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Disorder-Induced Anomalous Mobility Enhancement in Confined Geometries
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Physics Department, Bar-Ilan University, Ramat Gan 5290002, Israel

Strong, scale-free disorder disrupts typical transport properties like the Stokes-Einstein relation
and linear response, leading to anomalous, non-diffusive motion observed in amorphous materi-
als, glasses, living cells, and other systems. Our study reveals that the combination of scale-free
quenched disorder and geometrical constraints induces unconventional single particle mobility behav-
ior. Specifically, in a 2-dimensional channel with width w, under external drive, tighter geometrical
constraints (smaller w) enhance mobility. We derive an explicit form of the response to an external
force by utilizing the double-subordination approach for the quenched trap model. The observed
mobility enhancement occurs in the low-temperature regime where the distribution of localization
times is scale-free.

Transport in disordered and amorphous materials has
attracted vast attention for many decades [1–10]. The
study of systems’ response to external forces, particularly
with an aim to optimize transport, constitutes an imper-
ative focus of research [11]. The external force can be a
result of an electric field pulling on an electron through
a conductor [12–14] or a pressure gradient pushing on
a molecule diffusing in a channel [15–18]. The classical
depiction of such dynamics is Drude’s model of current
flow in a metal [19]. It describes, through the applica-
tion of kinetic theory, the diffusion of electrons by re-
peated encounters with immobile hard scatterers (such
as ions or impurities). When an external electric field is
applied, the charge carriers experience a net drift velocity
related to the mean free path between scattering events.
The resulting picture is that the response to the external
force, i.e., carrier mobility, is an intrinsic property of the
medium. Therefore, for transport in restricted geome-
try, like a channel, the expectation is that the mobility
will be independent of channel width (or cross-section)
or sometimes will increase with channel width due to the
availability of new pathways. In this work, we explore the
mobility properties of transport inside a channel with the
presence of strong and quenched disorder. Specifically,
we aim to demonstrate that quenched and strong disor-
der can redefine our understanding of the dependence of
mobility on geometry.
Experiments in amorphous materials [20–24] have

shown that a packet of charge carries do not propa-
gate in a Gaussian manner and instead exhibit a disper-
sion of carrier transit times. Scher and Montroll [5, 25]
termed this phenomenon anomalous transport and sug-
gested that carriers are affected by deep traps or local ar-
eas of arrest. When the duration τ of such events follows
a power-law distribution, i.e. ∼ τ−1−α, and 0 < α < 1,
the transport becomes subdiffusive [3]. Meaning that the
mean squared displacement (MSD) is not proportional
to time t but rather grows sublinearly, i.e. MSD∼ tα,
as observed in amorphous materials [20–28], biological
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cells [6, 8, 29–33], granular materials [10, 34, 35], non-
Newtonian fluids [36] and other systems [37–39]. These
power-law distributed waiting times (∼ τ−(1+α)), as de-
tected in various systems [9, 36, 40–42], can appear nat-
urally due to the exponential distribution of the depths
of energetic wells that give rise to the regions of local
arrest. The strong disorder (0 < α < 1) results in
a diverging mean trapping time that disrupts regular
diffusive properties and leads to aging, weak ergodicity
breaking, and non-self averaging [43–48]. Most theoret-
ical studies address the annealed version of the strong
disorder. Namely, the waiting times in the trapping re-
gions are uncorrelated, and each time the particle re-
turns to the same arrest region, it is localized for a dif-
ferent time. Such framework was termed the continuous
time random walk (CTRW) [3, 6, 25, 49], a very pop-
ular model of anomalous transport. The quenched ver-
sion with a strong disorder, termed the quenched trap
model (QTM), treats the trapping times during revisits
of the arrest region as correlated. For the QTM regular
techniques and Stokes-Einstein–Smoluchowski theory do
not apply due to strong correlations and memory effects
[3, 50, 51]. Scaling arguments and renormalization group
approach [3, 52, 53] among other works [54–58] suggest
that for dimensions d > 2, QTM behaves qualitatively
as CTRW in the subdiffusion regime. But big differences
can be witnessed as we show.
In this work we explore the effects of a strong quenched

disorder on particle mobility under the geometrical con-
straint of a channel with width w. By utilizing the re-
cently developed double-subordination technique [58–62],
we obtain an analytical expression for the mobility and
its dependence on the external driving force f , temper-
ature T and width w. For low temperatures, we find
that the mobility is a decreasing function of w. Namely,
the response to an external drive weakens as the chan-
nel cross-section grows. Such a counterintuitive enhance-
ment with decreasing w appears only when the disorder
is quenched and strong. When one of these requirements
is omitted, the mobility is independent of the channel
width.
The quenched trap model. The physical picture be-

hind QTM is a thermally activated particle jumping be-
tween energetic traps. When a particle is in a trap,
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the average escape time τ is provided by the Arrhe-
nius law τ ∝ exp (Er/T ), where Er > 0 is the depth
of trap at position r and T is the temperature. When
the distribution of the energetic traps Er is exponential,
φ(Er) = exp(−Er/Tg)/Tg, the distribution of the aver-
age escape time is

