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Abstract

The Boué-Dupuis variational formula gives a representation for log Laplace transforms of bounded
measurable functions of a finite dimensional Brownian motion on a compact time interval as an
infimum of a suitable cost over a collection of non-anticipative control processes. This variational
formula has proved to be very useful in studying a variety of large deviation problems. In this
article we collect some extensions of this basic result that have appeared in disparate venues in
studying a broad range of large deviation questions. Some of these results can be found in a unified
way in the recent book [10], while others, to date, have been scattered at various places in the liter-
ature. The latter category includes, in particular, variational representations, when the stochastic
dynamical system of interest has in addition to a driving Lévy noise, another source of randomness,
e.g. due to a random initial condition; when the functionals of interest depends on infinite-length
paths of a Lévy process; when the noise process is a Gaussian process with long-range dependence,
e.g. a fractional Brownian motion, etc. The goal of this survey article is to present these diverse
variational formulas in a systematic manner.

Keywords. Variational representations, fractional Brownian motion, Hilbert space valued Brow-
nian motion, Lévy process, large deviations, Laplace asymptotics.

In memory of Professor K.R. Parthasarathy.

1 Introduction

The paper [2] established a variational formula for positive bounded functionals of paths of a finite
dimensional Brownian motion over a compact time interval that has proved to be extremely useful
in studying a wide range of large deviation problems. This result, now well nown as the Boué-
Dupuis variational formula, says the following. Fix T ∈ (0,∞). Let W = {W (t) : 0 ≤ t ≤ T}
be a d-dimensioanl standard Wiener process on a complete probability space (Ω,F , P). Denote
by {Gt}0≤t≤T the P-augmentation of the filtration {σ{W (s) : 0 ≤ s ≤ t}}0≤t≤T . Let A denote

the class of Gt-predictable processes v : [0, T ] × Ω → Rd that satisfy
∫ T

0
‖v(t)‖2dt < ∞ a.s. Let

F : CT0 (Rd) → R be a bounded measurable map. Here and throughout, for a Polish space E , CT0 (E)
will denote the space of continuous functions from [0, T ] to E equipped with the uniform topology.
Then

− logE exp{−F (W )} = inf
v∈A

E

[

1

2

∫ T

0

‖v(s)‖2ds+ F (W +

∫ ·

0

v(s)ds)

]

. (1.1)

In this we article we collect several important extensions of this result which have proved to be useful
in a range of problems, including those from infinite dimensional stochastic dynamical systems,
stochastic partial differential equations, jump-diffusions and other stochastic systems driven by
Lévy processes, Gaussian processes with long-range dependence, mean-field interacting particle
systems, stochastic particle systems on discrete lattices, random graph models, etc. Several of
these extensions can be found in the recent book[10], but there are a few others, such as those for
fractional Brownian motions, or those for functionals involving additional randomness than that
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from a Lévy process, or representations on an infinite time horizon, which have found use in different
problems, that to-date have not been recorded in a single place. Our goal in this survey article is
to introduce these various representations in a systematic way and explain the different contexts
where they have been used.

The following notation and terminology will be used. A filtration {Ft} on a complete probability
space (Ω,F , P) is said to satisfy the usual conditions if the filtration is right continuous and F0

contains all the P-null sets. On a filtered probability space (Ω,F , P, {Ft}) a d-dimensional Brownian
motion B is said to be a {Ft}- Brownian motion (or a {Ft}- Wiener process) if {B(t)−B(s) : t ≥ s}
is independent of Fs for all s ≥ 0. For a random variable X with values in some Polish space E ,
L(E) will denote the probability distribution of X which is an element of P(E), namely the space
of probability measures on E . Borel σ-field on E will be denoted as B(E). For γ, θ ∈ P(E), the
relative entropy of γ with respect to θ, denoted as R(γ‖θ) is defined to be

∫

E log dγ
dθ
dγ when γ ≪ θ

and ∞ otherwise. For a sequence {Xn} of E valued random, the convergence of Xn to an E valued
random variable X in distribution will be denoted as Xn ⇒ X. Occasionally, to emphasize the
dependence on the probability measure, the expected value on a probability space (Ω,F ,P) will be
written as EP. For a Hilbert space (H, 〈·, ·〉), L2([0, T ] : H) will denote the Hilbert space of functions

f : [0, T ] → H such that
∫ T

0
‖f(s)‖2ds < ∞, where for x ∈ H , ‖x‖2 = 〈x, x〉. The Hilbert space

L2([0,∞) : H) is defined similarly. We will frequently use same notation for related but different
objects in different sections of the article. For example the class of controls will usually be denoted
as A but their precise definition will change from section to section.

2 General Filtrations and Infinite Dimensional Brown-

ian Motions.

Results in this section can be found in [3, 5]. They also appear in the recent book [10]. Although
Theorem 2.2 is not explicitly given in these references, it can be deduced easily from the results
therein. We provide proof details for reader’s convenience.

The representation given in 1.1 requires the class of controls to be adapted with respect to the
(augmented) Brownian filtration. In the study of large deviation problems for mean field interacting
particle systems [4, 8, 9, 11] it is useful to have an extension of the representation which allows for
a filtration that is larger than the Brownian filtration. Such a representation is important in the
proof of the lower bound in the large deviation principle for the path occupation measure associated
with such interacting particle systems. It turns out that an optimal point µ of the rate function,
over a given set, corresponds to the probability law of the state process, in a controlled stochastic
system, which apriori is not known to be adapted to the filtration generated by the driving noise.
This subtle but crucial issue requires a variational representation that allows for a larger filtration.

An extension in a different direction is motivated by systems driven by infinite dimensional
Brownian motions that are the basic models in the field of stochastic partial differential equations.
In order to study large deviation properties of such systems, it becomes important to establish a rep-
resentation that is applicable to the various models of infinite dimensional Brownian motions, such
as a Hilbert space valued Brownian motion, a cylindrical Brownian motion, space-time Brownian
sheet, etc.

A representation that allows for both of these features was obtained in [3, 5]. We only present
the representation in the setting of a Hilbert space valued Brownian motion and refer the reader to
[10] for the other related settings.

We begin with some basic definitions. Fix T < ∞. Let (Ω,F , P) be a complete probability
space on which is given a filtration {Ft}0≤t≤T satisfying the usual conditions. Let (H, 〈·, ·〉) be a
real separable Hilbert space and let Q be a strictly positive, symmetric, trace class operator on H .
We recall the definition of a Hilbert space valued Wiener process.

Definition 2.1. A continuous H-valued stochastic process {W (t)}0≤t≤T is called a Q-Wiener pro-
cess with respect to the filtration {Ft}0≤t≤T if the following hold: (i) For every nonzero h ∈ H,
〈Qh,h〉−1/2〈W (t), h〉 is a one dimensional standard Wiener process. (ii) For every h ∈ H, 〈W (t), h〉
is an Ft-martingale.
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Define H0
.
= Q1/2H . Then H0 is a Hilbert space with inner product defined as

〈h, k〉0
.
= 〈Q−1/2h,Q−1/2k〉, for h, k ∈ H0.

Denote by Ã the collection of all Ft-predictable u : [0, T ]×Ω → H0 that satisfy
∫ T

0
‖u(t)‖20dt <∞.

Also denote by Gt the P-augmentation of the Brownian filtration σ{W (s) : 0 ≤ s ≤ t} and let
A be the subcollection of Ã consisting of Gt-predictable H0 valued processes. Then the following
representation can be found in [3,5,10].

Theorem 2.1. Let F : CT0 (H) → R be a bounded measurable map. Then

− logE exp{−F (W )} = inf
v∈R

E

[

1

2

∫ T

0

‖v(s)‖20ds+ F (W +

∫ ·

0

v(s)ds)

]

, (2.1)

where R ∈ {A, Ã}.

