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Abstract

Graph generation has emerged as a crucial task in machine learning, with significant
challenges in generating graphs that accurately reflect specific properties. Existing methods
often fall short in efficiently addressing this need as they struggle with the high-dimensional
complexity and varied nature of graph properties. In this paper, we introduce the Neural
Graph Generator (NGG), a novel approach which utilizes conditioned latent diffusion
models for graph generation. NGG demonstrates a remarkable capacity to model complex
graph patterns, offering control over the graph generation process. NGG employs a varia-
tional graph autoencoder for graph compression and a diffusion process in the latent vector
space, guided by vectors summarizing graph statistics. We demonstrate NGG’s versatil-
ity across various graph generation tasks, showing its capability to capture desired graph
properties and generalize to unseen graphs. This work signifies a significant shift in graph
generation methodologies, offering a more practical and efficient solution for generating di-
verse types of graphs with specific characteristics.

1 Introduction

In recent years, the field of machine learning on graphs has witnessed an extensive growth,
mainly due to the availability of large amounts of data represented as graphs. Indeed, graphs
arise naturally in several application domains such as in social networks, in chemo-informatics
and in bio-informatics. One of the most challenging tasks of machine learning on graphs is that
of graph generation [Zhu et al., 2022]. Graph generation has attracted a lot of attention recently
and its main objective is to create novel and realistic graphs. For instance, in chemo-informatics,
graph generative models are employed to generate novel, realistic molecular graphs which also
exhibit desired properties (e.g., high drug-likeness) [Jin et al., 2018, [Zang and Wang, 2020].
Recently, there is a surge of interest in developing new graph generative models, and most
of the proposed models typically fall into one of the following five families of models: (1)
Auto-Regressive models; (2) Variational Autoencoders; (3) Generative Adversarial Networks;
(4) Normalizing Flows; and (5) Diffusion models. These models can capture the complex
structural and semantic information of graphs, but focus mainly on specific types of graphs
such as molecules [Hoogeboom et al., 2022], proteins [Ingraham et al., 2019], computer pro-
grams [Brockschmidt et al., 2019] or patient trajectories [Nikolentzos et al., 2023]. Tradition-
ally, in different application domains, there is a need for generating graphs that exhibit specific
properties (e.g., degree distribution, node triangle participation, community structure, etc.).



The different models that are commonly employed to generate these graphs, such as the Erdos—
Rényi model and the Barabasi-Albert model, capture one or more network properties but ne-
glect others. For example, the Barabdsi-Albert model can generate graphs with a specific degree
distribution, but ignores the rest of the graph’s properties.

Recent graph generative models have improved in accurately representing various properties
of real-world graphs. Nonetheless, to produce graphs adhering to specific properties, it is
necessary first to compile a dataset of graphs that display these characteristics before proceeding
to train the model using this dataset. Thus, to generate different types of graphs, different
models need to be trained, which is impractical. This work aims to fill this gap. Specifically, we
develop a neural network model, so-called Neural Graph Generator (NGG), to generate graphs
that exhibit specific properties. We capitalize on recent advances in latent diffusion models to
perform vector-conditioned graph generation. The model applies the diffusion process not to the
graph data but instead to an encoded latent representation of the graph. We produce vectors
that contain a summary of the statistics of each graph (e. g., number of nodes, number of edges,
clustering coefficient, etc.). Those vectors guide the denoising part of the diffusion process. We
first pre-train a variational graph autoencoder which we use to map graphs into vectors and map
vectors into graphs. The diffusion is performed in the space of vectors. To generate new graphs
that exhibit specific properties, we sample a vector from the standard normal distribution, and
we denoise this vector, while denoising is guided by the vector of graph properties. Once the
noise has been removed from the vector, we feed the emerging vector into the decoder of the
pre-trained variational graph autoencoder to produce a graph. The proposed model is evaluated
in the task of graph generation conditioned on graph properties. Our results indicate that the
NGG model can indeed generate graphs whose properties are similar to the ones that are given
as input to the model. To summarize, our work makes the following contributions:

(i) We introduce Neural Graph Generator, a novel graph generative model which leverages
latent diffusion for conditional graph generation. This model represents a significant shift
from traditional graph generation methods, focusing on prompting with a vector that
includes a set of diverse properties of the graph.

(ii) We introduce a large-scale dataset of synthetic graphs that covers several different types
of graphs on which our model was trained. This dataset can be used for pre-training any
graph generative model in the future.