ψ (τr) ∼ τ
−1− T

Tg
r A/|Γ(−T/Tg)|, (1)

A = |Γ(−T/Tg)|T/Tg and Γ(. . . ) is the Gamma function.
For T < Tg, the slow power-law decay of ψ(τ) leads to a
diverging mean escape, when averaged over disorder. In
the following, we set α = T/Tg and focus on the glassy
regime 0 < α < 1, where QTM exhibits aging and non-
self-averaging behavior [50, 51, 53]. The average escape
times τr serve in QTM as the waiting times. Each time
the particle visits position r, it spends there exactly the
same time τr hence the disorder is quenched. In [47], no
difference was found between setting quenched waiting
times or setting quenched average waiting times. The
quenched variables {τr} are positive, independent, iden-
tically distributed (i.i.d) random variables with proba-
bility density function (PDF) provided by Eq. (1). We
consider the spatial process between different positions
r as a random hop process on a two-dimensional square
lattice with lattice spacing a taken to be 1 (a.u). At time
t = 0, the particle starts at r = 0 and stays at this po-
sition for the period τ0 before jumping to some random
site r′ where it waits for the period τr′ and then the ran-
dom jump + waiting period procedure continues. The
probability of transition (jump) from r to r

′ is provided
by p(r′; r). We assume that the lattice is translationally
invariant in space, i.e., p(r′; r) is a function of r

′ − r:
p(r′ − r). The disorder averaged positional PDF of find-
ing the particle at position r at time t, 〈P (r, t)〉 (〈· · · 〉
represents the averaging over disorder) is found by utiliz-
ing the double subordination technique [59, 60] that we
briefly describe below.
The diffusion front. The effect of correlations imposed

by quenched disorder is appreciated when the measure-
ment time t is written in terms of the local waiting times
τr. Namely, t =

∑

r
nrτr, where nr is the number of vis-

its to r up to time t. Although all the different τr are
i.i.d, the {nr} are correlated, like in our case of nearest-
neighbor hopping on a lattice where nr is very similar to
the nearest-neighbour nr′ . By fixing the values of {nr}
and averaging over {τr} (disorder averaging) the Laplace
pair of t, i.e. 〈e−ut〉, is ∼ e−ASαu

α

where

Sα =
∑

r

(nr)
α. (2)

Since the Laplace pair of the one-sided Lévy distribu-

tion lα,A,1(η) is ∼ e−Auα

we obtain that t ∼ S
1/α
α η,

where η is a random variable distributed according to
lα,A,1(η). This connection between t, η and fixed Sα al-
lows to obtain the PDF of Sα for fixed t, Nt (Sα), by

changing variables from η = t/Sα
1/α to Sα = (t/η)α.

Therefore, Nt (Sα) ∼ t
α (Sα)−1/α−1 lα,A,1

[

t
(Sα)

1/α

]

. The

explicit form of Nt (Sα) allows performing the first, what
is commonly called, subordination [63] and express the
disorder averaged 〈P (r, t)〉 by using Sα as the local time
of the process. Namely, for the conditional probabilty
PSα(r) of finding the particle at position r for a given Sα

(i.e., at “time” Sα), the law of total probability yields

〈P (r, t)〉 =
∑

Sα

PSα(r)Nt (Sα) . (3)

The second subordination is applied to PSα(r) We use
the number of jumps, N , to represent PSα(r) in terms of
WN (r), the probability to find the particle at r after N
jumps, and GSα,r(N) the probability of different values
of N for a prescribed Sα and r. The law of total prob-
ability yields PSα(r) =

∑∞

N=0WN (r)GSα,r(N) and then
according to Eq. (3)

〈P (r, t)〉 =
∑

Sα

∞
∑

N=0

WN (r)GSα(N, r)Nt (Sα) . (4)

When t → ∞, the probability of small Sα is negligible
and for large Sα, when the probability of eventual re-
turn to the origin Q0 is < 1, it was shown that [58],
GSα(N, r)→ δ (Sα − ΛN) where

Λ =
[

(1−Q0)
2
/Q0

]

Li−α (Q0) , (5)

Lia(b) =
∑∞

j=1 b
j/ja is the Polylogarithm function [64].