Thus the representation in particular says that the infimum on the right side taken over the
larger collection Ã is same as that over the subcollection A. In fact the infimum can be taken over
a much more smaller subcollection, a fact which is very useful when one would like to use weak
convergence arguments in proofs of large deviation principles. To describe this subcollection, let
for M ∈ (0,∞), define

SM
.
=

{

u ∈ L2([0, T ] : H0) :

∫ T

0

‖u(s)‖20ds ≤M

}

.

Denote by Ab,M (resp. Ãb,M ) the subcollection of A (resp. Ã) consisting of u that take values in
SM . Let Ab

.
= ∪M>0Ab,M and Ãb

.
= ∪M>0Ãb,M . Then [10, Theorem 8.3] shows that (2.1) in fact

holds for any R ∈ {A, Ã,Ab, Ãb}.
One can take the infimum over even a further smaller class, namely the collection of simple

processes. This fact was crucially exploited in [1] in the proof of the large deviation principle for a
Brownian interacting particle system with local interactions. This work, in the proof of the large
deviation upper bound, required certain estimates on Dirichlet forms associated with the controlled
state processes, which in turn relied on the smoothness properties of the density functions of the
laws of these controlled processes. The proof of these regularity properties given in [1] made key
use of the fact that the controls are piecewise constant. Thus the result that in the variational
representation the infimum can be taken over such controls played a central role in the proof.

We now present this result.

Definition 2.2. A process v ∈ Ã (resp. A) is called simple, if there exists a k ∈ N, N ∈ N and
0 = t1 ≤ t2 ≤ · · · ≤ tk+1 = T , such that

v(s, ω)
.
=

k
∑

j=1

Xj(ω)1(tj,tj+1](s), (s, ω) ∈ [0,∞)× Ω,

where, for each j = 1, . . . , k, Xj is a real Ftj (resp. Gtj ) measurable random variable satisfying

|Xj | ≤ N . We denote the collection of all such simple processes as Ãs (resp. As).

The following result says that the infimum in (2.1) in fact holds for anyR ∈ {A, Ã,Ab, Ãb,As, Ãs}.
Although the result follows readily from the results in [3], below we give a brief argument for reader’s
convenience.

Theorem 2.2. Let F : CT0 (H) → R be a bounded measurable map. Then

− logE exp{−F (W )} = inf
v∈R

E

[

1

2

∫ T

0

‖v(s)‖20ds+ F (W +

∫ ·

0

v(s)ds)

]

,

where R ∈ {As, Ãs}.
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Proof. First suppose that F : CT0 (H) → R is a continuous and bounded map. In that case, from
[3, Lemma 3.5], we have that

inf
v∈As

E

[

1

2

∫ T

0

‖v(s)‖20ds+ F (W +

∫ ·

0

v(s)ds)

]

= inf
v∈Ã

E

[

1

2

∫ T

0

‖v(s)‖20ds+ F (W +

∫ ·

0

v(s)ds)

]

and so the statement in the theorem follows from Theorem 2.1. Now consider a general real bounded
measurable map F on CT0 (H). Then there is a sequence of continuous maps Fn : CT0 (H) → R such
that ‖Fn‖∞ ≤ ‖F‖∞ <∞ and Fn → F P-a.s. Fix ε > 0 and choose v∗ ∈ Ãb such that

E

[

1

2

∫ T

0

‖v∗(s)‖20ds+ F (W +

∫ ·

0

v∗(s)ds)

]

≤ inf
v∈Ãb

E

[

1

2

∫ T

0

‖v(s)‖20ds+ F (W +

∫ ·

0

v(s)ds)

]

+ ε.

Since v∗ ∈ Ãb, the law of W +
∫ ·
0
v∗(s)ds is mutually absolutely continuous with respect to that of

W and so Fn(W +
∫ ·
0
v∗(s)ds) converges a.s. to F (W +

∫ ·
0
v∗(s)ds). Thus

lim
n→∞

E

[

1

2

∫ T

0

‖v∗(s)‖20ds+ Fn(W +

∫ ·

0

v∗(s)ds)

]

≤ inf
v∈Ãb

E

[

1

2

∫ T

0

‖v(s)‖20ds+ F (W +

∫ ·

0

v(s)ds)

]

+ ε.

Using the first part of the proof, choose vn ∈ As such that

E

[

1

2

∫ T

0

‖vn(s)‖
2
0ds+ Fn(W +

∫ ·

0

vn(s)ds)

]

≤ E

[

1

2

∫ T

0

‖v∗(s)‖20ds+ Fn(W +

∫ ·

0

v∗(s)ds)

]

+ n−1.

From [10, Lemma 2.5] it follows that

lim
n→∞

E

∣

∣

∣

∣

Fn(W +

∫ ·

0

vn(s)ds)− F (W +

∫ ·

0

vn(s)ds)

∣

∣

∣

∣

= 0.

Combining the last three displays we have

inf
v∈As

E

[

1

2

∫ T

0

‖v(s)‖20ds+ F (W +

∫ ·

0

v(s)ds)

]

≤ lim
n→∞

E

[

1

2

∫ T

0

‖vn(s)‖
2
0ds+ F (W +

∫ ·

0

vn(s)ds)

]

≤ lim
n→∞

E

[

1

2

∫ T

0

‖v∗(s)‖20ds+ Fn(W +

∫ ·

0

v∗(s)ds)

]

≤ inf
v∈Ãb

E

[

1

2

∫ T

0

‖v(s)‖20ds+ F (W +

∫ ·

0

v(s)ds)

]

+ ε.

Since ε > 0 is arbitrary, the result follows.

3 Functionals of Brownian Motions with Additional Ran-

domness

In some situations one is interested in studying the large deviations behavior of a stochastic dynam-
ical system for which, in addition to a random driving noise, there is another source of randomness,
coming e.g. from the initial state of the stochastic system. Two such settings were studied in [1,11].
In order to motivate the extension considered in this section, we describe the setting in [11] in some
detail.
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3.1 Brownian particle systems with killing.

Let {Xi}i≥1 be a sequence of i.i.d. exponential random variables with rate 1 and let {Bi(t), t ≥ 0}i≥1

be independent d-dimensional standard Brownian motions independent of {Xi}i≥1. Define for t ≥ 0
the random sub-probability measure µn(t) as the solution to the following equation

µn(t) =
1

n

n
∑

i=1

δBi(t)1{Xi>
∫
t
0
〈ζ, µn(s)〉 ds}. (3.1)

Here ζ : Rd → R is a continuous function with sub-quadratic growth. Since a.s., we can enumerate
{Xi}

n
i=1 in a strictly increasing order, the unique solution of (3.1) can be written explicitly in a

recursive manner. It can be checked (see [11, Theorem 2.1]) that µn
.
= {µn(t)}t∈[0,T ] converges,

in the Skorokhod path space D
.
= D([0, T ] : M(Rd)), where M(Rd) is the space of sub-probability

measures on Rd equipped with the weak convergence topology, in probability to µ where for t > 0,
µ(t) has density u(t, ·) given as the solution of

∂u(t, x)

∂t
=

1

2
∆u(t, x)− 〈ζ, u〉u(t, x), (t, x) ∈ (0,∞)× R

d, lim
t↓0

u(t, ·) = δ0(·),

Such particle systems are motivated by problems in biology, ecology, chemical kinetics, etc. For
example, the simplest case where ζ ≡ 1 corresponds to the case where the killing rate is proportional
to the total number of particles alive and models a setting in which particles compete for a common
resource. More general functions ζ are of interest as well and one interpretation of ζ(x) is the
amount of resource consumed by a particle in state x. Similar particle systems arise in problems of
mathematical finance as models for self exciting correlated defaults.

