6. We define, for 0 < k ⩽∞,

W (○,k) = {w = w1⋯wn ∣ c(w) = 0 and k ⩾ c(w⩽l) ⩾ 0, ∀1 ⩽ l ⩽ n}
W (●,k) = {w = w1⋯wn ∣ c(w) = 0 and − k ⩽ c(w⩽l) ⩽ 0, ∀1 ⩽ l ⩽ n}.

Proposition 5.7. The sets W (○,k) and W (●,k) are admissible and generated respectively by ○k●k and by ●k○k.

Proof. We will only prove the statement for W (○,k), the proof for W (●,k) being similar. It is clear that the set
is stable under concatenation and elementary cancellations since the latter do not change the color balance.
As for conjugation, observe that

c⩽l(w) = −c>l(w) = −c(w) + c⩽l(w) = c⩽l(w).
Therefore, W (○,k) is admissible.

By definition, ○k●k ∈W (○,k), hence W = ⟨○k●k⟩ ⊂ W (○,k). Conversely, given w ∈ W (○,k), it can be written
as

w = ○i1 ●i2 ⋯ ○i2l−1 ●i2l

with it ⩽ k for all 1 ⩽ t ⩽ 2l. Let us set

i′t =
t

∑
s=1

(−1)s+1it.

Since i′t = c(w⩽t), this is positive, hence it makes sense to consider the following word:

v = ○i1 ●i2 ●i1−i2 ○i1−i2 ○i3 ●i4 ●i1−i2+i3−i4 ○i1−i2+i3−i4 ⋯ = ○i1 ●i1 ○i
′
2 ●

i′
2 ⋯.

Clearly, w can be obtained from v by elementary cancellations. Therefore, we only have to prove that v ∈W ,
and since v is the concatenation of the words ○i

′
2t−●

i′
2t− , it is enough to show that i′2t−1 ⩽ k. But as we already

noticed, i′2t−1 = c(w⩽2t−1), hence the proof is complete. �

Remark 5.8. Observe that W (○,k) ⊊W (○,k′), so that these yield an infinite ascending chain of dual quantum
subgroups. This recovers the result of [12, Thm 6.14] stating that the fusion ring of U+N is not Noetherian,
contrary to fusion rings of classical compact Lie groups.

5.0.2. The classification. We will now give the complete list of sets of admissible words. For the sake of
clarity, we first give a separate lemma.

Lemma 5.9. Let w ∈ W (○,k) and assume that there exist l such that c(w⩽l) = k. Then, using elementary
cancellations, w can be reduced to the word ○k●k.

Proof. We will write w = ○i1 ●j1 ⋯ ○in ●jn and proceed by induction on n. Il n = 1, then by assumption
w = ○k●k. Let us therefore assume that the result holds for some n and consider w = ○i1 ●j1 ⋯○in+1 ●jn+1 . Let
l be such that c(w⩽l) = k, and observe that l = i1 + j1 + ⋯ + it for some 1 ⩽ t ⩽ n + 1. Let us assume for the
moment that t ⩽ n and observe that

in+1 − jn+1 = −c(w⩽i1+j1+⋯+in+jn) ⩽ 0
so that jn+1 ⩾ in+1 and we can use elementary cancellations to reduce w to

w̃ = ○i1 ●j1 ⋯ ○in ●jn+jn+1−in+1 .

We still have w̃ ∈W (○,k) and moreover, c(w̃⩽l) = c(w⩽l) = k, hence we can conclude by induction.
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If instead t = n + 1, then because i1 − j1 = c(w⩽i1+j1) ⩾ 0 we can use elementary cancellations to reduce w
to

w′ = ○i1−j1+i2 ●j2 ⋯ ○in+1 ●jn+1 .

Again, w′ ∈W (○,k) and since we have removed a subwords with vanishing color balance,

c (w′⩽i1−j1+i2+j2+⋯+in+1) = c(w⩽l) = k,
so that we can conclude once more by induction. �

With this, we are in position to state and prove our classification theorem.

Theorem 5.10. The admissible sets of words are exactly the following ones:

● The empty set;
● W (k), W (○,k), W (●,k) for k ∈N;
● W (k,k′) = ⟨W (○,k),W (●,k′)⟩ for k, k′ ∈N;

Proof. Let W be a non-empty admissible set of words and let us first assume that W is generated by one
word w. If c(w) ≠ 0, then by using elementary cancellations we have that ○c(w) ∈W or ●c(w) ∈W . The two

cases are similar, hence we will only consider the first one. By Proposition 5.5 W (c(w)) ⊂W . But w ∈W c(w)

by definition, so that W = W c(w). If c(w) = 0, let us assume that the first letter is ○ (the other case being
similar) and set

k =max{c(w⩽l) ∣ 1 ⩽ l ⩽ ∣w∣},
so that W ⊂W (○,k). Moreover, by Lemma 5.9, we can reduce w to ○k●k. In other words, W (○,k) = ⟨○k●k⟩ ⊂W .

