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ABSTRACT

Turbulence in highly magnetized plasma can be relativistic and induce an electric field comparable

to the background magnetic field. Such a strong electric field can affect the emission process of non-

thermal electrons. As the first step toward elucidating the emission process in relativistic turbulence,

we study the radiation process of electrons in relativistic circularly polarized Alfvén waves. While the

induced electric field boosts the average energy of low-energy electrons with a Larmor radius smaller

than the wavelength, the emissivity for such electrons is suppressed because of the elongated gyro-

motion trajectory. The trajectory of high-energy electrons is shaken by the small-scale electric field,

which enhances the emissivity. Since the effective Lorentz factor of E×B drift is ≃
√
2 in the circularly

polarized Alfvén waves, the deviation from the standard synchrotron emission is not so prominent.

However, a power-law energy injection in the waves can produce a concave photon spectrum, which is

similar to the GeV extra component seen in GRB spectra. If the turbulence electric field is responsible

for the GeV extra component in GRBs, the estimates of the typical electron energy and magnetic field

should be largely altered.

1. INTRODUCTION

The most promising launching mechanism of relativis-

tic jets is the Blandford–Znajek mechanism (Blandford

& Znajek 1977), where the rotation energy of a black

hole is extracted via a magnetic field in the ergosphere.

In this case, the jet energy is dominated by the magnetic

field(McKinney et al. 2012, 2014). Relativistic winds

from pulsars or magnetars are also dominated by mag-

netic fields (Goldreich & Julian 1969).

Turbulence may be driven by kink instability or

magnetic reconnection in the magnetically domi-

nated (high-σ) outflows(Begelman 1998; Mizuno et al.

2009, 2011; Porth et al. 2014; Porth & Komissarov

2015; Tchekhovskoy & Bromberg 2016; Bromberg &

Tchekhovskoy 2016; Singh et al. 2016). The turbulence

induced in highly magnetized plasma can be responsible

for the dissipation of the magnetic field via turbulence

reconnection and particle acceleration (Guo et al. 2015;

Nalewajko et al. 2015; Takamoto et al. 2015; Zhdankin

et al. 2017; Werner & Uzdensky 2017; Petropoulou &

Sironi 2018; Guo et al. 2019; Hakobyan et al. 2019;

Comisso & Sironi 2019; Wong et al. 2020; Comisso et al.

2020; Guo et al. 2021; Hakobyan et al. 2021). Large am-

plitude turbulent components of magnetic fields and tur-

bulent motions have been suggested from the observed

image and polarization in Crab nebula (Shibata et al.

2003; Lyutikov 2010; Bucciantini et al. 2017; Mizuno

et al. 2023). In gamma-ray bursts (GRBs) and blazars,

the time variability of the flux and polarization may be

due to turbulence (Lazar et al. 2009; Narayan & Kumar

2009; Zhang & Zhang 2014; Marscher 2014). Thus, the

photon emission from relativistic flows in GRBs, blazars

and pulsar wind nebulae (PWNe) can originate from

particles in turbulence in high-σ plasma.

In high-σ plasma, the Alfvén velocity is almost the

speed of light. The turbulence velocity can be relativis-

tic. In such turbulence, the induced electric field is com-

parable to the magnetic field. The electric field affects

the trajectory of non-thermal charged particles so that

the emission property can be different from the standard

synchrotron emission. In most cases, the magnetic fields

in the emission region have been estimated by spectral

modeling with the standard synchrotron, inverse Comp-

ton, and π0-decay processes. If the synchrotron emission

is largely modified by the turbulence electric field, the

estimate of the magnetic field may be misinterpreted.

In this paper, as the first step toward unveiling the

emission property in high-σ turbulence, we investigate

the radiation process in relativistic circularly polarized

Alfvén waves, which is analytically described.

The structure of this paper is as follows. In Section 2,

we review the radiation process in the uniform electric

field case. In Section 3, we discuss the emission prop-

erties in a relativistic circularly polarized Alfvén wave.

In Section 4, our numerical method to calculate radia-

tion from electron trajectories is shown. In Section 5,
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we show the numerical results of the radiation for mono-

energetic and power-law injections of electrons. In Sec-

tion 7, we summarize our results and discuss their im-

plication for spectral modeling.

2. UNIFORM ELECTRIC FIELD

In the ideal magnetohydrodynamics (MHD), relativis-

tic turbulece with a turbulent velocity δV ∼ c in-

duces the motional electric field with a strength |E| =
|δVc ×B|, which can be comparable to the magnetic field

strength |B|. The radiation process of charged parti-

cles in such relativistic turbulence can be different from

conventional synchrotron radiation. In this section, to

clarify the effect of an electric field, we first review the

radiation process of electrons in the uniform field case.