In studying large deviation properties of the sequence {µn} of D valued random variables one
needs to understand the asymptotics of Laplace functionals of the form

−
1

n
logE[exp(−nf(µn))]

for real continuous and bounded functions f on D. In view of the weak convergence approach
to the study of large deviation problems[10, 13], it is then natural to derive a suitable controlled
representation for the above Laplace functional and understand tightness and weak convergence
properties of the various terms in this representation. Note that µn can be viewed as a measurable
functional of the nd-dimensional Brownian motion Bn = (B1, . . . Bn) and an independent Rn+
dimensional random variable Xn = (X1, . . . , Xn) and so one can write

−
1

n
logE[exp(−nFn(B

n,Xn))]

where Fn is a suitable real bounded and measurable map on CT0 (R
nd)× Rn+. In the case where Fn

only depends on Bn, we saw that useful variational representations are given by (1.1) and Theorem
2.1. However the setting where the function Fn also depends on Xn is not covered by the above
results.

For such settings one needs a variational representation that allows for functionals that, in
addition to depending on a Brownian motion, depend also on an additional source of randomness.
Such a representation was given in [11, Proposition 4.1]. We present this result below.

3.2 A Variational Representation with Additional Randomness.

Let T < ∞, and (Ω,F , {Ft}0≤t≤T ,P) be a filtered probability space as in the previous section on
which are given a d-dimensional standard Ft-Brownian motion W and an F0-measurable random
variable X, which takes values in a Polish space S and has probability law ρ. We present below a
variational representation for − logE [exp (−F (W,X))], where F is a real bounded measurable map
on CT0 (Rd)× S. Note that since X is F0-measurable, W and X are independent.

Consider the probability space (Ω̄, F̄ , P̄) on which we are given a d-dimensional standard Brow-
nian motion W̄ and an S-valued random variable X̄, which is independent of W̄ , with law Π. Let

5



{F̂t} be any filtration on (Ω̄, F̄ , P̄) satisfying the usual conditions, such that W̄ is still a stan-
dard d-dimensional Brownian motion with respect to {F̂t} and X̄ is F̂0-measurable. One example

of such a filtration is {F̄t
.
= σ{F̄W̄ ,X̄

t ∪ N̄}}, where N̄ is the collection of all P̄-null sets and

F̄W̄ ,X̄
t

.
= σ{X̄, W̄ (s) : s ≤ t}. Let ΥΠ

.
= (Ω̄, F̄ , {F̂t}, P̄) and consider the following collection of

processes

A(ΥΠ)
.
=

{

u : the process u is F̂t-predictable and Ē

∫ T

0

‖u(s)‖2 ds <∞

}

.

The following is [11, Proposition 4.1].

Theorem 3.1. Let F be a real bounded measurable map on CT0 (R
d)× S. Then

− logE [exp (−F (W,X))]

= inf
Π,ΥΠ

inf
u∈A(ΥΠ)

{

R(Π‖ρ) + Ē

[

1

2

∫ T

0

‖u(s)‖2 ds+ F

(

W̄ +

∫ ·

0

u(s) ds, X̄

)]}

,

where the outer infimum is over all Π ∈ P(S) and all systems ΥΠ.

Remark 3.2. Denote for M ∈ (0,∞), by Ab,M (ΥΠ) the subcollection of A(ΥΠ) consisting of con-
trols u that take value in SM . Let Ab(ΥΠ)

.
= ∪M>0Ab,M (ΥΠ). Also, let As(ΥΠ) be the subcollection

of A(ΥΠ) consisting of F̂t-adapted simple processes. Then the collection A(ΥΠ) in the statement of
Theorem 3.1 can be replaced by either Ab(ΥΠ) or As(ΥΠ).

Furthermore, a similar representation can be written for an infinite dimensional Brownian mo-
tion, e.g. for a H-valued Wiener process as in Section 2.

For details of the proof of Theorem 3.1 we refer the reader to [11] but we make some comments
on the proof idea.

Consider the probability space (Ω̃, F̃ , P̃), where Ω̃ = CT0 (Rd), F̃ = B(CT0 (R
d)) and P̃ is the d-

dimensional Wiener measure. Namely, under P̃ the canonical coordinate process W̃
.
= {W̃ (t, ω̃)

.
=

ω̃(t), 0 ≤ t ≤ T} is a standard d-dimensional Brownian motion with respect to the filtration

{F̃W̃
t

.
= {σ{W̃ (s) : s ≤ t}}. Let {F̃t} be the augmented filtration, namely F̃t

.
= σ{F̃W̃

t ∪ Ñ}
and Ñ is the collection of all P̃-null sets. Define

F̃ (x)
.
= − log Ẽ

[

exp
(

−F (W̃ , x)
)]

, x ∈ S.

From the independence between W and X we see that

− logE [exp (−F (B,X))] = − logE
[

exp
(

−F̃ (X)
)]

.

Applying classical results of Donsker–Varadhan (cf. [10, Proposition 2.2] ) to the right side, we have
the following representation formula from the above equality

− logE [exp (−F (B,X))] = inf
Π∈P(S)

[

R(Π‖ρ) +

∫

S

F̃ (x)Π(dx)

]

. (3.2)

Consider the collection of processes

A
.
=

{

u : the process u is F̃t-predictable and Ẽ

∫ T

0

‖u(s)‖2 ds <∞

}

.

From (1.1) we now have the following variational formula

F̃ (x) = inf
u∈A

Ẽ

[

1

2

∫ T

0

‖u(s)‖2 ds+ F

(

W̃ +

∫ ·

0

u(s) ds, x

)]

,

which together with (3.2) gives

− logE [exp (−F (B,X))]

= inf
Π∈P(S)

{

R(Π‖ρ) +

∫

S

inf
u∈A

Ẽ

[

1

2

∫ T

0

‖u(s)‖2 ds+ F

(

W̃ +

∫ ·

0

u(s) ds, x

)]

Π(dx)

}

.
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The above representation is inconvenient to use directly in large deviation proofs and the main
challenge in using it, in comparison to the representation in Theorem 3.1 is the presence of the
infimum under the integral on the right side. Nevertheless, the above representation is the starting
point of the proof of Theorem 3.1 which uses discretization and measurable selection arguments to
show not only that the integral and the infimum can be interchanged in the representation but also
that the minimal filtration F̃t can be replaced by a larger filtration with respect to which which B
is a martingale. The fact that one can allow for a general filtration turns out to be crucial in the
proof of the lower bound of the large deviation proof for the collection {µn} described earlier in the
section.

4 Infinite Time Horizon

In some problems one needs a variational formula for functionals of the paths of a Brownian motion
over an infinite time horizon. We describe one such situation below.

4.1 Empirical Measures of State Processes Driven by a Fractional

Brownian Motion.

One situation where the need to consider infinite-length paths of Brownian motion arises naturally
is in the study of path empirical measures of ergodic solutions of stochastic differential equations
driven by a fractional Brownian motion (fBM). The term ergodicity here needs to be interpreted
suitably as the solution processes are not Markov, however there is a natural way to augment the
state of the system with an infinite length path of a Brownian motion to get a Markovian state
descriptor (see [15]). The starting point of obtaining such a Markovian description is the Mandelbrot
- Van Ness decomposition of a fBM in terms of a two sided Brownian motion. This decomposition
is as follows.

Let (Ω,F , P) be a probability space on which is given a real two-sided Wiener process {W (t) :
−∞ < t < ∞}. Such a process is characterized by the property that for every t ∈ R, {W t(s)

.
=

W (t − s) − W (t)}s≥0 is a standard Brownian motion independent of {W (t + u) : u ≥ 0}. Fix
H ∈ (0, 1). Then a real fractional Brownian motion with Hurst parameter H , denoted as BH(·),
has the following representation: For t ≥ 0,

BH(t) =

∫ 0

−∞
G(r)(dW (r+ t)− dW (r)) =

∫ 0

−∞
(G(r + t)− G(r))dW (r) +

∫ t

0

G(r − t)dW (r),

where G(r) = αHr
H−1/2, for r ≥ 0, and αH is a suitable constant.

