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ABSTRACT. Motivated in part by understanding average case analysis of fundamental algorithms in
computer science, and in part by the wide array of network data available over the last decade, a
variety of random graph models, with corresponding processes on these objects, have been proposed
over the last few years. The main goal of this paper is to give an overview of local weak convergence,
which has emerged as a major technique for understanding large network asymptotics for a wide
array of functionals and models. As opposed to a survey, the main goal is to try to explain some of
the major concepts and their use to junior researchers in the field and indicate potential resources
for further reading.

1. INTRODUCTION

Starting graduate courses in probability cover myriad applications including weak convergence
of real-valued random variables, which one often sees initially via convergence properties of cu-
mulative distribution functions. However this notion has an equivalent definition via convergence
of expectations of functions of the random variables. In many cases, only in a more advanced
course does one see see that this final definition easily extends to “completely general” metric
spaces as beautifully articulated in [54] which then went on to play an important role in a host
of applications of modern probability ranging from Billingsley’s classic [20] to optimal transport
[9]. The goal of this specific article is to convey developments of this general theory to the study of
asymptotics of large discrete random structures, leading to one specific approach now described
as local weak convergence. The goal of this paper is not a survey length description of this ap-
proach (pointers to beautiful survey length treatments for further reading can be found in Section
6). Rather, taking a “leaf” from KRP’s interview [1]:

“Audience: So according to you, the best way to learn a new subject is by giving sem-
inars to each other?”
KRP: Yes, you can catch hold of somebody who can follow you. Then both of you
should discuss and explain to each other, and the process itself will lead you to some-
thing new. Gelfand used to say, “Read the theorems but not their proofs.” You try
to construct the proof but that may be too difficult for us. So, everyday learn at
least one new lemma and then try to tell somebody about this lemma. While dis-
cussing, I think something new will always crop up but that is how new ideas are
born. Studying by oneself is boring but if you have four people, and you discuss with
each other, go together for tea and discuss again, then life is more interesting. Ranga
Rao, Varadarajan, Varadhan and me, always explained things to each other.”
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Our goal is to describe the power of “abstraction” related to weak convergence on metric spaces,
pioneered in [54] in the settings of network models and their applications. The main goal is to
convey the joy of mathematical discovery via using some canonical results. Envisioning an inter-
ested student with basic technical knowledge at the level of say a measure theoretic probability
course, and interest in discrete random structures, our goal is to explain the motivations driving
the mathematical development and (our) intuition behind this fundamental technique. Following
Paul Halmos’s adage that “The only way to learn mathematics is to do mathematics ”, we start with
motivating questions, including those that have recently arisen in our own research, in Section 2.
These questions then motivate the development of the theoretical foundations in Section 3. Next
we convey the “awe” behind some of the canonical results in this area in Section 4. Since this paper
is in no way a survey, as a stand alone paper can do little justice to the far reaching applications of
this technique, we point the interested reader to further material in the Section 6.

2. MOTIVATING EXAMPLES AND QUESTIONS

We start by describing motivating questions in a number of different areas.

2.1. Dynamic social network models. Social networks now play an important role in society, for
example in the diffusion of information across populations of individuals. This has motivated the
study of network valued data where nodes and/or edges have attributes, which modulate the dy-
namics of both network evolution, and information flow on the network itself. This has spurred the
development of probabilistic network models [32, 33, 42, 44] that incorporate three major ingredi-
ents: (a) heterogeneity in edge creation across groups; (b) dynamic (i.e. time dependent) network
evolution and (c) popularity bias. Formulated models are then used to understand domain spe-
cific questions, including bias in network sampling, PageRank and degree centrality scores and
their impact in network ranking and recommendation algorithms. One basic model is as follows.
Fix γ ∈ [0,1]. Vertices enter the system sequentially at discrete times n Ê 1 starting with a base
connected graph G̃0 at time n = 0. Write vn for the vertex that enters at time n and a(vn) for the
corresponding attribute; every vertex vn has attribute distribution

a(vn) ∼π, independent of
{
G̃s : 0 É s É n −1

}
. (2.1)

The dynamics of construction are recursively defined as: for any n and v ∈ G̃n , let deg(v,n) denote
the degree of v at time n (if G̃0 = {v0}, initialize deg(v0,0) = 1). For n ≥ 0, vn+1 attaches to the
network via a single outgoing edge. This edge is created via sampling an existing vertex in G̃n to
attach to, with probabilities (conditionally on G̃n and a(vn+1)) given by:

P(vn+1 ; v | G̃n , a(vn+1) = a⋆) = κ(a(v), a⋆)[deg(v,n)]γ∑
v ′∈G̃n

κ(a(v ′), a⋆)[deg(v ′,n)]γ
, v ∈ G̃n . (2.2)

Denote this model of evolving random networks by P (γ,π,κ). The single attribute setting
consists of a dynamic network model where new vertices enter the system and connect to existing
vertices with probability proportional to their current degree, thus promulgating the “rich get
richer phenomenon” (i.e. taking degree as a proxy for popularity, high degree vertices accumulate
their advantage faster over time). This was first formulated in the networks community in [16],
where they found that this simple mechanistic model gives rise to heavy tailed degree distribution
(observed in real world systems); in this specific case, if one writes Nk (n) for the number of
vertices with degree k in the network of size n, then [16] found numerically, which was later proved

rigorously in [22], that Nk (n)/n
a.e.−→ pk as n →∞, where pk ∼C /kτ as k →∞ for some τ> 0.
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FIGURE 2.1. A simulation with two types (S = {red, blue}) with n = 30,000 and
κ(a, a) = .75, κ(a, a′) = .25 for a ̸= a′ and π(r ed) = .35 in the linear γ≡ 1 case.

2.2. Google’s PageRank. PageRank [52] is one of the most important measures of centrality of ver-
tices in the system. Unlike degree centrality, where the popularity of a vertex is solely quantified
by the number of its neighbors, PageRank centrality can also be enhanced by attaching to vertices
having high PageRank (popularity enhanced by association with other popular members of a social
network). Mathematically, this gives rise to the following definition.

View the networks under consideration as directed trees with edges pointing from offspring to
parents.

Definition 2.1 (PageRank scores with damping factor c). For a directed graph G = (V ,E ), the PageR-
ank scores of vertices v ∈ V with damping factor c is the stationary distribution (Rv,c : v ∈ G ) of the
following random walk: at each step, with probability c, follow an outgoing edge (uniform amongst
available choices) from the current location in the graph while, with probability 1− c, restart at a
uniformly selected vertex in the entire graph. These scores are given by the linear system of equa-
tions:

Rv,c = 1− c

n
+ c

∑
u∈N −(v)

Ru,c

d+(u)
(2.3)

where N −(v) is the set of vertices with edges pointed at v and d+(u) is the out-degree of vertex u.
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Motivating question: Understand asymptotics for the empirical distribution of PageRank scores
as n →∞; in particular does this distribution have a limit? What is the relationship, if any, between
this limit distribution and the degree distribution? In the attributed network setting, does extremal
behavior of the PageRank distribution vary across different attributes?

2.3. Gibbs distribution on graphs. Suppose G = (V (G ),E(G )) is the vertex and edge representa-
tion of a finite connected graph describing a social network. Further suppose, for a specific topic of
interest, each individual v ∈G has an opinion xv ∈ {−1,1} (e.g. two types of political parties); more
complex opinion spaces can be considered but we want to describe an important special case to
fix ideas. Now in principle opinions do not necessarily vary independently, rather one would ex-
pect opinions of an individual to be influenced at least by it’s neighbors in the network. To model
such situations, fix two constants β Ê 0,B ∈ R and consider the probability measure on opinion
configurationsΩG := {x = (xv : v ∈G ), xv ∈ {−1,1} ∀v} given by

µ(x) = 1

Z (β,B)
exp

(
β

∑
(u,v)∈E(G )

xu xv +B
∑

u∈V
xu

)
(2.4)

Here:

(a) βÊ 0 is sometimes referred to as the inverse temperature and describes the inherent influence
of neighbors on one’s own opinion;β= 0 implies no influence so everyone’s opinions vary inde-
pendently, while increasing β denotes increasing (positive or ferromagnetic, namely opinions
of neighbors want to align with each other) influence of the neighbors.

(b) B is sometimes referred to as the external magnetic field, representing baseline propensities
of individuals wanting to adopt either of the two opinions; B > 0 represents inherent tendency
towards +1, while B < 0 represents inherent tendency towards −1.

(c) Z (β,B) is the normalizing factor that makes µ(·) a probability measure (i.e.
∑

x∈ΩG
µ(x) = 1).

Motivating question: Understand properties of the above probability measure. This is hard to do
without any other assumptions on the graph, so consider a sequence of graphs {Gn : n Ê 1} with
Gn a (random) network on n vertices generated according to some model that incorporates as-
pects of social networks. For each n consider the Gibbs measure in (2.4) on Gn with corresponding
normalizing factor Zn(β,B). Understand asymptotics as n →∞.

2.4. Spectral distribution of adjacency matrices. Random matrix theory now has myriad applica-
tions in areas such as statistical physics [47], statistics and machine learning [63,64]. In the context
of networks, the adjacency matrix of a graph and its variants play an important role in downstream
applications such as classifying nodes of different types (sometimes referred to as community de-
tection) [2, 25, 45].
Motivating question: Consider a sequence of random network models {Gn : n Ê 1} and for n Ê 1,
let An denote the adjacency matrix of Gn with corresponding eigen-values

{
λ(n)

i : q É i É n
}
. Let

µ(n)

EMP = n−1 ∑n
i=1δλ(n)

i
denote the corresponding empirical distribution of eigen-values. Under-

stand asymptotics of µ(n)

EMP as n →∞.

2.5. Probabilistic combinatorial optimization. To motivate one stream of local weak conver-
gence (geometric random graphs [5]) and also illustrate the breadth of this theory let us now dis-
cuss a completely different application. Imagine n faculty who have to be assigned n teaching time
slots. Suppose the cost for assigning slot i to faculty j is given by ci , j . For a fixed faculty i , the best
assignment would be argmin j∈[n] ci , j , however rarely can we guarantee that everyone will get their
best choice. Any specific choice of assignment of these slots to faculty can be represented by a
permutation π : [n] → [n]. Define the total cost of a permutation Cn(π) = ∑

i∈[n] ci ,π(i ). and let Πn

denote the space of all n! permutations on [n]. The goal is to compute argminπ∈Πn Cn(π). Solving
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this optimization problem is a canonical example of “hardness” from a computational complexity
perspective in the sense of worst case upper bounds for algorithms.
Motivating question: Coupled with computational complexity and algorithmic considerations
that deal with worst case situations, there has been an enormous literature deal with average case
properties of such questions (see [59] for a beautiful overview). In the context of the assignment
problem consider the following: suppose

{
ci , j : i , j ∈ [n]

}
are i.i.d. positive random variables (be-

low we will assume exponential rate 1). Can one understand asymptotics for the cost of the optimal
assignment An = minπ∈Πn Cn(π) as n →∞? After decades of work, in 1987 two statistical physicists
Mezard and Parisi (the second of whom won the Nobel prize in Physics in 2022 in part for work
related to such questions) via non-rigorous arguments in [49] conjectured that

E(An) → ζ(2) =
∞∑

i=1

1

i 2 = π2

6
, as n →∞,

where ζ(·) is the Riemann-Zeta function. Is this not amazing? Our goal is to give an idea of proof
of how Aldous in [7] completed a rigorous proof of this result using local weak convergence tech-
niques.