If now W is arbitrary, then it is generated by the admissible sets of words generated by each of its elements.
The result therefore follows from the following elementary observations:

● ⟨W (k),W (k′)⟩ = W gcd(k,k′). Indeed, the left-hand side is by definition contained in the right-hand

side. Moreover, if ak − bk′ = gcd(k, k′) with a, b ∈ N, then ○ak●bk
′

∈ W (k)
∪W (k′) and generates

W gcd(k,k′). If instead a and b are negative, then considering ○bk
′

●
ak yields the same result.

● By mere definition, W (○,k),W (●,k) ⊂W (k′) for all k, k′ ∈N.
● Still by definition, W (○,k) ⊂W (○,k′) and W (●,k) ⊂W (●,k′) for all k ⩽ k′.

�

Let us point out two interesting facts appearing in Theorem 5.10. The first one is that there are three
admissible sets of words which are not finitely generated. This means that the corresponding compact
quantum groups are not compact matrix quantum groups. Thinking of U+N as the dual of a free quantum
group, this is not so surprising since it is well known that a finitely generated free group has subgroups
which are not finitely generated. The second fact is that besides these three exceptions, all dual quantum
subgroups of U+N are generated by one or two irreducible representations. Besides, as we will see below, when
two generators are needed then there is a simple way of describing the quantum group as a free product
where each factor involves only one generator.

6. Applications tp quantum subgroups of Û+
N

We now study the quantum groups corresponding to the modules arising in the previous section.

6.1. Fusion semi-rings. In view of Theorem 5.10, it is natural to investigate the compact quantum groups
appearing as dual quantum subgroups of U+N . Let us denote by GN(W ) the dual quantum subgroup of U+N
corresponding to a set of words W . Since these are defined through their representation category, we may
first try to compute the corresponding fusion semi-rings.

Before embarking into this, let us make a few remarks to simplify our work:

● The sets W (○,k) and W (●,k) yield anti-isomorphic quantum groups (see Proposition 6.3), hence anti-
isomorphic fusion rings. We will therefore only consider the first one;
● The quantum group corresponding to W (k,k′) is the free product of those corresponding to W (○,k)

and W (●,k′) (see Proposition 6.3). This means that the fusion ring of the former can be recovered

from those of the latter by [37, Thm 3.10]. We will therefore not consider W (k,k′).



DISCRETE QUANTUM SUBGROUPS OF FREE UNITARY QUANTUM GROUPS 15

Let us now recall a few facts concerning fusion semi-rings. Given a compact quantum group G, we denote
by R+(G) the free abelian semi-group on the set Irr(G) of equivalence classes of irreducible representations
of G. It can be endowed with a multiplicative structure, usually denoted by ⊗, through the formula

α⊗ β = ∑
γ⊂α⊗β

m(γ,α ⊗ β)γ,

where m(γ,α ⊗ β) denotes the multiplicity of the inclusion. It is also endowed with an antilinear and anti-
multiplicative involution sending α to its conjugate representation α. The data of the semi-ring called R+(G)
together with its involution is called the fusion semi-ring of G.

We will now compute the fusion rings corresponding to sets of words generated by a symetric element,
that is to say W (○,k). We already have some information: for k = 1, this is by definition the projective version
of U+N , which is known to be isomorphic to the quantum automorphism group of MN(C) equipped with the
trace (see for instance [6, Prop 3.1]). Because that quantum group will be extensively used in the sequel, we
will denote it by Aut+(MN(C)).

Our final result will be that G(W (○,k+1)) can be obtained from G(W (○,k)) using a construction called
the free wreath product, but for the moment we just want to prove a version of this at the level of fusion
semi-rings. We will therefore use an ad hoc definition.

Definition 6.1. Let G be a compact quantum group and let R+,≀(G) be the free abelian semi-group on all
words on Irr(G). Given two words w = α1⋯αn and w′ = β1⋯βk on Irr(G), we set

w ⊗w′ = α1⋯αnβ1⋯βk + ∑
γ⊂αn⊗β1

m(γ,αn ⊗ β1)α1⋯αn−1γβ1⋯βk

+ δ
αn=β1

(α1⋯αn−1)⊗ (β1⋯βk).
This inductively defines a semi-ring structure on R+,≀(G). We moreover define an involution by w = αn⋯α1.