When a uniform electric field E is perpendicular to

a uniform magnetic field B, an observer moving with

the drift velocity vE×B = cE×B
B2 observes zero electric

field as long as E < B. The corresponding E × B drift

Lorentz factor is

ΓE×B =
1√

1− E2

B2

. (1)

In this frame (drifting frame), the motion of electrons

is spiral around the magnetic field B′ = B/ΓE×B , and

the emission from electrons is the usual synchrotron ra-

diation in the manetic field B′. (Hereafter, the prime
′ denotes quantities in the drifting frame.) Consider-

ing electrons isotropically injected with a Lorentz factor

γi in the original frame, the synchrotron power, namely

photon energy emitted per unit time is given by(Rybicki

& Lightman 1979; Jackson & Fox 1999)

P ′
syn ≃ 2γ′2cσT

B′2

8π
, (2)

where γ′ ∼ ΓE×Bγi is the typical Lorentz factor of the

electrons in the drifting frame, and σT is the Thomson

scattering cross section.

In the original frame, the time-averaged Lorentz factor

of the electrons is

γave ≃ ΓE×Bγ
′ ≃ Γ2

E×Bγi. (3)

The average energy is boosted from the injection value

by the electric field. The drift motion of a charged par-

ticle in fields of E ≃ B is elongated in the direction

of the drift velocity. This asymmetric motion stretches

the time interval for γ > γave. As explained in Ap-

pendix, this effect slightly increases γave compared to

the above estimate. The radiation power is Lorentz in-

variant(Rybicki & Lightman 1979; Jackson & Fox 1999).

Using γ, the radiation power is written as

PE×B = P ′
syn ≃ 1

Γ4
E×B

2γ2
avecσT

B2

8π
. (4)

The radiation power is suppressed by the factor 1/Γ4
E×B

compared to the usual synchrotron formula without an

electric field. In Appendix, we show more details of

analytically calculations of the radiation power.

3. RADIATION IN ALFVÉN WAVE

In astrophysical MHD turbulence, there may be a

frame where the turbulence is globally isotropic, but lo-

cally the fluid velocity and the electromagnetic field are

anisotropic. For simplicity, we assume that electrons are

isotropically injected in this frame. The turbulence may

be injected at a large scale, and cascade into smaller

scales, where the wave amplitude of the turbulence is so

small (δV ≪ c) that the effect of the electric field is al-

most negligible. The induced electric field is significant

only at the injection scale. To investigate the effect of

the turbulence electric field on the radiation, we consider

a wave propagating to a certain direction with a finite

wave length λ. While various modes of MHD waves

as turbulence are possible, the analytical description is

possible for circularly polarized Alfvén waves even with

non-linear amplitude (δV ∼ c). As a first step, here we

focus on this simplest case.

3.1. Circularly polarized Alfvén wave

Relativistic perturbation (δV ∼ c) implies non-linear

amplitudes of the perturbed fields. Even in linearly

polarized Alfvén waves, the induced magnetic pressure

leads to compression of fluid. The compressed part of

the waves propagates faster and the nonlinear waves

steepen (Shikin 1969), so that the analytical descrip-

tion of the non-linear Alfvén waves is difficult. On the

other hand, the circularly polarized Alfvén wave can be

treated with a constant total pressure in any phase of

the wave.

The analytical description of the perturbed electro-
magnetic fields for a relativistic circularly polarized

Alfvén wave propagating along the background mag-

netic field (z-axis) is given by (Kennel & Pellat 1976)

Bz =B0, (5)

δEz =0, (6)

δBx=−B0
V

VA
cos(kz − ωAt), (7)

δBy =−B0
V

VA
sin(kz − ωAt), (8)

δEx=−B0
V

c
sin(kz − ωAt), (9)

δEy =B0
V

c
cos(kz − ωAt), (10)

where B0 is the strength of the background mag-

netic field, V is the fluid velocity in the Alfvén
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wave, and k = 2π/λ is the wavenumber. Given

the gas energy density ε and the gas pressure p,

the phase speed of the Alfvén wave is written as

VA = ωA/k = cB0/
√
B2

0 + 4π(ε+ p)Γ2, where Γ =

1/
√
1− (V/c)2. Introducing the magnetization param-

eter σ = B2
0/(4π(ε+ p)Γ2), the phase speed is rewritten

as VA = c
√
σ/(σ + 1). As shown in equations (5)-(10),

for V ∼ VA ∼ c, the induced electric field is comparable

to the background magnetic field.