One is interested in stochastic differential equations (SDE) driven by such a driving noise.
For simplicity of presentation, considered the simplest such equation which describes a fractional
Ornstein-Uhlenbeck process:

dX(t) = −αX(t)dt+ dBH(t).

The ergodicity behavior of {X(t), t ≥ 0} and in fact of much more general processes given as
solutions of SDE driven by a fBM have been studied in [15] and in several subsequent works. These
results, in particular, characterize the law of the limit of the occupation measures {LT , T > 0} as
T → ∞, where

LT (·)
.
=

1

T

∫ T

0

δX(s) ds, T > 0.

In order to study the large deviation behavior of the above collection of P(R) valued random
variables, one needs to characterize the asymptotic behavior of Laplace functionals of the following
form:

−
1

T
logE exp{−Tf(LT )}

where f : P(R) → R is a bounded continuous map. Note that LT is a measurable map of the infinite
path of a standard Brownian motion, namely the collection {W T (s) =W (T − s)−W (T ) : s ≥ 0}.
Thus, for a suitable bounded measurable map FT : C∞

0 (R) → R,

−
1

T
logE exp{−Tf(LT )} = −

1

T
logE exp{−TFT (W

T )}.
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Here, for a Polish space E , C∞
0 (E) denotes the space of continuous functions from [0,∞) to E ,

equipped with the local uniform topology. Thus, in order to study asymptotic behavior of such a
quantity, it is of interest to develop a variational representation for functionals of infinite-length
paths of a standard Brownian motion.

4.2 Representation for Infinte Length Brownian Paths.

We will only provide detailed arguments for a one dimensional Brownian motion. Analogous results
can be established for a Brownian motion with values in a separable Hilbert space by combining the
arguments here with those in [3]. We also remark that, in order to study ergodicity properties of
X(·) and other fractional diffusions, [15] and subsequent papers viewW T as an element of a suitable
path space HH of Hölder continuous functions. Since the Borel σ-fields on HH and C∞

0 (R) are the
same, one immediately obtains from Theorem 4.1 below also a representation for real bounded
measurable functionals on HH .

Let (Ω,F ,P, {Ft}t≥0) be a filtered probability space where the filtration satisfies the usual
conditions. Let {W (t)}t≥0 be a standard Ft-Wiener process on this space. The P-augmentation
of the filtration {σ{W (s) : 0 ≤ s ≤ t}}t≥0 will be denoted as {Gt}t≥0. Note that Gt ⊂ Ft for all
t ≥ 0. We denote by A (resp. Ã) the collection of all R-valued Gt-predictable (resp. Ft-predictable)
processes v : [0,∞)× Ω → R that satisfy

P

{∫ ∞

0

|v(t)|2dt <∞

}

= 1.

It will be convenient to consider the following subcollections of A and Ã as well. Let, forM ∈ (0,∞),

SM
.
=

{

u ∈ L2([0,∞) : R) :

∫ ∞

0

|u(s)|2ds ≤M

}

,

and Ab,M (resp. Ãb,M ) be elements of A (resp. Ã) that take values in SM a.s. Define

Ab
.
= ∪M∈NAb,M , Ãb

.
= ∪M∈NÃb,M .

The following is the main variational representation of the section.

Theorem 4.1. Let F : C∞
0 (R) → R be a bounded and measurable map. Then

− logE exp{−F (W )} = inf
v∈R

E

[

1

2

∫ ∞

0

|v(s)|2ds+ F (W +

∫ ·

0

v(s)ds)

]

,

where R ∈ {A, Ã,Ab, Ãb}.

In preparation for the proof of the theorem we give sime preliminary results. For v ∈ Ãb, and
T ∈ [0,∞), let

L∞(v)
.
= exp

{∫ ∞

0

v(s)dW (s)−
1

2

∫ ∞

0

|v(s)|2ds

}

, LT (v)
.
= exp

{∫ T

0

v(s)dW (s)−
1

2

∫ T

0

|v(s)|2ds

}

.

The following result is a simple consequence of Girsanov’s theorem.

Lemma 4.2. Let v ∈ Ãb. Then EL∞(v) = 1. Define the probability measure Q on (Ω,F) as

dQ

dP

.
= L∞(v) = exp

{∫ ∞

0

v(s)dW (s)−
1

2

∫ ∞

0

|v(s)|2ds

}

.

Then

W̃ (t)
.
=W (t)−

∫ t

0

v(s)ds, t ≥ 0

is a Ft-Wiener process on (Ω,F ,Q, {Ft}t≥0).
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Proof. Fix v ∈ Ãb. Then there is a M < ∞ such that v ∈ Ãb,M . Since, for every T ∈ [0,∞),
∫ T

0
|v(s)|2ds ≤

∫∞
0

|v(s)|2ds ≤ M , we have from Novikov’s criterion (cf. [19, Corollary VIII.1.16])
E(LT (v)) = 1 for all T ∈ [0,∞). Also, using Cauchy-Schwarz inequality, it is easy to verify that
supT∈[0,∞) E(LT (v))

2 ≤ eM < ∞ which shows that {LT (v), T ≥ 0} is a uniformly integrable Ft-
martingale on (Ω,F ,P). Noting that LT (v) → L∞(v) in probability, we now see that in fact the
convergence holds in L1 as well and consequently EL∞(v) = 1 proving the first statement in the
lemma. Also, it follows that, for T ∈ [0,∞), E(L∞(v) | FT ) = LT (v) a.s. By Girsanov’s theorem
(cf. [17, Theorem 3.5.1]) it now follows that W̃ is a Ft-Wiener process on (Ω,F ,Q, {Ft}t≥0). This
completes the proof of the second statement.

The following collection of simple processes will be useful.

Definition 4.1. A process v ∈ Ã (resp. A) is called simple, if there exists a T ∈ (0,∞), k ∈ N,
N ∈ N and 0 = t1 ≤ t2 ≤ · · · ≤ tk+1 = T , such that

v(s, ω)
.
=

k
∑

j=1

Xj(ω)1(tj,tj+1](s), (s, ω) ∈ [0,∞)× Ω,

where, for each j = 1, . . . , k, Xj is a real Ftj (resp. Gtj ) measurable random variable satisfying

|Xj | ≤ N . We denote the collection of all such simple processes as Ãs (resp. As).

Note that As ⊂ Ab, Ãs ⊂ Ãb.
Since a simple process is zero after some finite time horizon, the known results for finite time

horizon filtrations (see e.g. [10, Lemma 8.7 and Equation (8.14)]) give the following result. For
v ∈ Ab, denote W v(·)

.
= W (·) −

∫ ·
0
v(s)ds and define the probability measure Qv on (Ω,F) as

dQv
.
= L∞(v)dP.

Lemma 4.3. For every v0 ∈ Ãs, a bounded measurable map F : C∞
0 (R) → R, and ε > 0 there is a

v ∈ As such that

E

[

1

2

∫ ∞

0

|v(s)|2ds+ F (W +

∫ ·

0

v(s)ds)

]

≤ E

[

1

2

∫ ∞

0

|v0(s)|
2ds+ F (W +

∫ ·

0

v0(s)ds)

]

+ ε.

Furthermore, for every v ∈ As there is a ṽ ∈ As such that Qṽ ◦ (W ṽ, ṽ)−1 = P ◦ (W,v)−1.

In the above lemma when talking about the distribiution of v, ṽ, these are regarded as random
variables in SM , for a suitable M ∈ (0,∞), where this space is equipped with the weak toplogy
inherited from that on the Hilbert space L2([0,∞) : R).

We now complete the proof of Theorem 4.1.