Note that R+,≀ is generated, as a semi-ring, by the elements of Irr(G) seen as words with one letter. Let us
introduce some additional shortand notations for convenience. The fusion semi-ring of GN(W ) will simply
be denoted by R+(W ). Moreover, irreducible representations of the former quantum group will be denoted
by the corresponding word in W so that R+(W ) is freely generated as an abelian group by the elements of

W . We can now describe R+(W (○,k+1)) in terms of R+,≀(W (○,k)).
Proposition 6.2. Let k ∈N. Set, for w ∈W (○,k), a(w) = ○w●. Then exists a semi-ring isomorphism

Ψ ∶ R+,≀ (W (○,k)) → R+ (W (○,k+1))

such that Φ(w) = a(w) for all w ∈W (○,k).

Proof. We first claim that any element of W (○,k+1) can be written as a word on elements of the form a(w′) for

w′ ∈W (○,k). Let us prove this by induction. The smallest word in W (○,k+1) is ○●, which is a(∅). Assuming
that the result holds for all words of length at most n for some n ⩾ 2, let us consider w = w1⋯wn+2 and set

i =min{j ∣ c(w⩽j) = 0}.
Then, by definition of W (○,k+1), we have w1 = ○, wi = ● and

c(wi+1⋯wj) = c(w⩽j)
for all j ⩾ i + 1, so that w>i ∈W (○,k+1). Moreover, by definition of i, for any 2 ⩽ j ⩽ i − 1,

k ⩾ c(w2⋯wj) = c(w⩽j) − 1 ⩾ 0
Summing up, w′ = w2⋯wi−1 ∈W (○,k) and w = a(w′)w>i. The claim then follows by induction.

Let us now set Ψ(w) = a(w) for w ∈ W (○,k) and extend it to words on W (○,k) by simply concatenating

the images. The claim above shows that Ψ ∶ R+,≀(W (○,k)) → R+(W (○,k)) is a surjective morphism of abelian
groups and we will now prove that it is also injective. For that purpose, let v ∈ W ○,k+1 and write it as
v = a(w1)⋯a(wn) with a “maximal” decomposition in the sense that c(a(wi)⩽j) > 0 for all j < ∣wi∣ + 2 and
1 ⩽ i ⩽ n (this is exactly the decomposition provided by the procedure above). Let us assume that there
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is another decomposition v = a(w′1)⋯a(w′m) and observe that because of the maximality condition, there
exists n1 such that a(w′1) = a(w1)⋯a(wn1). If n1 > 1, then

c (w′1⩽∣w1∣+1
) = c(○w1●) − c(○) = −1,

contradicting w′1 ∈W ○,k. Thus, w′1 = w1 and a straightforward induction shows that m = n and w′i = wi for
all 1 ⩽ i ⩽ n, proving injectivity.

To conclude, we must now show that Ψ also respects the mutliplicative structure and the involution. The

second one is clear from the fact that a(w) = a(w). As for the first one, it is enough to check it on the
generators and this is a simple calculation:

a(w) ⊗ a(w′) = (○w●).(○w′●)
= ○w ● ○w ● +(○w).(w′●)
= a(w)a(w′) + ○(w ⊗w′)●

= a(w)a(w′) + ○⎛⎝ ∑
w=az,w′=zb

ab
⎞
⎠ ●

= a(w)a(w′) + ∑
w=az,w′=zb

a(ab)

�

Using this, we will prove in Theorem 6.5 that GN(W (○,k))) can be obtained by iterated free wreath product
by Aut+(MN(C)).
6.2. Dual quantum subgroups. We will now complete our classification by giving an explicit description
of all the dual quantum subgroups of U+N . The computation of fusion rings already gives natural candidates,
and we will see how we can use the results of Section 6.1 to compute the corresponding dual quantum
subgroups.

6.2.1. The symetric case. But first things first, we will start by proving the claims at the beginning of Section
6.1.

Proposition 6.3. For any integer k, there is an anti-isomorphism of CQG-algebras

G(W (○,k)) ≅ G(W (●,k)) .
Moreover, there is a CQG-algebra isomorphism

G(W (k,k′)) ≅ G(W (○,k)) ∗G(W (●,k′))
Proof. Let S be the antipode of U+N , which is the unique ∗-anti-homomorphism such that S(uij) = u∗ji.
Then, applying S coefficient-wise to representations, we have the equality S(u○⊗k ⊗ u●⊗k) = u●⊗k ⊗ u○⊗k and
it follows from this by a straightforward induction that

S(u○k●k) = u●k○k .
As a consequence S(O(GN (W (○,k)))) = O(GN(W (●,k))) and the result follows from the fact that S is an
anti-isomorphism.