3. DEFINITIONS AND NOTATION

3.1. Weak convergence: General theory. In an initial treatment of weak convergence, typically
when one specializes to sequences of real valued random variables {Xn : n Ê 1} ⊆ R (say with the
goal of describing the Central Limit Theorem), when defining the convergence in distribution of

Xn
w−→ X∞ to a limit random variable, one often phrases weak convergence in terms of the (appro-

priate) convergence of the cumulative distribution functions (cdfs) FXn (x) → FX∞(x) for all conti-
nuity points x of the limit cdf.

When dealing with sequences {Xn : n Ê 1} ⊆ S in a general metric space, the above definition
does not extend. However the beautiful theory laid by giants in the field of probability in the early
part of the last century (such as Prohorov, Skorohod, the “Indian school” including Varadarajan,
Ranga Rao, Varadhan and KRP) and described so beautifully in the classics including KRP’s [54]
and Billingsley’s [20] describe how one can systematically study weak convergence on general (typ-
ically Polish) metric space S . Let B(S ) denote the associated Borel sigma-field (i.e. generated by
open sets in S ) and let {Pn : n Ê 1} be a sequence of probability measures on the measure space
(S ,B(S )) and let P∞ be another probability measure on the same measure space.

Definition 3.1. Let Cb(S ) denote the space of all continuous and bounded functions on S . Say that

Pn
w−→P∞ if for all f ∈Cb(S ),∫

S
f (s)d Pn(s) →

∫
S

f (s)d P∞(s), as n →∞.

3.2. Local weak convergence (LWC): Intuition and general framework. As described in the intro-
duction and motivation, the last decade has witnessed an explosion in the formulation and use of
discrete random structures to understand various real world phenomenon. For probabilists, the
natural question is to understand asymptotics for such models as the system size ↑∞. To fix ideas
first consider the following classical network model.

Definition 3.2 (Erdős-Rényi random graph model). Fix λ> 0, n Ê 1 and vertex set [n] := {1,2, . . . ,n}.
Say that a random graph with vertex set [n] has distribution Gn ∼ ERRG(n,λ/n) if it is generated as
follows: place each of the possible

(n
2

)
edges with probability λ/n, independently across edges.
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Now suppose we want to understand asymptotics of this random graph model as n →∞. Before
turning to a rigorous setup let us intuitively try to understand this model. A moment’s thought re-
veals that it is probably hopeless to expect convergence of the entire graph uniformly to a limiting
object because there are too many vertices and edges to keep track of. So let us simplify the ques-
tion: suppose we sample a vertex Vn ∈ [n] uniformly at random. What does the geometry of this
random graph around this vertex look like? Let us start exploring the graph in a depth first manner

around this vertex. The number of friends this vertex has Nn(Vn)
d= Bin(n −1,λ/n) and by Poisson

approximation to the Binomial we get N (Vn) ≈ Pois(λ). The reader should convince themselves
that, as we continue the depth first exploration from this vertex, at least “initially” in the explo-
ration, the number of new friends of each explored vertex has approximately Pois(λ), more or less
independent of the previous steps of the explorations; none of these phrases are rigorous but the
above mental picture seems to suggest the following (with the key phrases for the reader in bold):

Guess 1. Asymptotically n → ∞, the local geometry around a randomly sampled vertex should
look like a Galton-Watson branching process with offspring distribution Pois(λ). Since such a pro-
cess survives iff λ> 1, this also suggests that there is a large connected component iff λ> 1.

Thus the natural question: how does one setup the mathematical architecture to make the above
guess both rigorous and amenable to answering questions such as the second line? This is the goal
of this Section (largely following [62, Chapter 2]) where we will focus on unweighted graphs. To
help the reader, we will discuss special cases of trees and Geometric graphs (i.e. the general edge
weighted setting) later. We will first need some notation. Let G denote the space of all locally finite
graphs (i.e either finite or infinite graphs such that every vertex has finite, not necessarily uniformly
bounded, degree); any such graph can be specified by its vertex set and edge set G = (V (G ),E(G )).
Further, with each edge assumed to have length one, G can be viewed as a metric space on V (G )
with the usual graph distance dG (·, ·). For u ∈ G and r Ê 0 we let BG (u,r ) denote the ball of radius
r about this vertex. Say that two elements G1,G2 ∈ G are isomorphic if there exists (at least one) a
bijectionφ : V (G1) →V (G2) which preserves edges, i.e. {u, v} i nE(G1) iff

{
φ(u),φ(v)

} ∈ E(G2). Write
this as G1

∼=G2.
A rooted graph is a graph with a special vertex o, namely a pair (G ,o) where G ∈G and o ∈V (G );

we will sometimes refer to this as the graph G rooted at o. Let G⋆ denote the space of all locally
finite rooted graphs. Note that for any r Ê 0, we can view the ball of radius r about the root o,
BG (o,r ) as an element of G⋆, rooted at o. For two elements Gi ,⋆ = (Gi ,oi ) ∈ G⋆ for i = 1,2 say that
G1,⋆

∼=G2,⋆ iff there exists an isomporphism φ that preserves the root (i.e. φ(o1) =φ(o2)).

Definition 3.3 (G⋆ as a metric space). For two rooted graphs
{
Gi ,⋆ = (Gi ,oi ) : i = 1,2

}
define the

distance

dG⋆(G1,⋆,G2,⋆) := 1

1+R∗ , R∗ = sup
{
r : BG1,⋆(o1,r ) ∼= BG2,⋆(o2,r )

}
, (3.1)

where the relation ∼= denotes root preserving isomorphisms. For the rest of the paper, view G⋆ as a
metric space with distance dG⋆(·, ·).

Two minor comments are in order: (a) If one was being pedantic, we would now start thinking
about G⋆ as equivalence classes of graphs but this leads to far too much overhead. (b) It turns out
that the above metric makes G⋆ a Polish space. Let B(G⋆) denote the Borel measure space on G⋆
generated by this metric. We are now in a position to talk about weak convergence on this space!

Definition 3.4 (Local weak convergence and the standard construction). (a) Let {Pn : n Ê 1} be a
sequence of probability measures on (G⋆,B(G⋆)) and P∞ be another probability measure on the

same measure space. If Pn
w−→ P∞ as n →∞ then say that this sequence of measures converges

in the local weak convergence sense to P∞ and denote this by Pn
LWC−→ P∞.
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(b) Suppose G is a (potentially random element) in G<∞ (namely the space of unrooted locally finite
graphs) each of finite size. Let V be a vertex selected uniformly at random (and independent of
any randomization in the construction of G ) from G . Let G [V ] denote the connected component
of V rooted at V . This operation of converting an unrooted graph in G<∞ to a random element
of the space of rooted graphs G⋆ is sometimes referred to as the standard construction [5].

(c) Consider a sequence of (potentially random) graphs {Gn : n Ê 1} ⊆ G<∞ and for each n let
Gn(Vn) ∈ G⋆ be the standard construction as in (b) with Vn uniformly selected at random from
Gn and let Pn be the corresponding probability distribution of Gn[Vn]. Let P∞ be another prob-

ability measure on G⋆ and let G∞,⋆ ∼P∞. Say that Gn
LWC−→ G∞,⋆ if Pn

w−→P∞ as n →∞.

A natural question at this stage is: if this is just weak convergence in a specific setting, what is
the rationale for associating a new name to this convergence? Quoting [5]:

“The topology on the metric space G⋆ turns out to give weak convergence of proba-
bility measures onG⋆ a local character that sharply differs from the traditional weak
convergence such as one finds in the weak convergence of scaled random walk to
Brownian motion. Weak convergence of measures on G⋆ never involves any rescal-
ing, and the special role of the neighborhoods BG (o, ·) means that convergence in G⋆
only informs us about behavior in the neighborhood of the root.”

The power of this methodology and reason for its widespread use is that, despite this local nature
of convergence, in a host of examples, a careful analysis can leverage this to the convergence of
global functionals. However before proceeding, let us give a more concrete description of what
this convergence entails which is the goal of the next Section.

FIGURE 3.1. Generated via
imgflip.com

3.3. Putting the “local” in LWC: lifting convergence to the space of
probability measures. This Section perhaps best illustrates the power
of weak convergence and the general framework developed in KRP’s
work on weak convergence and entails unraveling the implications hid-
den in Definition 3.7. Let,

M (G⋆) = {
µ :µ finite measure on(G⋆,B(G⋆))

}
. (3.2)

It turns out, since G⋆ is a Polish space, one can metrize the above
space to also make it a Polish space (foundational treatments of such
issues can be found in [43] or [29, Appendix 2, Vol 1]). Thus now one
can talk about convergence of random objects

{
Pn : n Ê 1

}⊆M (G⋆)!
Now for a finite unrooted graph G ∈ G<∞ integer k Ê 1 and vertex

v ∈G , let BG (v,k) ∈G⋆ denote the ball of radius k around v in G , viewed
as an element in G⋆ and rooted at v . Consider the map:

Pk :G<∞ →M (G⋆) given by G ;
1

|G |
∑

v∈G

δ {BG (v,k)} . (3.3)

If P∞ is a probability measure on (G⋆,B(G⋆), then for G∞,⋆ ∼ P∞, write PG∞,⋆,k = L (BG∞,⋆(o,k))
for the law of the neighborhood upto distance k from the root o of G∞,⋆.

Theorem 3.5 ([62, Theorem 2.7]). Let {Gn : n Ê 1} be a sequence of (potentially random) elements in

G<∞ and let P∞ be a probability measure on (G⋆,B(G⋆)) and let G∞,⋆ ∼ P∞. Then Gn
LWC−→ G∞,⋆

iff for every k Ê 1 the sequence of (random) empirical neighborhood measures satisfy Pk (Gn)
w−→

PG∞,⋆,k as n →∞.

imgflip.com
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Thus local weak convergence is equivalent to convergence in distribution of local asymptotics of
neighborhoods of randomly sampled vertices. In particular, at first sight, local weak convergence
should guarantee convergence of local functionals (e.g. empirical distribution of degrees, empir-
ical distribution of number of vertices at distance two etc) but not necessarily global functionals
(size of the maximal connected component in the graph etc).

If we wanted to establish convergence of local statistics in a stronger sense than in distribution
(say in probability), the local weak convergence criterion needs to be appropriately strengthened
as follows.