Proof of Theorem 4.1. We begin by proving the upper bound

− logE exp{−F (W )} ≤ inf
v∈R

E

[

1

2

∫ ∞

0

|v(s)|2ds+ F (W +

∫ ·

0

v(s)ds)

]

(4.1)

Since Ã is the largest collection, it suffices to show the result with R = Ã. We will first show
the inequality in (4.1) (without the infimum) for an arbitrary v ∈ Ãs. Note that for this, in
view of the first part of Lemma 4.3, it suffices to establish the inequality for an arbitrary v ∈ As.
Consider now such a v. From the second part of Lemma 4.3 it follows that there is a ṽ ∈ As

such that Qṽ ◦ (W ṽ, ṽ)−1 = P ◦ (W,v)−1. From the Donsker-Varadhan variational formula (cf.
[10, Proposition 2.2(a)]) we have that

− logE exp{−F (W )} ≤ R(Qṽ‖P) +

∫

Ω

F (W )dQṽ.

Note that

R(Qṽ‖P) =

∫

Ω

log

(

dQṽ

dP

)

dQṽ = EQṽ

(∫ ∞

0

ṽ(s)dW (s)−
1

2

∫ ∞

0

|ṽ(s)|2ds

)

= EQṽ

(
∫ ∞

0

ṽ(s)dW ṽ(s) +
1

2

∫ ∞

0

|ṽ(s)|2ds

)

= E

(
∫ ∞

0

v(s)dW (s) +
1

2

∫ ∞

0

|v(s)|2ds

)
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=
1

2
E

∫ ∞

0

|v(s)|2ds,

where the fourth equality uses the second part of Lemma 4.3. Also, by another application of this
result, we have

∫

Ω

F (W )dQṽ =

∫

Ω

F (W ṽ +

∫ ·

0

ṽ(s)ds)dQṽ = EF (W +

∫ ·

0

v(s)ds).

Combining the last two displays, we now have the inequality in (4.1) (without the infimum) for
any v ∈ As and thus, as discussed previously, also for any v ∈ Ãs. Now consider a v ∈ Ã.
Without loss of generality, E

∫ ∞
0

|v(s)|2ds <∞. Thus, for each n ∈ N there is a Tn <∞ such that

E
∫∞
Tn

|v(s)|2ds ≤ n−1. Also, we can find (cf. [16, Lemma II.1.1]]), for each n ∈ N, a vn ∈ Ãs that

satisfying vn(t) = 0 for all t ≥ Tn such that

E

∫ ∞

0

|vn(t)− v(t)|2dt = E

∫ Tn

0

|vn(t)− v(t)|2dt+ E

∫ ∞

Tn

|v(t)|2dt ≤ 2n−1. (4.2)

Note that

sup
n

∫ ∞

0

|vn(t)|
2dt ≤ 2

∫ ∞

0

|v(t)|2dt+ 4 <∞.

From the fact that the inequality in (4.1) holds for any v ∈ As, we have

− logE exp{−F (W )} ≤ E

[

1

2

∫ ∞

0

|vn(s)|
2ds+ F (W +

∫ ·

0

vn(s)ds)

]

. (4.3)

Note that, from (4.2), for any T <∞,

E sup
0≤t≤T

|

∫ t

0

vn(s)ds−

∫ t

0

v(s)ds|2 ≤ TE

∫ ∞

0

|vn(s)− v(s)|2ds→ 0, as n→ ∞.

Thus we have that θn
.
= L(W +

∫ ·
0
vn(s)ds) → L(W +

∫ ·
0
v(s)ds)

.
= θ, as n → ∞, as probability

measures on C∞
0 (R). Also, denoting the probability law of W by θ0, note that θ0 = Q ◦ (W +

∫ ·
0
vn(s)ds), where Q is as in Lemma 4.2 with v there replaced by −vn. Thus

R(θn‖θ0) = R(P ◦ (W +

∫ ·

0

vn(s)ds)
−1‖Q ◦ (W +

∫ ·

0

vn(s)ds)
−1)

≤ R(P‖Q) = E

(
∫ ∞

0

vn(s)dW (s) +
1

2

∫ ∞

0

|vn(s)|
2ds

)

= E

∫ ∞

0

|vn(s)|
2ds.

Thus supnR(θn‖θ0) < ∞. This together with θn → θ now implies (see [10, Lemma 2.5]) that
F (W +

∫ ·
0
vn(s)ds) ⇒ F (W +

∫ ·
0
v(s)ds). Together with the fact from (4.2) that E

∫∞
0

|vn(t))|
2dt

converges to E
∫∞
0

|v(t))|2dt, we now have from (4.3) that this inequality holds with vn replaced by

v. Since v ∈ A is arbitrary, this proves the upper bound in (4.1) for R = Ã and therefore for any
R ∈ {A,Ab, Ã, Ãb}.

We now establish the complementary lower bound:

− logE exp{−F (W )} ≥ inf
v∈R

E

[

1

2

∫ ∞

0

|v(s)|2ds+ F (W +

∫ ·

0

v(s)ds)

]

It suffices to show the inequality for R = Ab since that is the smallest collection. Consider first
the case where for some T ∈ (0,∞), and a bounded measurable map FT : CT0 (R) → R, F (w(·)) =
FT (w(· ∧ T )) for all w ∈ C∞

0 (R). In this case, denoting the subcollection of Ab that consists of
predictable v : [0,∞)× Ω → R that satisfy v(t, ω) = 0 for t > T by Ab,T , we have (cf. [10, Section
8.1.4]) that

− logE exp{−F (W )} ≥ inf
v∈Ab,T

E

[

1

2

∫ T

0

|v(s)|2ds+ FT

(

W (· ∧ T ) +

∫ ·∧T

0

v(s)ds

)]
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≥ inf
v∈Ab

E

[

1

2

∫ ∞

0

|v(s)|2ds+ F (W +

∫ ·

0

v(s)ds)

]

.

Next, let F : C∞
0 → R be a general bounded measurable map. Let {Tn}n≥1 be an increasing

sequence such that Tn ↑ ∞. Define Gn
.
= σ{W (s) : s ≤ Tn}. Note that by the martingale

convergence theorem Fn
.
= E(F | Gn) converges a.s. to F as n → ∞. Also ‖Fn‖∞ ≤ ‖F‖∞.

Furthermore, since Fn is Gn measurable, there is a bounded measurable map F̃n : CTn0 (R) → R such
that Fn(W (·)) = F̃n(W (· ∧ Tn)) a.s. This also says that for any v ∈ Ab, Fn(W (·) +

∫ ·
0
v(s)ds) =

F̃n(W (· ∧ Tn) +
∫ ·∧Tn
0

v(s)ds) a.s. It thus follows that

− logE exp{−Fn(W )} ≥ inf
v∈Ab

E

[

1

2

∫ ∞

0

|v(s)|2ds+ Fn(W +

∫ ·

0

v(s)ds)

]

a.s. Let vn ∈ Ab be n−1-optimal for the right side. Then we have

− logE exp{−Fn(W )} ≥ E

[

1

2

∫ ∞

0

|vn(s)|
2ds+ Fn(W +

∫ ·

0

vn(s)ds)

]

− n−1.

The left side in the above display converges to − logE exp{−F (W )} as n → ∞. Denoting by θn
(resp. θ) the probability law of W +

∫ ·
0
vn(s)ds (resp. W ) on C∞

0 , we have that, for every n ∈ N,

R(θn‖θ) ≤
1

2
E

∫ ∞

0

|vn(s)|
2ds ≤ 2‖F‖∞ + 1.

This shows that (cf. [10, Lemma 2.5])

lim
n→∞

∣

∣

∣

∣

Fn(W +

∫ ·

0

vn(s)ds)− F (W +

∫ ·

0

vn(s)ds)

∣

∣

∣

∣

= 0.