As for the second statement, it is enough to prove that if u1,⋯, up are non-trivial irreducible representations
of G(W (○,k)) and v1,⋯, vp are non-trivial irreducible representations of G(W (●,k)), then u1⊗v1⊗⋅ ⋅ ⋅⊗up⊗vp

is irreducible. To do this, consider the words w and w′ corresponding to the representations u1 and v1

respectively. By definition, w ends with ● and w′ starts with ●. As a consequence,

u1 ⊗ v1 = uw ⊗ uw
′

= uww′

is irreducible. One can then work by induction to deduce the result. �

We will now start by describing GN(W (○,k)). The description will involve the use of the quantum au-
tomorphism group of MN(C) with respect to its canonical trace, which we denote by Aut+(MN(C)), see
[38, 2] for a definition. It will also involve the free wreath product with respect to that quantum group, the
definition of which we recall (see [17] for details and [7] for the original definition).
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Definition 6.4. Let G be a compact quantum group and let A(G) be the universal ∗-algebra generated by
elements a(α)ij where α ∈ Irr(G) and 1 ⩽ i, j ⩽ N2 dim(α)2 such that

● Each matrix a(α) ∈ L(MN(C))⊗Mdim(α)(O(G)) is unitary;
● If T ∈Mor(α⊗ β, γ), then

[(m⊗ T ) ○Σ23] (a(α) ⊗ a(β)) = a(γ) [(m⊗ T ) ○Σ23] ,
where m ∈ L(MN(C)⊗MN(C),MN(C)) is the matrix multiplication and Σ23 is the flip between the
second and third tensors;
● The map η ∶ λ ∈ C↦ λ id ∈MN(C) satisfies

a(εG)(idMN (C)⊗1) = idMN(C)⊗1.

It was proven in [17, Prop 2.7 ] that there is a natural CQG-algebra structure on A(G) which turns
it into a compact quantum group called the free wreath product of G by Aut+(MN(C)) and denoted by
G ≀∗ Aut

+(MN(C)). We are now ready for the first main result of this subsection.

Theorem 6.5. For any integer k, there is an isomorphism of CQG-algebras

GN(W (○,k+1)) ≅ GN(W (○,k)) ≀∗ Aut+(MN(C))
Proof. Recall that for a word w on {○,●}, uw denotes a representative of the corresponding irreducible unitary
representation of U+N acting on a Hilbert space Hw. We will fix an orthonormal basis (fi)1⩽i⩽dw of that space

in the sequel. Let now w ∈W (○,k) and set (the second equality follows from the fact that w starts with ○ and
ends with ●)

b(w) = u○w● = u⊗ uw ⊗ u.
This is a representation of GN(W (○,k+1)) acting on H ⊗Hw ⊗H. In order to use the definition of the free
wreath product, we will see this carrier space as MN(C)⊗Hw ≅H ⊗H ⊗Hw through the map

Φw ∶ ei ⊗ ξ ⊗ ej ↦ ei ⊗ ej ⊗ ξ

and accordingly set a(w) = Φwb(w)Φ−1w . Our goal is to check that these matrices satisfy the defining relations
of Definition 6.4. Observe for a start that, because Φw is a unitary map between two Hilbert spaces (with
the Hilbert structure on MN(C) coming from the trace), a(w) is a unitary matrix.

To check the second condition, let w1,w2,w3 ∈W (○,k) and let T ∈Mor(uw1 ⊗uw2 , uw3). For computational
convenience, we will see a(w) as a map MN(C)⊗Hw →MN(C)⊗Hw⊗O(G). Then, for any 1 ⩽ i, j, k, l ⩽ N ,
1 ⩽ a ⩽ dw1

and 1 ⩽ a ⩽ dw2
,

([(m⊗ T ) ○Σ23]⊗ id) (a(w1)⊗ a(w2)) (ei ⊗ ej ⊗ fa ⊗ ek ⊗ el ⊗ fb)
= ([(m⊗ T ) ○Σ23]⊗ id) ○ (Φw1

⊗Φw2
⊗ id) (b(w1)⊗ b(w2)) (ei ⊗ fa ⊗ ej ⊗ ek ⊗ fb ⊗ el)

