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DIMENSION CONSERVATION OF HARMONIC MEASURES IN
PRODUCTS OF HYPERBOLIC SPACES

RYOKICHI TANAKA

Abstract. We show that the harmonic measure on a product of boundaries satisfies

dimension conservation for a random walk with non-elementary marginals on a countable

group acting on a product of hyperbolic spaces under finite first moment condition.

1. Introduction

Let Γ and Γ⋆ be non-elementary hyperbolic groups. We study a random walk on the

product group Γ := Γ× Γ⋆ and establish a dimension formula for the harmonic measure

on the product of (Gromov) boundaries. After stating our results in this special case, we

consider a countable group of isometries of a product of two hyperbolic metric spaces.

Let π be a probability measure on Γ such that marginals µ and µ⋆ are non-elementary,

i.e., their supports generate non-elementary subgroups in Γ and in Γ⋆ as groups respec-

tively. For such a π, a harmonic measure νπ is defined on the product of boundaries

∂Γ× ∂Γ⋆ (cf. Section 2.1). It is a unique probability measure satisfying that

νπ = π ∗ νπ, where π ∗ νπ =
∑

x∈Γ

π(x)xνπ and xνπ := νπ ◦ x
−1.

In the above, we consider the natural action of Γ = Γ×Γ⋆ on ∂Γ×∂Γ⋆. The harmonic mea-

sure νπ has marginals νµ and νµ⋆ on ∂Γ and on ∂Γ⋆ respectively, and these are determined

by µ and by µ⋆. The measure νµ (or νµ⋆) for a single hyperbolic group and its generaliza-

tion has attracted intensive studies, including the dimension, e.g., [Kai98, Led01], more

recently, [BHM11, HS17, Tan19, DY23]. However, the harmonic measure νπ for a product

group has been studied only in a few cases (see [Vol21] for a special case of products of

hyperbolic free product groups). Dimensional properties of such a measure exhibit new

features since it contains different behaviors depending on the factors. This manifests an

additional difficulty, which arises in a higher rank setting—–in that case, the boundaries

are assembled in further intricate ways such as flag varieties. See [KLP11] for a thor-

ough discussion on this matter of subject, and recent works [Les21, Rap21, LL23]. For

related results on ergodic invariant measures for affine iterated function systems, see e.g.,

[KP96, FH09, Fen23]. We study the harmonic measure νπ itself and the conditional mea-

sure νη
π of νπ on ∂Γ× ∂Γ⋆ for νµ⋆-almost every η ∈ ∂Γ⋆. It is shown that these are exact

dimensional under a finite first moment condition. The dimension formula is a sum of ra-

tios asymptotic entropy over drift corrected with differential entropy. For the conditional

measures, we provide a sufficient condition for the strict positivity of dimension.
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Let us consider left invariant hyperbolic metrics d and d⋆ quasi-isometric to word metrics

in Γ and in Γ⋆, respectively. They induce quasi-metrics q and q⋆ in the compactified

spaces Γ ∪ ∂Γ and Γ⋆ ∪ ∂Γ⋆, respectively, and let q(ξ1, ξ2) := max{q(ξ1, ξ2), q⋆(η1, η2)}

for ξi = (ξi, ηi) ∈ (Γ ∪ ∂Γ) × (Γ⋆ ∪ ∂Γ⋆) and i = 1, 2 (cf. Section 2.1). Let us assume

that π has a finite first moment, i.e.,
∑

x∈Γ d(id,x) < ∞ for the identity element id and

d(x1,x2) := max{d(x1, x2), d
⋆(y1, y2)} for xi = (xi, yi) ∈ Γ and i = 1, 2. The asymptotic

entropy h(π) is defined as the limit for n-fold convolutions πn := π∗n,

h(π) = lim
n→∞

1

n

∑

x∈Γ

−πn(x) log πn(x).

The drift l(Γ, µ) is defined as the limit for µn := µ∗n,

l(Γ, µ) = lim
n→∞

1

n

∑

x∈Γ

d(id, x)µn(x).

Similarly for l(Γ⋆, µ⋆). These are positive since µ and µ⋆ are non-elementary (cf. Section

2.3). For every real r > 0 and and every ξ ∈ ∂Γ × ∂Γ⋆, let B(ξ, r) denote the open ball

of radius r centered at ξ in (∂Γ× ∂Γ⋆, q).

Theorem 1.1. Let Γ and Γ⋆ be non-elementary hyperbolic groups, and π be a probability

measure on Γ = Γ× Γ⋆ with finite first moment and non-elementary marginals µ and µ⋆

on Γ and on Γ⋆ respectively. Suppose that l(Γ, µ) ≥ l(Γ⋆, µ⋆). Then the harmonic measure

νπ on (∂Γ× ∂Γ⋆, q) is exact dimensional, i.e., for νπ-almost every ξ ∈ ∂Γ× ∂Γ⋆,

lim
r→0

log νπ (B(ξ, r))

log r
=

h(π)− h(µ⋆)

l(Γ, µ)
+

h(µ⋆)

l(Γ⋆, µ⋆)
.

In particular, the Hausdorff dimension of νπ is computed as

dim νπ =
h(π)− h(µ⋆)

l(Γ, µ)
+

h(µ⋆)

l(Γ⋆, µ⋆)
.

Theorem 1.1 is shown in Theorem 4.5 in a more general setting. The above result is

based on the exact dimensionality of disintegrated measures: Let νη
π for η ∈ ∂X ⋆ denote a

system of conditional measures of νπ on ∂Γ×∂Γ⋆ with respect to the σ-algebra generated

by the projection from ∂Γ× ∂Γ⋆ to ∂Γ⋆.

Theorem 1.2. Let Γ and Γ⋆ be non-elementary hyperbolic groups, and π be a probability

measure on Γ = Γ× Γ⋆ with finite first moment and non-elementary marginals µ and µ⋆

on Γ and on Γ⋆ respectively. For νµ⋆-almost every η ∈ ∂Γ⋆, the conditional measure νη
π is

exact dimensional on (∂Γ× ∂Γ⋆, q), i.e., for νη
π-almost every ξ ∈ ∂Γ× ∂Γ⋆,

lim
r→0

log νη
π(B(ξ, r))

log r
=

h(π)− h(µ⋆)

l(Γ, µ)
,

In particular, the Hausdorff dimension of νη
π is computed as for νµ⋆-almost every η ∈ ∂Γ⋆,

dim νη
π =

h(π)− h(µ⋆)

l(Γ, µ)
.
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Theorem 1.2 is shown in Theorem 1.3 in a more general setting. Following Furstenberg

[Fur08, Definition 3.1], we say that a Borel probability measure ν on a product of compact

metric space M×M⋆ satisfies dimension conservation if the following holds. Let us

consider the pushforward ν⋆ and a system of conditional measures νη for η ∈ M⋆ of

ν associated with the projection M × M⋆ → M⋆: the measures ν and ν⋆ are exact

dimensional with dimension dim ν and dim ν⋆ respectively, for ν⋆-almost every η ∈ M⋆,

conditional measures νη are exact dimensional with dimension dim νη, and

dim ν = dim νη + dim ν⋆.

In the above, we understand that the metric in M×M⋆ is defined as the maximum of

metrics in M and M⋆ (or an arbitrary one bi-Lipschitz to it). It has been shown that

νµ⋆ on (∂Γ⋆, q⋆) is exact dimensional with dimension h(µ⋆)/l(Γ⋆, µ⋆) [Tan19, Theorem 3.8].

Therefore Theorems 1.1 and 1.2 imply that the harmonic measure νπ on ∂Γ×∂Γ⋆ satisfies

dimension conservation. The statement holds in a more general setting; see Section 4. For

an extension to a product of more than two hyperbolic groups, see Remark 4.6.

Let (X , d) and (X ⋆, d⋆) be proper roughly geodesic hyperbolic metric spaces with

bounded growth at some scales (for the definitions, see Section 2). Examples of such spaces

include Gromov hyperbolic Riemannian manifolds with sectional curvature bounded from

below and from above and Cayley graphs of hyperbolic groups. The space X × X ⋆ is

equipped with a base point o and the metric d(x1,x2) := max{d(x1, x2), d
⋆(y1, y2)} for

xi = (xi, yi) ∈ X × X ⋆ and i = 1, 2. Let us consider a countable subgroup Γ in the

product of isometry groups IsomX × IsomX ⋆. We say that Γ has a finite exponential

growth relative to (X ×X ⋆,d) if there exists a constant c > 0 such that for all r > 0,

#
{

x ∈ Γ : d(o,x · o) < r
}

≤ cecr.

In the above, #A denotes the cardinality of a set A. For a probability measure π on Γ,

let µ and µ⋆ denote the marginal on IsomX and on IsomX ⋆ respectively. Let suppµ⋆

denote the support of µ⋆. The differential entropy of the pair (∂X ⋆, µ⋆) is defined by

h(∂X ⋆, µ⋆) :=
∑

x∈suppµ⋆

µ⋆(x)

∫

∂X ⋆

log
dxνµ⋆

dνµ⋆

(η) dxνµ⋆(η).

In general, it holds that h(∂X ⋆, µ⋆) ≤ h(µ⋆), and the equality holds if and only if (∂X ⋆, νµ⋆)

is a Poisson boundary for the pair (IsomX ⋆, µ⋆) (cf. Section 2.3). Let l(X , µ) be the drift

associated with a µ⋆-random walk on X ⋆. Theorem 1.2 is generalized in this setting.

Theorem 1.3. Let (X , d) and (X ⋆, d⋆) be proper roughly geodesic hyperbolic metric spaces

with bounded growth at some scale, and Γ be a countable subgroup of IsomX × IsomX ⋆

with finite exponential growth relative to (X × X ⋆,d). If π is a probability measure on

Γ with finite first moment and non-elementary marginals µ and µ⋆ respectively, then the

conditional measure νη
π is exact dimensional for νµ⋆-almost every η ∈ ∂X ⋆. In fact, for

νµ⋆-almost every η ∈ ∂X ⋆ and for νη
π-almost every ξ ∈ ∂X × ∂X ⋆,

lim
r→0

log νη
π(B(ξ, r))

log r
=

h(π)− h(∂X ⋆, µ⋆)

l(X , µ)
.



4 RYOKICHI TANAKA

In particular, the Hausdorff dimension of νη
π is computed as for νµ⋆-almost every η ∈ ∂X ⋆,

dim νη
π =

h(π)− h(∂X ⋆, µ⋆)

l(X , µ)
.

For the differential entropy, it holds that h(∂X ⋆, µ⋆) = 0 if and only if (∂X ⋆, νµ⋆) is

trivial, i.e., νµ⋆ is invariant under the action of Γ on ∂X ⋆. If µ⋆ is non-elementary, then

(∂X ⋆, νµ⋆) is non-trivial and h(∂X ⋆, µ⋆) > 0. In the setting of Theorem 1.3, it can be the

case that h(π) = h(∂X ⋆, µ⋆) (see Example 1.5 below). The following result provides a

sufficient condition under which h(π) > h(∂X ⋆, µ⋆), i.e., (∂X ⋆, νµ⋆) is a proper quotient of

the Poisson boundary for the pair (Γ, π). If this is the case, then the Hausdorff dimension

of conditional measures are strictly positive.

Theorem 1.4. Let Γ and Γ⋆ be countable subgroups in IsomX and in IsomX ⋆ respectively,

and Γ := Γ × Γ⋆. Further let us consider a probability measure π on Γ of the following

form: For some α ∈ (0, 1],

π = αλ× λ⋆ + (1− α)π0

with non-elementary probability measures λ and λ⋆ on Γ and on Γ⋆ respectively, and a

probability measure π0 on Γ. It holds that h(π)−h(∂X ⋆, µ⋆) > 0, where µ⋆ is the marginal

of π on Γ⋆.

Theorem 1.4 is shown in Theorem 5.4; moreover, if in addition Γ = Γ × Γ⋆ has a

finite exponential growth relative to (X ×X ⋆,d), then for νµ⋆-almost every η ∈ ∂X ⋆, the

Hausdorff dimension of the conditional measure νη
π is positive (cf. Theorem 1.3).

Example 1.5. Let Γ be a hyperbolic group and µ be a non-elementary probability mea-

sure on Γ with finite first moment relative to a word metric. For ρ ∈ [0, 1], let

πρ := ρµ× µ+ (1− ρ)µdiag,

where µdiag((x, x
⋆)) := µ(x) if x = x⋆, and 0 if otherwise. The πρ-random walk on Γ× Γ

appears in the study of noise sensitivity problem on groups [BB23, Tan22]. By Theorems

1.2 and 1.4 applied to the case when Γ = Γ⋆ and µ = µ⋆, it holds that for all ρ ∈ (0, 1],

dim νη
πρ =

h(πρ)− h(µ)

l(Γ, µ)
> 0 for νµ-almost every η ∈ ∂Γ.

For ρ = 0, since h(πρ) = h(µ), it holds that dim νη
πρ = 0 for νµ-almost every η ∈ ∂Γ.