Definition 3.6 (Local weak convergence in the probability sense). Let {Gn : n Ê 1} be a sequence of
(potentially random) elements in G<∞ and let P∞ be a probability measure on (G⋆,B(G⋆)) and let

G∞,⋆ ∼ P∞. Then say that Gn
P-LWC−→ G∞,⋆ written as Gn converge in the probability fringe sense to

G∞,⋆ iff for every k Ê 1 the sequence of empirical neighborhood measures satisfy the convergence in

probability relationship Pk (Gn)
P−→PG∞,⋆,k as n →∞.

Let us given an example where one has local weak convergence but not convergence in proba-
bility. Consider the following sequence of network models {Gn : n Ê 1} generated as follows:

(a) For fixed n flip a biased coin which with probability 1/3 comes out Heads and 2/3 Tails.
(b) If the coin is Head, generate an Erdős-Rényi random graph Gn ∼ ERRG(n,4/n); if it comes out

tails let Gn ∼ ERRG(n,10/n).

Then a reader can convince themselves that, writing BP(Pois(λ)) for the genealogy tree generated
by Poisson Galton-Watson branching process with mean λ started with a single root, that

Gn
LWC−→ 1

3
BP(Pois(4))+ 2

3
BP(Pois(10)),

however this convergence cannot be strengthened to convergence in probability. A similar notion
is analogously defined for local weak convergence in the almost sure sense. We skip the details.

3.4. Special case: Local weak convergence of trees. Here we will specialize the phenomenon of
local weak convergence to the setting where the sequence of models are rooted trees. There are
two main reasons for this:

(a) This will allow the readers to gain more traction on this notion of convergence in a concrete
setting which is easier to visualize (see the figures below) various concepts, than in the context
of general graphs.

(b) More importantly: rooted trees have a notion of direction via orienting the geometry using
the root and another specified vertex. When this specified vertex Vn is chosen uniformly at
random, it is possible, with some amount of work, to show that for many models of random
trees, the subtree below this chosen vertex (namely vertices for which the unique path from
the root has to pass through this vertex), sometimes called the fringe distribution, converges
weakly to a distribution on the space of finite trees. What is truly amazing is that, under very
general conditions, Aldous in [3] showed that this implies local weak convergence of the tree
itself (convergence of entire neighborhoods of the uniformly chosen vertex, not just the subtree
below it) to a limiting infinite object! Thus this phenomenon gives a tractable tool to prove local
weak convergence as all it requires is to understand what happens “below” a randomly selected
vertex. This is the main tool we will use in Section 5.

We will first need some notation. For n Ê 1, let Tn be the space of all rooted trees on n vertices.
LetT=∪∞

n=0Tn be the space of all finite rooted marked trees. HereT0 =; will be used to represent
the empty tree (tree on zero vertices). Let ρt denote the root of t. For any r Ê 0 and t ∈ T, let
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FIGURE 3.2. Fringe decomposition around vertex v of a finite tree rooted at ρ.
Here the blue colors represent roots of the respective trees.

B(t,r ) ∈ TS denote the subgraph of t of vertices within graph distance r from ρt, viewed as an
element of T and rooted again at ρt.

Given two rooted finite trees s,t ∈T, say that s ≃ t if, there exists a root preserving isomorphism
between the two trees viewed as unlabelled graphs. Given two rooted trees t,s ∈T (see[62, Equation
2.3.15]), define the distance

dTS
(t,s) := 1

1+R∗ (3.4)

where

R∗ = sup{r : B(t,r ) ≃ B(s,r ), and ∃ isomorphism Fr between

B(t,r ) and B(s,r )}.

Next, fix a tree t ∈ T with root ρ = ρt and a vertex v ∈ t at (graph) distance h from the root.
Let (v0 = v, v1, v2, . . . , vh = ρ) be the unique path from v to ρ. The tree t can be decomposed as
h +1 rooted trees f0(v,t), . . . , fh(v,t), where f0(v,t) is the tree rooted at v , consisting of all vertices
for which there exists a path from the root passing through v , and for i ≥ 1, fi (v,t) is the subtree
rooted at vi , consisting of all vertices for which the path from the root passes through vi but not
through vi−1. Call the map (v,t);T∞ where v ∈ t, defined via,

F (v,t) = (
f0(v,t), f1(v,t), . . . , fh(v,t),;,;, . . .

)
,

as the fringe decomposition of t about the vertex v . Call f0(v,t) the fringe of the tree t at v . For
k Ê 0, call Fk (v,t) = ( f0(v,t), . . . , fk (v,t)) the extended fringe of the tree t at v truncated at distance
k from v on the path to the root ( see Figure 3.2). Now consider the space T∞. The metric in (3.4)
can be extended in a straightforward fashion to T∞.
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FIGURE 3.3. A sin-tree T∞, namely a tree rooted at 0 with a single infinite path to
infinity, and the corresponding extended fringe F3(0,T∞) upto level three about 0.

Next, an elementω= (t0,t1, . . .) ∈T∞, with |ti | Ê 1 for all i Ê 0, can be thought of as a locally finite
infinite rooted tree with a single path to infinity (thus called a sin-tree [3]), as follows: identify the
sequence of roots of {ti : i Ê 0} with the integer lattice Z+ = {0,1,2, . . .}, equipped with the natural
nearest neighbor edge set, rooted at ρ = 0 (see Figure 3.3). Analogous to the definition of extended
fringes for finite trees, for any k Ê 0 write Fk (0,ω) = (t0,t1, . . . ,tk ). Call this the extended fringe of the
treeω at vertex 0, till distance k, on the infinite path from 0. Call t0 = F0(0,ω) the fringe of the sin-
tree ω. Now suppose P is a probability measure on T∞ such that, for T := (t0(T ),t1(T ), . . .) ∼ P,
|ti (T )| Ê 1 almost surely (a.s.) ∀ i Ê 0. Then T can be thought of as an infinite random sin-tree.

Define a matrix Q = (Q(s,t) : s,t ∈ T) via the following prescription: suppose the root
ρs in s has degree deg(ρs) ≥ 1, and let (v1, . . . , vdeg(ρs)) denote its children. For 1 É i É
vdeg(ρs), let T(s, vi ) be the subtree below vi and rooted at vi , viewed as an element of T.

Write,

Q(s,t) :=
deg(ρs)∑

i=1
1

{
dTS

(T(s, vi ),t) = 0
}

. (3.5)

See the figure on the left for an example. In words, Q(s,t) counts the
number of descendant subtrees of the root of s that are isomorphic to t.
If deg(ρs) = 0, define Q(s,t) = 0.

Now consider a sequence,

(t̄0, t̄1, . . . ) ⊆T such that Q(t̄i , t̄i−1) ≥ 1 ∀ i Ê 1. (3.6)

Then there exists a unique sin-tree T with infinite path indexed by Z+ such that t̄i is the subtree
rooted at i for all i ∈ Z+. Conversely, it is easy to see, by taking t̄i to be the union of (vertices and
induced edges) of t0, . . . ,ti for each i ∈ Z+, that every infinite sin-tree has a representation of the
form (3.6). Following [3], we call this the monotone representation of the sin-tree T .
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3.4.1. Convergence on the space of trees. Now for any 1 É k É ∞, let MP(Tk ) denote the space of
probability measures on the associated space, metrized using the topology of weak convergence
inherited from the corresponding metric on the space Tk , see e.g. [20]. Suppose {Tn}nÊ1 ⊆T be a
sequence of finite rooted random trees on some common probability space (for notational conve-

nience, assume |Tn | = n, all one needs is |Tn | a.e.−→∞). For n Ê 1 and for each fixed k Ê 0, consider
the empirical distribution of fringes up to distance k (δ{·} below represents Dirac mass):

Pk
n := 1

n

∑
v∈Tn

δ {Fk (v,Tn)} . (3.7)

Thus
{
Pk

n : n Ê 1
}

can be viewed as random sequence in MP(Tk ), with accompanying notions of
almost sure convergence and convergence in distribution.

Definition 3.7 (Local weak convergence). Consider two notions of convergence of {Tn : n Ê 1}:

(a) Fix a probability measure ϖ on T. Say that a sequence of trees {Tn}nÊ1 converges almost surely,
in the fringe sense, to ϖ, if

P0
n := 1

n

∑
v∈Tn

δ {F0(v,Tn)}
a.e.−→ϖ, as n →∞.

Denote this convergence by Tn
a.s.-fr−→ ϖ as n →∞.

(b) Say that a sequence of trees {Tn}nÊ1 converges almost surely, in the extended fringe sense, to a
limiting infinite random sin-tree T∞ if for all k Ê 0 one has

Pk
n

a.s.−→P (Fk (0,T∞) ∈ ·) , as n →∞.

Denote this convergence by Tn
a.s.-efr−→ T∞ as n →∞.

Intuitively, fringe convergence, namely (a) above implies that, if we look at the subtree below
a typical (i.e. selected uniformly at random) vertex, then the distribution of the corresponding
random tree converges in distribution as the network size n → ∞. Extended fringe convergence
implies not just the structure of the neighborhood below typical vertices, but the entire local neigh-
borhood, within any finite distance converges. Next note that in the setting of the convergence of
(b) above, let ϖ∞(·) = P(F0(0,T∞) = ·) denote the distribution of the fringe of T∞ on TS . Conver-
gence in (b) above clearly implies convergence in notion (a) with ϖ =ϖ∞(·). More surprisingly, if
the limiting distribution ϖ in (a) has a certain ‘stationarity’ property (defined next), convergence in
the fringe sense implies convergence in the extended fringe sense.

Definition 3.8 (Fringe distribution [3]). Say that a probability measure ϖ on T is a fringe distribu-
tion if ∑

s
ϖ(s)Q(s,t) =ϖ(t), ∀ t ∈T.

For any fringe distribution ϖ on TS , one can uniquely obtain the law ϖEF of a random sin-tree
T with monotone decomposition (t̄0(T ), t̄1(T ), . . .) such that for any i ∈Z+, any t̄0, t̄1, . . . in TS ,

ϖEF ((t̄0(T ), t̄1(T ), . . . , t̄i (T )) = (t̄0,t1, . . . ,ti )) :=ϖ(ti )
i∏

j=1
Q(ti ,ti−1), (3.8)

where the product is taken to be one if i = 0. The following Lemma follows by adapting the proof
of [3, Propositions 10 and 11].
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Lemma 3.9. Suppose a sequence of trees {Tn}nÊ1 converges almost surely, in the fringe sense, to
ϖ. Moreover, suppose that ϖ is a fringe distribution in the sense of Definition 3.8. Then {Tn}nÊ1
converges almost surely, in the extended fringe sense, to a limiting infinite random sin-tree T∞ whose
law ϖEF is uniquely obtained from ϖ via (3.8).

Both notions imply convergence of functionals such as the degree distribution. For example,
in notion (a), letting Tϖ ∼ ϖ with root denoted by 0 say, convergence in notion (a) in particular
implies, for any ℓÊ 0,

#
{

v ∈Tn ,deg(v) = ℓ+1
}

n
a.e.−→P(deg(0,Tϖ) = ℓ). (3.9)

However, both convergences give a lot more information about the asymptotic properties of Tn ,
beyond its degree distribution, we will see some specific example in the next Section.