Q0 is computed when the spatial process is treated as
a function of N . Therefore, for QTM where the spatial
process is defined solely by the jump probabilities p(r′ −
r), Eq. (4) yields

〈P (r, t)〉 ∼
∑

N

WN (r)
t/Λ1/α

αN
1

α−1
lα,A,1

(

t/Λ1/α

N1/α

)

. (6)

Equation (6), first obtained in [58], presents the disorder
averaged propagator of QTM in terms of the spatial pro-
cess on a lattice as a function of N , and a transformation
from N to t. Two points are in place: (I) The distribu-
tion WN (r) is defined by the jump probabilities p(r′− r)
and found by the standard techniques for a random walk
(RW) on a lattice [65]. (II) For Λ = 1 Eq. (6) displays
the propagator for the annealed version of the disorder
(CTRW) [3]. Therefore, Λ, quantifies the difference be-
tween quenched and annealed disorder as a function of
Q0 (Eq. (5)) and depends on the geometry and the ex-
ternal force. Below, we utilize Eq. (6) and compute the
response to external constant force F acting on a single
particle in a 2-dimensional channel of width w. For this
purpose, we first compute the average position along the
longitudinal axis of the channel x̂.
The average displacement. The motion occurs on top

of a lattice in a two-dimensional channel and is unre-
stricted in the x̂ direction. The width of the channel, in
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FIG. 1. The average displacement in the direction of ap-
plication of external force F . 〈x(t)〉 is growing as channel
width w is reduced. Solid lines display theoretical prediction
(Eq. (7)). The red dash-dot line is the approximation for
small-F (Eq. (9)). Symbols are simulation results averaged
over 3 × 106 trajectories, α = 0.3, A = 1 and t = 1014 (a.u).
The blue dashed line is obtained for the equivalent annealed
disorder (CTRW) system.

the ŷ direction, is w, which is also the number of sites
across ŷ (the lattice spacing is a = 1). Due to the trans-
lational invariance of the spatial process and transition
probabilities p(r − r

′), we use periodic boundary condi-
tions for ŷ. The case of reflecting boundary conditions
will be addressed below. The strength of the force f ,
applied only along x̂, is characterized by the dimension-
less parameter F = af/T , where kB is set to 1. The
transition probabilities p(r− r

′) allow transitions only to
the nearest neighbors on the square lattice. Namely, p→
(p←) is the probability for a single jump to the right (left)
along x̂ and p↑ (p↓) is the probability for a single jump
up (down) along ŷ. The detailed balance condition dic-
tates that p→/p← = eF and p ↑ /p↓ = 1. Therefore, due
to the normalization condition p↑ + p↓ + p← + p→ = 1,

we obtain that p→ = BeF/2, p← = Be−F/2 and p↑ =
p↓ = B = 1/[2 cosh(F/2) + 2]. We are interested in the
mean position 〈x(t)〉 = ∑

r
x〈P (r, t)〉. After one single

jump the average displacement along x̂ is p→ − p← =
tanh(F/4), therefore after N jumps the average displace-
ment is

∑

r
xWN (r) = N tanh(F/4). Then according to

Eq. (6) 〈x(t)〉 =∑N N tanh(F/4) t/Λ1/α

αN
1

α
−1
lα,A,1

(

t/Λ1/α

N1/α

)

.

We take the limit t → ∞, replace the summation by
integration [3] and use the relation

∫∞

0
yqlα,A,1(y)dy =

Aq/αΓ(1− q/α)/Γ(1− q) for q/α < 1 [66] and obtain the
average displacement in x̂

〈x(t)〉 ∼ tanh(F/4)

AΓ[1 + α]

Q0

(1−Q0)2Li−α(Q0)
tα. (7)

Eq. (7) shows that the average displacement is anoma-
lous in time ∼ tα. Such departure from the Einstein
relation that predicts a linear dependence on time is a

direct consequence of diverging mean waiting times, and
for the annealed disorder was termed as Generalized Ein-
stein relation [67]. The return probability Q0 (Eq. (5))
depends on geometry, jump probabilities, and F . To fi-
nalize the calculation of 〈x(t)〉 we find the explicit form
of Q0.
The return probability Q0 is computed in terms of

fN(0), the first return probability to the origin af-
ter N steps. Namely, Q0 =

∑∞

N=0 fN (0). The
probability fN(0) determines the probability WN (0)
since according to the renewal equation [65], WN (0) =