= ([(m⊗ T ) ○Σ23]⊗ id)⎛⎝
N

∑
i′,j′,k′,l′=1

dw3

∑
a′,b′=1

Φw1
(ei′ ⊗ fa′ ⊗ ej′)⊗Φw2

(ek′ ⊗ fb′ ⊗ el′)⊗ uii′uw1

aa′u
∗
jj′ukk′u

w2

bb′
u∗ll′
⎞
⎠

= ([(m⊗ T ) ○Σ23]⊗ id)⎛⎝
N

∑
i′,j′,k′,l′=1

dw3

∑
a′,b′=1

ei′ ⊗ ej′ ⊗ fa′ ⊗ ek′ ⊗ el′ ⊗ fb′ ⊗ uii′u
w1

aa′
u∗jj′ukk′u

w2

bb′
u∗ll′
⎞
⎠

=
N

∑
i′,j′,k′,l′=1

dw3

∑
a′,b′=1

([(m⊗ T ) ○Σ23]⊗ id) (ei′ ⊗ ej′ ⊗ ek′ ⊗ el′ ⊗ fa′ ⊗ fb′ ⊗ uii′uw1

aa′u
∗
jj′ukk′u

w2

bb′
u∗ll′)

=
N

∑
i′,j′,l′=1

dw3

∑
a′,b′=1

(ei′ ⊗ el′ ⊗ T (fa′ ⊗ fb′)⊗ uii′uw1

aa′u
∗
jj′ukj′u

w2

bb′
u∗ll′)

= δkj
N

∑
i′,l′=1

dw3

∑
a′,b′=1

(ei′ ⊗ el′ ⊗ T (fa′ ⊗ fb′)⊗ uii′uw1

aa′u
w2

bb′
u∗ll′)

= δkj
N

∑
i′,l′=1

dw3

∑
a′,b′=1

(ei′ ⊗ el′ ⊗ T (fa′ ⊗ fb′)⊗ uii′uw1

aa′u
w2

bb′
u∗ll′)

= δkj(Φw3
⊗ id)(id⊗T ⊗ id) (u⊗ uw1 ⊗ uw2 ⊗ u) (ei ⊗ fa ⊗ fb ⊗ ej) ,
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while

a(w3) ([(m ⊗ T ) ○Σ23]⊗ id) (ei ⊗ ej ⊗ fa ⊗ ek ⊗ el ⊗ fb) = δkja(w3) (ei ⊗ el′ ⊗ T (fa ⊗ fb))
= δkj(Φw3

⊗ id)(u⊗ uw3 ⊗ u) (ei ⊗ T (fa ⊗ fb)⊗ el) .

It then follows from the fact that T ∈Mor(uw1 ⊗ uw2 , uw3) that (m ⊗ T ) ○Σ23 is an intertwiner. Moreover,
the trivial representation is given by the empty word, and b(∅) = u⊗ u fixes the vector

n

∑
i=1

ei ⊗ 1C ⊗ ei,

which under the map Φ∅ becomes 1MN(C) ⊗ 1, as required.
By the universal property, there is therefore a surjective morphism of CQG-algebras

πk ∶ O(GN(W (○,k)
≀∗ Aut

+(MN(C)))→ O(GN(W (○,k+1)).
Moreover, πk induces at the level of fusion rings the map Ψ of Proposition 6.2, which has been proven to be
injective. It is a well-known fact that this implies that πk is injective, but let us briefly sketch the argument:
given a coefficient x of an irreducible non-trivial representation α ofO(GN(W (○,k)

≀∗Aut
+(MN(C))), its image

is a coefficient of Ψ(α), which is non-trivial and irreducible. As a consequence, applying the Haar state to

Ψ(α) yields 0; because coefficients of irreducible representations span O(GN(W (○,k)
≀∗ Aut

+(MN(C))), we

conclude that its Haar state equals the Haar state of GN(W (○,k+1)) composed with πk, and the result then
follows from the faithfulness of the Haar states. �

Note that the same proof works for W (●,k). A straightforward induction then yields an explicit description
of these compact quantum groups which therefore turn out to be isomorphic.

Corollary 6.6. Both compact quantum groups GN(W (○,k)) and GN(W (●,k)) are isomorphic to the k-th
iterated free wreath product of Aut+(MN(C)) by itself.

As for GN(W (○,∞)), it can be though of as an infinitely iterated free wreath product in the same way.

6.2.2. The non-symetric case. We conclude with the case of the compact quantum groups G(W (k)). We
have not computed their fusion rings, but as we will see there is a direct way to describe them which does
not require any prior knowledge of their representation theory. This will rely on two isomorphism results
that we state separately for convenience. The first one concerns free wreath products with Aut+(MN(C))
and is similar to what was used in the proof of Theorem 6.5.