3.5. Extensions. The basic technical tools outlined above can be extended to various settings. Let
us give one example, and leave other settings such as weighted networks (sometimes called Geo-
metric networks) for the reader (and if lost, consult the first few pages of [6]). Recall that one of
the motivations given in the introduction were attributed network models, namely where vertices
have types. Assuming the networks under consideration are trees, let us now show how all the con-
cepts explored in the previous section on fringe convergence easily extend. Fix attribute space S

and assume for the rest of the paper that S is a Polish space with distance metric dS . For n Ê 1,
let Tn,S be the space of all rooted trees on n vertices where every vertex has a mark in S . Let
TS =∪∞

n=0Tn,S be the space of all finite rooted marked trees. Here T0,S =; will be used to repre-
sent the empty tree (tree on zero vertices). For any t ∈TS and v ∈ t, write a(v) for the correspond-
ing attribute of that vertex. Let ρt denote the root of t. For any r Ê 0 and t ∈ TS , let B(t,r ) ∈ TS

denote the subgraph of t of vertices within graph distance r from ρt, viewed as an element of TS

and rooted again at ρt.
Given two rooted finite trees s,t ∈ TS , say that s ≃ t if, after ignoring all attribute information,

there exists a root preserving isomorphism between the two trees viewed as unlabelled graphs.
Given two rooted trees t,s ∈TS (adapting [62, Equation 2.3.15]), define the distance

dTS
(t,s) := 1

1+R∗ (3.10)

where

R∗ = sup{r : B(t,r ) ≃ B(s,r ), and ∃ isomorphism φr between

B(t,r ) and B(s,r ) with dS (a(v), a(φr (v))) É 1/r ∀ v ∈ B(t,r )}.

Now proceed with all the notions of convergence, local weak convergence, fringe convergence etc
as in the previous Subsection.

3.6. Examples. While all of the results described are well known in the literature, we will give ref-
erences where a passionate reader new to the field might find complete proofs.

3.6.1. Growing random trees. Let us start with an example and describe how the lack of memory
property of the exponential distribution transforms this into a more tractable model and then de-
scribe the general setting. Consider a sequence of growing random trees {Tk : k Ê 1}, initialized at
k = 1 with T1 having one vertex, which we will call the root. For k Ê 1, having constructed Tk−1, Tk

is constructed as follows: a new vertex labelled k enters the system and connects to a randomly se-
lected vertex uniformly at random amongst the available k−1 vertices in Tk−1. Suppose we wanted
to understand the asymptotics of this model.
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The Zen of the exponential distribution: We will now consider an embedding of the above tree
process in continuous time, an example of the famous Athreya-Karlin embedding [12] which uses
the lack of memory property of the exponential distribution. Consider the following continuous
time branching process {BP(t ) : t Ê 0} started with a single individual ρ at time t = 0 with dynamics:

(a) Each individual in the system lives forever.
(b) The offspring distribution of very individual is a Poisson rate one process independent across

individuals; rephrasing, each individual in the branching process gives birth to new individuals
at rate one.

It turns out, this is a classical and fundamental example of a pure birth process often called the rate
one Yule process. For any fixed t Ê, let |BP(t )| denote the size of the branching process at this time
and for any k Ê 1 define the stopping time Tk = inf{t : |BP(t )| = k}. The following fundamental facts
are known about the Yule process and its connection to the discrete time tree process described
before:

(a) Using the lack of memory property of the exponential distribution, for any k Ê 1, consider the

tree T̃k describing parent child relationships in BP(Tk ) (see Figures 3.4 and 3.5. Then T̃k
d=Tk

and in fact, viewed as growing tree processes,
{
T̃k : k Ê 1

} d= {Tk : k Ê 1}. This is one example
of the Athreya-Karlin embedding of discrete time processes in continuous time processes. The
key conceptual point is that, in the dynamics of the continuous time process, there is a plethora
of independence since every vertex behaves independently and so is much more amenable to
probabilistic analysis.

(b) The process |BP(t )| grows exponentially at rate one in the sense that there exists a rate one
exponential random variable W such that e−t |BP(t )|→W a.s. and in L2.

Rationale for fringe convergence of {Tk : k Ê 1}: Let us go back to the continuous time process
{BP(t ) : t Ê 0} and suppose for “large t”, we sample a vertex Vt uniformly at random from BP(t ). Let
B(Vt ) É t denote the time this vertex was born into the system, so that by time t , if we consider the
Age(Vt ) = t −B(Vt ) of this vertex then for any a Ê 0,

P(Age(Vt ) Ê a|BP(t )) =P(Vt ∈ BP(t −a)|BP(t )) = |BP(t −a)|
|BP(t )| → exp(−a), (3.11)

where in the last assertion, we have used (b). Now since in continuous time all the dynamics is
independent, the following seems like a believable guess:
Guess: The fringe distribution of the {Tk : k Ê 1} should converge to the genealogical tree of of the
branching process BP observed for a random exponential mean one amount of time.

This is true, and in fact the above implies something much deeper.

Theorem 3.10 ([3, 38–40]). The sequence of random trees Tn
a.s.-efr−→ T∞ where T∞ is the random

sin-tree whose fringe distribution ϖ is constructed as follows:

(i) Generate T ∼ exp(1).
(ii) Generate a continuous time branching process BP with offpsring distribution given by a Poisson

process of rate one, independent of T .

Let BP(T ) geneological tree of the branching process observed for T units of time then ϖ is the distri-
bution on T of this random finite tree.

Spurred by the above discussion, it turns out much of the above discussion can be extended to
much more general tree models. Consider the general random tree model sometimes called non-
uniform random recursive trees [60]. Fix n ≥ 1 and an attachment function f : {0,1,2 . . . } → (0,∞).
A sequence of random trees {Tk : 1 É k É n} is grown as follows (Tk has k vertices labelled by the
integers [k] := {1, . . . ,k}). For k = 1, T1 has one vertex, which we call the “root.” For fixed k ≥ 2, Tk is
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FIGURE 3.4. The process BPα(·) in continuous time starting from the root ρ and
stopped at τ15.
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FIGURE 3.5. The corresponding discrete tree containing only the genealogical in-
formation of vertices in BPα(τ15).

constructed conditional on Tk−1 as follows. A new vertex, k, is born into the system and attaches
to a previously existing vertex v ∈ [k −1] with probability proportional to f (deg(v)), where deg(v)
denotes the number of children of v (which is one less than its graph degree in Tk−1). Thus,

P (k attaches to v ∈ [k −1] | Tk−1) := f (deg(v))∑k−1
u=1 f (deg(u))

.

The vertex that k selects is called the “parent" and the edge is directed from the parent to the new
“child" vertex. The case of f (·) ≡ 1 corresponds to the above model we described and is now known
known under the phrase random recursive trees [58]. The specific case of linear preferential attach-
ment when f is affine, namely f (k) = k+1+β, k Ê 0, for a fixed parameter βwas considered in [16]
to provide a generative story for heavy tailed degree distributions of real networks.

Then it turns out, that each of these models can be embedded in continuous time in corre-
sponding continuous time branching processes BPmodel, as we did for the random recursive tree
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model. Further, under technical conditions on the attachment function f , each of the models
have a (model dependent) constant λ = λmodel > 0 (called the Malthusian rate of growth of this
branching process) such that |BPmodel(t )| ∼ Wmodeleλt . Thus the above heuristic once again leads
to guesses as well as a proof path to show this class of random tree models converge to limiting
(model dependent) random sin-trees. Further discussion is postponed to Section 5.

3.6.2. Networks: Erdős-Rényi and the Configuration model. While all the results here are well
known, a description of the history and proofs can be found in [62, Chapter 2]. Recall the intu-
ition developed related to the Erdős-Rényi random graph in Section 3.2. The following should not
come as a surprise.

Theorem 3.11. Fix λ > 0 and consider the sequence of random graphs {Gn : n Ê 1} with Gn ∼
ERRG(n,λ/n). Let G∞ ∼ BP(Pois(λ)) denote a Galton-Watson Branching process with Pois(λ) off-

spring distribution. Then Gn
P-LWC−→ G∞ as n →∞.

This is also a good place to describe functionals that local weak convergence might not be able to
capture without more work or conditions. Consider the sequence of network models

{
G̃n : n Ê 1

}
via:

(a) G̃n has vertex set [2n] partitioned as [1 : n] and [n +1 : 2n].
(b) Generate independent ERRG(n,4/n) on each of these two vertices.
(c) Select U (1)

n ,U (1)
n uniformly at random from [1 : n] and [n +1 : 2n] and connect them by a single

edge.

Then it is possible to check that G̃n
P-LWC−→ G∞ as n → ∞ as in the above result, however this

sequence of networks are qualitatively different from the ERRG model; for example with some
strictly positive probability as n →∞, these networks have two disjoint giant components (com-
ponents of the same order as the system size 2n) as n →∞. This should not be surprising as local
weak convergence is not built to reveal asymptotics for global functionals (such as the connectivity
properties of the network). What will be surprising is, with a lot of hard work, one can push this
notion to give detailed asymptotics for global functionals in a wide variety of models.

The next example describes a mechanism for generating network models such that (in the limit),
the empirical degree distribution converges to a pre-specified pmf p := {

pk : k Ê 0
}
. There are var-

ious variants of the following model, known as the configuration model, and we will pick one spe-
cific construction. For network with vertex set [n]:

(a) Generate dn := {di : i ∈ [n]} iid with distribution p. Assume ℓn = ∑
i∈[n] di is even else add one

to dn .
(b) Imagine every vertex i ∈ [n] having di half edges, where two half-edges have to be paired to

create a full edge. Label ℓn half edges in some arbitrary fashion from 1,2, . . . ,ℓn .
(c) Start half-edge labelled one and pair this one of the remaining ℓn −1 half-edges uniformly at

random to form a full edge and remove both of these half-edges; next pick the smallest indexed
unpaired half-edge and pair this one of the remaining ℓn −3 remaining half-edges to form the
second full edge and remove both of these from the collection of unpaired half-edges; continue
till all half-edges have been paired.

Write Gn ∼ CMn(p) for the random network obtained at the end of this process; in principle this
will be an multi-graph as there might potentially be multiple edges and self-loops.
Intuition for asymptotics: In the large network n →∞ limit, suppose we pick a vertex Vn uniformly
at random from this graph; then the number of neighbors (namely initial half-edges) of this vertex
should have distribution p. Let us follow one of these half-edges of Vn to understand the degree of
the vertex whose half-edge connects to this half-edge completing a full edge; conceptually vertices
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with degree k (of which there are a density pk ) are k times more likely to complete this edge than
a vertex of degree 1. Thus it is not hard to convince oneself that the probability that the degree of
the vertex that completes this edge is k should be proportional to kpk . However after completing
this edge, this new vertex has k −1 half-edges to connect to subsequent vertices. This motivates
the following definitions.