Theorem 1.1 shows that for all ρ ∈ [0, 1],

dim νπρ =
h(πρ)

l(Γ, µ)
.

This reproduces [Tan22, Theorem 3.1].

Example 1.6. This example is not covered by Theorem 1.4. Suppose that Γ = Γ×Γ⋆ for

two hyperbolic groups Γ and Γ⋆, and that there exists a (proper) surjective homomorphism

Π : Γ → Γ⋆. Let ∆ : Γ → Γ× Γ⋆ be the diagonal embedding ∆(x) = (x,Π(x)) for x ∈ Γ.

For a non-elementary probability measure µ on Γ with finite first moment, let π := ∆∗µ

be the pushforward of π by ∆. In this case, marginals of π are µ on Γ and Π∗µ on Γ⋆
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respectively, where Π∗µ is the pushforward of µ by Π. Applying to Theorem 1.2 with

µ⋆ = Π∗µ shows that

dim νη
π =

h(µ)− h(Π∗µ)

l(Γ, µ)
for νΠ∗µ-almost every η ∈ ∂Γ⋆.

This follows since h(π) = h(µ) and h(∂Γ⋆,Π∗µ) = h(Π∗µ). It holds that h(µ) = h(Π∗µ)

if Π is an isomorphism, and it depends on Π whether a strict inequality h(µ) > h(Π∗µ)

holds or not. As a simple explicit example, let Γ = Fm+1 and Γ⋆ = Fm be free groups of

rank m + 1 and m respectively for m ≥ 2, equipped with word metrics associated with

free bases. Further let ∆ : Fm+1 → Fm be a homomorphism defined by sending the free

basis in Fm+1 to the free basis in Fm. For the uniform distribution µ on the symmetrized

free basis in Fm+1, the induced distribution on Fm defines a simple random walk on

Fm with holding probability 1/(m + 1). A computation yields l(Fm+1, µ) = m/(m + 1),

l(Fm,Π∗µ) = (m− 1)/(m+ 1),

h(µ) =
m

m+ 1
log(2m+ 1) and h(Π∗µ) =

m− 1

m+ 1
log(2m− 1).

Therefore

dim νη
π = log(2m+ 1)−

m− 1

m
log(2m− 1) for νη

π-almost every η ∈ ∂Fm.

Furthermore, Theorem 1.1 shows that

dim νπ = log(2m+ 1) +
1

m
log(2m− 1).

Outlines of proofs. Let us briefly mention the proof of Theorem 1.1 for a product of

two hyperbolic groups. For a single hyperbolic group Γ with a non-elementary probability

measure µ, the corresponding harmonic measure νµ on ∂Γ is exact dimensional [Tan19,

Theorem 3.8]. Roughly speaking, it boils down to estimate probabilities that for a µ-

random walk wn, an independent µ-random walk w′
n is around wn within distance o(n)

for n ∈ Z+. This leads an estimate of the harmonic measure νµ on the balls B(w∞, e−ln)

where l := l(Γ, µ). Here the µ-random walk {wn}n∈Z+ is for a sampling w∞ in ∂Γ according

to νµ and the independent µ-random walk {w′
n}n∈Z+ is for the estimate νµ(B(w∞, e−ln)).

Since the probability that w′
n is around wn within distance o(n) is e−h(µ)n+o(n) by the

Shannon theorem for random walks, this explains νµ(B(w∞, e−ln)) = e−h(µ)n+o(n), which

is the exact dimensionality of νµ with the right dimension h(µ)/l.

The conditional measure νη
π for νµ⋆-almost every η ∈ ∂Γ⋆ is the hitting distribution of

a conditional process. This is a Markov chain (although the transition probabilities are

not group-invariant) and (one of) the methods developed for a single hyperbolic group in

[ibid] applies. The asymptotic entropy of this conditional process equals h(π)− h(µ⋆) by

the Shannon theorem for the conditional process [Kai00]. The conditional measure νη
π is

defined on ∂Γ×∂Γ⋆ but supported on ∂Γ×{η} for νµ⋆-almost every η ∈ ∂Γ⋆. An analogous

discussion to the µ-random walk above works and this leads to estimating the νη
π-measures

on the balls in the boundary B(w∞, e−ln)× {η} for νη
π-almost every (w∞, η) ∈ ∂Γ × ∂Γ⋆.

In fact, we obtain νη
π(B(w∞, e−ln)× {η}) = e−(h(π)−h(µ⋆))n+o(n), deducing Theorem 1.2.
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The harmonic measure νπ on ∂Γ × ∂Γ⋆ is, however, analyzed in a completely different

way. First of all it requires to take into account the difference between l and l⋆ where

l⋆ := l(Γ⋆, µ⋆). If l ≥ l⋆, then

h(π)− h(µ)

l⋆
+

h(µ)

l
≤

h(π)− h(µ⋆)

l
+

h(µ⋆)

l⋆
,

since h(π) ≤ h(µ) + h(µ⋆), and the inequality can be strict. Since the right hand side

of the above inequality is the correct value, the dimension upper bound should use the

inequality l ≥ l⋆ whereas the dimension lower bound would not need it. Concerning the

dimension upper bound, the Shannon theorem for the conditional process shows that for

νµ⋆-almost every η ∈ ∂X ⋆, for the conditional process {wn}n∈Z+ ,

Pη([w0, . . . ,wn]) ≤ eh(µ
⋆)n+o(n)P([w0, . . . ,wn]).

In the above, [w0, . . . ,wn] denotes the cylinder set. At this point, we keep track the whole

trajectory up to time n instead of just looking at the position wn. The argument here is

inspired by [LL23, Section 8] (where they refer to [Fen23] for the idea). The νη
π on the

balls B(w∞, e−l⋆n) = B(w∞, e−l⋆n)×B(w⋆
∞, e−l⋆n) estimates by Theorem 1.2,

νη
π

(

B(w∞, e−l⋆n)
)

= exp

(

−

(

h(π)− h(µ⋆)

l

)

l⋆n+ o(n)

)

.

Averaging η over B(w⋆
∞, e−l⋆n) deduces the required lower bound (thus upper bound for

the dimension) of νπ(B(w∞, e−l⋆n)). In this discussion, it is crucial to use the balls with

radii e−l⋆n rather than e−ln (or other scales) since q(w∞,wn) = e−l⋆n+o(n), where l ≥ l⋆,

q(w∞, wn) = e−ln+o(n) and q⋆(w⋆
∞, w⋆

n) = e−l⋆n+o(n).

Concerning the dimension lower bound, a slight strengthened version for the lower bound

in Theorem 1.2 enables us to exploit the naive disintegration formula. Roughly, estimating

along the following heuristic can be justified:

νπ
(

B(w∞, e−ln)
)

≈ νη
π(B(w∞, e−ln)× {η}) · νµ⋆

(

B(w⋆
∞, e−ln)

)

.

Since this works only for νπ restricted on a large subset, the argument is merely for the

upper bound (thus lower bound for the dimension) of νπ (up to a density lemma which is

guaranteed by a weak version of the Lebesgue differentiation theorem Lemma 2.2). Thus

Theorem 1.2 and the exact dimensionality of νµ⋆ with h(µ⋆)/l⋆ conclude the required

dimension lower bound on νπ.

The above sketch for hyperbolic groups can be extended to a countable group of isome-

tries acting on a product of two hyperbolic metric spaces in Theorem 4.5. The positive

lower bound for h(π)− h(∂X ⋆, µ⋆) in Theorem 1.4 uses the pivotal time technique devel-

oped by Gouëzel in [Gou22]. We mention possible extensions of Theorems 1.1 and 4.5

and questions in Remark 4.6.
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Organization. Section 2 recalls basics on hyperbolic metric spaces and random walks.

Section 3 concerns dimensions of the conditional measures, showing Theorem 1.3 (and thus

Theorem 1.2). Section 4 concerns dimensions of the harmonic measures on products of

boundaries, showing Theorem 4.5 (and thus Theorem 1.1). Section 5 is about a sufficient

condition on a positivity of the dimension for conditional measures, showing Theorem 1.4

in Theorem 5.4.

Notation. We denote by c, C, . . . , constants whose exact values may vary from line

to line, and by Cδ a constant which depends on the other constant δ to emphasize its

dependency. For a real valued sequence {f(n)}n∈Z+ on non-negative integers Z+, we write

f(n) = o(n) if |f(n)|/n → 0 as n → ∞. For a set A, we denote by Ac the complement

set, and by #A the cardinality.

2. Preliminaries

2.1. Hyperbolic metric spaces. For background, we refer to the original paper by

Gromov [Gro87]. For a metric space (X , d), the Gromov product is defined by

(x|y)z :=
1

2
(d(x, z) + d(z, y)− d(x, y)) for x, y, z ∈ X .

A metric space (X , d) is δ-hyperbolic for a non-negative real δ ∈ R+ if it holds that

(x|y)w ≥ min
{

(x|z)w, (z|y)w
}

− δ for all x, y, z, w ∈ X . (2.1)

It is called hyperbolic if it is δ-hyperbolic for some δ ∈ R+. A map γ : I → X from an

interval I in R to X is called a C-rough geodesic for C ∈ R+ if |d(γ(s), γ(t))−|t−s|| ≤ C

for all s, t ∈ I. Further a map γ : I → X is called a C-rough geodesic ray in the case

when I = [0,∞). A metric space is called C-roughly geodesic for C ∈ R+ if for all pairs

of points x, y ∈ X there exists a C-rough geodesic γ : [a, b] → X such that γ(a) = x and

γ(b) = y. In this terminology, a metric space is called geodesic if it is 0-roughly geodesic.

A graph endowed with a path metric of unit edge length (e.g., a Cayley graph) is also

considered as a geodesic metric space by using intervals in the integers Z in the definition.

Let us simply call a metric space roughly geodesic if it is C-roughly geodesic for some

C ∈ R+. For a hyperbolic group Γ equipped with a left invariant hyperbolic metric d

quasi-isometric to a word metric, (Γ, d) is roughly geodesic (cf. [BS00, Proposition 5.6]

and [BHM11, Theorem 2.2]). A metric space (X , d) is proper if for all x ∈ X and all

r ∈ R+, the ball B(x, r) :=
{

y ∈ X : d(x, y) < r
}

is relatively compact.

For a hyperbolic metric space (X , d), the (Gromov) boundary ∂X is defined as the

set of equivalence classes of divergent sequences in X . Let us fix a point o ∈ X . Further

let q(x, y) := exp(−(x|y)o) for x, y ∈ X and q(x, y) := 0 if x = y. Since the space is

δ-hyperbolic for some δ ∈ R+, it holds that

q(x, y) ≤ eδ max
{

q(x, z), q(z, y)
}

for x, y, z ∈ X . (2.2)

A sequence {xn}n∈Z+ in X is called divergent if it is a Cauchy sequence with respect to

q. Two sequences {xn}n∈Z+ and {yn}n∈Z+ are equivalent if q(xn, ym) → 0 as n,m → ∞.

It is indeed an equivalence relation in the set of divergence sequences by (2.2).
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For ξ ∈ X ∪ ∂X , let us write ξ = [{xn}n∈Z+ ] for a divergent sequence {xn}n∈Z+ which

represents ξ if ξ ∈ ∂X , or for the constant sequence xn = ξ for all n ∈ Z+ if ξ ∈ X . The

Gromov product is extended to X ∪ ∂X by

(ξ|η)o := inf
{

lim inf
n,m→∞

(xn|ym)o : ξ = [{xn}n∈Z+], η = [{ym}m∈Z+ ]
}

.

For a δ-hyperbolic space, the extended Gromov product satisfies (2.1) for x, y, z ∈ X ∪∂X
and w = o. Let us extend q on X to X ∪ ∂X and call it the quasi-metric:

q(ξ, η) := exp(−(ξ|η)o) if ξ 6= η, and q(ξ, η) := 0 if ξ = η, for ξ, η ∈ X ∪ ∂X .

It is known that there exists an ε0 > 0 such that for all 0 < ε < ε0 the power qε is

bi-Lipschitz equivalent to a genuine metric. However, the quasi-metric q is used to define

balls and other notions related to metrics without introducing an additional parameter

ε. The space X ∪ ∂X is equipped with the topology defined from the (quasi-)metric. If

X is proper, then X ∪ ∂X is a compact metrizable space. If in addition X is C-roughly

geodesic for some C ∈ R+, then for every ξ ∈ ∂X and every x ∈ X there exists a C-rough

geodesic ray γ from x converging to ξ, i.e., q(γ(t), ξ) → 0 as t → ∞ in X ∪ ∂X (cf. [BS00,

Proposition 5.2]). Henceforth it is assumed that X is a proper roughly geodesic hyperbolic

metric space.

Let us denote the open ball of radius r ∈ R+ centered at ξ ∈ X ∪ ∂X in X ∪ ∂X by

B(ξ, r) :=
{

η ∈ X ∪ ∂X : q(ξ, η) < r
}

.