3.2. Long wavelength limit

In this section, we consider the case in which the Lar-

mor radius of electrons is much smaller than the wave-

length,

rL0 ≡ γimec
2

eB0
≪ λ. (11)

In this case, the electric and magnetic fields can

be approximated as almost uniform ones. The ra-

diation power of electrons is suppressed as Pave ≃
1

Γ4
E×B

2γ2
avecσT

B2

8π as discussed in section 2, where

B2 = B2
0 + δB2. (12)

In the circularly polarized Alfvén wave with B0 ≃
δB ≃ δE, the E ×B drift velocity is

βE×B =
E

B
=

δE√
B2

0 + δB2
≃ 1√

2
, (13)

which implies ΓE×B ≃
√
2. Finally, we obtain

Pave ≃ γ2
avecσT

B2

16π
. (14)

From the Lorentz transformation of the synchrotron

frequency in the E×B rest frame, the typical frequency

is

νtyp ≃ D
3

4π
γ′2 eB

′

mec
sinα′

≃ 1

Γ2
E×B

3

4π
γ2
ave

eB

mec
≃

4
π

Γ2
E×B

ν0, (15)

where D ≃ ΓE×B is the Doppler factor, B′ = B/ΓE×B ,

γ′ ≃ γave/ΓE×B and

ν0 ≡ 3

16
γ2
ave

eB

mec
, (16)

is the typical frequency of isotropic synchrotron radi-

ation. The typical frequency decreases by the factor
4
π/Γ

2
E×B ≃ 2/π compared to the usual synchrotron for-

mula.

3.3. Short wavelength limit

In the case with rL0 ≫ λ, frequent changes of the field

directions should be taken into account. The radiation

power of an electron (charge −e) is given by the Liénard

formula(Schwinger 1949),

P =
2e2

3c3
γ4(a2⊥ + γ2a2∥), (17)

where a⊥ and a∥ are perpendicular and parallel compo-

nents of acceleration, respectively.

From the equation of motion

dγmev

dt
= −eE − e

v

c
×B, (18)

and the energy conservation

dγmec
2

dt
= −eE · v, (19)

we obtain acceleration of an electron as

a = − e

γme

(
E − v

c

(v
c
·E

)
+

v

c
×B

)
. (20)

Then, we obtain the parallel component as

a∥ = a · v
v
= − e

γ3me

v

v
·E, (21)

and the perpendicular component as

a⊥=a− a∥
v

v

=− e

γme

(
E − v

v

(v
v
·E

)
+

v

c
×B

)
. (22)

For γ ≫ 1, equations (21) and (22) imply

a2⊥ + γ2a2∥ ≃ a2⊥, (23)

which leads to(Schwinger 1949)

P ≃ γ2cσT

4π

(
E − v

v

(
v

v
·E

)
+

v

c
×B

)2

. (24)

From equation (19) with δB ≃ δE ≃ B0, the frac-

tional change of the Lorentz factor during the wave

crossing time ∆t = λ/v is

∆γ

γ
∼ ∆t

γ

dγ

dt
∼ λeB0

γmec2
∼ λ

rL0
≪ 1. (25)

Similarly, equation (18) gives the angle change as

∆θ ≃ ∆t

γmev

dγmev⊥
dt

≃ λeB0

γmec2
≃ λ

rL0
≪ 1. (26)
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Therefore, the electron trajectory is a spiral motion

around the background magnetic field with a small os-

cillation. The velocity components of an electron in-

jected with a pitch angle θi and an azimuthal angle ϕi

are approximately expressed as

γ≃γi ≃ γave, (27)

vx≃ v sin θi cos(ωBt+ ϕi), (28)

vy ≃ v sin θi sin(ωBt+ ϕi), (29)

vz ≃ v cos θi, (30)

where ωB = eB0

γmec
is the gyro frequency.

As the electron injection is isotropic in this frame, we

average over the angles θi, ϕi, and a time interval T much

longer than the wave crossing time λ/v. Equations (5)-

(10), (24) and (27)-(30) lead to

Pave ≡
1

4π

∫ 2π

0

dϕi

∫ π

0

dθi sin θi
1

T

∫ T

0

dtP (γi, θi, ϕi, t)

≃ 4

3
γ2
avecσT

(
B2

0

8π
+

δB2

8π
+

δE2

8π

)
≃ γ2

avecσT
B2

4π
, (31)

where B2 = B2
0 + δB2 again. Differently from the case

for λ ≫ rL0 in section 3.2, the radiation power is rather

enhanced by the perturbed electric field.