δN,0 +
∑N

i=1 fN(0)WN−i(0), which yields for the gen-

erating function of the first return probability, f̃z(0) =
∑∞

N=0 fN (0)zN , the result f̃z(0) = 1 − 1/W̃z(0), where

W̃z(0) =
∑∞

N=0WN (0)zN . By noting that Q0 = f̃1(0)
the connection between Q0 and WN (0) is finally estab-

lished [65], namelyQ0 = 1−1/W̃z=1(0). SinceWN (r) is a
convolution of N random variables, i.e., steps, its Fourier
transform is the Nth power of the single-step characteris-
tic function λ(k) = eikxp→+e−ikxp← +eikyp↑+e

−ikyp↓
and therefore W̃z=1(0) = 1

4π2

∫ π

−π

∫ π

−π
1

1−λ(k)dkxdky. In

the supplemental material (SM) we show how this inte-
gral is computed and eventually obtain the explicit form
of the return probability Q0

Q0 = 1−
w
/

[1 + cosh(F2 )]

w−1
∑

m=0

1
/

√

[

1 + cosh

(

F

2

)

− cos

(

2πm

w

)]2

− 1

.

(8)
When w → ∞, the result in Eq. (8) converges to the
known result [5] for an unbounded 2-dimensional square

lattice limw→∞Q0 = 1−1
/[

2
πK

(

4
(1+cosh(F

2
))2

)]

, where

K(k) =
∫ π/2

0
dγ
(

1− k sin2 γ
)−1/2

is the complete elliptic
integral of the first kind [64].
Equations (7 - 8) provide 〈x(t)〉 as a function of time,

arbitrarily large external force F and the width of the
channel w. For small forces Eq. (7) yields (see SM)

〈x(t)〉 ∼ wα−1

AΓ2[1 + α]

(

F

4

)α

tα, (9)

while 4/F ≫ w/
√
2 and w is an integer ≥ 1. Our main

result is immediately apparent from Eq. (9): 〈x(t)〉 un-
expectedly decays with growing channel width w! The
dependence is wα−1, meaning the motion is faster for
narrow channels than for wide channels. In Fig. 1 an ex-
cellent agreement between this analytical result and nu-
merical simulation is displayed. In addition, we observe
that the dependence on F is complex and non-linear as
indicated through Eq.(8) and seen in Fig. 1. For small F
the dependence is simplified to ∼ Fα. Namely, the strong
disorder and it’s quenched nature that impose prolonged
correlations make the usual assumption of linear response
inapplicable in the quasi 2d, as was found previously for
1d QTM [3, 58, 59, 68]. We note that for the case of
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FIG. 2. Enhancement of mobility in a channel of width w (〈x(t)〉) with respect to mobility in unrestricted 2d geometry (〈x∞(t)〉),
as a function of external force F (panel (a)), width w ((b)) and α = T/Tg ((c)). In all panels, Eq. (7) (combined with Eq. (8))
is displayed by solid black lines, and the symbols are the results of numerical simulations. (a): The red dash-dot line is the
small-F expansion while the leading term is provided by Eq. (10) (see SM for full expression). The × presents simulation results
for reflective boundary conditions and w = 5 that almost follows the corresponding case with periodic boundary conditions △.
The blue dashed line represents the case when no enhancement was detected: for annealed disorder (CTRW) and QTM with
a finite average dwell times (α > 1). For all cases t = 1014 (a.u.) and except �, α = 0.3. (b): The red dashed line indicates
the wα−1 scaling, α = 0.3, and t = 1014 (a.u.). (c): F = 0.1 and tα = 4.2 (a.u.). For all panels, A = 1.

strong annealed disorder, (CTRW), the dependence on
F (when F → 0) is linear [59] (see the dashed line in
Fig. 1).
To emphasize the mobility enhancement due to the

channel width constraint, we calculate (see SM) the ratio
of the 〈x(t)〉 for a given w, and the average displacement
for unrestricted 2d motion, 〈x∞(t)〉, i.e., w → ∞. For
F → 0 we obtain