The shadow (seen from o) at x ∈ X with thickness R ∈ R+ is defined by

O(x,R) :=
{

η ∈ ∂X : (o|η)x < R
}

.

The following is used to compare shadows with balls. For each T > 0, there exist constants

R0, C > 0 such that for all R > R0, all ξ ∈ ∂X and all x ∈ X with (o|ξ)x ≤ T ,

B(ξ, C−1e−d(o,x)+R) ∩ ∂X ⊂ O(x,R) ⊂ B(ξ, Ce−d(o,x)+R) ∩ ∂X . (2.3)

For another such hyperbolic metric space (X ⋆, d⋆) with base point o⋆, let q⋆ denote the

quasi-metric in ∂X ⋆. In the product space, for ξi = (ξi, ηi) ∈ (X ∪ ∂X )× (X ⋆ ∪ ∂X ⋆) and

i = 1, 2, let

q(ξ1, ξ2) := max
{

q(ξ1, ξ2), q
⋆(η1, η2)

}

.

By (2.2) extended to X ∪ ∂X and X ⋆ ∪ ∂X ⋆, there exists a constant C := Cq > 0 such

that

q(x,y) ≤ Cmax{q(x, z), q(z,y)} for all x,y, z ∈ (X ∪ ∂X )× (X ⋆ ∪ ∂X ⋆).

Let B(ξ, r) denote the ball in (X ∪ ∂X )× (X ⋆ ∪ ∂X ⋆) with respect to q.
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2.2. Hausdorff dimensions. Let (M, q) be a compact metrizable space M with a quasi-

metric q. It is basically intended (∂X , q) or (∂X × ∂X ⋆, q). For a set E in M, let dimE

denote the Hausdorff dimension of E with respect to the quasi-metric q. The definition

is recalled briefly. Let |E| := sup{q(ξ, η) : ξ, η ∈ E}. For all α,∆ ∈ R+ with ∆ > 0, let

Hα
∆(E) := inf

{

∞
∑

i=0

|Ei|
α : E ⊂

∞
⋃

i=0

Ei and |Ei| ≤ ∆
}

.

The α-dimensional Hausdorff measure of a set E is defined by

Hα(E) := lim
∆→0

Hα
∆(E) = sup

∆>0
Hα

∆(E).

Moreover the Hausdorff dimension of a set E is defined by

dimE := sup
{

α ≥ 0 : Hα(E) > 0
}

= inf
{

α ≥ 0 : Hα(E) = 0
}

.

Let ν be a Borel probability measure on ∂X . The upper Hausdorff dimension of ν is

dim ν := inf
{

dimE : E is Borel and ν(M\ E) = 0
}

,

and the lower Hausdorff dimension of ν is

dim ν := inf
{

dimE : E is Borel and ν(E) > 0
}

.

If the upper and lower Hausdorff dimensions of ν coincide, then the common value is called

the Hausdorff dimension of ν and is denoted by dim ν. The following is a fundamental

lemma which relates pointwise behaviors of a measure to Hausdorff dimensions. This is

called the Billingsley lemma (in the case of Euclidean spaces).

Lemma 2.1 (cf. Section 8.7 in [Hei01]). For every Borel probability measure ν on M, if

for α1, α2 ∈ R+,

α1 ≤ lim inf
r→0

log ν(B(ξ, r))

log r
≤ α2 for ν-almost every ξ ∈ M,

then α1 ≤ dim ν ≤ α2.

It is deduced that

dim ν = sup
ν-a.e. ξ

lim inf
r→0

log ν(B(ξ, r))

log r
and dim ν = inf

ν-a.e. ξ
lim inf
r→0

log ν(B(ξ, r))

log r
.

In the above, supν-a.e. ξ and infν-a.e. ξ denote the essential supremum and the essential

infimum relative to ν respectively. A Borel probability measure ν on M is exact dimen-

sional if the following limit exists and is constant ν-almost everywhere on M:

lim
r→0

log ν(B(ξ, r))

log r
.

In that case, the Hausdorff dimension of ν exists and equals the constant.

A metric space (X , d) is called bounded growth at some scale if there exist constants

r, R ∈ R+ with 0 < r < R and N ∈ Z+ such that every open ball of radius R is covered by

at most N open balls of radius r. The examples include Gromov hyperbolic Riemannian
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manifolds whose sectional curvature is uniformly bounded from below and from above

and Cayley graphs of hyperbolic groups.

Lemma 2.2. Let (X , d) and (∂X ⋆, d⋆) be hyperbolic metric spaces with bounded growth

at some scale. There exists a constant L ≥ 1 such that the following holds for every

Borel probability measure ν on ∂X × ∂X ⋆ and for every Borel set F in ∂X × ∂X ⋆ with

ν(F ) > 0. For ν-almost every ξ ∈ F , there exists a constant r(ξ) > 0 such that for every

r ∈ (0, r(ξ)),

ν(F ∩B(ξ, Lr)) ≥
9

10
ν(B(ξ, r)).

Proof. The assumption on (X , d) implies that for every α ∈ (0, 1) there exists a bi-

Lipschitz embedding f from (∂X , qα) to some finite dimensional standard Euclidean space

(E0, ‖ · ‖E0) (cf. [BS00, Theorem 9.2] and [Ass83, 2.6. Proposition]). More precisely, there

exists a constant L0 ≥ 1 such that for all ξ, η ∈ ∂X ,

(1/L0)q(ξ, η)α ≤ ‖f(ξ)− f(η)‖E0 ≤ L0q(ξ, η)α.

Similarly, for (X ⋆, d⋆) there exists a bi-Lipschitz embedding f ⋆ from (∂X ⋆, q⋆α) into some

Euclidean space (E⋆, ‖ · ‖E⋆) with a Lipschitz constant L⋆ ≥ 1. Let

f : ∂X × ∂X ⋆ → E := E
0 × E

⋆, (ξ, η) 7→ (f(ξ), f ⋆(η)).

The map f is homeomorphic onto the image since ∂X × ∂X ⋆ is compact. The product

space E is endowed with the maximum norm ‖ · ‖E of the factors. Let BE(v, r) denote the

ball in E with respect to the norm. It holds that

(1/L)q(ξ,η)α ≤ ‖f (ξ)− f (η)‖E ≤ Lq(ξ,η)α for ξ,η ∈ ∂X × ∂X ⋆, (2.4)

where L := max{L0, L⋆}. The pushforward f∗ν satisfies that f∗ν(BE(f (ξ), r)) > 0 for all

r > 0 and for ν-almost all ξ ∈ F . This follows since ν(F ) > 0 and the intersection of F

and the support of ν has a positive ν-measure, it holds that ν(B(ξ, r)) > 0 for all r > 0

and for ν-almost every ξ ∈ F . The Lebesgue differentiation theorem on f∗ν yields

lim
r→0

f∗ν(f (F ) ∩ BE(f (ξ), r))

f∗ν(BE(f (ξ), r))
= 1 for ν-almost every ξ ∈ F.

By (2.4), it holds that

lim inf
r→0

ν(F ∩B(ξ, (Lr)1/α))

ν(B(ξ, (r/L)1/α))
≥ 1 for ν-almost every ξ ∈ F .

Hence for ν-almost every ξ ∈ F there exists some r(ξ) > 0 such that

ν(F ∩ B(ξ, L2/αr)) ≥
9

10
ν(B(ξ, r)) for all r ∈ (0, r(ξ)).

Shifting the constant L2/α to L deduces the claim. �



DIMENSION CONSERVATION OF HARMONIC MEASURES 11

2.3. Random walks. Let Γ be a countable group. Further let Ω := ΓZ+ be the product

space endowed with the σ-algebra F generated by cylinder sets. For a probability measure

π on Γ, let πZ+ be the product measure on ΓZ+ . Let us define the map w : ΓZ+ → Ω,

{xn}n∈Z+ 7→ {wn}n∈Z+ where w0 := id (the identity element) and

wn := x1 · · ·xn for n = 1, 2, . . . .

The pushforward of πZ+ by the map w is denoted by P. The probability space (Ω,F ,P)

is a standard probability space; this is the most basic space in the following discussion.

The maps Ω → Γ, {wn}n∈Z+ 7→ wn defines a Markov chain {wn}n∈Z+ called a π-random

walk starting from id.

For a hyperbolic metric space (X , d), let IsomX denote the isometry group. A proba-

bility measure µ (with a countable support) on IsomX is called non-elementary if the

group generated by the support of µ (as a group) contains a free group of rank 2.

Let (X , d) and (X ⋆, d⋆) be hyperbolic metric spaces, and Γ be a countable subgroup of

IsomX×IsomX ⋆. Further let π be a probability measure on Γ such that the pushforwards

µ and µ⋆ by the projections from IsomX ×IsomX ⋆ to IsomX and to IsomX ⋆ respectively

are non-elementary. In this setting, a π-random walk {wn}n∈Z+ starting from id yields by

letting wn = (wn, w
⋆
n), a µ-random walk {wn}n∈Z+ with w0 = id and a µ⋆-random walk

{w⋆
n}n∈Z+ with w⋆

0 = id. For fixed base points o ∈ X and o⋆ ∈ X ⋆, let

zn := (zn, z
⋆
n), where zn := wn · o and z⋆n := w⋆

n · o
⋆ for wn = (wn, w

⋆
n).

The assumption that µ and µ⋆ are non-elementary implies that P-almost surely there

exist z∞ ∈ ∂X and z⋆∞ ∈ ∂X ⋆ such that zn → z∞ in X ∪ ∂X and z⋆n → z⋆∞ in X ⋆ ∪ ∂X ⋆

as n → ∞ respectively. Let νπ be the distribution of (z∞, z⋆∞) on ∂X × ∂X ⋆, and νµ
and νµ⋆ be the distributions of z∞ and of z⋆∞ respectively. The probability measure νπ is

called the harmonic measure for the π-random walk. Similarly, νµ and νµ⋆ are called

the harmonic measures for the µ-random walk and for the µ⋆-random walk respectively.

Let us denote the measurable map by

bnd = (bnd, bnd⋆) : Ω → ∂X × ∂X ⋆, w 7→ z∞ := (z∞, z⋆∞).

The harmonic measures νπ, νµ and νµ⋆ are obtained as the pushforwards of P by bnd, by

bnd and by bnd⋆ respectively.

The group Γ acts on ∂X × ∂X ⋆ through IsomX × IsomX ⋆. It satisfies that νπ is

π-stationary, i.e.,

νπ =
∑

x∈Γ

π(x)xνπ where xνπ = νπ ◦ x
−1.

Similarly, Γ acts on ∂X and on ∂X ⋆ through the projection from IsomX × IsomX ⋆ to

each one of factors, and thus νµ and νµ⋆ are also π-stationary, i.e.,

νµ =
∑

x∈Γ

π(x)xνµ and νµ⋆ =
∑

x∈Γ

π(x)xνµ⋆ . (2.5)
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Since µ and µ⋆ are marginals of π, these further lead to

νµ =
∑

x∈suppµ

µ(x)xνµ and νµ⋆ =
∑

x⋆∈suppµ⋆

µ⋆(x⋆)x⋆νµ⋆ .

Let us define the metric in X × X ⋆ by

d(z1, z2) := max
{

d(z1, z2), d
⋆(z⋆1 , z

⋆
2)
}

for zi = (zi, z
⋆
i ) ∈ X × X ⋆ and i = 1, 2.

A probability measure π on Γ < IsomX × IsomX ⋆ has a finite first moment if
∑

x∈Γ

d(o,x · o)π(x) < ∞, where o = (o, o⋆).

This condition is independent of the choice of the point o = (o, o⋆). Let us assume that

π has a finite first moment. The Kingman subadditive ergodic theorem implies that the

following limits exist and are constant P-almost everywhere:

l(X , µ) := lim
n→∞

1

n
d(o, zn) and l(X ⋆, µ⋆) := lim

n→∞

1

n
d⋆(o⋆, z⋆n).

The limits l(X , µ) and l(X ⋆, µ⋆) are called the drifts of {zn}n∈Z+ and {z⋆n}n∈Z+ respectively.

In the case when µ and µ⋆ are non-elementary, then l(X , µ) > 0 and l(X ⋆, µ⋆) > 0 ([Kai00,

Theorem 7.3], and see also [Gou22, Theorem 1.1] for a more recent account).

2.4. Conditional processes and their entropies. If π has a finite first moment, then

the entropy H(π) := −
∑

x∈Γ π(x) logπ(x) is finite [Der86, Section VII, B]. The Shannon

theorem for random walks says that for such π, the following limit exists and is constant

P-almost everywhere:

h(π) := lim
n→∞

−
1

n
log πn(wn). (2.6)

See [KV83, Theorem 2.1] and [Der80, Section IV]. The limit h(π) is called the asymptotic

entropy for π-random walk. Let h(µ) and h(µ⋆) be the asymptotic entropies for µ-random

walk and µ⋆-random walk respectively; they exist and are defined in the same way. We

will also use a conditional version of the notion. First we introduce a conditional process

and then define the conditional entropy.