(iii) We extensively evaluate our model across various graph generation tasks, demonstrating
its effectiveness in capturing specific graph properties, generalizing to larger graphs, and
generating graphs from subsets of properties.

(iv) We release the pre-trained autoencoder, the pre-trained latent diffusion model, and the
synthetic dataset of 1M graphs which are likely to be useful for both practitioners and the
scientific community [1]

2 Related Work

Graph Generative Models. For the problem of graph generation, as discussed above, most
models belong to one of the following five families: (1) Auto-regressive models; (2) Variational
autoencoders; (3) Generative adversarial networks; (4) Normalizing flows; and (5) Diffusion
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models. Auto-regressive models assume a specific node ordering and generate graphs in a se-
quential fashion. GraphRNN [You et al., 2018], GraphGen [Goyal et al., 2020] and GraphGen-
Redux [Bacciu and Podda, 2021] are three examples of auto-regressive models. GraphRNN
generates nodes and its associated edges sequentially, while the other two models generate
edges and their endpoint nodes sequentially. Variational autoencoders consist of two mod-
ules. First, the encoder which maps the input data to a space that corresponds to the pa-
rameters of a Gaussian distribution. Typically, this distribution is encouraged to be similar
to the standard normal distribution. Second, the decoder which maps from the latent space
to the input space. In the graph domain, GraphVAE [Simonovsky and Komodakis, 2018| is
a model whose encoder is an instance of a message passing graph neural network, while its
decoder is a simple multi-layer perceptron. There are models that embed graphs into distri-
butions different from Gaussian such as DGVAE [Li et al., 2020] which utilizes the Dirichlet
distributions as priors on the latent variables and the latent variables represent graph cluster
memberships. Variational autoencoders have also achieved success in the field of chemoinfor-
matics [Jin et al., 2018, [Samanta et al., 2020]. Similar to variational autoencoders, generative
adversarial networks also consist of two main components, a generator whose objective is to
generate realistic samples and a discriminator whose objective is to distinguish real samples
from synthetic ones. Most models from this family typically consist of a generator that takes
vectors sampled from a standard normal distribution and processes them with a multi-layer
perceptron to generate a graph, and of a discriminator which is an instance of a message
passing graph neural network |[De Cao and Kipf, 2018|, [Polster] and Wachinger, 2021]. Archi-
tectures based on normalizing flows explicitly model a probability distribution by leveraging
a method that uses the change-of-variable law of probabilities to transform a simple distribu-
tion into a complex one by a sequence of invertible and differentiable mappings. Normalizing
flows can be applied to graphs by designing message passing mechanisms that are exactly re-
versible [Liu et al., 2019]. Such models have been applied to molecular data. For example,
MoFlow [Zang and Wang, 2020] generates chemical bonds through a Glow-based model, and
atoms given bonds using a graph conditional flow. Diffusion models gradually add noise to the
input data in the forward diffusion process, and then learn to remove the noise in the reverse
diffusion process. There exist models that add Gaussian noise to the graph’s adjacency matrix
and binarize the continuous values of the output of the reverse diffusion process to produce
valid graphs [Niu et al., 2020, [Jo et al., 2022]. More recent models apply a discrete diffusion
process that progressively adds noise by adding or removing edges and changing the nodes’
and/or edges’ types [Vignac et al., 2023].

Conditional Graph Generation. One of the main objectives of graph generative models
is conditional generation, which is the process of generating a graph that satisfies a specific
label or property. Typically, a conditional code is introduced that explicitly controls the prop-
erty of generated graphs. Such models are popular in the field of chemo-informatics where
novel molecules that possess desired chemical properties (e.g., high binding affinity against
a target protein) need to be generated. For variational autoencoders, a simple approach
is to feed the concatenation of the conditional code and the latent graph representation to
the decoder [Simonovsky and Komodakis, 2018]. The conditional code can also be concate-
nated to node representations sampled from a single distribution [Yang et al., 2019]. In models
that generate new nodes and edges sequentially, once a new node is created, its feature vec-
tor must be initialized, and the conditional code could be concatenated to that feature vec-
tor [Li et al., 2018a]. There exist models whose message passing scheme is modified to include
the conditional code [Li et al., 2018b]. MOOD [Lee et al., 2023] utilizes the gradient of a prop-
erty prediction network to guide the sampling process to domains that are likely to satisfy



specific properties. There are also models that employ regularization schemes to learn disen-
tangled representations where each dimension focuses on a specific property [Du et al., 2022].