Combining the above

− logE exp{−F (W )} = lim
n→∞

− logE exp{−Fn(W )}

≥ lim inf
n→∞

E

[

1

2

∫ ∞

0

|vn(s)|
2ds+ Fn(W +

∫ ·

0

vn(s)ds)

]

= lim inf
n→∞

E

[

1

2

∫ ∞

0

|vn(s)|
2ds+ F (W +

∫ ·

0

vn(s)ds)

]

≥ inf
vAb

E

[

1

2

∫ ∞

0

|v(s)|2ds+ F (W +

∫ ·

0

v(s)ds)

]

.

This completes the proof of the lower bound and thus the result follows.

Remark 4.4. As in the proof of Theorem 2.2, the infimum in Theorem 4.1 can be taken over As

or Ãs. Also, a similar representation can be written for an infinite dimensional Brownian motion,
e.g. for a H-valued Wiener process as in Section 2.

5 Functionals of Fractional Brownian Motion

A representation similar to (1.1) can be obtained for more general Gaussian processes than a
Brownian motion. Fractional Brownian motions are an important class of Gaussian processes with
long-range dependence that arise in many applications. In this section we present a variational
formula for functionals of a fractional Brownian motion given in [7] that has been used for studying
large deviation properties of small noise stochastic differental equations with a fractional Brownian
motion. The variational formula relies on a general result from [22] on a variational representation
for random functionals on abstract Wiener spaces. We begin by presenting this latter result and
then describe how a representation for functionals of a fractional Brownian motion can be deduced
from it.

11



5.1 Abstract Wiener Space Representation.

For simplicity we consider the time horizon [0, 1]. The case of a general finite time horizon [0, T ]
can be treated similarly. Let (W, ‖ · ‖W) be a separable Banach space. and let (H, 〈·, ·〉H, ‖ · ‖H)
be a separable Hilbert space densely and continuously embedded in W. Let µ be a centered, unit
variance Gaussian measure over W (cf. [18]). Identifying in the usual manner the dual space H∗

with itself, W∗ may be viewed as a dense linear subspace of H and we have that for any ℓ ∈ W∗

and h ∈ H, ℓ(h) = 〈ℓ, h〉H. Denoting the embedding map from H into W as iH, the collection
(iH,H,W, µ) is referred to as an abstract Wiener space and H is called to Cameron-Martin space of
this abstract Wiener space (cf. [14]).

We recall the notion of a filtration on an abstract Wiener space from [20, 21]. A collection of
projection operators {πt, t ∈ [0, 1]} on H are referred to as a continuous and strictly monotonic
resolution of the identity in H if the following hold (i) π0 = 0, π1 = Id, where Id is the identity
operator, (ii) for 0 ≤ s < t ≤ 1, πsH is a strict subset of πtH, (iii) for any h ∈ H and t ∈ [0, 1],
lims→t πsh = πth.

By denseness of W∗ in H we can find for every h ∈ H a sequence {hn} ⊂ W∗ such that hn → h.
This says that the sequence {hn} regarded as a sequence of random variables on the probability
space (W,B(W), µ) is a Cauchy sequence in L2(µ) and thus must converge to a limit δ(h) in L2(µ).
This limit is referred to as the Skorohod integral of h and we occasionally write δ(h)(w) = 〈h, w〉
for h ∈ H and w ∈ W.

Define the filtration {Ft}0≤t≤1 as Ft
.
= σ{δ(πth), h ∈ H} ∨ N , where N is the collection of

all µ-null sets in B(W). We will regard this as a filtration on the µ-complete probability space
(W,F , µ), where F

.
= F1. Expecteation on this probability space will be denoted as E.

An H valued random variable v on the above probability space is said to be Ft-adapted if for
every t ∈ [0, 1] and h ∈ H, 〈πth, v〉H is Ft measurable. The collection of adapted H valued square
integrable random variables (i.e E‖v‖2H <∞) is denoted by Ha. For N ∈ N, denote by SN the ball
of radius N in H and let Ha

b,N the subcollection of Ha consisting of v that take values in SN . Let
Ha
b
.
= ∪N>0H

a
b,N . For t ∈ [0, 1], let Ct be the collection of cylindrical functions of the form

F (w) = g(〈πth1, w〉, · · · , 〈πthn, w〉), g ∈ C∞
b (Rn), h1, . . . hn ∈ W

∗.

Here C∞
b (Rn) is the space of real infinitely differentiable functions on Rn, with the function and all

its derivatives bounded. Note that such a F is Ft measurable. A v ∈ Ha is said to be simple if it
takes values in SN for some N < ∞ and for some 0 = t0 < t1 < · · · < tn = 1, {hi}0≤i≤n−1 ⊂ H,
and ξi ∈ Cti , i = 0, 1, . . . n− 1,

v(w) =

n−1
∑

i=0

ξi(w)(πti+1
− πti)hi.

We denote the collection of all such simple v as Sa. The following is the main representation from
[22] (see Theorem 3.2 therein).

Theorem 5.1. Let F be a real bounded and measurable function on W. Then

− logE(e−F ) = inf
v∈R

E

(

1

2
‖v‖2H + F (·+ v)

)

where R ∈ {Ha,Sa}.

5.2 Fractional Brownian Motion Representation.

We will now use the representation in Theorem 5.1 to provide a more explicit representation for
a fractional Brownian motion. We begin by recalling some basic definitions. For H ∈ (0, 1), a
d-dimensional fractional Brownian motion (fBm) BH = {BHt : t ∈ [0, 1]} with Hurst parameter
H defined on some complete probability space (Ω,F , P) is a centered Gaussian process whose
covariance matrix RH = (Ri,jH )1≤i, j≤d is given by

Ri,jH (s, t) = E(BH,is BH,jt ) =
1

2
(s2H + t2H − |t− s|2H)δi,j , s, t ∈ [0, 1],
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where δ is the Kronecker delta function. When H = 1
2
, the above process is simply a d-dimensional

standard Brownian motion. From the above covariance formula it is immediate that

E(|BHt −BHs |2) = d|t− s|2H , t, s ∈ [0, 1].

From the above property along with Kolmogorov’s continuity criterion it follows that the sample
paths of BH are a.s. Hölder continuous of order β for all β < H .

In what follows (Ω,F ,P) will denote the canonical probability space, where Ω = C0([0, 1] : R
d)

is the space of continuous functions null at time 0, equipped with topology of uniform convergence,
F = B(C0([0, 1] : R

d)) is the Borel σ-algebra and P is the unique d-dimensional probability measure
such that the canonical process BH = {BHt (ω) = ω(t) : t ∈ [0, 1]} is a d-dimensional fractional
Brownian motion with Hurst parameter H . Consider the canonical filtration given by {FH

t : t ∈
[0, 1]}, where FH

t = σ{BHs : 0 ≤ s ≤ t} ∨ N and N is the set of the P-negligible events.
We now recall a representation for a fBM in terms of a standard Brownian motion and a suitable

kernel function (cf. [12]). Let F (a, b, c; z) denote the Gauss hypergeometric function defined for
any a, b, c, z ∈ C with |z| < 1 and c 6= 0,−1,−2, . . . by

F (a, b, c; z) =
∞
∑

k=0

(a)k(b)k
(c)k

zk,

where (a)0 = 1 and (a)k = a(a+ 1) . . . (a+ k − 1) is the Pochhammer symbol.
Let B = {Bt = (B1

t , . . . , B
d
t ), t ∈ [0, 1]} be a standard d-dimensional Brownian motion. Then it

is well known (cf. [12] ) that the process

BHt =

∫ 1

0

KH(t, s)dBs, t ∈ [0, 1]

defines a fBm with Hurst parameter H , where

KH(t, s) = kH(t, s)1[0,t](s),

for 0 ≤ s ≤ t

kH(t, s) =
cH

Γ
(

H + 1
2

) (t− s)H− 1
2F

(

H −
1

2
,
1

2
−H,H +

1

2
; 1−

t

s

)

,

cH =

[

2HΓ( 3
2
−H)Γ(H+ 1

2 )
Γ(2−2H)

]1/2

, and Γ(·) is the gamma function.