Recall that (Ω,F ,P) is a standard probability space. Let σ(bnd) be the σ-algebra gen-

erated by the measurable map bnd : Ω → ∂X × ∂X ⋆. Disintegrating the measure P with

respect to σ(bnd) yields the system of conditional probability measures {Pbnd(w)}w∈Ω.

More precisely, for every A ∈ F , the map Ω → R, w 7→ Pbnd(w)(A) is σ(bnd)-measurable,

and

P =

∫

Ω

Pbnd(w) dP(w).

Noting that νπ = bnd∗P, let us write {Pξ,η}(ξ,η)∈∂X×∂X ⋆ and

P =

∫

∂X×∂X ⋆

Pξ,η dνπ(ξ, η).
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Similarly, disintegrating P with respect to the σ-algebra σ(bnd⋆) generated by bnd⋆ yields

the system of conditional probability measures {Pη}η∈∂X ⋆ satisfying that

P =

∫

∂X ⋆

Pη dνµ⋆(η). (2.7)

Let us disintegrate the harmonic measure νπ. In the present setting, ∂X × ∂X ⋆ is a

compact metrizable space and thus ∂X × ∂X ⋆ endowed with the Borel σ-algebra is a

standard Borel space. The probability measure νπ is disintegrated with respect to the

σ-algebra generated by the projection ∂X × ∂X ⋆ → ∂X ⋆. This yields the system of

conditional probability measures {νη
π}η∈∂X ⋆ such that

νπ =

∫

∂X ⋆

νη
π dνµ⋆(η).

Moreover, it satisfies that νη
π(∂X×∂X ⋆) = νη

π(∂X×{η}) = 1 for νµ⋆-almost every η ∈ ∂X ⋆.

These disintegrations lead to by the Fubini theorem,

Pη =

∫

∂X×{η}

Pξ,η dνη
π(ξ) for νµ⋆-almost every η ∈ ∂X ⋆. (2.8)

For νµ⋆-almost every η ∈ ∂X ⋆, the conditional probability measure Pη coincides with

the distribution of a conditional process on Γ. This is a Markov chain whose transition

probability is defined for νµ⋆-almost every η ∈ ∂X ⋆,

pη(x,y) := π(x−1y)
dyνµ⋆

dxνµ⋆

(η) if π(x−1y) > 0, and 0 if otherwise, for x,y ∈ Γ.

Note that yνµ⋆ is absolutely continuous with respect to xνµ⋆ and dyνµ⋆/dxνµ⋆ is well-

defined νµ⋆-almost everywhere if π(x−1y) > 0 by (2.5). Moreover since

dyνµ⋆

dxνµ⋆

(η) =
dx−1yνµ⋆

dνµ⋆

(x−1η) for νµ⋆-almost every η ∈ ∂X ⋆,

the above pη(x,y) indeed defines a transition probability by the π-stationarity of νµ⋆ . Let

πη
n(x) := Pη(wn = x) for x ∈ Γ and n ∈ Z+. It holds that for νµ⋆-almost every η ∈ ∂X ⋆,

for every cylinder set [w0, . . . ,wn] in (Ω,F ,P),

Pη([w0, . . . ,wn]) = P([w0, . . . ,wn])
dwnνµ⋆

dνµ⋆

(η). (2.9)

In particular, for νµ⋆-almost every η ∈ ∂X ⋆,

πη
n(x) = πn(x)

dxνµ⋆

dνµ⋆

(η) for x ∈ Γ and n ∈ Z+.

For more details, see [Kai00, Sections 3 and 4]. There it is shown (in a more general

setting) that the Shannon theorem holds for the conditional process. Namely, for νµ⋆-

almost every η ∈ ∂X ⋆, the following limit exists and is constant Pη-almost everywhere:

h(Pη) := lim
n→∞

−
1

n
log πη

n(wn). (2.10)
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Furthermore, the limit is obtained as

h(Pη) = h(π)−
∑

x∈Γ

π(x)

∫

∂X ⋆

log
dxνµ⋆

dνµ⋆

(η) dxνµ⋆(η).

See [Kai00, Theorem 4.5]. The differential entropy for the pair (∂X ⋆, µ⋆) is defined by

h(∂X ⋆, µ⋆) :=
∑

x∈suppµ⋆

µ⋆(x)

∫

∂X ⋆

log
dxνµ⋆

dνµ⋆

(η) dxνµ⋆(η).

Since µ⋆ is a marginal of π, it holds that

h(Pη) = h(π)− h(∂X ⋆, µ⋆) for νµ⋆-almost every η ∈ ∂X ⋆.

Let us mention that the differential entropy arises in the theory of Poisson boundary in

the following way: It has been proven that h(∂X ⋆, µ⋆) ≤ h(µ⋆) and the equality holds if

and only if (∂X ⋆, νµ⋆) is a Poisson boundary for the µ⋆-random walk [Kai00, Theorem 4.6].

In the present setting, since (∂X ⋆, νµ⋆) is π-stationary (2.5), it holds that h(∂X ⋆, µ⋆) =

h(∂X ⋆, π), and that h(∂X ⋆, π) ≤ h(π), where the equality holds if and only if (∂X ⋆, νµ⋆)

is a Poisson boundary for (Γ, π).

3. Exact dimension of conditional measures

For a proper C-roughly geodesic hyperbolic metric space (X , d) for some C ∈ R+

with a fixed base point o ∈ X and for a µ-random walk {wn}n∈Z+ , the following ray

approximation holds for zn = wn ·o: If µ is non-elementary and has a finite first moment,

then P-almost surely there exists a C-rough geodesic ray γz∞ such that for l := l(X , µ)

of {zn}n∈Z+ ,

d(zn, γz∞(ln)) = o(n). (3.1)

See [Kai00, Theorem 7.3]. In fact, such an assignment ξ 7→ γξ from ∂X to the space

of C-rough geodesic rays from o in (X , d) equipped with the topology of convergence on

compact sets is chosen to be Borel measurable by the Borel selection theorem (cf. [Tan19,

Section 3.2]). In the same way, there is a Borel measurable map η 7→ γη from ∂X ⋆ to

the space of C-rough geodesic rays from o⋆ in (X ⋆, d⋆). For the drift l⋆ := l(X ⋆, µ⋆) of

{z⋆n}n∈Z+ , it holds that P-almost surely,

d⋆(z⋆n, γz⋆∞(l
⋆n)) = o(n). (3.2)

In the following subsections, for brevity, let

h := h(π)− h(∂X ⋆, µ⋆), l := l(X , µ) and l⋆ := l(X ⋆, µ⋆).

3.1. Upper bounds on dimensions of conditional measures.

Lemma 3.1. Let Γ be a countable subgroup in IsomX × IsomX ⋆, and π be a probability

measure on Γ with finite first moment and non-elementary marginals µ and µ⋆. It holds

that for νµ⋆-almost every η ∈ ∂X ⋆ and for νη
π-almost every ξ ∈ ∂X × ∂X ⋆,

lim sup
r→0

log νη
π(B(ξ, r))

log r
≤

h(π)− h(∂X ⋆, µ⋆)

l(X , µ)
.
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Proof. Recall that for νµ⋆-almost every η ∈ ∂X ⋆, the distribution Pη is obtained by a

Markov chain whose law at time n is πη
n for n ∈ Z+. For every ε > 0 and every interval I

in Z+, let

Aε,I :=
⋂

n∈I

{

w ∈ Ω : (zn|zn+1)o ≥ (l − ε)n, πbnd⋆(w)
n (wn) ≥ exp(−n(h + ε))

}

.

Note that (zn|zn+1)o/n → l as n → ∞ almost surely in P since µ has a finite first moment

and the µ-random walk has the drift l > 0. By disintegration (2.7), this together with

(2.10) implies that for every ε ∈ (0, l) and for νµ⋆-almost every η ∈ ∂X ⋆,

Pη
(

⋃

N∈Z+

Aε,[N,∞)

)

= 1.

Hence for every ε > 0 and for νµ⋆-almost every η ∈ ∂X ⋆, there exists an Nε,η ∈ Z+ such

that

Pη
(

Aε,[Nε,η,∞)

)

≥ 1− ε.

Let N := Nε,η and A := Aε,Nε,η
. Further for all n > N , let

A[N,n) := Aε,[N,n) and A[n,∞) := Aε,[n,∞).

Note that A = A[N,n) ∩ A[n,∞). For n ∈ Z+ and w ∈ Ω, let

Cn(w) :=
{

w′ ∈ Ω : w′
n = wn

}

.

This is the event where the position of the chain is wn at time n. Since the conditional

process is a Markov chain, for νµ⋆-almost every η ∈ ∂X ⋆, for all w ∈ Ω and all n > N ,

Pη(A | Cn(w)) = Pη(A[N,n) | Cn(w)) ·Pη(A[n,∞) | Cn(w)). (3.3)

Furthermore for νµ⋆-almost every η ∈ ∂X ⋆,

Pη(A[N,n) | Cn(w)) = Pη(A[N,n) | σ(wn,wn+1, . . . )) almost everywhere in Pη, (3.4)

where σ(wn,wn+1, . . . ) is the σ-algebra generated by wn,wn+1, . . . . Similarly, one has

Pη(A[n,∞) | Cn(w)) = Pη(A[n,∞) | σ(w0, . . . ,wn)) almost everywhere in Pη, (3.5)

where σ(w0, . . . ,wn) is the σ-algebra generated by w0, . . . ,wn. Let us denote the tail

σ-algebra by

T :=
⋂

n∈Z+

σ(wn,wn+1, . . . ).

Note that Pη-almost everywhere on A = A[N,n) ∩A[n,∞),

Pη(A[N,n) | σ(wn,wn+1, . . . )) = Pη(A | σ(wn,wn+1, . . . )).

By (3.4), the bounded martingale convergence theorem shows that for νµ⋆-almost every

η ∈ ∂X ⋆,

lim
n→∞

Pη(A[N,n) | Cn(w)) = Pη(A | T ) almost everywhere in Pη on A. (3.6)

Analogously, note that Pη-almost everywhere on A = A[N,n) ∩ A[n,∞),

Pη(A[n,∞) | σ(w0, . . . ,wn)) = Pη(A | σ(w0, . . . ,wn)).
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By (3.5), the bounded martingale convergence theorem shows that for νµ⋆-almost every

η ∈ ∂X ⋆,

lim
n→∞

Pη(A[n,∞) | Cn(w)) = 1A almost everywhere in Pη on A. (3.7)

For νµ⋆-almost every η ∈ ∂X ⋆, it holds that

Pη(A | T ) > 0 almost everywhere in Pη on A. (3.8)

Indeed, if we define N := {w ∈ Ω : Pη(A | T ) = 0}, then N is T -measurable and

Pη(A ∩ N | T ) = 0, implying that Pη(A ∩ N ) = 0. Thus we have (3.8). Therefore by

(3.3), (3.6), (3.7) and (3.8), for νµ⋆-almost every η ∈ ∂X ⋆,

lim
n→∞

Pη(A | Cn(w)) = Pη(A | T ) > 0 almost everywhere in Pη on A. (3.9)

For every w ∈ A, it holds that

q(zn, z∞) = exp(−(zn|z∞)o) ≤ Ce−(l−ε)n for all n > N,

where C is independent ofw. This follows since q with a power is bi-Lipschitz to a genuine

metric (cf. Section 2.1). Further for n > N and for Pη-almost every w′ ∈ A ∩ Cn(w),

w′
n = wn and q(z′n, z

′
∞) ≤ Ce−(l−ε)n,

where z′n := w′
n · o for wn = (w′

n, w
⋆
n

′

) and z′n → z′∞ as n → ∞ in X ∪∂X . Since w′
n = wn

and thus z′n = zn, by (2.1) extended on X ∪ ∂X ,

q(z∞, z′∞) ≤ Ceδ−(l−ε)n, i.e., z′∞ ∈ B(z∞, Ceδ−(l−ε)n) for all n > N.

Hence for νµ⋆-almost every η ∈ ∂X ⋆,

Pη(A ∩ Cn(w)) ≤ νη
π(B(z∞, Ceδ−(l−ε)n)× ∂X ⋆) for all n > N.

The right hand side coincides with νη
π(B(z∞, Ceδ−(l−ε)n)) where z∞ = (z∞, z⋆∞) since νη

π

is supported in ∂X ×{η} and η = z⋆∞ for νµ⋆-almost every η ∈ ∂X ⋆. For Pη-almost every

w ∈ A, it holds that for all n > N ,

Pη(A ∩ Cn(w)) = Pη(A | Cn(w)) ·Pη(Cn(w)) ≥ Pη(A | Cn(w)) · e−n(h+ε).

This shows that for νµ⋆-almost every η ∈ ∂X ⋆, for Pη-almost every w ∈ A and for all

n > N ,

νη
π(B(z∞, Ceδ−(l−ε)n)) ≥ Pη(A | Cn(w)) · e−n(h+ε).