Latent Diffusion Models. Diffusion models are generative models that have recently gained
significant attention [Ho et al., 2020, [Sohl-Dickstein et al., 2015, [Vincent, 2011]. Diffusion mod-
els have achieved state-of-the-art performance in several tasks such as in conditional image gen-
eration [Dhariwal and Nichol, 2021} [Song et al., 2020], image colorization [Saharia et al., 20224]
and image super resolution [Saharia et al., 2022b], just to name a few. Latent diffusion models
were introduced to reduce the computational complexity of diffusion models. These models
use some autoencoding component to project input data (e.g., images) into some latent space
and perform the diffusion process in that space [Rombach et al., 2022]. Latent diffusion models
can thus be trained on limited computational resources while retaining the quality of diffusion
models. Latent diffusion models have been applied to different problems such as image syn-
thesis [Rombach et al., 2022], video synthesis [Blattmann et al., 2023] and image reconstruc-
tion |Takagi and Nishimoto, 2023]. Recently, latent diffusion models have been introduced in
the molecular geometry domain, and have been evaluated in the task of 3D molecule gener-
ation [Xu et al., 2023], but also for generating protein backbone structures [Fu et al., 2023].
These two works are the closest to our method. Even though architecture-wise our model is
similar to the models presented in these papers, we follow an entirely different research direction
and focus on conditional generation of general graphs (similar to traditional graph generators)
instead of certain classes of graphs such as molecules and proteins.

3 Neural Graph Generator

In this section, we first introduce some key notation for graphs, and we then present the two
main components of the proposed NGG model: (1) the variational graph autoencoder which
produces a compressed latent representation for each graph; and (2) the diffusion model which
performs diffusion in the latent space and which can be conditioned on various inputs (vector
of graph properties in our case). An overview of the proposed model is given in Figure

3.1 Notation

Let [n] ={1,...,n} C Nforn > 1. Let G = (V, E) be an undirected graph, where V is the
set of nodes and FE is the edge set. We will denote by n the number of vertices and by m the
number of edges, i.e., n = |V| and m = |E|. The neighborhood N (v) of a node v is the set of
all vertices adjacent to v. Hence, N'(v) = {u|(v,u) € E} where (v,u) is an edge between the
vertices v and u of V. The adjacency matrix A € R™*" of a graph G is a symmetric (typically
sparse) matrix that is used to encode edge information in the graph. The element of the i
row and j* column is equal to the weight of the edge between the vertices v; and v; if such
an edge exists, and 0 otherwise. The degree d(v) of a node v is equal to the number of edges
that are adjacent to the node, i.e., d(v) = |N(v)|. In different applications, nodes of graphs are
annotated with feature vectors. We use X € R™ ¢ to denote the node features where d is the
feature dimension size. The feature of a given node v; corresponds to the i** row of X.

3.2 Graph Compression

To map graphs into low-dimensional representations, we capitalize on previous work, and we use
an autoencoder [Simonovsky and Komodakis, 2018]. More precisely, given a graph G, the en-
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Figure 1: Overview of the proposed architecture. The variational graph autoencoder is respon-
sible for generating a compressed latent representation for each graph. Those representations
are fed to the diffusion model which operates in that latent space. The denoising process is
conditioned on a vector that contains the graph’s properties. The output of the diffusion model
is passed on to the decoder which generates a graph.

coder & encodes the graph into a latent representation z = £(G), and the decoder D reconstructs
the graph from the latent representation, giving G = D(z) = D(£(Q)), where z € R%.

The encoder £ corresponds to a message passing neural network which consists of GIN
layers [Xu et al., 2019]. Node representations are updated as follows:

h(® :MLP(k><(1+e<k>)hgk1> + ) hg“))
ueN (v)

where k denotes the layer and € is a trainable parameter. Note that the nodes are initially
annotated with features extracted from the eigenvectors of the normalized Laplacian matrix.
These features are stored in matrix X, while hgo) is equal to the row of matrix X that corresponds

to node v. To produce a representation for the entire graph, we use the sum operator as follows:

hg =) h{®

veV

where K is the number of layers. To avoid arbitrarily high-variance latent spaces, we actually
use a variational autoencoder. We thus use fully-connected layers MLP,,, MLP,, to embed the
graphs into the parameters of a Gaussian distribution. We also add the standard regularization
term into the loss function which imposes a slight penalty towards a standard normal distri-
bution on the learned latent representations. Then, the vector z is sampled from the learned
Gaussian distribution:

p=MLP,(hg), o =MLP,(hg), z=p+o0e

where ® denotes element-wise multiplication, and € is a random noise vector sampled from
N(0,1).