Define HH = {(KH ḣ
1, . . . ,KH ḣ

d) : ḣ = (ḣ1, . . . , ḣd) ∈ L2([0, 1] : Rd)}, where

(KHf)(t)
.
=

∫ 1

0

KH(t, s)f(s)ds for f ∈ L2([0, 1] : Rd), t ∈ [0, 1].

That is, any h ∈ HH can be represented as

h(t) = (KH ḣ)(t) =

∫ 1

0

KH(t, s)ḣ(s)ds,

for some ḣ ∈ L2([0, 1] : Rd). Define a scalar inner product on HH by

〈h, g〉HH
= 〈KH ḣ, KH ġ〉HH

= 〈ḣ, ġ〉L2 .

Then HH is a separable Hilbert space with the inner product 〈·, ·〉HH
. It can be checked (cf.

[7, Remark 1]) that HH is a subset of Ω = C0([0, 1] : R
d) and the embedding map is continuous. We

now present the main variational representation for functionals of fBm from [7]. For 0 < N < ∞,
let SN = {v ∈ HH : 1

2
‖v‖2HH

≤ N}.

Let A be the collection of all measurable v : Ω → HH such that there is a FH
t -predictable

v̇ : [0, T ] × Ω → R such that E
∫ 1

0
‖v̇(t)‖2dt < ∞ and vω) = KH v̇(ω) a.s. The subcollection of A

consisting of v that take values in SN will be denoted as Ab,N and, as before, Ab = ∪N>0Ab,N .
The following is [7, Proposition 2].
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Theorem 5.2. Let F be a real bounded measurable function on Ω. Then we have

− logE(e−F (BH)) = inf
v∈R

E

(

f(BH + v) +
1

2
‖v‖2HH

)

,

where R ∈ {A,Ab}.

Remark 5.3. Although not discussed here, one can also replace the above infimum by the infimum
over the subclass of Ab consisting of all simple processes.

We provide a brief proof sketch of this result. We refer the reader to [7] for details. The basic
idea is to identify a suitable abstract Wiener space and then apply Theorem 5.1.

It is easy to verify that functions in HH are H-Hölder continuous (cf. [7, Lemma 2]), in
particular we have the following fact: Any h ∈ HH is in CH([0, 1] : Rd), and ‖h‖∞ ≤ ‖h‖HH

and
‖h‖H ≤ ‖h‖HH

.
Next, recall that Ω = C0([0, 1] : R

d) is a Banach space equipped with the sup-norm ‖ · ‖∞. Let
Ω∗ be its topological dual. We now introduce the abstract Wiener space associated with a fractional
Brownian motion. The following result is taken from [12, Theorem 3.3].

Lemma 5.4. If we identify L2([0, 1] : Rd) and its dual, we have the following diagram

Ω∗
i∗H

−−−−−→ H∗
H

K∗

H

−−−−−→ L2([0, 1] : Rd)
KH

−−−−−→ HH

iH
−−−−−→ Ω

Where iH is the injection from HH into Ω, and K∗
H and i∗H are the respective adjoints.

(a) The injection iH embeds HH densely into Ω, and HH is the Cameron-Martin space of the
abstract Wiener space (iH ,HH ,Ω,P) in the sense of Gross [14].

(b) The restriction of K∗
H to Ω∗ can be represented by

(K∗
Hη)(s) =

∫ 1

0

KH(t, s)η(dt) =

(
∫ 1

0

KH(t, s)η1(dt), . . . ,

∫ 1

0

KH(t, s)ηd(dt)

)

,

for any η = (η1, . . . , ηd) ∈ Ω∗.

As before, denote for h ∈ HH its Skorohod integral by δ(h). Recall the filtered probability
space (Ω,F ,P, {FH

t }) introduced above and recall that {BHt } is the canonical coordinate process
on (Ω,F).

Define the family {πHt , t ∈ [0, 1]} of projection operators in HH by

πHt h = πHt (KH ḣ) = KH(ḣ1[0,t]), h ∈ HH . (5.1)

The following result is a consequence of [12, Proposition 4.4, Theorems 4.3 and 4.8].

Lemma 5.5. (a) For any t ∈ [0, 1], FH
t = σ{δ(πHt h), h ∈ HH} ∨ N .

(b) For any HH -valued {FH
t , t ∈ [0, 1]}-adapted stochastic process u there is a {FH

t , t ∈ [0, 1]}-
predictable process u̇ : [0, T ]× Ω → Rd such that u = KH u̇ a.s.

One can now complete the proof of Theorem 5.2 as follows. The collection {πHt , t ∈ [0, 1]}
introduced in (5.1) defines a continuous and strictly monotonic resolution of the identity in HH in
the sense described previously in the section. Also, using Lemma 5.5, the classes A and Ab in this
section are the same as the classes Ha and Ha

b introduced earlier in the section, when specialized
to the abstract Wiener space for the setting of a fBM. The result is now immediate from Theorem
5.1.
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6 Lévy Noise.

In this section we present the analogues of the Boué-Dupuis variational formulas for Lévy processes.
The results from this section are from [6]. They can also be found in [10, Section 8.2]. The statement
in Theorems 6.1 and 6.2 that R can be As or Ãs, although does not appear in these references, it
can be easily deduced from the arguments there along the lines of the proof of Theorem 2.2. We
omit the details.

A Lévy noise is composed of a two random components, one consisting of a finite or an infinite
dimensional Brownian motion and the other described through a suitable Poisson random mea-
sure(PRM). We begin by first presenting a representation of functionals of a PRM and then we will
give the representation for the more general case where the functional depends on both a PRM and
an infinite dimensional Brownian motion.

6.1 Representation for a Poisson Random Measure.

Let X be a locally compact Polish space and let Σ(X ) denote the space of all locally-finite measures
ν on (X ,B(X )). The space Σ(X ) is equipped with the standard vague convergence topology. Fix
T ∈ (0,∞) and let XT = [0, T ]×X . Let (Ω,F , P) be a complete probability space with a filtration
{Ft}0≤t≤T satisfying the usual assumptions. Fix ν ∈ Σ(X ) and let νT

.
= λT × ν where λT is the

Lebesgue measure on [0, T ].
Let N be a Ft- Poisson random measure with points in XT and intensity measure νT . Recall

this means that N is a Σ(XT ) valued random variable with the following properties (i) for every
t ∈ [0, T ] and A ∈ B([0, t]×X ), N(A) is Ft-measurable, (ii) for every t ∈ [0, T ] and A ∈ B((t, T ]×X ),
N(A) is independent of Ft, (iii) for any k ∈ N and A1, . . . Ak ∈ B(XT ) such that Ai ∩Aj = ∅ when
i 6= j, and νT (∪

k
i=1Ai) < ∞, we have N(A1), . . . N(Ak) are mutually independent Poisson random

variables with parameters νT (A1), . . . νT (Ak), respectively.
Fix θ > 0. LettingM

.
= Σ(X ), we will denote by Pθ the unique probability measure on (M,B(M))

under which the the canonical map N : M → M defined as N(m) = m is PRM with intensity θνT .
In typical large deviation problems of interest θ plays the role of scaling parameter and one is
interested in behavior of the system as θ approaches some limiting value (e.g. ∞ or 0). In such
problems one is interested in characterizing the asymptotic behavior of Laplace functionals of the
form − logEθ exp{−F (N)}, where F : M → R is some bounded measurable map.

We will now present the variational representation from [6] that, together with weak convergence
methods, allows one to study such asymptotic behavior in many problem settings (cf. references in
[10]). In formulating this variational representation it will be convenient to work with a PRM that
is defined on a larger point space.