Definition 3.12 (Unimodular branching processes with input pmf p). Assume the pmf p has finite
mean µ=∑∞

k=0 kpk <∞. Define the size-biased pmf p◦ given by:

p◦
k = (k +1)pk+1

µ
, k Ê 0.

Consider the branching process BP◦(p,p◦) started from a single root ρ where the root has offspring
distribution p but every subsequent generation has offspring distribution p◦.

While the following is well known in the literature, a full proof can once again be found in [62,
Chapter 2]. Here Let D ∼ p will denote a generic random variable with distribution given by the
degree pmf generating CMn(p).

Theorem 3.13. Assume E(D2) < ∞. Then the sequence of models {Gn : n Ê 1} with Gn ∼ CMn(p)

satisfy Gn
P-LWC−→ BP◦(p,p◦) as n →∞ in the sense of Definition 3.6.

4. POWER OF LOCAL WEAK CONVERGENCE

4.1. An illustrative example: Spectral distribution of adjacency matrices for trees. Recall that
µ(n)

EMP denoted the empirical distribution of the eigen-values of Tn .

Theorem 4.1 ([19]). Consider a sequence of trees converging in fringe sense to a random infinite
sin-tree. Then there exists a model dependent, non-random, probability measure µmodel such that

µ(n)

EMP
P−→µmodel as n →∞.

Rationale for why this might be true: Recall that MP(R) denotes the space of probability measures
on (R,B(R)). For µ ∈ MP(R), write supp(µ) for the support of µ. For complex z ∈ C, z ∉ supp(µ),
define the Stieltjes transform at z,

sµ(z) :=
∫
R

1

x − z
dµ(z). (4.1)

One can check that if z = x + i y with y > 0 then |sµ(z)| < 1/y . It seems believable that if one can
show, that there is a (model dependent) deterministic function smodel,∞(z) such that for z ∈ A ⊆ C,

sµ(n)
EMP

(z)
P−→ smodel,∞(z), where the domain of convergence A is “large enough”, then this should

at least augur convergence of the empirical distribution to a limit deterministic measure µmodel

whose Stieltjes transform is given by smodel,∞(z).
Now for µ(n)

EMP, with Tr denoting the trace of a matrix,

sµ(n)
EMP

(z) = 1

n
Tr(An − zI )−1 := 1

n

∑
v∈Tn

R(v v),Tn (z), (4.2)

where R(v v),Tn (·) is sometimes referred to as the resolvent of vertex v in the tree Tn . Let N (v)
denote the number of children of v in T −

n (v) and denote these as {ci (v) : 1 É i ÉN (v)} and the
corresponding subtrees hanging from these vertices by T −

n,i (v) (viewed as a rooted tree at ci (v)).
Let ρ(v) denote the parent of v (namely the unique node on the path to the root of Tn) and let
T +

n (v) denote the tree rooted at ρ(v) obtained by deleting the edge (v,ρ(v)) and the fringe tree
below v .
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In the setting of trees, it turns out via Schur-decomposition that the resolvent at v in the original
tree Tn can be decomposed as,

R(v v),Tn (z) = 1

−z +∑N (v)
i=1 R(ci (v)ci (v)),T −

n,i (v)(z)+R(ρ(v),ρ(v)),T +
n (v)(z)

. (4.3)

Fix z ∈Cwith imaginary part Im(z) > 1 and iterate the above expansion d times, resulting in a con-
tinued fraction type expansion, where we have d terms dependent on the fringe expansion upto
distance d and a remainder term that depends on the graph beyond distance d from v . Intuitively
it seems clear that, if one has extended fringe convergence as in Def. 3.9, then when Im(z) > 1, this

should thus imply that sµ(n)
EMP

(z)
P−→ smodel,∞(z). Converting this idea into a rigorous proof takes a

lot of work and can be found in [19].
What did we learn? Conceptually the spectral distribution of the adjacency matrix is a global func-
tional and depends on the entire network. However if one has local weak convergence, which a pri-
ori only gives information on asymptotics of local functionals, one can exploit it to also establish
convergence of global functionals, provided that the effect of ‘far away’ vertices on the functional
value of a given vertex diminishes in a quantifiable way.

4.2. Random matrices for general random graph models. Now let us consider the case of general
(not-necessarily tree) networks that still converge in the local weak sense to trees. Our goal is to de-
scribe a small sub-collection of the foundational results in [24]. We will mainly focus on the config-
uration model driven by pmf p (owing to the assumption in Theorem 3.13 we assume p has finite
second moment). We let BP(p◦) denote a (standard) branching process with offspring distribu-
tion p◦ while BP◦(p,p◦) denotes the unimodular branching process as in Def. 3.12; similarly define
D ∼ p,D◦ ∼ p◦. Let Gn ∼ CMn(p) and let An ,µ(n)

EMP as before denote the corresponding adjacency
matrices and empirical spectral distribution respectively. The Stieltjes transform as in (4.2) will be
our main tool again so let us give a name to the class of such functions, with C+ := {z ∈C,I(z) > 0}:

H =
{

f :C+ →C+, f holomorphic , | f (z)| É 1

I(z)

}
. (4.4)

Paraphrasing a small sub-class of many amazing results:

Theorem 4.2 ([24]). (a) Let P (H ) denote the class of probability measures on H . There is a unique
probability measure Q ∈ P (H ) such that Y ∼ Q satisfies the following recursive distributional
equation:

Y (z)
d=− 1

z +∑D◦
i=1 Yi (z)

where Y := {Yi (·) : i Ê 1} are iid with distributionQ and independent of D◦ ∼ p◦.
(b) Let D ∼ p independent of Y and define the random element X ∈H via,

X (z) =− 1

z +∑D
i=1 Yi (z)

,

Then µ(n)

EMP
P−→ µ∞,p where µ∞,p is the unique probability measure on P (R) with Stieltjes trans-

form s∞,p(z) = E(X (z)).

Illustrative example: Fix k Ê 3 and consider the degree distribution p ∼ δk , this then results in the
random k-regular graph, which converges in the LWC sense to a rooted tree where the root has
degree k and all the remaining individuals have degree k − 1. Suppose, as a guess, one searches
for deterministic solutions Y (·) in (a) above. This results in Y (z) = −(z + (k − 1)Y (z))−1. Solving,
one finds that this is the Stieltjes transform of the semi-circular law with radius 2

p
k −1. Using this
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FIGURE 4.1. A simulation with k = 4 and network size n = 6000 showing the em-
pirical spectral distribution with the theoretical limit.

in (b) shows that the empirical spectral distribution of random k-regular graph converges to the
probability measure with density

f (x) = k

2π

√
4(k −1)−x2

k2 −x2 , x ∈ [−2
p

k −1,2
p

k −1].

Rationale for why this might be true: There are four steps in the proof in [24]:

(i) Local weak convergence implies convergence: Using general functional analytic techniques,
the authors are able to show that local weak convergence (not even necessarily for trees) with
some minor technical conditions automatically implies convergence of the Stieltjes transform
with the limit Stieltjes transform s∞(z) = limn→∞E(RVn ,Vn (z)), where RVn ,Vn (·) denotes the re-
solvent of a uniformly selected vertex Vn .

(ii) Specific analysis when one has convergence to BP◦: Now let us consider the case of the con-
figuration model where one has convergence to BP◦. Let us start with an additional simplifica-
tion: let us try to understand what happens to the adjacency matrix of the standard branching
process BPm(p◦) grown to m levels say, with adjacency matrix Am , in particular what happens
to the resolvent Y m

ρ (z) := Rρ,ρ(z) = Tr(Am − zI)−1
ρ,ρ . Let D◦

ρ ∼ p denote the number of children

of the root and write these as
{

v1, v2, . . . , vD◦
ρ

}
. Note that the subtrees below each of these ver-

tices constitute independent Branching processes run upto m−1 generations, see Figure 4.2.

Let Avi
m−1 denote the adjacency matrices of each of these subtrees and let

Y m−1
vi

(z) = Tr(Avi
m−1 − zI)−1

vi ,vi

An application of Schur-decomposition as in the previous Section results in the equation:

Y m
ρ (z) =− 1

z +∑D◦
ρ

i=1 Y m−1
vi

(z)
. (4.5)
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v2 v3v1

ρ

BPm−1,v1 (p◦) BPm−1,v2 (p◦) BPm−1,v3 (p◦)

m

FIGURE 4.2. Figure of BP◦(p◦) with root degree D◦
ρ = 3

(iii) Recursive distributional equations and uniqueness: Consider the map Ψ : P (H ) → P (H )
defined as follows: ForQ ∈P (H ) defineΨ(Q) to be the distribution of the random variable Z̃
obtained as follows:
(a) Generate Z = {Zi (·) : i Ê 1} iid with distributionQ and independent of D◦ ∼ p◦.

(b) Let Z̃ (z) =−(z +∑D◦
ρ

i=1 Zi (z))−1.
Say that Q is a solution of the recursive distribution equation if Ψ(Q) = Q. Suppose we were
able to show that this recursive distributional equation has a unique solution. Then (4.5)
should (after some work) imply that as m → ∞, Y m(·) converges to this unique solution as
m →∞. The authors in [24] are able to prove this uniqueness via showing that this mapping
is a contraction and then using Banach fixed point theorem.

(iv) Relating this to CMn : Redoing the Schur decomposition analysis but now to understand
RVn ,Vn (·) for a randomly selected vertex in CMn , and connecting it to the above analysis of
BP◦(p,p◦) via local weak convergence as described before, it should now be believable that
RVn ,Vn (z) ≈ X (z) for large n where X (z) satisfies the distributional equation in (b) of the Theo-
rem.

What did we learn? Here the local computations not just proved the existence of the limit (of the
empirical spectral distribution) but owing to the recursive construction of the limit using indepen-
dent and identically distributed components (here, independent branching processes hanging off
the root), this resulted in explicit information about the limit via computations carried out on the
limit object. This phenomenon related to local weak convergence was termed the objective method
in [6] where local weak convergence allows one to:

(a) Prove asymptotics for functionals of interest in the large network limit;
(b) Obtain information on the limit via recursive computations performed on the limit object.