The decoder D takes the vector z as input and reconstructs the input graph. We experiment
with a simple MLP decoder that consists of a series of fully connected layers. Specifically, the
decoder is implemented as follows:

A = MLPp(z)



Note that A is an (Nmax X Mmax)-dimensional matrix where npax is a pre-defined maximum
graph size. In fact, the MLP outputs the upper triangular part of this matrix, and from this
A is constructed. Similar to prior work [De Cao and Kipf, 2018|, we found that pre-defining
the maximum graph size makes the model significantly faster and also easier to optimize. Note
that A contains continuous values and has a probabilistic interpretation since each element
represents the probability that two nodes are connected by an edge. To produce a discrete
object, we use the straight-through Gumbel-Softmax [Jang et al., 2017], i.e., we use a sample
from a categorical distribution in the forward pass, while the relaxed values are utilized in the
backward pass. The matrix A is then compared with the adjacency matrix of the input graph
A to compute the reconstruction loss.

To compute the reconstruction loss, following previous work, we could employ some graph
matching algorithm to compare each input graph against the corresponding reconstructed
graph [Simonovsky and Komodakis, 2018]. However, such algorithms are expensive to com-
pute, while we also found empirically that we can achieve similar (or even higher) levels of
performance if we just impose a specific ordering on the nodes of each graph and compare the
reconstructed adjacency against the adjacency that follows this ordering. In general, a node
ordering that is effective for one type of graphs might not be effective for other types of graphs.
For instance, in the task of molecule generation, certain canonical orderings are more effective
than others [Li et al., 2018a]. Since our dataset consists of graphs that exhibit very different
properties from each other, in order to create a general graph generative model, we experimented
with the following node orderings: (1) nodes are sorted by degree (from higher to lower); (2)
ordering corresponds to BFS/DFS tree’s default ordering, which is descending by node degree
and rooted at the node with the highest degree; and (3) nodes are sorted by Pagerank scores
(from higher to lower).

3.3 Latent Diffusion Model

Once the autoencoder is trained, we can use the encoder £ to embed graphs into a low-
dimensional latent space. Those embeddings are expected to capture both local and global
properties of input graphs. The main advantage of latent diffusion models over standard dif-
fusion models is their efficiency. The smaller latent space representation makes executing the
diffusion process much faster. This allows the models to be trained on a single or a few GPUs
instead of hundreds of GPUs. Indeed, recent diffusion models for graphs [Vignac et al., 2023]
operate on adjacency tensors (i.e., tensors of dimension n X n x d), and thus are expensive to
train, while it is also expensive to generate new graphs.

Latent diffusion models consist of two main components: (1) a noise model; and (2) a
denoising neural network. The noise model ¢ progressively corrupts the latent representation
of the input graph z to create a sequence of increasingly noisy vectors (z1, ..., zr). Specifically,
the forward process ¢ samples some noise from a Gaussian distribution at each time step t,
which is added to the representation of the previous time step as follows:

q(ze|ze—1) = N (245 /1 — Beze—1, Be])

where ; is a known variance schedule and 0 < 81 < ... 7 < 1. Note that the forward process
q is fixed, and thus, z; can be obtained directly from z during training. Specifically, we have
that:

q(z|z) = N (z4; Vauz, (1 — ap)1)

where a; = Hle a; and a; = 1 — ;. Note that if the schedule is set appropriately, zp is pure
Gaussian noise. The second component of the latent diffusion model (i. e., the denoising neural



network) is responsible for predicting the added noise for a given time step ¢. To train the
denoising neural network €y, the following function is minimized:

Lipm = Egg G),e~N(0,1) ¢ [Hﬁ—ﬁe(zt, H}
:Eg( 6~N01 |:H€—€9\/72+m6t”i|

We implement the denoising neural network ¢y as an MLP. First, we use sinusoidal positional
embeddings to produce a unique representation for each time step . Then, we feed vector z; to
the MLP and in each hidden layer of the MLP, we add the positional embedding to the latent
representation.