By (3.9), for νµ⋆-almost every η ∈ ∂X ⋆ and for Pη-almost every w ∈ A,

lim sup
n→∞

log νη
π(B(z∞, r))

log r
≤

h+ ε

l − ε
. (3.10)

This follows first for the sequence rn → 0 as n → ∞ where rn := Ceδ−(l−ε)n and then

for r > 0 and r → 0 by noting that rn+1 = e−(l−ε)rn. Recall that Pη(A) ≥ 1 − ε for

the event A = Aε,[Nε,η,∞) for νµ⋆-almost every η ∈ ∂X ⋆. For an arbitrary decreasing
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sequence εn → 0 as n → ∞, one has Pη(
⋂

m∈Z+

⋃

n≥mAεn,[Nεn,η ,∞)) = 1 for νµ⋆-almost

every η ∈ ∂X ⋆. Therefore by (3.10) for νµ⋆-almost every η ∈ ∂X ⋆,

lim sup
r→0

log νη
π(B(z∞, r))

log r
≤

h

l
almost everywhere in Pη.

Noting that for νµ⋆-almost every η ∈ ∂X ⋆, the distribution of z∞ is νη
π , we obtain for

νµ⋆-almost every η ∈ ∂X ⋆,

lim sup
r→0

log νη
π(B(ξ, r))

log r
≤

h

l
for νη

π-almost every ξ ∈ ∂X × ∂X ⋆.

This concludes the claim. �

We use the following version of Lemma 3.1 in Section 4.

Lemma 3.2. In the same setting as in Lemma 3.1, if for νµ⋆-almost every η ∈ ∂X ⋆ there

exists a Borel set Fη in ∂X ×∂X ⋆ such that νη
π(Fη) > 0, then for νµ⋆-almost every η ∈ ∂X ⋆

and for νη
π-almost every ξ ∈ Fη,

lim sup
r→0

log νη
π(B(ξ, r) ∩ Fη)

log r
≤

h(π)− h(∂X ⋆, µ⋆)

l(X , µ)
.

Proof. This follows from Lemmas 2.2 and 3.1. �

3.2. Lower bounds on dimensions of conditional measures.

Lemma 3.3. Let Γ be a countable subgroup in IsomX × IsomX ⋆ with finite exponential

growth relative to (X×X ⋆,d), and π be a probability measure on Γ with finite first moment

and non-elementary marginals µ and µ⋆. For every ε > 0, there exist

(1) an N ∈ Z+,

(2) a Borel set D in ∂X ⋆ with νµ⋆(D) ≥ 1− ε, and

(3) a Borel set F in ∂X × ∂X ⋆ with νη
π(F ) ≥ 1 − ε for νµ⋆-almost every η ∈ D and

νπ(F ) ≥ 1− ε,

such that the following holds: For νµ⋆-almost every η ∈ D, for all ξ ∈ ∂X and all n ≥ N ,

νη
π

(

B(ξ, e−ln)× ∂X ⋆ ∩ F
)

≤ Cεe
−n(h−ε),

where Cε is a constant depending only on ε.

Proof. For every ε > 0 and every N ∈ Z+, let

Aε,N :=
⋂

n≥N

{

w ∈ Ω : d(zn, (γz∞(ln), γz⋆
∞
(l⋆n))) ≤ εn, πbnd⋆(w)

n (wn) ≤ exp(−n(h−ε))
}

.

The disintegration formula (2.7) implies that for all event A ⊂ Ω if P(A) = 1, then

Pη(A) = 1 for νµ⋆-almost every η ∈ ∂X ⋆. This together with (3.1) and (3.2), and further

(2.10) imply that for every ε > 0,

Pη
(

⋃

N∈Z+

Aε,N

)

= 1 for νµ⋆-almost every η ∈ ∂X ⋆.

For N ∈ Z+, let

Dε,N :=
{

η ∈ ∂X ⋆ : Pη(Aε,N) ≥ 1− ε
}

.
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Since Aε,N is increasing and Pη(Aε,N) → 1 monotonically as N → ∞ for νµ⋆-almost every

η ∈ ∂X ⋆, there exists an Nε ∈ Z+ such that

νµ⋆ (Dε,Nε
) ≥ 1− ε. (3.11)

Let N := Nε, D := Dε,Nε
and A := Aε,Nε

. It holds that

Pη(A) ≥ 1− ε for νµ⋆-almost every η ∈ D. (3.12)

Let us define

Fε :=
{

(ξ, η) ∈ ∂X × ∂X ⋆ : Pξ,η(A) ≥ ε
}

,

and F := Fε. We claim that

νη
π(F ) ≥ 1− 2ε for νµ⋆-almost every η ∈ D. (3.13)

Indeed, by (3.12) and by (2.8), for νµ⋆-almost every η ∈ D,

1− ε ≤ Pη(A) =

∫

∂X×{η}

Pξ,η(A) dνη
π(ξ) =

∫

F

Pξ,η(A) dνη
π(ξ) +

∫

∂X×∂X ⋆\F

Pξ,η(A) dνη
π(ξ).

This implies that

1− ε ≤ νη
π(F ) + ε · νη

π(∂X × ∂X ⋆ \ F ) ≤ νη
π(F ) + ε,

showing (3.13).

Furthermore it holds that

νπ(F ) ≥ 1− 3ε. (3.14)

This follows since νη
π(F ) ≥ (1− 2ε)1D by (3.13), integration with respect to νµ⋆ yields

νπ(F ) =

∫

∂X ⋆

νη
π(F ) dνµ⋆(η) ≥ (1− 2ε)νµ⋆(D) ≥ (1− 2ε)(1− ε) ≥ 1− 3ε,

where the second inequality uses (3.11). It holds that for νµ⋆-almost every η ∈ ∂X ⋆, for

every ξ ∈ ∂X and R > 0,

νη
π(O(γξ(ln), R)× ∂X ⋆ ∩ F ) = Pη({z∞ ∈ O(γξ(ln), R)× ∂X ⋆ ∩ F})

= Pη({z∞ ∈ O(γξ(ln), R)× ∂X ⋆ ∩ F} ∩A)

+Pη({z∞ ∈ O(γξ(ln), R)× ∂X ⋆ ∩ F} ∩ Ac). (3.15)

In the above, Ac denote the complement event of A, and z∞ = (z∞, z⋆∞). First let us

bound the first term in (3.15). On the event A, if z∞ ∈ O(γξ(ln), R) and n ≥ N , then

d(zn, γξ(ln)) ≤ d(zn, γz∞(ln)) + d(γz∞(ln), γξ(ln)) ≤ εn+ CR,

where CR := 2R+2C since γξ is a C-rough geodesic ray. Moreover, since νµ⋆-almost every

η ∈ ∂X ⋆ it holds that z⋆∞ = η almost surely in Pη, it holds that Pη-almost everywhere on

A for all n ≥ N ,

d⋆(z⋆n, γη(l
⋆n)) ≤ εn.

Hence Pη-almost everywhere on A for all n ≥ N ,

d(zn, γξ,η,n) ≤ εn+ CR where γξ,η,n := (γξ(ln), γη(l
⋆n)).
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This shows that letting B(x, r) denote the ball in (X ×X ⋆,d), we have for all n ≥ N ,

Pη({z∞ ∈ O(γξ(ln), R)× ∂X ⋆ ∩ F} ∩A)

≤ Pη({zn ∈ B(γξ,η,n, εn+ CR)} ∩ {πη
n(wn) ≤ exp(−n(h− ε))}).

The right hand side is at most
∑

πη
n(x) where the summation runs over all x ∈ Γ such

that x · o ∈ B(γξ,η,n, εn+ CR) and πη
n(x) ≤ exp(−n(h− ε)). This is at most

#
{

x ∈ Γ : x · o ∈ B(γξ,η,n, εn+ CR)
}

· e−n(h−ε) ≤ cec(εn+CR) · e−n(h−ε),

for a constant c > 0 since Γ has a finite exponential growth relative to (X ×X ⋆,d). Thus

for νµ⋆-almost every η ∈ ∂X ⋆ and for every ξ ∈ ∂X , for all n ≥ N ,

Pη({z∞ ∈ O(γξ(ln), R)× ∂X ⋆ ∩ F} ∩A) ≤ cec(εn+CR) · e−n(h−ε). (3.16)

Next let us bound the second term in (3.15). By (2.8), it holds that for νµ⋆-almost

every η ∈ D,

Pη({z∞ ∈ O(γξ(ln), R)× ∂X ⋆ ∩ F} ∩ Ac)

=

∫

O(γξ(ln),R)×∂X ⋆∩F

Pζ,η(Ac) dνη
π(ζ) ≤ (1− ε) · νη

π(O(γξ(ln), R)× ∂X ⋆ ∩ F ). (3.17)

In the above, the inequality holds since Pζ,η(Ac) ≤ 1 − ε for νη
π-almost every (ζ, η) ∈ F

for νµ⋆-almost every η ∈ D by the definition of F .

Finally, combining (3.15), (3.16) and (3.17) yields for νµ⋆-almost every η ∈ D, for every

ξ ∈ ∂X and for all n ≥ N ,

νη
π(O(γξ(ln), R)× ∂X ⋆ ∩F ) ≤ cec(εn+CR) · e−n(h−ε) + (1− ε) · νη

π(O(γξ(ln), R)× ∂X ⋆ ∩F ).

Therefore for νµ⋆-almost every η ∈ D and for every ξ ∈ ∂X , for all n ≥ N ,

ε · νη
π (O(γξ(ln), R)× ∂X ⋆ ∩ F ) ≤ cec(εn+CR) · e−n(h−ε). (3.18)

Note that B(ξ, C−1e−ln+R)∩∂X ⊂ O(γξ(ln), R) by (2.3), where we choose a large enough

constant R so that eR/C ≥ 1 and C depends only on the hyperbolicity constant. In

(3.18), the constant c depends only on Γ and (X ×X ⋆,d). For every ε > 0, we argue with

ε′ = ε/(3 + c). By (3.11), (3.13) and (3.14), we obtain

νµ⋆(D) ≥ 1− ε′ ≥ 1− ε, νη
π(F ) ≥ 1− 2ε′ ≥ 1− ε for νµ⋆-almost every η ∈ D,

and νπ(F ) ≥ 1 − 3ε′ ≥ 1 − ε. Further by (3.18), for νµ⋆-almost every η ∈ D, for every

ξ ∈ ∂X and for all n ≥ N ,

νη
π

(

B(ξ, e−ln) ∩ F
)

≤ (c/ε′)ecCR · e−n(h−ε).

Defining the constant Cε := (c/ε′)ecCR yields the claim. �

Lemma 3.4. In the same setting as in Lemma 3.3, it holds that for νµ⋆-almost every

η ∈ ∂X ⋆ and for νη
π-almost every ξ ∈ ∂X × ∂X ⋆,

lim inf
r→0

log νη
π(B(ξ, r))

log r
≥

h(π)− h(∂X ⋆, µ⋆)

l(X , µ)
.
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Proof. By Lemma 3.3, for every ε > 0 there exist a Borel set D in ∂X ⋆ with νµ⋆(D) ≥ 1−ε

and a Borel set F in ∂X × ∂X ⋆ with νπ(F ) ≥ 1 − ε such that the following holds: For

νµ⋆-almost every η ∈ D and for every ξ ∈ ∂X ,

lim inf
n→∞

log νη
π(B((ξ, η), e−ln) ∩ F )

−ln
≥

h− ε

l
.

In fact, in the above the sequence rn := e−ln for n ∈ Z+ is replaced by positive reals r

tending to 0 since rn+1 = e−lrn for all n ∈ Z+. Applying to Lemma 2.2 the measures νη
π

and F implies the following: There exists a constant L ≥ 1 such that for νµ⋆-almost every

η ∈ D, for νη
π-almost every (ξ, η) ∈ F and for a constant r(ξ, η) > 0,

νη
π(B((ξ, η), Lr) ∩ F ) ≥

9

10
νη
π(B((ξ, η), r)) for all r ∈ (0, r(ξ, η)).

Hence for νµ⋆-almost every η ∈ D and for νη
π-almost every ξ = (ξ, η) ∈ F ,

lim inf
r→0

log νη
π(B(ξ, r))

log r
≥

h− ε

l
.

Since for every ε > 0 there exists such an F denoted by Fε with νη
π(Fε) ≥ 1 − ε, for νµ⋆-

almost every η ∈ D, it holds that νη
π(
⋂

m∈Z+

⋃

n≥m Fεn) = 1 for an arbitrary decreasing

sequence εn → 0 as n → ∞. Therefore it follows that for νµ⋆-almost every η ∈ D and for

νη
π-almost every ξ ∈ ∂X × ∂X ⋆,

lim inf
r→0

log νη
π(B(ξ, r))

log r
≥

h

l
.