4.3. Interacting particle systems on random graphs. Recall the motivation in Section 2.3. Once
again our goal will be to understand properties of the Gibbs distribution on a sequence of config-
uration model driven graphs Gn ∼ CMn(p) as n → ∞. Let µGn (·) denote the probability measure
in (2.4). Recall that in the previous sections, the first step was to relate such questions to a func-
tional (the Stieltjes transform for example) that we could use to pave the way for understanding
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asymptotics. In this setting, the normalizing factor Zn(β,B), which is a function of the inverse
temperature β and external field B seems like a natural candidate. Since the number of potential
configurations (terms in the summand) is exponential, the following object:

φn(β,B) = 1

n
log Zn(β,B), (4.6)

seems like a natural starting point. Further note that appropriate derivatives of this function give
us important information, for example, the mean magnetization is given by,

∂φn(β,B)

∂B
= ∑

x∈{−1,1}n

∑
i∈[n] xi

n
µGn (x) = mGn (β,B). (4.7)

Thus we try to understanding asymptotics of this object as n →∞. Our initial goal in this Section is
to describe the foundational results in [31] describing these asymptotics in the ferromagnetic (βÊ
0) regime. Since the model is “symmetric” with respect to B (in the sense thatφn(β,B) =φn(β,−B)),
throughout this Section we will assume that B > 0. We will now describe the foundational result
in [31], the reader should contrast the result and the preceding setup with Theorem 4.2. First we
need some notation. Throughout this Section we assume β Ê 0. Let tanh,atanh denote the tan
hyperbolic and inverse tan hyperbolic functions respectively. Define the function,

E(β,h) := atanh[tanh(β) tanh(h)] (4.8)

Consider the functionalΨβ,B : P (R) →P (R) from the space of probability measures on R+ to itself
given as the distribution of the random variable X obtained via:

(a) Generate {Yi : i Ê 1} ∼i i d P independent of D◦ ∼ p◦.
(b) Let X = B +∑D◦−1

i=1 E(β,Yi ).

Theorem 4.3. [31] Consider the Ising model as in (2.4) on CMn(p) with finite second moments and
with βÊ 0,B Ê 0. Then,

(a) For βÊ 0 the operation Ψ is monotone increasing (under the stochastic ordering operation) and
there is a unique fixed point P̃β,B supported on [0,∞) satisfying P̃β,B =Ψ(P̃β,B ) i.e. for Y ,Y :=
{Yi : i Ê 1} ∼i i d P̃β,B independent of D◦,

Y
d= B +

D◦−1∑
i=1

E(β,Yi ).

Call this the distribution of “local fields”.

(b) Let D ∼ p independent of Y. Then φn(β,B)
P−→φ∞(β,B) where

φ∞(β,B) =µ
2

logcosh(β)− µ

2
E[log[1+ tanh(β) tanh(Y1) tanh(Y2)]]

+E log
{

eB
D∏

i=1
[1+ tanh(β) tanh(Yi )]+e−B

D∏
i=1

[1− tanh(β) tanh(Yi )]
}

.

Rationale for why this might be true: The proof of this result is significantly more complicated so
we will only be able to describe a small aspect of the proof. We will write 〈ν, f 〉 = ∑

x f (x)ν(x) for
the expectation operation of a function with respect to a measure on a finite set. There are four
major ideas in the proof:

(a) Monotonicity in the Ferromagnetic regime: In the ferromagnetic regime, it turns out that
there are fundamental monotonicity properties of the model that one can take advantage. Two
important threads in this direction are:
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(i) Monotonicty with respect to local magnetic fields: For a graph G and vertex dependent
non-negative constants B = {Bu : u ∈V (G )} (called local field) consider a generalized ver-
sion of the model in (2.4) on a graph via:

µB,β(x) = 1

Z (β,B)
exp

(
β

∑
(u,v)∈E(G )

xu xv +
∑

u∈V
Bu xu

)
(4.9)

For two local field parameters B,B′ with 0 É Bu É B ′
u for all u ∈ G and inverse tem-

perature parameters 0 É β É β′ Griffith’s inequality says that for any subset U ⊂ V (G ),
0 É 〈µβ,B,

∏
i∈U xi 〉 É 〈µβ′,B′ ,

∏
i∈U xi 〉.

(ii) Monotonicity with respect to boundary conditions: To reduce notational overhead, we
will suppress dependence on β,B of the measures in question unless required. Fix a con-
nected graph G and a strict subset of vertices U ⊂ G and let the boundary ∂U denote
the collection of vertices in U that have connections to at least one vertex in G \U . Sup-
pose one was interested in the marginal distribution of the Ising model on the subgraph
spanned by vertices in U . Then intuitively there are two Ising type models that “lower”
and “upper” bound this distribution, the Ising model on U with free (µU ,0) and all + (µU ,+)
boundary conditions respectively:

µU ,0(xU ) = 1

Z U ,0(β,B)
exp

(
β

∑
(u,v)∈E(U )

xu xv +
∑

u∈U
Bu xu

)
,

µU ,+(xU ) = 1

Z U ,+(β,B)
exp

(
β

∑
(u,v)∈E(U )

xu xv +
∑

u∈U
Bu xu

)
1 {x∂U ≡+1} ,

i.e. when attempting to compute the marginal distribution of the Ising model on U , the
first measure assumes no influence from the outside (in the ferromagnetic regime one
would imagine some sort of “positive influence” from the boundary) while the second
measure assumes maximal positive influence from the boundary in the sense that all
these vertices are set to have spins +1.

(b) Connecting this to local weak convergence on trees and vanishing impact of boundary con-
ditions: While we are interested in φn , (4.7) already shows how derivatives of this object can be
related to averages. After significant amount of work, what is shown in [31] is that to prove the
main result, it is enough to show that for each βÊ 0,

∂φn(β,B)

∂β

P−→ ∂φ∞(β,B)

∂β
.

Writing µGn for the Ising model on the graph Gn , direct computation shows that,

∂φn(β,B)

∂β
= 1

n

∑
v∈[n]

∑
u∼v

〈µGn , xu xv 〉 = En(
∑

u∈N (Vn )
〈µGn , xu xVn 〉),

where En denotes expectation conditional on the graph Gn and thus the only randomization
is over the choice of the random vertex Vn sampled uniformly from the graph. Now fix any
t Ê 1 and as before let BGn (Vn , t ) denote the ball of radius t around Vn . Conditional on Vn ,
let µBGn (Vn ,t ),0,µBGn (Vn ,t ),+ denote the Ising models with free and + boundary conditions on this
neighborhood and let E0,t

n ,E+,t
n denote expectations of functionals over choices of Vn . Then the

monotoncity described in the previous step implies for each t ,

E0,t
n

( ∑
u∈N (Vn )

〈µBGn (Vn ,t ),0, xu xVn 〉
)
É ∂φn(β,B)

∂β
É E+,t

n

( ∑
u∈N (Vn )

〈µBGn (Vn ,t ),+, xu xVn 〉
)
.



22 BANERJEE, BHAMIDI, SHEN, AND YOUNG

Now local weak convergence implies that as n →∞, the left hand side and right side converge
to the following: Consider BP(ρ, t ) := BP◦(p,p◦) grown upto generation t from root ρ. Consider
the Ising model on this with the same parameters with free and + boundaries and let E0,t∞ ,E+,t∞
denote expectations over the branching process measure. Then the left hand side should con-
verge to

E0,t
n

( ∑
u∈N (Vn )

〈µBGn (Vn ,t ),0, xu xVn 〉
)

P−→ E0,t
∞

( ∑
u∈N (ρ)

〈µBP(ρ,t ),0, xu xρ〉
)

and similar expressions for the right hand side. Further it is shown that as t → ∞, the effect
of the boundary conditions on the above expectations vanish (a highly consequential finding).
An example of quantification of such a result is as follows: consider the branching process
BP◦(ρ,m) as above upto generation m and the corresponding Ising model µm say with corre-
sponding free and + measures µm,0,µm,+ . Suppose for some t < m we are interested in the
marginal distribution µm,0

U ,µm,+
U of the Ising model on a subset of vertices U ⊂ BP◦(ρ, t ), in

particular the impact of the above boundary conditions. Then [31, Theorem 4.2] shows that
(under the assumptions of the Theorem) there are constants M ,C such that the expected total
variation distance satisfies,

E(||µm,0
U −µm,+

U ||T V ) É E(C |BP(t )|)
m − t

.

(c) Pruning argument for the Ising model on trees and the origin of local fields: This sequence
of arguments leads to trying to understand the Ising model on BP◦(ρ,m) for “large m” (where
the boundary conditions are inconsequential) and in particular asymptotics of expectations
of the sum taken over products of root vertex spin with its neighbors. Now we are back at
Figure 4.2, the Ising model on this tree, and in particular the marginal distribution of the root
and its neighbors. If we had a tractable description for this, we are in business. This is where
another fundamental finding related to Ising models for trees in [31] comes to the rescue. Their
general result says that the marginal distribution of the root and its neighbors can be recursively
constructed as follows:

(i) For each neighbor vi of the root, consider the Ising model µBPm−1,vi on the correspond-
ing subtree BPm−1,vi (p◦) (this includes the vertex vi ). Let 〈µBPm−1,vi , xvi 〉 denote the mean
magnetization of the vertex vi in this model.

(ii) Then the marginal distribution on the root and its neighbors is again an Ising model with
the same inverse temperature parameter β and where the root has local field B while each
of its neighbors has local fields hi = atanh(〈µBPm−1,vi , xvi 〉).

The distribution of these local field random variables can be recursively computed and this is
what leads to the main theorem.

v2,B2 = h2 v3,B3 = h3v1,B1 = h1

ρ

What did we learn? This application in particular shows
that it sometimes takes a lot of work to connect local
asymptotics of models to asymptotics of global function-
als, in particular, to quantify the impact of vertices “far”
from a typical vertex which do not have significant impact
in terms of the functional being considered. Further we

arrived at these “local fields”
{

hi : 1 É i É D◦
ρ

}
which quan-

tified the impact of the (in the large m →∞ limit, infinite)
subtrees below these children on the distribution of the

root. In the next application, we will see similar local fields arising out of, at first sight, a calcu-
lation that does not make any sense!
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4.4. Random assignment problem. Recall the motivation and setup of the random assignment
problem in Section 2.5. Under moment conditions (and assumption of continuity) on the edge
cost distributions, it turns out that the limit depends only on the nature of the density at zero, so we
will assume that the edge costs are iid exponential random variables; further it will be convenient
to take these to have mean n (or rate 1/n) variables. Before the nail in the coffin on this problem
by Aldous in [4, 7], [36] had found a lower bound of 1.51 on the limit constant while [28] had found
an upper bound of 1.94.

Theorem 4.4 ([7]). Consider the random assignment problem where edge costs are exponential
mean n random variables. Let An denote the cost of the minimum assignment problem. Then:

(a) Let Ξ = (ξ1,ξ2, . . . , ) be the points of a rate one Poisson point process and consider the recursive
distributional equation given by

X
d= min

1Éi<∞
(ξi −Xi ),

where X , {Xi : i Ê 1} are i.i.d. with the same distribution and independent of Ξ. Then the only
solution to this distributional equation is the logistic distribution X ∼ fX (·) where the density is
given by,

fX (x) = 1

(ex/2 +e−x/2)2
, −∞< x <∞.

(b) Let X1, X2 ∼ fX (·) and independent. Then

1

n
E(An) →

∫ ∞

0
xP(X1 +X2 > x)d x = π2

6
.

Rationale for why this might be true:

(a) Asymptotics around a random job: Writing π(n)
opt for the optimal assignment, and switching

from ci , j to c(i , j ) to easy the load on subscripts, in the finite n problem, note that by symmetry
we see that

1

n
E(An) = E

(
c(Vn ,π(n)

opt (Vn))
)
.