Once the denoising neural network €y is trained, to generate new data, we sample a vector
of pure noise z7 from a Gaussian distribution, and then use the neural network to gradually
denoise it (using the conditional probability it has learned). The denoised vector can then be
transformed into a graph with a single pass through the decoder D.

3.4 Conditioning

The ability to condition graph generation on local and global properties of graphs is crucial
for the success of our work. Latent diffusion models are capable of modeling conditional dis-
tributions. Specifically, text, images, or other inputs can be encoded into the latent space and
used to condition the model to generate outputs with desired properties. Given some condition
code c, diffusion models are capable of modeling the conditional distribution p(z|c) by using a
conditional neural network eg(z,t,79(c)) as follows:

Lipm = Eg(g),emn(0,1), [HE_EH(th () || }

where €y and 7y are neural network models that are jointly optimized. The architecture of 7y
depends on the conditioning modality. As already discussed, the condition code is a vector of
properties of the graph. Thus, we use an MLP as the condition encoder 7y to compute y as
follows:

y = MLP,(c)

Then, we concatenate vectors z and y and feed them into the denoising neural network. We
experimented with other operations (e. g., addition, element-wise product), but in preliminary
experiments, concatenation led to better results than the other operations.

The condition code consists of 15 local and global properties of the input graph. Those
properties are listed in Table [d] in Appendix[A] Those specific 15 properties were chosen mainly
because they cover a broad range of graph properties and they can give insights about the
structure of the graph. Furthermore, the properties can be computed efficiently in polynomial
time.

4 Experimental Evaluation

We train and evaluate the NGG model on a dataset that contains 1M synthetic graphs. We
consider that the evaluation encompasses three distinct scenarios. Initially, we assess the model’s
performance on our original dataset. Subsequently, we evaluate its capabilities when trained
on graphs containing up to 50 nodes, test its adaptability to larger graphs with more than 50
nodes, and examine its generalization performance. Lastly, we randomly conceal between 1 to
8 properties of some of the input graphs (i. e., number of nodes, edges, density, etc.), treating



them as missing values not provided by the user. Subsequently, we retrain the model and assess
its performance on the test set, repeating the process of concealing a random number of graph
properties.

Dataset. We train and evaluate the NGG model on a dataset that contains 1M synthetic
graphs, where each graph contains at most 100 nodes. To create the dataset, we use different
types of graph generators. This allows us to construct graphs from different families and thus,
cover a wide range of values of the considered properties. Each synthetic graph belongs to one
of the following 17 families of graphs: (1) paths; (2) cycles; (3) wheels; (4) stars; (5) ladders; (6)
lollipops; (7) Erdés-Rényi random graphs; (8) Newman—Watts—Strogatz small-world graphs; (9)
Watts—Strogatz small-world graphs, (10) random d-degree regular graphs; (11) Barabési—Albert
graphs; (12) dual Barabasi-Albert graphs; (13) extended Barabasi—Albert graphs; (14) graphs
generated using the Holme and Kim algorithm; (15) random lobsters; (16) stochastic block
model graphs; and (17) random partition graphs. More details about the constructed dataset
are given in Appendix [A] The generated graphs in our dataset are devoid of self-loops, isolated
nodes, and multigraphs are also excluded.

Experimental setup. With regard to the variational autoencoder, the encoder £ consists
of 2 layers, the hidden dimension size is set equal to 64, while the input graphs are embedded
into 32-dimensional vectors. We imposed an ordering on the nodes based on the BFS tree’s
default ordering. The decoder D consists of 3 layers and the hidden dimension size is set to 256.
The output of D is a 100%-dimensional vector and is transformed into an adjacency matrix of
dimension (100 x 100). Thus, the model can handle graphs of up to 100 nodes. We also initially
annotate the nodes of each graph with 10-dimensional spectral features (from the eigenvectors
associated with the 10 smallest eigenvalues of the normalized Laplacian matrix). For the latent
diffusion model, we set the number of timesteps 1" equal to 500, while we use a cosine schedule
for adding noise at each time step. The denoising neural network €y consists of 3 layers, the
hidden dimension size is equal to 512, while the size of the output is set to 128. To train both
models, we use the Adam optimizer and we set the learning rate to 0.001. The batch size is set
to 256. We set the number of epochs of the variational autoencoder to 200, while the number
of epochs of the latent diffusion model to 100. Overall, the variational autoencoder consists of
2,640, 492 parameters, while the diffusion model consists of 973, 088 parameters. Thus, in total,
the NGG model consists of 3,613,580 parameters.