We estimate the typical emission frequency. As we

consider MHD turbulence, the Larmor radius of non-

relativistic electrons is assumed to be short enough as

λ ≫ mec
2/eB. In this case, equation (26) implies

λ ≫ rL,0/γ, and ∆θ ≫ 1/γ. This means that the ra-

diation cone with opening angle 1/γ sweeps a certain

position before an electron oscillates with a deflection

angle ∆θ(Medvedev 2000). With a ≃ a⊥, the emission

frequency can be estimated (Reville & Kirk 2010) as

ν(θi, ϕi, t) ≡
3γ3(θi, ϕi, t)a⊥(θi, ϕi, t)

4πc
. (32)

Averaging with the weight of the radiation power over

the angles θi, ϕi and time, we can obtain the typical

emitted frequency

νtyp ≡ 1

Pave

1

4π

∫ 2π

0

dϕi

∫ π

0

dθi sin θi

× 1

T

∫ T

0

dtν(θi, ϕi, t)P (θi, ϕi, t). (33)

In the case without the turbulence, assuming δE =

δB = 0 and using equations (5)-(10), (22), (24) and

(27)-(30), we numerically obtain

νtyp ≃ 1.46ν0. (34)

In the circularly polarized Alfvén wave, a similar cal-

culation assuming δE ≃ δB ≃ B0 leads to

νtyp ≃ 2.11ν0. (35)

The increase of the peak frequency is because the per-

turbed electric field δE increases the perpendicular ac-

celeration a⊥ in equation (22).

4. NUMERICAL METHOD

As we have mentioned, we assume that a monochro-

matic wave propagates along the z-axis as expressed by

equations (5)-(10). The wave locally dominates the tur-

bulence, which is globally isotropic. In the wave rest

frame (moving along the z-axis with the velocity VA),

the electric field vanishes. Neglecting the radiative cool-

ing, the electron energy in the wave rest frame is con-

served. The electron energy in the original frame pe-

riodically oscillates following the change of momentum

in the wave rest frame. Therefore, the time averaged

Lorentz factor in the original frame does not evolve in

this circularly polarized Alfvén wave.

We isotropically inject electrons in the original frame,

and solve the equations of motion

dx

dt
=v, (36)

dγmev

dt
=−eE(x, t)− e

v

c
×B(x, t), (37)

using the Boris-C solver with second-order accuracy

in Zenitani & Umeda (2018) with a time step ∆t =

0.02min(λ/c, rL0/c). We isotropically inject 1600 elec-

trons in total.

The average Lorentz factor for electrons injected with

a Lorentz factor γi ≫ 1 is calculated with a time interval

T = 200min(λ/c, rL0/c) as

γave(γi) ≡
1

4π

∫ 2π

0

dϕi

∫ π

0

dθi sin θi
1

T

∫ T

0

dtγ. (38)

The radiation power is numerically calculated using

the Liénard formula

P (γi, θi, ϕi, t) =
2e2

3c3
γ4(a2⊥ + γ2a2∥), (39)

which is also averaged as

Pave(γave(γi)) ≡
1

4π

∫ 2π

0

dϕi

∫ π

0

dθi sin θi

× 1

T

∫ T

0

dtP (γi, θi, ϕi, t). (40)

The radiation power spectrum of an electron is given

by the Fourier transformation of the radiation electric

field described by the Liénard Wiechart potential (Ry-

bicki & Lightman 1979; Jackson & Fox 1999). For

λ ≫ mec
2/eB and E ≤ B, the radiation spectrum can

be approximately calculated (Reville & Kirk 2010) by

P (ν, γi, θi, ϕi) =
1

T

∫ T

0

dt

√
3e2γa⊥
c2

F

(
4πcν

3γ3a⊥

)
, (41)
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where F (x) ≡ x
∫∞
x

K 5
3
(ξ)dξ, and K 5

3
(ξ) is the modi-

fied Bessel function of the order 5/3. We resolve fre-

quency range by 20 meshes per logbin. For calculation

of F (x), we interpolate the analytical approximate for-

mula in Fouka & Ouichaoui (2013) by the cubic spline

in every time step ∆t.

The radiation spectrum is averaged over the injection

angles θi and ϕi as

Pν,ave(γave(γi)) =
1

4π

∫ 2π

0

dϕi

∫ π

0

dθi sin θi

×P (ν, γi, θi, ϕi). (42)

5. MONO-ENERGETIC INJECTION

In this section, we show numerical results for electrons

isotropically injected with an initial Lorentz factor γi for

a parameter range of 10−5 ≤ rL0/λ ≤ 103. As we men-

tioned, the MHD approximation implies λ ≫ mec
2/eB.

So the jitter radiation mechanism (λ < mec
2/eB,

Medvedev 2000) is not eligible in our case. Our results

are shown normalized by the well-known formulae for a

uniform magnetic field: the radiation power

P0 ≡ 4

3
γ2
avecσT

B2

8π
, (43)

and the typical frequency ν0 given by eq. (15).