For every ε > 0 there exists such a D with νµ⋆(D) ≥ 1− ε, the above holds for νµ⋆-almost

every η ∈ ∂X ⋆. This concludes the claim. �

3.3. Proofs of Theorems 1.2 and 1.3.

Proof of Theorem 1.3. Since µ and µ⋆ are non-elementary and have finite first moments,

the drift l(X , µ) is finite and positive, further the asymptotic entropy h(π) and the dif-

ferential entropy h(∂X ⋆, µ⋆) are finite. The first claim follows from Lemmas 3.1 and 3.4.

The second claim follows from Lemma 2.1. �

Proof of Theorem 1.2. Since a probability measure µ⋆ on Γ⋆ is non-elementary with finite

first moment, it holds that h(µ⋆) = h(∂Γ⋆, µ⋆) since (∂Γ⋆, νµ⋆) is a Poisson boundary

for (Γ⋆, µ⋆) [Kai00, Theorem 7.4]. The claim follows from Theorem 1.3 by applying Γ

and Γ⋆ endowed with left invariant hyperbolic metrics quasi-isometric to word metrics

respectively to (X , d) and (X ⋆, d⋆). �

4. Exact dimension of harmonic measures in products spaces

As in Section 3, for brevity, let

l := l(X , µ), l⋆ := l(X ⋆, µ⋆), h⋆ := h(∂X ⋆, µ⋆) and h := h(π)− h⋆.
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4.1. Upper bounds on dimensions of harmonic measures in product spaces.

The proof of the following proposition is inspired by [LL23, Section 8].

Proposition 4.1. Let Γ be a countable subgroup in IsomX × IsomX ⋆, and π be a proba-

bility measure on Γ with finite first moment and non-elementary marginals µ and µ⋆. If

l(X , µ) ≥ l(X ⋆, µ⋆), then it holds that for νπ-almost every ξ ∈ ∂X × ∂X ⋆,

lim sup
r→0

log νπ (B(ξ, r))

log r
≤

h(π)− h(∂X ⋆, µ⋆)

l(X , µ)
+

h(∂X ⋆, µ⋆)

l(X ⋆, µ⋆)
.

We assume that l ≥ l⋆: if otherwise we argue after exchanging the notations l and l⋆.

Fix an arbitrary ε ∈ (0, l⋆). Let

rn := e−(l⋆−ε)n for n ∈ Z+.

Let us define (recalling that zt = wt · o)

Aε,n :=
⋂

t≥n

{

w ∈ Ω : z∞ = (z∞, z⋆∞) exists and q(zt, z∞) ≤ rn

}

.

Lemma 4.2. The events Aε,n are increasing in n ∈ Z+, and it holds that

P
(

⋃

n∈Z+

Aε,n

)

= 1.

Proof. By definition Aε,n are increasing in n ∈ Z+. For P-almost every w ∈ Ω, for all

large enough t ∈ Z+ (recalling that zt = wt · o and z⋆t = w⋆
t · o

⋆),

(zt|z∞)o ≥ (l − ε)t and (z⋆t |z
⋆
∞)o⋆ ≥ (l⋆ − ε)t.

In which case, max{e−(zt|z∞)o , e−(z⋆t |z
⋆
∞
)o⋆} ≤ e−(l⋆−ε)t since l ≥ l⋆, showing the claim. �

For each η ∈ ∂X ⋆ and n ∈ Z+, let

Eε,n(η) :=
{

w ∈ Ω : Pη([w0, . . . ,wn] ∩Aε,n) ≤ en(h
⋆+ε)P([w0, . . . ,wn] ∩Aε,n)

}

,

and Eε,[n,∞)(η) :=
⋂

t≥n Eε,t(η).

Lemma 4.3. For each η ∈ ∂X ⋆, the events Eε,[n,∞)(η) are increasing in n ∈ Z+, and for

νµ⋆-almost every η ∈ ∂X ⋆,

Pη
(

⋃

n∈Z+

Eε,[n,∞)(η)
)

= 1.

Proof. In the following, let An := Aε,n for n ∈ Z+. By (2.9), for νµ⋆-almost every η ∈ ∂X ⋆,

for every cylinder set [w0, . . . ,wn] in (Ω,F ,P),

Pη([w0, . . . ,wn]) = P([w0, . . . ,wn])
dwnνµ⋆

dνµ⋆

(η).

Note that for P-almost every w ∈ Ω, for all n ∈ Z+,

P([w0, . . . ,wn]) > 0 and Pbnd⋆(w)([w0, . . . ,wn]) > 0.

The Birkhoff ergodic theorem implies that P-almost every w ∈ Ω,

lim
n→∞

1

n
log

dwnνµ⋆

dνµ⋆

(bnd⋆(w)) = h⋆.
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See [Kai00, the proof of Theorem 4.5]. This implies that by disintegration of P into Pη

for η ∈ ∂X ⋆, for νµ⋆-almost every η ∈ ∂X ⋆, for Pη-almost every w ∈ Ω,

lim
n→∞

1

n
log

dwnνµ⋆

dνµ⋆

(η) = h⋆.

Therefore for νµ⋆-almost every η ∈ ∂X ⋆, for Pη-almost every w ∈ Ω,

lim
n→∞

1

n
log

Pη([w0, . . . ,wn])

P([w0, . . . ,wn])
= h⋆. (4.1)

Fix an arbitrary N ∈ Z+. For all n ∈ [N,∞) ∩ Z+, for all cylinder set [w0, . . . ,wn] in

(Ω,F ,P) of positive P-measure, it holds that

P([w0, . . . ,wn] ∩ AN)

P([w0, . . . ,wn])
≤

P([w0, . . . ,wn] ∩ An)

P([w0, . . . ,wn])
≤ 1.

The left most side equals P(AN | σ(w0, . . . ,wn)) almost everywhere in P. The martingale

convergence theorem yields

lim
n→∞

P(AN | σ(w0, . . . ,wn)) = 1AN
for P-almost every w ∈ Ω.

Since N is arbitrary and P(
⋃

N∈Z+
AN) = 1, it holds that

lim
n→∞

P([w0, . . . ,wn] ∩ An)

P([w0, . . . ,wn])
= 1 for P-almost every w ∈ Ω.

By disintegration of P into Pη for η ∈ ∂X ⋆, for νµ⋆-almost every η ∈ ∂X ⋆,

lim
n→∞

P([w0, . . . ,wn] ∩ An)

P([w0, . . . ,wn])
= 1 for Pη-almost every w ∈ Ω. (4.2)

Applying the same discussion to Pη as for P, we obtain for νµ⋆-almost every η ∈ ∂X ⋆,

lim
n→∞

Pη([w0, . . . ,wn] ∩ An)

Pη([w0, . . . ,wn])
= 1 for Pη-almost every w ∈ Ω. (4.3)

Combining (4.1), (4.2) and (4.3) yields for νµ⋆-almost every η ∈ ∂X ⋆,

lim
n→∞

1

n
log

Pη([w0, . . . ,wn] ∩ An)

P([w0, . . . ,wn] ∩ An)
= h⋆ for Pη-almost every w ∈ Ω. (4.4)

By definition for each η ∈ ∂X ⋆ the events Eε,[n,∞)(η) are increasing in n ∈ Z+ respectively,

and by (4.4) for νµ⋆-almost every η ∈ ∂X ⋆,

Pη
(

⋃

n∈Z+

Eε,[n,∞)(η)
)

= 1,

as claimed. �

Proof of Proposition 4.1. Fix an arbitrary ε ∈ (0, l⋆) and recall that rn := e−(l⋆−ε)n for

n ∈ Z+. Let An, En(η) and E[n,∞)(η) denote Aε,n, Eε,n(η) and Eε,[n,∞)(η) respectively

for brevity. Lemma 4.2 implies that by disintegration of P into Pη for η ∈ ∂X ⋆, for

νµ⋆-almost every η ∈ ∂X ⋆,

Pη
(

⋃

n∈Z+

An

)

= 1.
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By this together with Lemma 4.3, for νµ⋆-almost every η ∈ ∂X ⋆, there exists an Nε,η ∈ Z+

such that

Pη
(

E[Nε,η ,∞)(η) ∩ ANε,η

)

≥ 1− ε. (4.5)

Let N := Nε,η, E[N,∞)(η) := E[Nε,η ,∞)(η) and AN := ANε,η
. Further let

Fη :=
{

ξ ∈ ∂X × ∂X ⋆ : Pξ
(

E[N,∞)(η) ∩AN

)

≥ ε
}

.

Note that Fη is a Borel measurable set in ∂X × ∂X ⋆ since for each B ∈ F in (Ω,F ,P),

the map ξ 7→ Pξ(B) is Borel measurable. By (4.5) and by disintegration of Pη into Pξ

for ξ ∈ ∂X × ∂X ⋆, for νµ⋆-almost every η ∈ ∂X ⋆,

1− ε ≤ Pη
(

E[N,∞)(η) ∩AN

)

=

∫

∂X×∂X ⋆

Pξ
(

E[N,∞)(η) ∩AN

)

dνη
π(ξ) ≤ νη

π(Fη)+ ενη
π(F

c

η ).

Therefore for νµ⋆-almost every η ∈ ∂X ⋆,

νη
π(Fη) ≥ 1− 2ε. (4.6)

Furthermore, for νµ⋆-almost every η ∈ ∂X ⋆ and for every ξ0 ∈ ∂X × ∂X ⋆,

νη
π (B(ξ0, rn) ∩ Fη) = Pη

(

{z∞ ∈ B(ξ0, rn) ∩ Fη} ∩ E[N,∞)(η) ∩ AN

)

+Pη
(

{z∞ ∈ B(ξ0, rn) ∩ Fη} ∩ (E[N,∞)(η) ∩ AN)
c

)

.

By definition of Fη, it holds that

Pη
(

{z∞ ∈ B(ξ0, rn) ∩ Fη} ∩ (E[N,∞)(η) ∩ AN)
c

)

=

∫

B(ξ0,rn)∩Fη

Pξ
(

(E[N,∞)(η) ∩ AN)
c

)

dνη
π(ξ) ≤ (1− ε)νη

π (B(ξ0, rn) ∩ Fη) .

In summary, for all n ≥ N ,

ενη
π (B(ξ0, rn) ∩ Fη) ≤ Pη

(

{z∞ ∈ B(ξ0, rn) ∩ Fη} ∩ E[N,∞)(η) ∩ AN

)

.

By Lemmas 4.2 and 4.3, the events An and E[n,∞)(η) are increasing in n ∈ Z+, and

E[n,∞)(η) ⊂ En(η) by the definition. Thus, for νµ⋆-almost every η ∈ ∂X ⋆, for every

ξ0 ∈ ∂X × ∂X ⋆, and for all n ≥ N = Nε,η,

ενη
π (B(ξ0, rn) ∩ Fη) ≤ Pη ({z∞ ∈ B(ξ0, rn)} ∩ En(η) ∩ An) . (4.7)

By definition of An, if An holds, then zn ∈ B(z∞, rn), whence for C := Cq > 0,

Pη ({z∞ ∈ B(ξ0, rn)} ∩ En(η) ∩ An) ≤ Pη ({zn ∈ B(ξ0, Crn)} ∩ En(η) ∩An) . (4.8)

For every ξ0 ∈ ∂X × ∂X ⋆ and for every n ∈ Z+, let

Bn(ξ0) :=
{

zn ∈ B(ξ0, Crn)
}

.

For each such fixed ξ0 and n, the event Bn(ξ0) is σ(w0, . . . ,wn)-measurable. Further

each fixed η and n, the event En(η) is σ(w0, . . . ,wn)-measurable. Hence for each fixed

ξ0, η and n, the event Bn(ξ0) ∩ En(η) is σ(w0, . . . ,wn)-measurable and is obtained as a
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(countable) sum of cylinder sets [w0, . . . ,wn] in (Ω,F ,P). Decomposing the event into a

sum of cylinder sets yields

Pη (Bn(ξ0) ∩ En(η) ∩ An) =
∑

[w0,...,wn]⊂Bn(ξ0)∩En(η)

Pη ([w0, . . . ,wn] ∩An) .

In the right hand side, each summand is at most en(h
⋆+ε)P ([w0, . . . ,wn] ∩An) since

[w0, . . . ,wn] ⊂ En(η). Furthermore since P ([w0, . . . ,wn] ∩An) over those cylinder sets

add up to P(Bn(ξ0) ∩ En(η) ∩An), it holds that

Pη (Bn(ξ0) ∩ En(η) ∩ An) ≤ en(h
⋆+ε)P (Bn(ξ0) ∩ En(η) ∩An) . (4.9)

By the definitions of Bn(ξ0) and An, if Bn(ξ0) ∩ An holds, then z∞ ∈ B(ξ0, C
2rn). This

in particular implies that

P (Bn(ξ0) ∩ En(η) ∩ An) ≤ P
(

{z∞ ∈ B(ξ0, C
2rn)}

)

= νπ
(

B(ξ0, C
2rn)

)

(4.10)

Combining (4.7), (4.8), (4.9) and (4.10) implies that for νµ⋆-almost every η ∈ ∂X ⋆, for

every ξ0 ∈ ∂X × ∂X ⋆, and for all n ≥ N = Nε,η,

ενη
π (B(ξ0, rn) ∩ Fη) ≤ en(h

⋆+ε)νπ
(

B(ξ0, C
2rn)

)

. (4.11)

Recall that h = h(π)− h⋆. By Lemma 3.2, for νµ⋆-almost every η ∈ ∂X ⋆, for νη
π-almost

every ξ0 ∈ Fη, there exists an Nη,ξ0 ∈ Z+ such that for all n ≥ Nη,ξ0 ,
(

h

l
+ ε

)

log rn ≤ log νη
π (B(ξ0, rn) ∩ Fη) .