Evaluation and baseline. Given a collection of graphs {G1,Gs,...,Gy} that belong to
the test set, we use the trained generative model to produce another collection of graphs
{Gl, G’g, e ,G ~}. To generate each graph of the new collection, we sample pure noise from
a Gaussian distribution and use the neural network to gradually denoise it, while the whole
denoising process is conditioned on the vector of properties of the corresponding graph of the
test set G;. Once the noise has been removed, the emerging vector is transformed into a graph
G; with a single pass through D. Note, however, that we are not interested in comparing the
generated graphs against the corresponding graphs of the test set, but we are interested in find-
ing whether the properties of the generated graphs match the properties of the corresponding
graphs of the test set. Therefore, for each generated graph Gi, we compute a vector where
each component is the value of each one of the 15 considered properties. Then, this vector is
compared against the vector of properties of G;. We use two different metrics: (1) the mean
absolute error (MAE); and (2) the symmetric mean absolute percentage error (SMAPE), which
we use instead of the mean absolute percentage error (MAPE) because we have values equal to
zero or close to zero. SMAPE values range from 0% to 100%, while lower values indicate better



Table 1: Within distribution performance of the proposed NGG model and the baseline model
in terms of the considered properties.

P \ VGAE \ NGG
roperty
| MAE SMAPE | MAE SMAPE

# nodes 24.22 25.18 2.63 3.09
# edges 701.99 66.48 62.33 8.44
Density 0.32 52.13 0.04 7.23
Min. degree 13.95 64.52 11.61 49.46
Max. degree 14.59 22.32 1.59 3.55
Avg. degree 18.99 58.60 1.64 6.68
Assortativity coefficient 0.30 61.32 0.11 39.10
# triangles 10,356.20 99.91 1,026.44 24.38
Avg. # triangles formed by an edge 8.85 66.52 9.44 68.32
Max. # triangles formed by an edge 539.03 83.97 49.26 16.66
Avg. local clustering coefficient 0.29 35.04 0.08 15.42
Global clustering coefficient 0.36 58.12 0.05 14.07
Max. k-core 15.07 54.51 1.66 8.61
# communities 1.74 21.86 0.96 12.34
Diameter 3.73 31.31 2.40 15.96
All ‘ 0.80 55.96 ‘ 0.23 21.05

performance, as they represent a smaller percentage difference between the predicted and actual
values. We calculate the aforementioned metrics by taking into account all 15 properties and
applying z-score normalization to them.

We also use a variant of the variational autoencoder (VGAE) as a baseline where the process
is conditioned on vector of properties ¢ for controlled sampling by concatenating the vector with
the graph’s latent representation.

4.1 Within Distribution Performance

In this experiment, we split the constructed dataset into a training, a validation and a test set.
Then, we train the proposed NGG model and the baseline on the training set. We choose the
models that achieve the lowest loss on the validation set and we evaluate their performance on
the test set. More specifically, the 1M samples are split into training, validation, and test sets
with a 80 : 10 : 10 split ratio, respectively. Thus, the training set contains 800,000 samples,
while each of the validation and test sets contain 100,000 samples. Each one of the three sets
preserves approximately the proportions of each graph type. Table [1] illustrates the MAE and
SMAPE achieved by NGG and VGAE for each property individually and for all properties
together (last row). First of all, we observe that the proposed NGG model outperforms VGAE
in terms of almost all considered properties. Secondly, we notice that NGG accurately captures
most of the properties, while it struggles with the minimum degree, the number of triangles,
and the average and the maximum number of triangles formed by an edge.

4.2 Out of Distribution Generalization

In many scenarios, machine learning models fail to generalize to unseen data. Thus, in this
second experiment, we study whether the proposed NGG model and the baseline model can
generate graphs whose properties’ values are different from the ones the models were trained on
(i.e. out of distribution). Specifically, we train the two models on graphs of up to 40 nodes and



Table 2: Performance Comparison of NGG and Baseline Model under Different Conditions:
Out-of-Distribution Performance (trained on graphs with up to 50 nodes and evaluated on
larger graphs) and Within-Distribution Performance with Masking Applied to some Condition
Vector Elements.