Lemma 6.7. Let (G, v) be a compact matrix quantum group and let H be a compact quantum group such that
O(H) contains free copies of O(G) and O(O+N) with fundamental representation u. Then, the ∗-subalgebra
A ⊂ C(H) generated by the coefficients of u⊗ v ⊗ u is a CQG-algebra isomorphic to O(G ≀∗ Aut+(MN(C))).
Proof. For α ∈ Irr(G), set a(α) = u ⊗ uα ⊗ u. Then, the proof of Theorem 6.5 goes along, noticing that

because u = u, we may see a(α) as a representation acting on C
N
⊗Hα ⊗C

N
. �

Our second lemma concerns an alternative definition of the free complexification operation, which we
first recall. Let us denote by T the compact group of complex numbers of modulus one, and by z its
fundamental representation given by the identity map. Given a compact matrix quantum group (G, v), its

free complexification is the quantum group (G̃, vz), where O(G̃) ⊂ O(G)∗O(T) is the ∗-subalgebra generated
by the coefficients of the matrix vz.

Lemma 6.8. Let (G, v) be a compact matrix quantum and let H be a compact quantum group such that
O(H) contains free copies of O(G) and O(T) with fundamental representation z. Then, the ∗-subalgebra of

O(H) generated by the coefficients of zvz is a CQG-algebra isomorphic to O(G̃).
Proof. The proof relies on two remarks. First, if one considers the ∗-subalgebra generated by uz2, then the
same conclusion holds. Indeed, z2 can be seen as the fundamental representation of O(2̂Z) ⊂ O(Ẑ) = O(T)
and since 2Z ≅ Z we are in the situation of the usual definition of the free complexification. Second, we
claim that the map x ↦ zxz is a CQG-algebra automorphism of C(H). The fact that it is a ∗-automorphism
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is straightforward since it is the conjugation by a unitary. As for compatibility with the coproducts, this
follows from the fact that z is group-like, i.e. ∆(z) = z ⊗ z.

Summing up, if A is the ∗-subalgebra generated by the coefficients of zvz, then it is a CQG-algebra
isomorphic to the one generated by the coefficients of z(zvz)z = vz2, hence to the free complexification of
G. �

We are now ready for our second main result.

Theorem 6.9. We have G
(1) = U+N , G(2) ≅ (Ẑ ≀∗ Aut+(MN(C)))∼ and, for k ⩾ 3,

G
(k) ≅ (G̃(k−2) ≀∗ Aut+(MN(C)))

∼
.

Proof. The first equality follows by definition. For the second one, observe that O(G(2)) is generated by the
coefficients of the representation uzuz = (uzu)z in O(O+N ∗O(T)). It is therefore the free complexification of
the quantum group corresponding to the CQG-algebra generated by the coefficients of uzu. But since O(T)
and O(O+N) are free inside O(U+N) by definition, this is Ẑ ≀∗ Aut

+(MN(C)) by Lemma 6.7, hence the result.

If now k ⩾ 3, we observe that O(G(k)) is generated by the coefficients of

(uz)k = (u [(zu)k−2z]u) z = (uvu)z.
Moreover, v = (zu)k−2z = z(uz)k−2z so that the CQG-algebra generated by its coefficients is isomorphic to

O(G(k−2)) by Lemma 6.8 and we conclude again by Lemma 6.7 and Lemma 6.8. �

7. Connection to quantum graphs and quantum trees

Several definitions of quantum graphs have been given about ten years ago in the context of quantum
information theory, amongst others see [16, 40, 26] and then [11, 39, 13] for a comparison of the definitions.
The literature on quantum graphs grows rapidly, see for instance [8, 9, 23, 24, 41] in addition to the previously
mentioned articles.

It was recently proven in [10] (see also [14, 25]) that the iterated free wreath product of S+N with itself k
times can be identified with the quantum automorphism group of a rootedN -regular tree with depth k. Based
on this, one may wonder whether the quantum groups GN(W ○,k) can be seen as quantum automorphism
groups of regular quantum graphs. The base case k = 1 corresponds to the quantum automorphism group
Aut+(MN(C)) of MN(C), hence it is natural to expect that we have to build a graph using the latter C*-
algebra as a building block. However, we will start with a more general construction because it somehow
makes the proofs simpler.

7.1. Definition of quantum regular trees. We now give a definition of quantum regular trees. Let (B,ψ)
be a finite-dimensional C*-algebra equipped with a δ-form ψ. Setting B⊗0 = C, we will take

Bk =
k

⊕
i=0

B⊗i

as the non-commutative space underlying our quantum graph. As for the state, we would like to take the
sum of the states ψ⊗i, but this will not be a δ-form since ψ⊗i is a δi-form. Therefore, we need to renormalize
them and set

δk =
k

∑
i=0

δi and ψk =
1

δk

k

∑
i=0

δiψ⊗i,

with ψ⊗0 being the identity on C.