Let Y
.
= X × [0,∞) and YT

.
= [0, T ] × Y. Let M̄ denote the space of locally finite measures

on YT . and let P̄ be the unique measure on (M̄,B(M̄)) such that the canonical map N̄ : M̄ → M̄

defined as N̄(m)
.
= m, m ∈ M̄, is a PRM with points in YT and intensity measure ν̄t

.
= λT ×ν×λ∞,

where λ∞ is the Lebesgue measure on [0,∞).
Let Gt denote the augmentation of σ{N̄((0, s]×A) : 0 ≤ s ≤ t, A ∈ B(Y)} with all P̄ null sets in

B(M̄) and denote by PF the Gt-predictable σ-field on [0, T ]× M̄.
Recall that the representation for functionals of Brownian motions, given e.g. in (1.1), involves

L2-controls v and controlled noise processes W +
∫ ·
0
v(s)ds. We now introduce the controls and

controlled noises that will play the analogous role in the variational representations for PRM. First
the space of controls, which we denote by A will be the collection of all maps v : [0, T ] × M̄ × X
that are (PF ⊗B(X ))\B([0,∞)) measurable. For notational ease, for (t, ω, x) ∈ [0, T ]× M̄×X , we
will occasionally suppress ω and write v(t, ω, x) as v(t, x). For v ∈ A, define a counting process Nv

on XT as

Nv((0, t]× U)
.
=

∫

(0,t]×U

∫

(0,∞)

1[0,v(s,x)](r)N̄(ds× dx× dr)

for all t ∈ [0, T ] and U ∈ B(X ). When, for some θ > 0, v(s, ω, x) = θ for all (s, ω, x) ∈ XT × M̄,
we will write Nv as simply Nθ . The process Nv can be thought of as the controlled noise process
associated with the control v.

Next, recall that the Brownian motion representation involved a quadratic cost term given as
a suitable L2-norm. In the representation for a PRM the quadratic function is replaced by the
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following superlinear (but sub-quadratic) function ℓ : [0,∞) → [0,∞) defined as

ℓ(r)
.
= r log r − r + 1, r ∈ [0,∞).

For v ∈ A, define

LT (v)
.
=

∫

XT

ℓ(v(t, x))νT (dt× dx).

This is the cost term associated with a control v that will replace the quadratic cost term we see
in Brownian motion representation formulas, for the case of a PRM.

In the case of the Brownian motion, it was useful to consider the smaller collection of controls
than A, namely Ab, which consisted of controls for which one can invoke the Girsanov theorem. We
will consider an analogous smaller collection of controls here as well. Let {Kn}n∈N be an increasing
sequence of compact sets of X such that ∪n≥1Kn = X . For M ∈ (0,∞), let

Ab,M
.
= {v ∈ A : LT (v) ≤M, for some n ∈ N, v(t, x) ∈ [1/n, n],

and v(t, ω, x) = 1 if x ∈ Kc
n, for all (t, ω) ∈ [0, T ]× M̄}.

A process in Ab,M is called simple if the following holds: There exist n, l, n1, . . . nl ∈ N; a partition
0 = t0 < t1 < · · · < tl = T ; for each i = 1, . . . , l a disjoint measurable partition{Eij}1≤j≤ni

of Kn;
Gti−1

- measurable random variables Xij , 1 ≤ i ≤ l, 1 ≤ j ≤ ni, such that Xij ∈ [1/n, n]; and for
(t, m̄, x) ∈ [0, T ]× Ω× X

v(t, m̄, x) = 1{0}(t) +

l
∑

i=1

ni
∑

j=1

1(ti−1,ti](t)Xij(m̄)1Eij
(x) + 1Kc

n
(x)1(0,T )(t).

We denote the collection all such simple processes as As,M . Define Ab
.
= ∪M>0Ab,M and As

.
=

∪M>0As,M . As in the Brownian motion case, when the canonical filtration {Gt} is replaced by a
larger filtration {Ft}0≤t≤T under which N̄ is a Ft-PRM with the same intensity (in such a case
of course N̄ is defined on a larger probability space than the canonical space (M̄,B(M̄))), we will
denote the classes analogous to A, Ab and As as Ã, Ãb, and Ãs, respectively. The following result
is from [6] (see also [10, Theorem 8.12]).

Theorem 6.1. Let F : M → R be a bounded measurable map. Then for any θ > 0

− logEθ exp{−F (N)} = inf
v∈R

Ē[θLT (v) +G(Nθv)],

where R ∈ {A, Ã,Ab, Ãb,As, Ãs}.

6.2 General Lévy Process Representation.

Finally, we present the representation for a general Lévy noise. Let (Ω,F , P) be a probability
space with a filtration {Ft}0≤t≤T satisfying the usual conditions and assume that this probability
space supports the processes introduced below. With Q as in Section 2, let W be a a Q-Wiener
process with respect to the filtration Ft. Let ν,X ,XT ,YT , ν̄T be as introduced above. Let N̄
be a Ft-PRM with points in YT with intensity measure νT . Assume that for all 0 ≤ s ≤ t <
∞, (N̄((s, t] × ·)),W (t) −W (s)) is independent of Fs. Let PF be the Ft-predictable σ-field on
[0, T ]×Ω. Denote by ÃW and ÃW

b the collections Ã and Ãb introduced below Defintiion 2.1. Also,
denote by ÃN and ÃN

b the collections Ã and Ãb introduced earlier in the current section. Let
Ãb

.
= ÃW

b × ÃN
b and Ã

.
= ÃW × ÃN . For v = (ψ,ϕ) ∈ Ã, let LWT (ψ)

.
= 1

2

∫ T

0
‖ψ(s)‖20ds, where

the norm ‖ · ‖0 is as introduced in Section 2, and let LNT (ϕ)
.
=

∫

XT
ℓ(ϕ(t, x))νT (dt× dx). Also, set

LT (v)
.
= LWT (ψ) + LNT (ϕ). Next, for ψ ∈ ÃW , let Wψ(t)

.
=W (t) +

∫ t

0
ψ(s)ds, t ∈ [0, T ].

The following is [10, Theorem 8.19].

Theorem 6.2. Let F : CT0 (H)×M → R be a bounded measurable map. Then for θ ∈ (0,∞)

− logE exp{−F (W,Nθ)} = inf
v=(ψ,ϕ)∈R

E
[

θLT (v) + F (W
√
θ , Nθψ)

]

,

where R ∈ {Ãb, Ã}.
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Remark 6.3. In a similar manner as in Section 3 one can give a variational representation for
functionals that, in addition to depending on a Brownian motion and a PRM, also depend on another
independent random variable. Also, in a manner similar to Section 4 one can obtain a variational
representation for functionals that depend on an infinite path of a Brownian motion and a PRM,
namely a function of {(W (t),Nθ((0, , t]× ·)), 0 ≤ t <∞}. We omit the details.
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[7] A. Budhiraja and X. Song, Large deviation principles for functionals of fractional Brownian motions,
Frontiers of Statistics and Data Science, eds. Subhashis Ghoshal and Anindya Roy, Springer, New York,
NY, 2023.

[8] A. Budhiraja and M. Conroy, Asymptotic behavior of stochastic currents under large deviation scaling

with mean field interaction and vanishing noise, Annali Scuola Normale Superiore-Classe Di Scienze
(2022).

[9] A. Budhiraja and M. Conroy, Empirical measure and small noise asymptotics under large deviation

scaling for interacting diffusions, Journal of Theoretical Probability (2022), 1–55.

[10] A. Budhiraja and P. Dupuis, Analysis and Approximation of Rare Events, Representations and Weak
Convergence Methods. Series Prob. Theory and Stoch. Modelling 94 (2019).

[11] A. Budhiraja, W.-T. Fan, and R. Wu, Large deviations for Brownian particle systems with killing,
Journal of Theoretical Probability 31 (2018), no. 3, 1779–1818.
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