‘ Out of Distribution ‘ Masked
Property VGAE NGG VGAE NGG
MAE SMAPE | MAE SMAPE| MAE SMAPE| MAE SMAPE

# nodes 15.48 18.76 6.68 6.66 25.70 26.05 27.30 27.54
# edges 355.79 60.12 99.09 11.31 785.20 49.83 832.26 52.90
Density 0.28 48.10 0.07 10.74 0.27 34.04 0.29 36.65
Min. degree 12.59 67.12 7.95 41.49 13.96 57.71 13.36 57.50
Max degree 4.46 7.95 2.93 4.64 23.97 35.17 26.04 38.06
Avg. degree 14.34 51.23 3.11 9.27 18.83 40.84 20.17 43.77
Assortativity coefficient 0.29 65.66 0.72 47.57 0.46 60.98 0.43 65.18
# triangles 3,913.93 83.79 1,482.23 27.21 15,101.24 74.92 15,956.96 79.93
Avg . # triangles formed by an edge 7.78 54.99 17.93 74.95 9.11 49.11 17.73 77.18
Max . # triangles formed by an edge | 278.36 64.51 83.15 17.71 709.65 66.55 762.29 71.23
Avg. local clustering coefficient 0.26 26.01 0.09 15.91 0.33 40.78 0.36 44.69
Global clustering coefficient 0.27 46.16 0.07 14.44 0.32 41.89 0.34 44.34
Max k-core 11.39 52.05 2.28 9.99 16.93 42.96 17.99 45.76
# communities 2.64 27.47 1.02 12.32 1.86 22.98 1.96 23.40
Diameter 3.52 29.98 2.55 16.61 3.40 23.82 3.31 24.19
All 0.96 56.13 0.54 28.89 0.77 42.14 0.78 42.88

also on graphs that consist of more than 60 nodes. Then, the models are evaluated on the rest
of the graphs (i. e., graphs of size from 41 nodes to 59 nodes). The results of this experiment are
illustrated in Table [2| (Left). We observe that the proposed NGG model still outperforms the
VGAE model in this experiment. However, the VGAE model can generate graphs that better
capture the average number of triangles formed by an edge than NGG. Furthermore, we can also
see that both models achieve a bit lower levels of performance compared to their corresponding
performance reported in Table This is not surprising since the model is trained on graphs
that are larger or smaller than the ones on which it is evaluated.

4.3 Conditioning on Subset of Properties

Since a practitioner might be interested only in a handful of properties, and not in all 15 of
them, we also investigate whether the proposed model can generate graphs providing only a
subset of the properties. Within each batch, we randomly choose if the properties of each
sample would be masked, treating some of the elements of their associated condition vector as
missing values as follows. For each one of the chosen samples, we randomly choose ¢ elements
(without replacement) where i € {1,2,...,8} and replace the values of those elements with
a value equal to —100. Note that we also corrupt similarly the samples of the test set at
inference time. We then compare the observed properties of the condition vector against the
corresponding properties of the generated samples to compute the three evaluation metrics. The
obtained results are shown in Table [2| (Right). We observe that the baseline model outperforms
the proposed NGG model, only by a small margin though. Furthermore, the model achieves
significantly worse levels of performance compared to the ones reported in Table While
the proposed model generally proves effective in the task of graph generation, its performance
diminishes when only a subset of the considered properties are available, failing to achieve the
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(a) Generated graph that emerged from condition (b) Generated graph that emerged from condition
vector ¢y vector ca

Figure 2: Example of two graphs generated by the proposed NGG model given condition vectors
c1 and cs.

same levels of performance as when all properties are present.

4.4 Examples of Generated Graphs

We will next give two examples of graphs generated by the proposed NGG model. To generate
the two graphs, we used the model that was trained on 80% of the entire dataset. For ease of
presentation, we decided to generate two graphs that both consist of 15 nodes. However, the
second graph is much more dense than the first graph. Specifically, we utilized the following
two condition vectors:

c1 = (15340322845 —0.046 17 158 0.40.35 44 4)

Co = (15 94 0.89 10 14 12.5 —0.149 329 10.5 80 0.9 0.9 10 2 2 )T

where each dimension corresponds to one of the 15 properties respectively. The above two
vectors gave rise to the two graphs that are shown in Figure 2l The corresponding communities
for each generated graph are also illustrated (node color denotes the community to which the
node belongs). We observe that one generated graph indeed consists of 15 nodes, while the
other consists of 16 nodes. Furthermore, the graph shown in Figure is indeed sparse, while
the one shown in Figure is dense. We also computed the values of the considered properties
for both graphs and these are given below:

¢1 = (15250231733 —0.380 8 0.96 3 0.43 0.32234) '
Co = (16108 0.9 3 15 13.5 —0.148 458 12.7 93 0.97 0.97 14 2 2 )T
We can see that for most properties, their actual values are close to the ones that were utilized
for generating the two graphs. To summarize, those results provide a qualitative validation of
the proposed NGG model. We also visually inspected several other graphs and it turns out that
the proposed model can generate graphs that approximately exhibit the desired properties.