The upper panel of Figure 1 shows the average Lorentz

factor γave as a function of rL0/λ. In low energy limit

(rL0/λ ≪ 1), the electron energy is boosted by a factor

of 2×1.19 ≃ 2.4 as explained in section 2 and Appendix,

while γave is almost the sama as γi in high energy limit

(rL0/λ ≪ 1) as explained in §3.3. As shown in the lower

panel of Figure 1, the radiation power for rL0/λ ≪ 1 is

suppressed by a factor of 1/Γ4
E×B ≃ 1/4 as estimated

in equation (A10). On the other hand, the power is
1.5-fold enhanced by the electric field for rL0/λ ≫ 1 as

discussed in §3.3.
In Figure 2, we show the radiation spectra νPν,ave/P0.

In the case of rL0/λ = 103 (green), the radiation power is

enhanced compared to the case without the turbulence

(black). The peak frequency is also increased compared

to the synchrotron case as discussed in §3.3.
For rL0/λ = 10−5 (blue), the radiation power is sup-

pressed compared to the case without the turbulence

by a factor of 1/ΓE×B ≃ 1/4. The slight decrease in

the typical frequency is consistent with the discussion

in equation (15).

The spectrum for rL0/λ = 10−5 is broader than

the other cases. The broadening is due to the disper-

sions in the Doppler factor D = ΓE×B(1 + βE×B cos θ′)

and the Lorentz factor in the E × B rest frame γ′ =

ΓE×Bγi(1−βE×Bβ0 cos θ), where θ
′ and θ are the angles

0

1

2

3

10-5 10-4 10-3 10-2 10-1 100 101 102 103

γ a
ve
/γ
i

rL0/λ

0

0.5

1

1.5

2

10-5 10-4 10-3 10-2 10-1 100 101 102 103

P
av
e/
P
0

rL0/λ

Figure 1. Upper: the average Lorentz factor γave of elec-
trons injected with Lorentz factor γi. Lower: the average
radiation power Pave normalized by P0.

of the propagation direction of photons and the electron

motion direction at injection, respectively, with respect

to the E × B drift velocity. The dispersions are signifi-

cant for rL0 ≪ λ.

6. POWER-LAW INJECTION

In a strong magnetic field, the effect of radiative cool-

ing appears in the high-energy electron energy distri-

bution. Assuming a continuous electron injection with

a power-law energy distribution and electron escape, a

broken power-law energy distribution is frequently as-

sumed as a steady state. In our case with relativistic

turbulence, we need to consider not only cooling but

also the energy boost by the electric field, shown in Fig-

ure 1.

6.1. Method
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10-4

10-3

10-2

10-1

100

10-3 10-2 10-1 100 101 102

νP
ν/

P
0

ν/ν0

rL0/λ=103

rL0/λ=100.5

rL0/λ=100

rL0/λ=10-1

rL0/λ=10-5

w/o wave

Figure 2. Radiation spectra for different rL0/λ. The syn-
chrotron spectrum without the turbulence is shown with
black line as a reference.

Depending on the cooling break in the electron energy

distribution, the photon spectrum shows a variety. We

numerically calculate the time evolution of electron en-

ergy distribution N(γ, t) in a relativistic Alfvén wave by

solving the equation of continuity in the energy space

as

∂N(γave, t)

∂t
+

∂

∂γave
(γ̇ave(γave)N(γave, t))

= Ṅinj(γave), (44)

where γ̇ave(γave) is radiative cooling rate of electrons in

relativistic Alfvén wave and the injection term Ṅinj(γave)

is assumed to be constant with time. By changing the

calculation time t, the energy at the cooling break can

be adjusted.

As shown in the upper panel of Figure 1, we take into

account the boost of Lorentz factor of electrons after

injection for the injected electron energy distribution.

The initial electron energy distribution at injection is

assumed as a power law distribution with an exponential

cutoff as

Ṅinj,0(γi)=Cγ−p
i exp

(
− γi

γcut

)
for γmin < γi < γmax, (45)

where γi is the initial Lorentz factor at injection and

C = 1/
∫ γmax

γmin
dγiṄinj,0(γi)t is the normalization factor.

In this paper, we adopt p = 2. Then, we calculate the

electron distribution after the energy boost by the wave

using γave(γi) calculated with equation (38) as

Ṅinj(γave) =
dγi
dγave

Ṅinj,0(γi(γave)). (46)

For the radiative cooling rate γ̇ave(γave), we use the

average radiation power Pave(γave) calculated by equa-

tion (40) as

γ̇ave(γave) = −Pave(γave)

mec2
. (47)

The radiation spectrum is calculated as

Pν(t) =

∫ ∞

1

dγaveN(γave, t)Pν,ave(γave), (48)

where Pν,ave(γave) is the radiation spectrum calculated

with eq. (42).