This together with (4.11) shows that for νµ⋆-almost every η ∈ ∂X ⋆, for νη
π-almost every

ξ0 ∈ Fη (recalling that rn = e−(l⋆−ε)n),

lim sup
n→∞

log νπ (B(ξ0, C
2rn))

log rn
≤

h

l
+ ε+

h⋆ + ε

l⋆ − ε
.

Recall that νη
π(Fη) ≥ 1−2ε by (4.6) and that this holds for arbitrary ε ∈ (0, l⋆). Therefore

after replacing the sequence rn by reals r tending to 0, for νµ⋆-almost every η ∈ ∂X ⋆, for

νη
π-almost every ξ ∈ ∂X × ∂X ⋆,

lim sup
r→0

log νπ (B (ξ, r))

log r
≤

h

l
+

h⋆

l⋆
.

The disintegration of νπ into νη
π shows that the above holds for νπ-almost every ξ ∈

∂X × ∂X ⋆, concluding the claim. �

4.2. Lower bounds on dimensions of harmonic measures in product spaces.

Proposition 4.4. Let Γ = Γ × Γ⋆ where Γ and Γ⋆ are countable subgroups in IsomX

and in IsomX ⋆ with finite exponential growth relative to (X , d) and to (X ⋆, d⋆) respec-

tively. For every probability measure π on Γ with finite first moment and non-elementary

marginals µ and µ⋆, it holds that for νπ-almost every ξ ∈ ∂X × X ⋆,

lim inf
r→0

log νπ (B(ξ, r))

log r
≥

h(π)− h(µ⋆)

l(X , µ)
+

h(µ⋆)

l(X ⋆, µ⋆)
.
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Proof. Note that Γ has a finite exponential growth relative to (X ×X ⋆,d) by the assump-

tion. By Lemma 3.3, for every ε > 0 there exists an N ∈ Z+, a Borel set D in ∂X ⋆ with

νµ⋆(D) ≥ 1− ε and a Borel set F in ∂X × ∂X ⋆ with νπ(F ) ≥ 1− ε as stated. If we define

F̂ := (∂X ×D) ∩ F , then

νπ(F̂ ) ≥ 1− 2ε. (4.12)

This follows since νπ(∂X ×D) = νµ⋆(D) ≥ 1− ε and νπ(F ) ≥ 1− ε.

Let rn := e−ln for n ∈ Z+. For every ξ = (ξ, ξ⋆) ∈ ∂X × ∂X ⋆, by disintegration of νπ
into νη

π for η ∈ ∂X ⋆,

νπ
(

B(ξ, rn)× B(ξ⋆, rn) ∩ F̂
)

=

∫

B(ξ⋆,rn)∩D

νη
π (B(ξ, rn)× ∂X ⋆ ∩ F ) dνµ⋆(η).

By Lemma 3.3, for νµ⋆-almost every η ∈ D, for every ξ ∈ ∂X and for all n ≥ N ,

νη
π (B(ξ, rn)× ∂X ⋆ ∩ F ) ≤ Cεe

−n(h−ε).

Therefore for every ξ = (ξ, ξ⋆) ∈ ∂X × ∂X ⋆ and for all n ≥ N ,

νπ
(

B(ξ, rn)×B(ξ⋆, rn) ∩ F̂
)

≤ Cεe
−n(h−ε)νµ⋆ (B(ξ⋆, rn) ∩D) . (4.13)

By the dimension formula for (Γ⋆, µ⋆) in [Tan19, Theorem 1.2], for νµ⋆-almost every ξ⋆ ∈

∂X ⋆,

lim
n→∞

log νπ (B(ξ⋆, rn))

log rn
=

h(µ⋆)

l⋆
.

(The proof presented there is for geodesic spaces, but it is adapted to roughly geodesic

spaces X .) Since νπ (B(ξ⋆, rn) ∩D) ≤ νπ (B(ξ⋆, rn)) and log rn < 0, for νµ⋆-almost every

ξ⋆ ∈ ∂X ⋆,

lim inf
n→∞

log νπ (B(ξ⋆, rn) ∩D)

log rn
≥

h(µ⋆)

l⋆
.

This together with (4.13) implies that since νπ(∂X × D) = νµ⋆(D) and B(ξ, rn) =

B(ξ, rn)× B(ξ⋆, rn), for νπ-almost every ξ = (ξ, ξ⋆) ∈ ∂X ×D (recalling that rn = e−ln),

lim inf
n→∞

log νπ
(

B(ξ, rn) ∩ F̂
)

log rn
≥

h− ε

l
+

h(µ⋆)

l⋆
. (4.14)

By Lemma 2.2, for νπ-almost every ξ ∈ F̂ (where F̂ ⊂ ∂X ×D),

lim inf
n→∞

log νπ
(

B(ξ, rn)
)

log rn
≥

h− ε

l
+

h(µ⋆)

l⋆
. (4.15)

By (4.12), one has νπ(F̂ ) ≥ 1−2ε, and for every ε > 0 there exists such an F̂ in ∂X ×∂X ⋆.

Thus after replacing the sequence rn for n ∈ Z+ by positive reals r tending to 0, we obtain

for νπ-almost every ξ ∈ ∂X × ∂X ⋆,

lim inf
r→0

log νπ
(

B(ξ, r)
)

log r
≥

h

l
+

h(µ⋆)

l⋆
.

This concludes the claim. �
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4.3. Exact dimension and the proof of Theorem 1.1.

Theorem 4.5. Let (X , d) and (X ⋆, d⋆) be roughly geodesic hyperbolic metric spaces with

bounded growth at some scale. Let Γ = Γ × Γ⋆ where Γ and Γ⋆ are countable subgroups

in IsomX and in IsomX ⋆ with finite exponential growth relative to (X , d) and to (X ⋆, d⋆)

respectively. For every probability measure π on Γ with finite first moment and non-

elementary marginals µ and µ⋆, the harmonic measure νπ on ∂X × ∂X ⋆ is exact dimen-

sional. Moreover, if l(X , µ) ≥ l(X ⋆, µ⋆), then it holds that

dim νπ =
h(π)− h(µ⋆)

l(X , µ)
+

h(µ⋆)

l(X ⋆, µ⋆)
.

Proof. If Γ⋆ has finite exponential growth relative to (X ⋆, d⋆) and µ⋆ is non-elementary

and of finite first moment, then (∂X ⋆, νµ⋆) is a Poisson boundary for (Γ⋆, µ⋆) [Kai00,

Theorem 7.4]. In particular, h(µ⋆) = h(∂X ⋆, µ⋆). Therefore by Propositions 4.1 and 4.4,

if l(X , µ) ≥ l(X ⋆, µ⋆), then for νπ-almost every ξ ∈ ∂X × ∂X ⋆,

lim
r→0

log νπ(B(ξ, r))

log r
=

h(π)− h(µ⋆)

l(X , µ)
+

h(µ⋆)

l(X ⋆, µ⋆)
.

This shows that νπ is exact dimensional. The second claim follows from Lemma 2.1. �

Proof of Theorem 1.1. The claim follows from Theorem 4.5 as a special case. �

Remark 4.6. Let us mention possible extensions and related questions.

(1) The proof of Theorem 4.5 can be extended to a product of more than two hyper-

bolic metric spaces. For a positive N ∈ Z+, let (X (i), d(i)) for i = 1, . . . , N be

proper roughly geodesic hyperbolic metric spaces with bounded growth at some

scale. Further Γ(i) are countable subgroups in IsomX (i) with finite exponential

growth for each i = 1, . . . , N . Let Γ := Γ(1) × · · · × Γ(N). For a probability mea-

sure π on Γ with non-elementary marginals µ(i) of π in IsomX (i) of finite first

moment, the harmonic measure νπ on ∂X (1) × · · · × ∂X (N) is exact dimensional:

Let π(i) be the pushforward of π to IsomX (i)×· · ·× IsomX (N) for i = 1, . . . , N . If

l(X (1), µ(1)) ≥ · · · ≥ l(X (N), µ(N)), then for νπ-almost every ξ ∈ ∂X (1)×· · ·×∂X (N),

dim νπ =

N−1
∑

i=1

h(π(i))− h(π(i+1))

l(X (i), µ(i))
+

h(π(N))

l(X (N), µ(N))
.

In the above, h(π(i)) denotes the asymptotic entropy for a π(i)-random walk and

l(X (i), µ(i)) denotes the drift associated with a µ(i)-random walk for each i =

1, . . . , N . Further the Hausdorff dimension is computed by the quasi-metric defined

as maximum of the ones in ∂X (i). The proof proceeds by the reverse induction in

i from N to 1 upon extending Propositions 4.1 and 4.4 and Theorem 4.5 to the

spaces X (i) × · · · × X (N) for i = 1, . . . , N . Since writing out all the details in this

generality would hurt readability, we refrain from producing the whole argument.

(2) In [Tan19], the exact dimensionality of the harmonic measures for a single hyper-

bolic metric space X has been extended to several directions. For example, X can

be replaced by a proper hyperbolic X without assuming bounded growth at some
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scale, and by a non-proper, separable and geodesic hyperbolic X with acylindri-

cal action of a group. In those cases, probability measures µ for µ-random walks

are assumed to satisfy that the support generates a non-elementary subgroup of

isometries as a semigroup rather than a group. It is expected that results in the

present paper are extended to products of such hyperbolic spaces (with right as-

sumption on random walks). However, we need that the boundary be Polish (at

least the space endowed with Borel structure be a standard Borel space) so that

the conditional measures are well-defined. Thus it is not clear as to whether the

separability of X could be dropped.

(3) It is not clear as to whether one can remove the condition on finite exponential

growth relative to each factor in Theorem 4.5. It is expected that the harmonic

measure is exact dimensional without the assumption in regards of results in [HS17]

and [LL23]. The issue in the present setting lies in a lack of Lebesgue differen-

tiation theorem on boundaries. This is available, for example, if the boundaries

are Euclidean spaces, more generally, Riemannian manifolds, or if the harmonic

measures are doubling (which is stringent). In this paper, we have used a weaker

version of Lebesgue differentiation theorem (Lemma 2.2). However, we do not

know if this would suffice to remove the condition on growth. See a related ques-

tion in [Tan19, Quesion 4.3].

5. A positive lower bound for dimension

5.1. Pivotal times. Let us recall the terminology and methods from [Gou22]. For δ ∈
R+, let (X , d) be a δ-hyperbolic space with a base point o. A sequence of points x0, . . . , xn

is called a (C,D)-chain for some C,D ∈ R+ if

(xi−1|xi+1)xi
≤ C for all i = 1, . . . , n− 1, and d(xi−1, xi) ≥ D for all i = 1, . . . , n.

If a sequence x0, . . . , xn is a (C,D)-chain with C ∈ R+ and D ≥ 2C + 2δ + 1, then

(x0|xn)x1 ≤ C + δ and d(x0, xn) ≥
n−1
∑

i=0

(d(xi, xi+1)− (2C + 2δ)) ≥ n. (5.1)

See [Gou22, Lemma 3.7]. For C ∈ R+, D = 2C + 2δ + 1 and for x, y ∈ X , the chain

shadow CSx(y, C) of y seen from x is the set
{

z ∈ X : there exists a (C,D)-chain x0, . . . , xn; x0 = x, xn = z and (x0|x1)y ≤ C
}

.

Definition 5.1. For ε, C,D ∈ R+, a set of isometries S is called an (ε, C,D)-Schottky

set if the following three conditions are satisfied:

(1) #{s ∈ S : (x|s · y)o ≤ C} ≥ (1− ε)#S for all x, y ∈ X ,

(2) #{s ∈ S : (x|s−1 · y)o ≤ C} ≥ (1− ε)#S for all x, y ∈ X , and

(3) d(o, s · o) ≥ D for all s ∈ S.

Let µ be a non-elementary probability measure on IsomX with a countable support.

It is shown basically by a classical ping-pong argument that for every ε > 0 there exists

a C0 ∈ R+ satisfying the following: For all D ∈ R+ there exists an M ∈ Z+ such that the



28 RYOKICHI TANAKA

support of the M-fold convolution µ∗M of µ contains an (ε, C0, D)-Schottky set S [Gou22,

Corollary 3.13]. Let us fix the constants

ε = 1/100, C0 ∈ R+ and D ≥ 20C0 + 100δ + 1.