4.5 Uniqueness of Generated Graphs

We also investigated whether given a vector of properties, the proposed NGG model can generate
non-isomorphic graphs. Specifically, we randomly chose 50 condition codes, and for each code,
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we used the model to produce 100 graphs. We then tested every pair of these graphs for
isomorphism (9900/2 pairs in total for each condition code). We found that all generated
graphs are unique, i.e., there was no pair of isomorphic graphs. Therefore, the NGG model
seems to also produce diverse sets of graphs.

5 Conclusion

We introduced the Neural Graph Generator, a conditional latent diffusion model for efficient
and accurate graph generation. NGG represents a significant new paradigm, adeptly generating
graphs with specific, user-defined properties, a task that has long challenged traditional models.
We demonstrated the ability of NGG to generalize in graphs than those in the training set,
and the ability to handle missing values in the condition vector. Nevertheless, GNN models,
while powerful, struggle to capture specific properties like triangles or cycles, thus affecting the
performance of our model. Future work will focus on exploring the model’s applicability in
various real-world scenarios.
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A Dataset Details

The distribution of the samples per family of graphs is illustrated in Table

Table 3: Distribution of samples per graph type

Type of graph Number of samples | Proportion
Barabasi—Albert random graph 250,136 25.01%
Watts—Strogatz small-world graph 204,280 20.43%
stochastic block model graph 125,468 12.55%
Erdés-Rényi graph 122,568 12.26%
dual Barabdsi—Albert random graph 122,568 12.26%
extended Barabési—Albert model graph 122,568 12.26%
Newman-Watts-Strogatz small-world graph 122,567 12.26%
Holme and Kim algorithm for growing graphs with pow- 122,567 12.26%
erlaw degree distribution and approximate average clus-

tering

Random Lobster graph 81,713 8.17%
random partition graph 81,713 8.17%
Random d-degree regular graph 7,000 0.7%
Lollipop graph 4,145 0.41%
Path graph 91 0.01%
Cycle graph 91 0.01%
Star graph 91 0.01%
Wheel graph 91 0.01%
Ladder graph 46 0.0046%
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Table 4: Description of the 15 considered graph properties.

Property ‘ Range ‘ Description

# nodes ‘ [2,100] ‘ Count of individual vertices or entities in a graph.

# edges ‘ [1,4950] ‘ Count of connections or relationships between nodes in the graph.

Density [0.01,1] A measure of how interconnected a graph is, calculated as the
number of actual edges over the total possible edges.

Min. degree ‘ [1,99] ‘ Minimum degree is the smallest degree among all nodes.

Max. degree ‘ [1,99] ‘ Maximum degree is the largest degree among all nodes.

Avg. degree ‘ [1,99] ‘ Mean degree across all nodes.

Assortativity coefficient [-1,1] A measure of the tendency of nodes to connect with others of
similar degree. Positive values suggest a preference for connections
between nodes of similar degrees.

# triangles [0, 161700] | Number of sets of three nodes that form a closed loop (triangle)
in the network.

Avg. # triangles [0, 98] Average number of triangles each edge participates in.

formed by an edge

Max. # triangles | [0, 4851] | Highest number of triangles a single edge is part of.

formed by an edge

Avg. local clustering [0, 1] A measure of the extent to which nodes in a neighborhood tend

coefficient to form clusters or cliques.

Global clustering coeffi- [0, 1] A measure of the overall tendency of nodes to form clusters in the

cient entire graph, reflecting the global structure of the network.

Max. k-core [0, 99] Largest subgraph where each node has at least k£ neighbors within
the subgraph.

# communities ‘ [0, 50] ‘ Number of clusters of nodes (communities) in the graph.

Diameter ‘ [0, 99] ‘ Maximum distance between any pair of nodes in the graph.

The 15 considered graph properties and their description are listed in Table [4
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