Thus once again this problem has been transformed into something related to what happens
for a typical vertex, in this case the cost of the edge that vertex Vn is matched to in the optimal
assignment.

(b) Local weak convergence for Geometric graphs: Let us think of the assignment problem as jobs
being assigned to machines to facilitate explanation and by symmetry let Vn = 1. Recall that
Ξ = (ξ1,ξ2, . . .) denotes a Poisson point process as above. Let {Yi : i Ê 1} be an iid sequence of
exponential mean one random variables. Now the least cost amongst possible machines to be

assigned to this job is ξ(n)

11 := min j∈[n] c1 j
d= ξ1 using properties of the exponential distribution.

Using lack of memory property of the exponential distribution, the second smallest cost has
distribution

ξ(n)

12
d= ξ1 + n

n −1
Y2 ≈ ξ2.

Similarly the 3rd least cost of possible machine assignments to job 1 has distribution,

ξ(n)

12
d= ξ(n)

12 +
n

n −2
Y3 ≈ ξ3.

Rigorous justification of the above facts proceeds via the Rényi representation of exponential
order statistics. Thus, in the large n-limit, if we think of costs as edge lengths and explore the
graph from job 1, then distances to machines are approximately distributed as a rate one Pois-
son point process. Now from each of these machines if we continue to explore the jobs closest
to these machines (sequentially “unfolding” the geometric structure of costs from a single job),
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once again in the large n-limit they have Poisson rate one edge lengths, independent across
machines. This suggests the following natural limit object.

Definition 4.5 (Poisson weighted infinite tree (PWIT) [4]). Consider the infinite locally finite
random tree constructed as follows: start with a single root ρ and attach infinite number of
children of this root where the children are assigned lengths according to a rate one Poisson pro-
cess. Call this generation one. Now recursively repeat the process, namely assuming we have
constructed the process upto generation k, for each vertex v in any generation k independently
and identically repeat this process namely each of these individuals gives birth to individuals
in generation k + 1 with edge lengths according to a rate one Poisson process Ξv , independent
across individuals. Call the random rooted tree with edge lengths the Poisson weighted infinite
Tree (PWIT) and denote this by T∞. Let W denote the collection of edge lengths and W(e) for the
weight of a specific edge.

(c) Assignments as matchings and the first approach that fails: Recall how we arrived at the
PWIT, this was via unfolding the cost structure around a typical job in the finite n problem
where we go from jobs in one generation to machines in the next generation and then to jobs
in the generation after etc. Now any specific assignment of jobs to machines can, at least ap-
proximately (for large n) be thought of as a “matching” namely a collection of edges such that
every vertex is part of exactly one edge. We can also define matchings M on the PWIT, namely a
collection of edges in T∞ such that every vertex is incident on exactly one edge. Further, whilst
at the far end of one’s imagination, one can at least hope that something like the following is
true:

There is an “optimal” matching on the PWIT such that as n →∞, E(cn(1,π(n)
opt (1))) con-

verges to E(W(ρ,Mopt (ρ))) namely the expected weight of the edge containing the root.
Now suppose we try the natural first approach to construct a matching on the PWIT which

is the greedy matching approach Mgreedy: match ρ with the vertex that is closest to it (which
is at a distance of exp(1)); then for all other children of ρ match them with their closest child
etc. Then it is obvious that under this scheme E(W(ρ,Mgreedy)) = 1, however as mentioned
above, the lower bound for the limit constant before the result of Aldous was 1.51. Thus this
cannot arise from the optimal matching. Conceptually it turns out that “good” matchings have
to satisfy a spatial invariance property, in the sense that, going back to the definition of the
PWIT, if we moved the root of the PWIT from the original root to one of its neighbors and then
relabelled vertices, the matching should in some sense be invariant. It turns out that the greedy
matching does not satisfy this property. In proving the existence of the limit constant, Aldous
in [4] showed that n−1E(An) converges to the the infE(W(ρ,M (ρ)), where the infimum is taken
over all spatially invariant matchings on the PWIT.

(d) ∞−∞= Magic. Origin of the Logistic distribution: While trying to give an outline of the full
and technical proof in [7] is beyond the scope of this article, let us describe one “magical” ex-
planation (see [7, Sec 4.2]) that shows the origin of the Logistic distribution above. Label the
children of vertex ρ from {1,2, . . .} and let T j ,∞ denote the subtree rooted at j which by con-
struction has the same distribution as the PWIT. Let C (T∞) denote the weight of the optimal
matching on the PWIT (which is obviously ∞ but let us keep going). Let (this is [7, Eqn 14]),

Xρ =cost of optimal matching on T∞−cost of optimal matching on T∞ \
{
ρ
}

,

and define similar variables for each of the children of ρ namely
{

X j : j Ê 1
}

are the correspond-
ing random variables for the subtrees T j ,∞. By construction, if these random variables make
sense in any universe, then they have the same distribution. For simplicity, on a set U write
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C (U ) to denote the cost of the optimal matching on this set. Then note that

Xρ = min
jÊ1

[
W (ρ, j )+C (T j ,∞ \

{
j
}
)+ ∑

i ̸= j
C (Ti ,∞)

]
− ∑

jÊ1
C (Ti ,∞) = min

jÊ1

[
W (ρ, j )−X j

]
.

This is exactly the same recursion as in (a) of the Theorem leading to the logistic distribution.
Further if jopt is the child of ρ that minimizes the right hand side then the matching of the root
corresponds to the edge (ρ, jopt ). In [7] Aldous found a magical scheme to make sense of the
above “calculations” and give a complete proof for the asymptotics of the limit constant.

FIGURE 4.3. Standard integer
lattice with the origin marked
red.

FIGURE 4.4. Random Triangula-
tion of part of the plane result-
ing in a planar graph where each
edge has degree 3.

4.5. Recurrence of random walks on planar graphs. The previous section described the impor-
tance of “spatial versions” of local weak convergence, where edge lengths played an important role.
We conclude this section with a remarkable result of Benjamini and Schramm in [17] that in fact
was another genesis for the notion of local weak convergence in the early 2000s. To set the stage,
recall that one of the classical results says that, if one considers the two dimensional integer lattice
then the random walk is reccurrent, namely starting from any location, it returns to that location
eventually with probability one. A natural question is: what if one considers other planar geome-
tries, namely infinite graphs deterministic or random that can be embedded in space. Examples of
two such geometries in (part of) the plane are given in Figures 4.3-4.4. We will now paraphrase the
fundamental result in [17], the proof idea is significantly different from the rest of this review so we
refer the interested reader to this beautiful paper for details regarding the proof.

Theorem 4.6 ([17]). Let {Gn : n Ê 1} be a sequence of (potentially random) finite planar connected

graphs with maximal degrees uniformly bounded by a constant M. Suppose Gn
LWC−→ G⋆∞ as n →∞.

Then with probability one, the random walk on G⋆∞ is recurrent.

Once again what is amazing is that recurrence of the limit object which is in principle a com-
pletely global property is modulated by local weak convergence.
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5. LOCAL WEAK CONVERGENCE FOR DYNAMIC NETWORK MODELS

The previous Sections largely dealt with network models on static networks, namely where the
underlying topology of the network does not change. The goal here is to describe dynamic models,
and for the sake of clarity we will focus on various families of growing random tree models, some
of whose motivation was given in Section 2 and fundamentals related to fringe convergence (Sec-
tion 3.4) were described in Section 3.6.1. To keep this paper to manageable length, we will give a
proof idea only in the first subsection and only paraphrase results in the remaining sections giving
references to where the interested reader can find more details.

5.1. Local weak convergence and PageRank. Recall PageRank from Definition 2.1. Introduced by
Google to rank web pages [52], PageRank is arguably one of the most effective centrality measures
on complex networks and is a main factor behind the initial success of Google as a search en-
gine. When compared to simpler centrality measures like degree, PageRank incorporates the effect
of geometry of the network around a vertex beyond finite radius neighborhoods, and this should
likely make it a more sensitive notion of centrality. This observation is elucidated by the follow-
ing representation of PageRank, which we describe for tree networks for simplicity (an analogous
representation holds for non-tree networks). For a tree network Gn with n vertices (viewed as a
directed graph with edges pointing from offspring to parent), and v ∈ Gn , let Pl (v,n) denote the
number of directed paths of length l that end at v in Gn . It is easy to check from Definition 2.1 that
the PageRank scores have the explicit formulae for any vertex v ,

Rv,c = (1− c)

n

(
1+

∞∑
l=1

c l Pl (v,n)

)
. (5.1)

For the sequel, it will be easier to formulate results in terms of the graph normalized PageRank
scores

{
Rv,c : v ∈Gn

}= {
nRv,c (n) : v ∈Gn

}
.

A natural question that one could ask is whether PageRank and degree truly differ at the extremal
(or large deviations) level. Namely, how do the identities of the most central vertices in the network
quantified via degree and PageRank compare? Along this line of enquiry, a popular belief is the
so-called power-law hypothesis, which conjectures that for real world networks with a power-law
degree distribution, the PageRank also has a power-law distribution with the same exponent as
the degree. This has been shown to hold in several static network models (no time evolution) like
the directed configuration model [27, 51] and the inhomogeneous random digraph [46, 51]. For
dynamic random graphs, the picture was recently shown to be very different. For linear preferential
attachment models, [15] showed that the PageRank distribution has heavier tails than degree. This
phenomenon has been extended to a variety of other dynamic random graph models in [10, 13].
Strikingly, for the random recursive tree described in Section 3.6.1, the limiting degree distribution
has an exponentially decaying tail while the limiting PageRank distribution has a power-law tail
with exponent 1/c.

To prove such results, local weak convergence serves as a crucial tool. At a high level, the idea is
sketched as follows.

(a) Enter local weak convergence: Observe from (5.1) that the PageRank of a vertex v depends
only on its in-component, namely the subgraph spanned by vertices with a directed path to v .
Moreover, although the PageRank of v depends on the whole in-component of v , the contribution
of a vertex u to the PageRank of v decays exponentially with its distance from v . From these obser-
vations, it is not too hard to believe that if the in-component of a uniformly chosen vertex in the
network converges in a (directed) local weak sense to a rooted limiting random tree G∞, then the
limiting PageRank distribution (limit of the empirical distribution of PageRanks of vertices in Gn as
n →∞) corresponds to the law of the root PageRank in G∞. This was rigorously verified in [15, 35].
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(b) PageRank on static graphs: The distribution of the root PageRank in G∞ is qualitatively
different for static and dynamic random graphs. For static graphs, the (directed) local weak limit
corresponds to the progeny tree of a Galton-Watson Branching process. This is not a surprise, given
our discussion in Section 3.6.2. This implies that the root PageRank R; in the limiting tree satisfies
the recursive distributional fixed point equation

R;
d= c

D∑
i=1

Ri + (1− c), (5.2)

where D is the (in-)degree of the root and {Ri } are iid having the same distribution as R. This
equation can then be analyzed via renewal theory to establish that

0 < liminf
x→∞

P[R; > x]

P[D > x]
≤ limsup

x→∞
P[R; > x]

P[D > x]
<∞.