Definition 7.1. For 0 ⩽ i ⩽ k − 1, we define a linear map Ai ∶ B
⊗i → B⊗i+1 by

Ai ∶ x↦ x⊗ 1.

We then set

Ak = Id +
k−1

∑
i=0

Ai.
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Lemma 7.2. The triple Gk = (Bk, ψk,Ak) is a quantum graph in the sense of [39], i.e. Ak is completely
positive and the following relation holds :

m ○ (Ak ⊗Ak) ○m∗ = δ2kAk.

Moreover, if B = CN , then Gk is the rooted N -regular tree with depth k.

Proof. It is clear that Ai is completely positive for all i, hence Ak also is. Moreover, observe that m(B⊗i ⊗
B⊗i

′) = 0 if i ≠ i′. Therefore, the range of m∗ is contained in

k

⊕
i=1

B⊗i ⊗B⊗i.

On the i-th summand, Ak ⊗Ak is the sum of the three operators Id⊗Ai, Ai ⊗ Id and Ai⊗Ai. The first two
have range contained in the kernel of m, hence we can focus on the last one. We compute

m ○ (Ai ⊗Ai) ○m∗(x) = ∑m (Ai(x1)⊗Ai(x2))
= ∑m (x1 ⊗ 1⊗ x2 ⊗ 1)
= ∑x1x2 ⊗ 1

= δ2kx⊗ 1

= δ2kAi(x).
As for the last point of the statement, let us label the vertices of Gk by tuples (i1,⋯, ip) corresponding to

the basis vector ei1 ⊗⋯⊗ eip of B⊗p. Recalling that the unit of CN is the all-one vector

ξ =
N

∑
i=1

ei,

we see that the Ai component in the adjacency matrix means that the vertex (i1,⋯, ip) is connected to the
vertices (i1,⋯, ip, i) for all 1 ⩽ i ⩽ N . Moreover, the vertex corresponding to B⊗0 is also connected to all the
vertices labelled by (i) for 1 ⩽ i ⩽ N . As a consequence, the corresponding graph is the rooted N -regular
tree with depth k. �

The previous result makes it reasonable to call Gk the rooted (B,ψ)-regular quantum tree of depth k. For
clarity, let us state this as a definition in the case which is of interest to us.

Definition 7.3. The rooted tracial MN(C)-regular quantum tree of depth k is the quantum graph given by
Gk = (MN(C)⊗k, trk,Aσk

).
The important observation is that GN(W (○,k)) acts on Gk. Indeed, let us consider first the quantum group

G = U+N with its fundamental representation V . It acts on MN(C)⊗i by conjugation, i.e. through the map

αi ∶ T ∈MN(C)⊗i ↦ V ⊗i(1⊗ T )V ∗⊗i ∈ O(G)⊗MN(C)⊗i.
This is trace-perserving because V is unitary. Moreover, the first tensorand of αi(T ) is a product of i
coefficients of V followed by a product of i coefficients of V ∗, hence it lies in O(GN(W ○,i)) ⊂ O(GN(W ○,k)).
Therefore, there is a unique action α ∶ Bk → O(GN(W ○,k))⊗Bk which coincides with αi on the i-th component
(and is the trivial action on C). Let us now check the compatibility with the adjacency matrix. We have

αi+1 ○Ai(T ) = αi(T ⊗ 1MN (C))
= V ⊗(i+1)(1⊗ T ⊗ 1MN (C))V ∗⊗(i+1)

= [V ⊗i(1⊗ T )V ∗i]⊗ 1

= (id⊗Ai) (V ⊗i(1⊗ T )V ∗⊗i)
= (id⊗Ai) ○ αi(T )

hence GN(W (○,k)) acts on Gk.
We conclude with a converse to this computation.

Theorem 7.4. The compact quantum group GN(W (○,k)) is the quantum automorphism group of the rooted
MN(C)-regular quantum tree of depth k.
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Proof. We will prove the result by induction on k. For k = 1 this is already known. Assuming now the result
for some k ⩾ 1, we have a surjective ∗-homomorphism

Ψ ∶ O(Aut+(Gk+1))→ O(GN(W (○,k+1)))
= O(GN(W (○,k)) ≀∗ Aut+(MN(C)))
= O(Aut+(Gk ≀∗ Aut+(MN(C))))

following from the universality of O(Aut+(Gk+1)) and the fact that the right-hand side acts on Gk+1. Our
strategy will be to construct an inverse to that map using the universal property of free wreath products. This
requires finding homomorphic images of both O(Aut+(Gk)) and O(Aut+(MN(C))) inside O(Aut+(Gk+1)).
To lighten notations, we will write B for MN(C) in the sequel.