6.2. Slow cooling

The cooling break should appear at γave = γc, which

satisfies t = γave/γ̇ave. First, we consider the case with

γc ≫ γcut, where the cooling effect is negligible (slow

cooling). As we have discussed, the emission properties

change at γave = γλ, where γλ is the electron Lorentz

factor at which the corresponding Larmor radius is com-

parable to the wavelength,

γλmec
2

eB0
= λ. (49)

As shown in the upper panel of Figure 3, the electron

energy distribution for γλ ≪ γmin (green) is not affected

by the wave, and is almost the same as the case without

the wave (dashed black). On the contrary, for γλ ≫ γcut
(blue), all electrons gain energy by the wave, so that

the distribution is shifted to higher energies. In the case

for γmin < γλ < γcut (red), the distribution shows a

concave shape connecting the two cases of γλ ≪ γmin

and γλ ≫ γcut around γ ≃ γλ = 108.

The lower panel of Figure 3 shows the resultant photon

spectra. The spectrum and frequency are normalized by

Pcut ≡
4

3
γ2
cutcσT

B2

8π
, (50)

and

νcut ≡
3

16
γ2
cut

eB

mec
, (51)

respectively. The boost of electron energies for γλ ≫
γcut (blue) leads to a slightly higher peak energy in

the photon spectrum. However, as the induced elec-

tric field suppresses the emissivity (see Figure 2), the

energy boost does not enhance the power in the low-

frequency regime compared to the case without the wave

(dashed black). For γλ ≪ γmin (green), the emissivity is

slightly higher compared to the case without the wave

owing to the enhanced acceleration as discussed in §5.
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Figure 3. The electron energy distributions (upper) and
the radiation spectra (lower) with a power-law (p = 2) dis-
tribution for injection in the slow cooling case. The colored
solid lines show the results for different γλ. The case without
the wave is shown with the dashed black line.

For γmin < γλ < γcut (red), the radiation spectrum is

curved slightly around

νλ ≡ 3

16
γ2
λ

eB

mec
, (52)

connecting the blue line in low-frequency region and the

green line in high-frequency region. However, the mod-

ulation is not so prominent.

6.3. Fast cooling

For the fast cooling (γc ≪ γmin) case, the electron en-

ergy distribution becomes softer than the injection spec-

trum, and a low-energy component below γmin appears.

The upper panel of Figure 4 shows these properties. The

low-energy sharp breaks correspond to γmin. The energy

distribution is shifted to higher energies by the induced

10-6
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10-4
10-3
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100
101
102
103
104

102 103 104 105 106 107 108 109 1010 1011

γ2
N

(γ
)

γ
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γλ<<γmin
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fast cooling
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νP
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P
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γλ>>γcut

γmin<<γλ<<γcut

γλ<<γmin

w/o wave

fast cooling

Figure 4. Same as Figure 3 but for the fast cooling case.

electric field for γλ ≫ γcut (blue). Note that, unlike

the slow cooling case, the energy shift for this steeper

spectrum leads to a much larger increase of N(γ) for

a given γ. The low-energy cut-off at ∼ γc is relatively

high because of the cooling suppression. The distribu-

tions for the other cases (green and red) present similar

behaviors to those in the slow-cooling cases, though the

differences in the cooling efficiency appear in the differ-

ent low-energy cut-offs.

The normalization for the lower panel of Figure 4 is

similar to the slow cooling case with

Pmin ≡ 4

3
γ2
mincσT

B2

8π
, (53)

νmin ≡ 3

16
γ2
min

eB

mec
. (54)

The spectral power for γλ ≫ γcut is high compared to

the case without the wave, even though the radiation

power is relatively suppressed by the induced electric
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field. This is due to the large increase of N(γ) by the

energy shift for a steep energy distribution as we men-

tioned. Even in the slow cooling case, this enhancement

of emissivity can be expected for a steep injection spec-

trum with e.g. p = 3. In the case of γλ ≪ γc shown

with the green line, the radiation spectrum is shifted to

a slightly higher frequency in the high-frequency region

compared to the case without the wave.

In the case of γmin < γλ < γcut (red), the spectrum

shows a characteristic bump structure due to the dis-

torted electron spectrum. The steeper spectrum above

∼ 102νmin extends to two orders of magnitude in ν. The

flat component above ∼ 106νmin can be misunderstood

as an extra synchrotron self-Compton component. In

this misinterpretation, spectral modeling would lead to

a much lower magnetic field than the actual value.

7. CONCLUSIONS & DISCUSSION

Magnetically dominated outflow has been considered

for pulsar winds, blazar jets, and gamma-ray bursts.

Relativistic turbulence in highly magnetized plasma

should induce electric fields with a large amplitude.

While the standard synchrotron emission has been

adopted for the model of emission from such objects,

the large electric field induced in the outflows can affect

the emission process from relativistic electrons.