A detailed proof can be found in [41]. This line of argument verifies the power law hypothesis for a
variety of static random graphs.

(c) PageRank on dynamic graphs: For dynamic graphs, as previously indicated, the local weak
limits turn out to be more exotic. For a concrete example, consider the non-uniform random re-
cursive tree introduced in Section 3.6.1. As previously discussed, the discrete network process can
be embedded in a continuous time branching processes {BP(t ) : t ≥ 0} where each individual in the
population reproduces (independently across individuals) at times given by a point process ζ(·) on
R+ with intensity measure µ(·) and newly born individuals start reproducing according to an inde-
pendent copy of the same point process. In the point process ζ(·), the time gap between the k-th
and (k +1)-th birth has distribution exp( f (k)), where f is the attachment function governing the
network evolution. The directed local weak limit is then given by BP(Tλ), where Tλ ∼ exp(λ) is inde-
pendent of BP(·) and λ is the Malthusian rate of growth of the branching process, given analytically
(under some regularity assumptions) as the unique root of the equation∫ ∞

0
e−λtµ(d t ) = 1.

See [55] for a detailed treatment. Observe that different vertices are born at different times and
hence, at any time t , the distribution of the number of offspring of each existing child of the root
differ across children. It is this temporal inhomogeneity that is behind the fundamentally different
behavior of PageRank in dynamic networks as one cannot exploit a recursive distributional equa-
tion analogous to (5.2). However, there is a different way to look at things in terms of percolation
on branching processes described below.

Definition 5.1 (Percolation on BP). Fix a damping factor c ∈ (0,1). For any t Ê 0, write BPc (t )
for the connected cluster of the root (which is also a tree) when we retain each edge e ∈ BP(t ) with
probability c and delete with probability (1−c), independently across edges. Write

{
BPc (t ) : t Ê 0

}
for

the corresponding non-decreasing rooted tree valued Markov process where children born to vertices
in the connected cluster of the root are retained with probability c at their time of birth.

By (5.1), it then follows that

R;
d= (1− c)E

(
|BPc (Tλ)|

∣∣∣ BP(Tλ)
)

. (5.3)

It turns out that BPc (·) is a continuous time branching process in its own right with Malthusian rate
λc (say). Then, heuristically, recalling that |BP(t )| ∼ eλ

c t , as x →∞,

Pr[R; > x] ∼ Pr[eλ
c Tλ > x] ∼ Pr

[
Tλ >

1

λc log x

]
= x−λ/λc

.
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This idea has been rigorously laid out in a number of cases. We present a result from [15] summa-
rizing this for the linear preferential attachment case.

Theorem 5.2. Consider the linear preferential attachment tree process {Gn : n ≥ 0} with attachment
function f (k) = k +1+β, k ≥ 0, for some fixed β > 0. The in-degree and PageRank of a uniformly
chosen vertex Vn in Gn jointly converge in distribution:

(DVn ,RVn )
d−→ (D,R;) as n →∞.

Moreover, there exists C > 0 such that as k →∞,

Pr[D ≥ k] =C k−2−β (
1+O(k−1)

)
,

and positive constants C1,C2 such that for any r Ê 1,

C1r−(2+β)/(1+(1+β)c) ≤ Pr[R; ≥ r ] ≤ C2r−(2+β)/(1+(1+β)c).

More examples are discussed in the next few Subsections.
We remark here that, although the above discussion was presented for tree networks, the ideas

extend naturally to locally tree-like networks. For such networks, the local weak limits are trees
and the arguments sketched in (b) and (c) above apply to the limiting objects. Local weak limits for
non-tree linear preferential attachment models are described in [15,18,34], and limits for collapsed
branching processes are obtained in [14].

5.2. Attributed network models. Next recall the nodal attribute model defined in Section 2.1. The
following paraphrases some of the main results in [10].

Theorem 5.3 ([10]). Consider the linear (γ ≡ 1) setting of the model with finite attribute space and
assume the propensity kernel κ> 0 (i.e. every entry of this matrix is strictly positive). Then:

(a) While the model cannot be embedded directly as a continuous time, multitype, branching pro-
cess, its evolution can be analyzed using stochastic approximation techniques to show that the
sequence of trees converges to a limiting infinite sin-tree with nodal types.

(b) This result gives information on joint distribution asymptotics of types and degrees, showing that
tail exponents of the limiting degree distribution of different types can depend on the type.

(c) The asymptotic limit also gives information about the PageRank distribution, in particular
showing that the extremal behavior of the PageRank scores do not depend on types.

(d) These limit results and constructions related to these results also give information on the be-
havior of various network sampling algorithms. In particular, it is shown in some settings with
rare minority vertices that sampling from the graph with probability proportional to PageRank
scores, which can be accomplished using local exploration schemes, has a quantifiably higher
chance of sampling minority vertices in comparison to uniform and degree-based sampling
schemes.

5.3. Co-evolving networks. One major frontier, especially for developing rigorous understanding
of proposed models, are the so-called co-evolutionary (or adaptive) networks, where specific dy-
namics (e.g. random walk explorations) on the network influence the structure of the network,
which in turn influences the dynamics; thus both modalities (dynamics on the network and the
network itself) co-evolve [11,37,56,57]. Motivated by the growth of social networks, there has been
significant interest in trying to understand the influence of processes such as search engines or
influence ranking mechanisms in the growth of networks. A number of papers [21, 26, 53] have
explored the dynamic evolution of networks through new nodes first exploring neighborhoods of
randomly selected vertices before deciding on whom to connect. We now describe a specific class
of such models.
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FIGURE 5.1. v6 is a new incoming vertex, and selects v4 to start exploring the net-
work, with sampled number of exploration steps Z6 = 2.

Fix a probability mass function p := {
pk : k Ê 0

}
onZ+. For the rest of the paper, let Z = {Z1, Z2, . . .}

be an i.i.d sequence with distribution p. We now describe the recursive construction of a sequence
of random trees {Tn : n Ê 1}, always rooted at vertex {v0}, with edges pointed from descendants to
their parents. Start with two vertices {v0, v1}, with T1 a rooted tree at {v0}, an oriented edge from v1

to v0. Assume for some n Ê 1, we have constructed Tn . Then to construct Tn+1:

(a) New vertex {vn+1} enters the system at time n +1.
(b) This new vertex selects a vertex Vn , uniformly at random, amongst the existing vertices V (Tn) =

{v0, . . . , vn}.
(c) Let P (v0,Vn) denote the path from the root to this vertex. This new vertex traverses up this

path for a random length Zn+1 and attaches to the terminal vertex. If the graph distance to the
root, dist(v0,Vn) É Zn+1 then this new vertex attaches to the root v0.

It turns out, the setting where the pmf p satisfies p0+p1 = 1 is identical to the linear preferential
attachment model. So to state our main results, we will assume that p0 +p1 < 1 and further E(Z ) <
∞. To get some intuition consider the simulation figures below (network size n = 30,000) and Z
having a Geometric distribution with parameter p = .35, .65 respectively.

When p = .35, this implies E(Z ) > 1 namely the exploration walk tends to explore further up the
path to the root, whereas when p = .65 then E(Z ) É 1, the walk is more local in nature. It turns out
E(Z ) = 1 is the “phase transition” point; we paraphrase a few results from [13].

Theorem 5.4 ([13]). For the above network model:

(a) When E(Z ) É 1 then the sequence of random trees converges to a limiting infinite random sin-

tree Tn
a.s.-efr−→ T∞ from which one can derive information about various quantities including

asymptotics for the degree distribution and the corresponding degree exponents. This has deep
connections with large deviations and quasi-stationary distributions of random walks on Z.

(b) When E(Z ) > 1 then {Tn : n Ê 1} converges in the fringe sense (Def 3.7 (a)) but not in the ex-
tended fringe sense. Further there is condensation at the root in the sense that there is a model
dependent strictly positive constant γ(p) > 0 such that the root degree deg(ρ,n) in Tn satisfies,

deg(ρ,n)/n
P−→ γ(p) as n →∞.

(c) We noted before that the power-law hypothesis (comparing PageRank and degree tail behavior)
holds for several static graphs and fails to hold for several dynamic graphs. The model under
consideration ‘interpolates’ these two regimes in the following sense. When E[Z ] É 1, then (under
some regularity assumptions), there exist R ≥ 1 and s(p) ∈ (0,1) such that the limiting degree and
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FIGURE 5.2. Z ∼ Geometric dis-
tribution with p = .35

FIGURE 5.3. Z ∼ Geometric dis-
tribution with p = .65

PageRank distributions satisfy:

lim
k→∞

log(P(D Ê k))

logk
=−R,

lim
r→∞

log(P(R; Ê r ))

logr
=

{
−R for c ∈ (0, s(p)] with c < 1,

− 1
c f (1/c) for c ∈ (s(p),1).

Hence, by varying the damping factor, one transitions from the regime where the power-law hypoth-
esis holds to one where PageRank has strictly heavier tails than the degree distribution. Moreover,
one can verify that 1

s(p) f (1/s(p)) = R, and thus this transition is continuous.

6. CONCLUSION AND FURTHER READING

As mentioned in the introduction, this paper is not meant to be a survey and rather was meant
to be a gentle introduction to junior researchers in the use of local weak convergence in various
problems of probabilistic combinatorics; still we apologize to the many wonderful researchers who
have contributed to this methodology and its use at the frontiers of the field that we were not able to
cite. Our goal now is to give starting points for such readers to take next steps in their exploration of
this vast field and get closer to the edge of research and the vast unexplored terrain of the unknown.

For such researchers, perhaps the most comprehensive survey can be found in [62, Chapter
2] which outlines all the myriad fundamentals and their extensions, especially in the context of
unweighted graphs, in great detail. In the geometric setting, for the fundamentals and their use
in probabilistic combinatorial optimization, [6] is a phenomenal resource. We also urge readers
to peruse [3] which laid the genesis for many of these concepts via considering the setting of trees
and which also explains and connects these topics to the more classical findings related to stable
age distribution theory of continuous time branching processes by Jagers and Nerman.

For statistical physics inspired models such as the Ising model on sparse random graphs, the two
summer school lecture notes [30, 61] are wonderful resources for rigorous theory, while [48] gives
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an overview of the intuition, especially from statistical physics for what “should happen”. One ma-
jor tool that seemed to show up repeatedly in Section 4 and Section 5 were recursive distributional
equations and [8] gives a wide-ranging overview of rigorous theory of such constructs.

Finally for random matrix theory and its connections to local weak convergence, the various
lecture notes of Charles Bordenave e.g. [23] are a great starting point, while for planar graphs, the
St. Flour lecture notes of Asaf Nachmias [50] provide a great diving board into the ramifications of
one of the classics in this entire field, namely the work of Benjamini and Schramm [17].
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