Let λS denote the uniform distribution on S.
Given a sequence of isometries u0, u1, . . . on X and a sequence of independent random

isometries s1, s2, . . . with the identical distribution λ∗2
S , let

y−n := u0s1u1 · · · sn−1un−1 · o.

Letting si = aibi where ai and bi are independent and distributed as λS , we define

yn := u0s1u1 · · · sn−1un−1an · o and y+n := u0s1u1 · · · sn−1un−1anbn · o.

A sequence of pivotal times Pn ⊆ {1, . . . , n} is defined inductively as in the following:

Let P0 := ∅ (the empty set). Given Pn−1, let k = 0 and yk := o if Pn−1 = ∅. Suppose that

Pn−1 6= ∅. Let us say that the local geodesic condition is satisfied at time n if

(yk|yn)y−n ≤ C0, (y−n |y
+
n )yn ≤ C0 and (yn|y

−
n+1)y+n ≤ C0. (5.2)

If the local geodesic condition is satisfied at time n, then we define

Pn := Pn−1 ∪ {n}.

If otherwise, then letting m be the largest pivotal time in Pn−1 such that

y−n+1 ∈ CSym(y
+
m, C0 + δ),

we define Pn := Pn−1∩{1, . . . , m}, and Pn := ∅ in the case when there is no such m. Note

that the set Pn depends only on the sequence s1, . . . , sn for fixed u0, . . . , un.

Lemma 5.2. If Pn := {k1, . . . , kp} where k1 < · · · < kp, then the sequence

o, yk1, y
−
k2
, yk2, . . . , y

−
kp
, ykp, y

−
n+1,

forms a (2C0 + 4δ,D − 2C0 − 3δ)-chain. Moreover, if D ≥ 6C0 + 13δ + 1, then for every

i = 2, . . . , p, the sequence y−ki, yki, y
−
n+1 is a (2C0 + 5δ,D − 6C0 − 13δ)-chain.

Proof. The first claim is [Gou22, Lemma 4.4]. The second claim follows from the first

claim and (5.1). Indeed, applying to them the sequence y−ki, yki, . . . , ykp, y
−
n+1 for each

i = 2, . . . , p shows that (y−ki|y
−
n+1)yki ≤ 2C0 + 5δ, and further,

d(yki, y
−
n+1) ≥ d(yki, y

−
ki+1

)− 2(2C0 + 4δ)− 2δ ≥ D − 6C0 − 13δ.

The claim follows. �

Let s = (s1, . . . , sn). Let us say that a sequence s′ = (s′1, . . . , s
′
n) where s′i = a′ib

′
i is

pivoted from s if s′ and s have the same pivotal times, b′i = bi for all i = 1, . . . , n, and

a′i = ai for all i which is not a pivotal time. The relation that s′ is pivoted from s defines

an equivalence relation among sequences. In this notation, we understand that bi for all

i = 1, . . . , n and ai for i which is not a pivotal time are determined in s.
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Let En(s) be the set of sequences which are pivoted from s. Note that if u0, u1, . . . are

fixed, then conditioned on En(s), all ai are independent. However, their distributions may

depend on i. For each i = 1, . . . , n, let

Ai(s) :=
{

a ∈ S : s′i = abi for some s′ = (s′1, . . . , s
′
i, . . . , s

′
n) ∈ En(s)

}

.

It holds that for each pivotal time i of s,

P(ai = a | En(s)) = λS(a | Ai(s)) =
λS(a)

λS(Ai(s))
for a ∈ Ai(s).

If i is a pivotal time of s and s′ = (s1, . . . , s
′
i, . . . , sn) in which si = aibi is replaced by

s′i = a′ibi satisfies the local geodesic condition at time i, then s′ is pivoted from s [Gou22,

Lemma 4.7]. By the definition of (ε, C0, D)-Schottky set (Definition 5.1), there are at most

2ε#S elements for which the local geodesic condition (5.2) does not hold at i. Therefore

for each pivotal time i in s,

#Ai(s) ≥ (1− 2ε)#S. (5.3)

Lemma 5.3. Let D ≥ 10C0 + 25δ + 1. For s′ ∈ En(s), if y
−
n+1 = y′−n+1, then s = s′.

Proof. Let Pn = {k1, . . . , kp} with k1 < · · · < kp be the set of pivotal times in s. By

Lemma 5.2, the sequences y−ki, yki, y
−
n+1 and y′−ki , y

′
ki
, y′−n+1 are (2C0 + 5δ,D − 6C0 − 13δ)-

chains respectively. For s′ ∈ En(s) with s′ 6= s, let i be the first i for which ski 6= s′ki.

For ski = akibki and s′ki = a′kib
′
ki
, it holds that aki 6= ak′i and these aki and a′ki are in the

Schottky set S, whence (aki · o|a
′
ki
· o)o ≤ C0. This shows that the sequence

y′n+1, y
′
ki
, y−ki, yki, y

−
n+1, where y−ki = y′−ki ,

forms a (2C0 + 5δ,D − 6C0 − 13δ)-chain. For such D, one has d(y′−n+1, y
−
n+1) > 0 by (5.1),

and thus y′−n+1 6= y−n+1, as required. �

5.2. A lower bound for entropy.

Theorem 5.4. Let Γ and Γ⋆ be countable subgroups in IsomX and in IsomX ⋆ respectively,

and Γ := Γ × Γ⋆. Further let us consider a probability measure π on Γ of the following

form:

π = αλ× λ⋆ + (1− α)π0

for some α ∈ (0, 1], non-elementary probability measures λ and λ⋆ on Γ and on Γ⋆ respec-

tively, and a probability measure π0 on Γ. For the marginal µ⋆ of π on Γ⋆, it holds that

h(π)−h(∂X ⋆, µ⋆) > 0. Moreover, if in addition Γ has a finite exponential growth relative

to (X ,d), then for νµ⋆-almost every η ∈ ∂X ⋆, the Hausdorff dimension of the conditional

measure νη
π is positive.

Fix constants ε = 1/100, C0 ≥ 0 and D ≥ 20C0 + 100δ + 1, and a (1/100, C0, D)-

Schottky set S in Γ, contained in the support of λ∗M for some M ∈ Z+. For N := 2M ,

let us write for some β ∈ (0, 1] and for a probability measure λ0 on Γ,

λ∗N = βλ∗2
S + (1− β)λ0.
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Let us also write for a probability measure π0 on Γ = Γ× Γ⋆,

π∗N = αNβλ∗2
S × λ⋆∗N + (1− αNβ)π0.

For a sequence ε1, ε2, . . . of independent Bernoulli random variables with the common

parameter αNβ, let us define a sequence of independent random group elements γ1,γ2, . . .

where γi = (γi, γ
⋆
i ) ∈ Γ is distributed as λ∗2

S × λ⋆∗N if εi = 1 and as π0 if εi = 0. Note in

particular that for i = 1, 2, . . . , conditioned on the event {εi = 1}, random group elements

γi and γ⋆
i are independent.

Further we realize a π-random walk wnN at time nN by a product γ1 · · ·γn through a

coupling on an enlarged probability space. Let us define a sequence of pivotal times for

zn = wn · o on X , where {wn}n∈Z+ is a µ-random walk and µ is the marginal of π on Γ.

Let t1, t2, . . . be the sequence of i such that εi = 1. For every positive n ∈ Z+, let

τ = τ(n) be the maximum of j with Ntj ≤ n. It holds that

(N(tj − 1), Ntj ] ⊂ (0, n] for all j = 1, . . . , τ .

For each j = 1, . . . , τ , let stj be γj, which is realized as the product of elements xi over

i ∈ (N(tj − 1), Ntj ] in the natural order from Z+. Let us write s′j := stj for brevity, and

u0 := x1 · · ·xN(t1−1), uj := xNtj+1 · · ·xN(tj+1−1) and u(n) := xNtτ+1 · · ·xn.

In the above, u0, uj and u(n) are defined as the identity if they are empty words. For a

µ-random walk wn at time n, the orbit zn is realized as

zn = wn · o = u0s
′
1u1 · · · s

′
τu(n) · o.

Let P1, . . . , Pτ(n) be the sequence of pivotal times of zn given u0, u1, . . . , u(n). Note that

Pτ(n) depends not only on τ(n) but also on n. It is shown that there exists a constant

κ > 0 such that

P(#Pτ(n) ≤ κn) ≤ e−κn for all n ∈ Z+, (5.4)

[Gou22, Proposition 4.11].

Note that the sequence {εi}∞i=1 determines {ti}∞i=1 and τ = τ(n) for each n. Let us

define the σ-algebra

G := σ
(

εi, ti, x
⋆
i for i = 1, 2, . . . and xi for i /∈

τ(n)
⋃

j=1

(N(tj − 1), Ntj ]
)

.

Conditioning on G amounts to fix a typical sequence {εi}∞i=1, {ti}
∞
i=1 and a trajectory of

µ⋆-random walk {w⋆
n}n∈Z+, increments xi of µ-random walk outside the time intervals

(N(tj − 1), Ntj ] for j = 1, . . . , τ(n). Under this conditioning, s′1, . . . , s
′
τ is a sequence of

independent random elements in Γ with the common distribution λ∗2
S .

Let s := (s′1, . . . , s
′
τ), and Eτ (s) be the set of sequences pivoted from s. Conditioned

on Eτ (s) and G, the random group elements ai at pivotal times where s′i = aibi are

independent and each ai is distributed as λS( · | Ai(s)). Let σ(Eτ (s),G) denote the σ-

algebra generated by Eτ (s) and G. Given Eτ (s) and u0, . . . , u(n), let us define the map
∏

i∈Pτ(n)

Ai(s) → X , (ai)i∈Pτ(n)
7→ wn · o = u0a1b1u1 · · ·uτ−1aτbτu(n) · o.
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In the above, we understand that {bi}i=1,...,τ(n) and {ai}i/∈Pτ(n)
are determined by Eτ (s).

Under the conditioning, the map is injective by Lemma 5.3. Furthermore the conditional

distribution P(wn · o ∈ · | σ(Eτ (s),G)) is the pushforward by the injective map of the

product measure λS( · | Ai(s)) over i ∈ Pτ(n) almost everywhere in P.

Proof of Theorem 5.4. Let us denote by H(w) the entropy H(µ) for a random variable w

with the distribution µ. If F is a sub σ-algebra of σ({(wn, w
⋆
n)}n∈Z+), then the conditional

entropy of wn with respect to F is defined by

H(wn | F) := E
[

−
∑

x∈suppµn

P(wn = x | F) logP(wn = x | F)
]

.

It holds that H(wn) ≥ H(wn | F), further that if F1 and F2 are sub σ-algebras of

σ({(wn, w
⋆
n)}n∈Z+) and F1 ⊆ F2, then H(wn | F1) ≥ H(wn | F2). Since the σ-algebra

σ(w⋆
n) generated by w⋆

n is included in G, it follows that

H(wn | σ(w⋆
n)) ≥ H(wn | σ(Eτ (s),G)).

Let us find a lower bound on the right hand side of the following:

H(wn | σ(Eτ (s),G)) = E
[

−
∑

x∈suppµn

P (wn = x | σ(Eτ (s),G)) logP (wn = x | σ(Eτ (s),G))
]

.

Since P(wn · o ∈ · | σ(Eτ (s),G)) is the pushforward by an injective map of the product

measure of λS(· | Ai(s)) over i ∈ Pτ(n), one has P-almost everywhere,

−
∑

x∈suppµn

P(wn = x | σ(Eτ (s),G)) logP(wn = x | σ(Eτ(s),G)) = −
∑

i∈Pτ(n)

log
1

#Ai(s)
.

This shows that for each n ∈ Z+ and for κ > 0 in (5.4),

H(wn | σ(w⋆
n)) ≥ E

[(

∑

i∈Pτ(n)

log#Ai(s)
)

· 1{#Pτ(n)≥κn}

]

.

If i ∈ Pτ(n), then #Ai(s) ≥ (1−2ε)#S by (5.3) and P(#Pτ(n) ≤ κn) ≤ e−κn by (5.4), the

right hand side of the above inequality is at least

κn log((1− 2ε)#S) ·P(#Pτ(n) ≥ κn) ≥ κn log((1− 2ε)#S) · (1− e−κn).

Therefore it holds that

lim inf
n→∞

1

n
H(wn | σ(w⋆

n)) ≥ κ log((1− 2ε)#S) > 0.

Noting that H(wn, w
⋆
n) = H(w⋆

n) +H(wn | σ(w⋆
n)) and h(∂X ⋆, µ⋆) ≤ h(µ⋆), we obtain

h(π)− h(∂X ⋆, µ⋆) ≥ h(π)− h(µ⋆) ≥ lim inf
n→∞

1

n
H(wn | σ(w⋆

n)) > 0.

(In the above, the second inequality is in fact the equality and the liminf is the limit.)

Thus the first claim follows. The second claim follows from the first claim together with

Theorem 1.3. �

Proof of Theorem 1.4. This is contained in Theorem 5.4. �
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