As the first step to investigate the emission processes

in relativistic turbulence, we have considered circularly

polarized Alfvén waves in this paper. We have calcu-

lated the radiation spectrum by numerically following

the electron trajectories in the waves, which can be an-

alytically expressed. We have shown the energy depen-

dence of the emission power and spectrum from a single

electron. For electrons whose Larmor radius is signif-

icantly smaller than the wavelength of the turbulence

rL0 ≪ λ, the motional electric field suppresses the emis-

sion power by a factor of 1/Γ4
E×B , where ΓE×B is the

Lorentz factor for the E × B drift motion. The value

of ΓE×B can be significantly large in relativistic turbu-

lence. However, in the case of the circularly polarized

Alfvén wave, ΓE×B is limited to
√
2. Note also that the

average energy of electrons injected in the relativistic

wave is boosted for rL0 ≪ λ. For rL0 ≫ λ, the emission

power and spectral peak frequency are slightly increased

by the wave.

We have also demonstrated the emission spectra from

electrons injected with a power-law energy distribution.

In the slow cooling case, though the complicated effects

mentioned above are entangled, the resultant photon

spectrum is not drastically modified. However, for the

fast cooling case, the photon spectrum can be concave

around νλ, which is the typical photon energy emitted

by electrons of rL0 ≃ λ.

The resultant spectrum is similar to GRB photon

spectra detected with Fermi-LAT (Abdo et al. 2009,

2010; Ackermann et al. 2010, 2011; Zhang et al. 2011;

Ackermann et al. 2014; Yassine et al. 2017). The ex-

tra component detected in the GeV energy range has

been interpreted as an SSC (Corsi et al. 2010a,b; Asano

et al. 2011; Pe’er et al. 2012) or hadronic cascade compo-

nent (Asano et al. 2009, 2011; Asano & Mészáros 2011).

If this extra component is due to relativistic waves in

highly magnetized plasma, the estimate of the magnetic

field and typical electron energy can be largely altered.

In our demonstration, the caveat is that electrons are

assumed to be isotropic and energetic as rL0 ≫ λ at in-

jection. If a wave comes just after the isotropic injection,

our setup for the calculation is justified.

If the turbulence itself is responsible for particle injec-

tion/acceleration, the locally isotropic power-law injec-

tion may not be justified. As shown in Comisso & Sironi

(2019), magnetic reconnection leads to an anisotropic

particle injection. In such cases, depending on the in-

duced anisotropy, the emission spectra would be mod-

ified (Goto & Asano 2022). In addition, multiple in-

teractions with Alfvén waves lead to reacceleration (e.g.

Stawarz & Petrosian 2008; Teraki & Asano 2019), which

can also produce hard photon spectra in GRBs (Asano &

Terasawa 2009, 2015; Xu & Zhang 2017), blazars (Lefa

et al. 2011; Asano et al. 2014; Asano & Hayashida 2018),

and pulsar wind nebulae (Tanaka & Asano 2017; Tanaka

& Kashiyama 2023). Those combined effects lead to

non-trivial shapes of photon spectra.

Though the existence of electrons with rL0 ≫ λ is also

non-trivial, there are several setups favorable for gener-

ating such high-energy electrons. For example, electrons

are accelerated by the electric field due to the vacuum

gap in the black hole magnetosphere (e.g. Neronov &

Aharonian 2007), then such electrons can be injected

into a magnetically driven jet outside. In this case,

the injection process and turbulence property in the

emission site are independent. Another possible injec-

tion mechanism is magnetic reconnection and succeed-

ing re-acceleration. In this case, the injection scale of

turbulence λ is comparable to the scale of magnetic is-

lands lMI. The induced electric field at the reconnection

site is roughly comparable to the background magnetic

field. The typical initial energy of accelerated electrons

is Etyp ∼ eElMI ∼ eBλ. The Larmor radii of elec-

trons accelerated directly with the electric field in mag-

netic islands can be the same scale as the magnetic is-

lands as rL0 = Etyp/(eB) ∼ λ (Bessho & Bhattacharjee

2012; Sironi & Spitkovsky 2014; Comisso & Sironi 2019).
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These electrons can be further accelerated via stochastic

non-gyro-resonant scattering off the turbulent fluctua-

tions (e.g. see Hoshino 2012; Comisso & Sironi 2019).

Such a process may cause an effective injection of elec-

trons with rL0 ≫ λ.