Observe that the range of Ak+1 is by definition stable under the action. Moreover, it is exactly the space
of all elements such that the last tensorand of each component is 1, and therefore it is a sub-C*-algebra
isomorphic to Bk. The restriction of Ak+1 to it is by definition Ak and the restriction of ψk+1 is a multiple
of ψk. In other words, this yields a quantum graph isomorphic to Gk which is stable under the action. As a
consequence, there is a ∗-homomorphism

π1 ∶ O(Aut+(Gk))→ O(Aut+(Gk+1))
which has the following property which we record for later use : if b is in the range of Ak+1, then α(b) ∈
π(O(Aut+(Gk))) ⊗Bk+1.

Let us now consider B′ = 0 ⊕ B ⊕ 0 ⊕ ⋯ ⊕ 0, which is a sub-C*-algebra of Bk+1 isomorphic to B. We
claim that is it also stable under the action. Indeed, observe that A∗1A1 commutes with the action and is
the projection onto B′. This means that Aut+(Gk+1) acts on B. Since that action preserves ψ, which is a
multiple of the trace, there is a surjective ∗-homomorphism

π2 ∶ O(Aut+(MN(C))) → O(Aut+(Gk+1)).
We can now gather the two ∗-homomorphisms that we found to produce generators satisfying the defining

relation of Definition 6.4. If u is an irreducible representation of Aut+(Gk) and if v denotes the fundamental
representation of Aut+(MN(C)), we set

a(u) = π1(u)⊗ π2(v).
These are unitary representations satisfying the conditions of Definition 6.4. The only thing which is not
clear is that their coefficients generate O(Aut+(Gk+1)). To see this, we will prove that if A ⊂ O(Aut+(Gk+1))
is the ∗-subalgebra generated by the coefficients of a(u) for u ranging through all irreducible representations
of O(Aut+(Gk)), then α(Bk+1) ⊂ A⊗Bk+1. To see this, let us consider an arbitrary element x ∈ Bk+1. If xi
is its component in B⊗i, then it is enough to prove that α(xi) ⊂ A⊗Bk+1. Now, we can write

xi = b1 ⊗⋯⊗ bi = (b1 ⊗⋯⊗ bi−1 ⊗ 1)(1 ⊗⋯⊗ 1⊗ bi) = b′ib′′i .
Observe that b′i is in the range of Ak+1, so that α(b′i) ⊂ A⊗Bk+1. As for b′′i , it can be written as Ai−1 ○Ai−2 ○

⋯ ○A1(b), hence

α(b′′i ) = (id⊗Ai−1 ○Ai−2 ○ ⋯ ○A1) ○ α(b) ∈ A⊗Bk+1

since the coefficients in the left tensorand of α(b) are by definition coefficients of π2(v). This completes the ar-
gument, proving that by the universal property of free wreath products, there is a surjective ∗-homomorphism

Φ ∶ O(Aut+(Gk) ≀∗MN(C))→ O(Aut+(Gk+1)).
Let now w denote the fundamental representation of Aut+(Gk) and a(w) its canonical image as a repre-

sentation of O(Aut+(Gk) ≀∗MN(C)). Its coefficients are sent by Φ to the coefficients in the left tensorand of

α(x) for x ∈ Bk. These are in turn sent to the corresponding coefficients for the action of GN(W (○,k)) which
are exactly the coefficients of V ⊗k⊗V ∗⊗k. Therefore, Ψ○Φ is injective on the ∗-subalgebra generated by the
coefficients of a(u) for all irreducible representations u of Aut+(Gk). Similarly, the coefficients of v are sent
by Ψ ○Φ to the corresponding coefficients of V . We conclude that the fundamental representation is sent to
the fundamental representation, which implies that Ψ ○Φ is injective, so that Φ also is. Since it is surjective
by construction, the proof is complete. �
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Remark 7.5. It seems plausible that for an arbitrary finite quantum space (B,ψ) the isomorphism

Aut+(Gk+1) ≃ Aut+(Gk) ≀∗ Aut+(B,ψ)
holds. This could then be seen as an extension of the result of J. Bichon [7] for disjoint unions of transitive
graphs. Indeed, for a classical rooted N -regular tree of depth k + 1, the root is fixed by the quantum
automorphism group because it is the only vertex with degree N + 1, hence the quantum automorphism
group is just the quantum automorphism group of the disjoint union of N rooted N -regular trees of depth
k.
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