While we have focused on circularly polarized Alfvén

waves in this paper, our next step will be the investiga-

tion of emission in more general turbulence. Especially

for relativistic compressible waves, ΓE×B can be signifi-

cantly large. The induced large electric field may greatly

modify the radiation spectrum.
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APPENDIX

A. RADIATION OF ELECTRONS INJECTED ISOTROPICALLY INTO UNIFORM FIELDS

Electrons are injected isotropically with Lorentz factor γi into a uniform electric field E = Eey and a magnetic

field B = Bez. The components of the normalized velocity β = v
c are βx = β0 cos θ, βy = β0 sin θ cosϕ and

βz = β0 sin θ sinϕ. The velocity of the E × B drift motion is vE×B = cE×B
B2 = cEBex. In the drifting frame, the

electron motion is spiral one around the magnetic field B′ = B
ΓE×B

ez. Hereafter, the prime ’ denotes quantities in the

drifting frame. The Lorentz factor is given by

γ(θ, ϕ, t) = ΓE×Bγ
′(1 + βE×Bβ

′
x), (A1)

where βE×B ≡ E
B , ΓE×B ≡ 1√

1−β2
E×B

, β′
x = β′ sinα′ cos(ω′

Bt
′), α′ is the pitch angle between the electron velocity and

the magnetic field, and ω′
B = eB′

γ′mec
is the gyro frequency.

We average γ(θ, ϕ, t) over the period of E×B drift TE×B = ΓE×BT
′
gyro where T ′

gyro = 2π
ω′

B
is the gyro period. Then,

⟨γ(θ, ϕ)⟩t ≡
1

TE×B

∫ TE×B

0

γ(θ, ϕ, t)dt =
1

ΓE×BT ′
gyro

∫ T ′
gyro

0

Γ2
E×Bγ

′(1 + βE×Bβ
′
x(t

′))2dt′

= ΓE×Bγ
′
(
1 +

1

2
β2
E×Bβ

′2 sin2 α′
)
. (A2)

Using γ′ = ΓE×Bγi(1 − βE×Bβ0 cos θ), β
′2 sin2 α′ = β′2

x + β′2
y and the Lorentz transformation of velocities β′

x =

(βx − βE×B)/(1− βE×Bβx) and β′
y = βy/ΓE×B(1− βE×Bβx), we obtain

⟨γ(θ, ϕ)⟩t = Γ2
E×Bγif(θ, ϕ), (A3)

where

f(θ, ϕ) = (1− βE×Bβ0 cos θ)

[
1 +

1

2
β2
E×B

{
(β0 cos θ − βE×B)

2

(1− βE×Bβ0 cos θ)2
+

β2
0 sin

2 θ cos2 ϕ

Γ2
E×B(1− βE×Bβ0 cos θ)2

}]
. (A4)
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The angle-averaged Lorentz factor is obtained as

γave≡
1

4π

∫ 2π

0

dϕ

∫ π

0

dθ sin θ⟨γ(θ, ϕ)⟩t

=Γ2
E×Bγig(βE×B), (A5)

where

g(βE×B) =
3

4
(1 + β2

E×B) +
1− 2β2

E×B + β2
0β

2
E×B

8Γ2
E×Bβ0βE×B

ln
1 + βE×Bβ0

1− βE×Bβ0
(A6)

For βE×B = 1/
√
2 and β0 ≃ 1, g(βE×B) ≃ 1.20. As shown in Figure 5, γave is boosted from injected Lorentz factor γi

by a factor of Γ2
E×B for ΓE×BβE×B ≫ 1.

10-1

100

101

102

103

10-1 100 101

γ a
ve
/γ
i

ΓE×BβE×B

Figure 5. The average Lorentz factor γave of electrons, which are isotropically injected with γi.

Next, we estimate the radiation power. In the drifting frame, the radiation power is constant. As the radiation

power is Lorentz invariant, the radiation power in the original frame is also constant and equal to the synchrotron

power in the drifting frame. The radiation power of an electron with injection angle θ, ϕ is

P (θ, ϕ) = 2cσT
B′2

8π
γ′2β′2 sin2 α′ = 2cσT

B2

8π
γ2
i

{(
β0 cos θ − βE×B

)2

+
β2
0 sin

2 θ cos2 ϕ

Γ2
E×B

}
. (A7)

The average power is calculated as

Pave ≡
1

4π

∫ 2π

0

dϕ

∫ π

0

dθ sin θP (θ, ϕ) = 2cσT
B2

8π
γ2
i h(βE×B), (A8)

where

h(βE×B) =
1

3
β2
0 + β2

E×B +
1

3

β2
0

Γ2
E×B

. (A9)

Using equations (A5) and (A8), we obtain

Pave = 2cσT
B2

8π
γ2
ave

1

Γ4
E×B

h(βE×B)

g(βE×B)2
. (A10)

The results are plotted in Figure 6, which shows the suppression of the radiative cooling by a factor of 1/Γ4
E×B as

discussed in the section 2.
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Figure 6. The average radiation power of electrons normalized by P0.
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