〈x(t)〉
/

〈x∞(t)〉 ∼
[

(w/4π)F ln
(

128/F 2
)]α−1

, (10)

implying that imposing a geometrical constraint en-
hances the transport, and the stronger the constraint
(narrower channel), the larger the enhancement! Note
that the logarithmic term in F enters Eq. (10) due to the
critical properties of Q0 in unrestricted 2d (see [59] and
SM for details). In Fig.2 we present the excellent agree-

ment between the analytical results for 〈x(t)〉
/

〈x∞(t)〉
and numerical simulations when explored as a function of
F , w and α. The enhancement associated with geometri-
cal restriction repeats itself in all the presented cases and
is preserved for smaller times (see SM). Fig. 2(a) shows

that the effect disappears (〈x(t)〉
/

〈x∞(t)〉 = 1) when the

disorder is not strong (α > 1), or if the disorder is not
quenched.
In our derivation, we assumed periodic boundary con-

ditions in the channel. In Fig. 2(a), we show (numer-
ically) that for reflecting boundary conditions, the ob-
tained effects of non-linear dependence on F and trans-
port enhancement due to geometrical restriction are pre-
served. Additional details are provided in SM, and
we intend to address this issue in future work. Equa-
tion 9 summarizes the unconventional effect of strong and
quenched disorder. The regular expectation for 〈x(t)〉
is 〈x(t)〉 = µFt where µ is the mobility. Strong dis-
order modifies the temporal dependence and the regu-

lar Einstein relation. Quenchness breaks linear response
and introduces the non-linear dependence on F , and
here we have shown that the properties of the mobil-
ity µ are counterintuitive. First of all, the mobility
µ for QTM is anomalous since it can’t be defined as
〈x(t)〉/tF , but rather as µ = 〈x(t)〉/tαFα. From Eq. (9)
µ = wα−1

/

4αAΓ2[α + 1] while α = T/Tg < 1. The
mobility is enhanced as the channel width w decreases.
While the expectation is that additional pathways, which
start to appear with relaxed geometrical constraints, will
lead to a speed-up of the transport [69], we observe an op-
posite behavior. In the presence of strong and quenched
disorder, stricter geometrical constraints improve mobil-
ity.

Mathematical reasons for such counterintuitive en-
hancement are rooted in the properties of the local time
Sα, transformation constraint Λ, and geometrical depen-
dence of Q0. The intuition behind the found effect is
based on what is known as the “big jump principle” [70–
72]. When scale-free waiting times (Eq. (1)) are in play,
it is not the accumulation of many events but rather a
single maximal event that governs the overall behavior.
Naturally, when such a single event is excluded, for exam-
ple, by replacing the site with maximal waiting time by
significantly shorter τ , it will lead to faster transport [73].
Our results suggest that narrowing the channel width de-
creases the number of possible sites the particle will sam-
ple during transport and effectively modifies this single
dominant arrest time. The quenched nature of the dis-
order is a crucial ingredient for this to work. A further
in-depth analysis and experimental research of this phe-
nomenon is warranted. We expect that such enhance-
ment will be useful to optimize transport in a channel
media relevant for applications in nanotechnology and
nanomedicine [11] and transport in porous media [73].
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I. SUPPLEMENTAL MATERIAL

Supplemental material includes (IA) calculation of the
return probability with periodic boundary conditions.
(I B) Analytical derivation of the response in the F → 0
limit. (I C) Analytical derivation of the mobility en-
hancement: the ratio of the 〈x(t)〉 for a given w, and
the average displacement for unrestricted 2d motion,
〈x∞(t)〉, i.e., w → ∞. (I D) calculation of the return
probability with reflective boundary conditions. (I E)
Numerical investigation of the mobility enhancement ef-
fect as a function of time.

A. The return probability with periodic boundary
conditions

This section provides the full analytical derivation of
the return probability of a walker on a two-dimensional
lattice. The geometry is a channel (integer width w ≥ 1),
and the motion obeys periodic boundary conditions at
channel walls y = 0 and y = w.
The return probability Q0 is found by the means

of generating functions [65]. We use the probabil-
ity of first return to the starting point (r = 0) af-
ter N steps, i.e., fN (0), and represent Q0 as Q0 =
limz→1

(
∑∞

N=0 fN (0)zN
)

. WN (0) is the probability to
find the RW at position r = 0 after N steps. The quan-
tities fN(0) and WN (0) are related due to the renewal

equation [65], WN (0) = δN,0 +
∑N

i=1 fN (0)WN−i(0).
Multiplying this relation by zN and summing on all pos-
sible N ’s we receive the connection

∞
∑

N=0

fN (0)zN = 1− 1
∑∞

N=0WN (0)zN
, (S.1)

which means that

Q0 = 1− lim
z→1

1

(
∑∞

N=0WN (0)zN)
. (S.2)

Where in the denominator we have the generating func-
tion of the unbounded system W̃z(r) =

∑∞

N=0WN (r)zN ,
the z-transform of the positional probability of the walker
WN (r) after N steps. The generating function is eval-
uated for a random walk commencing at r = 0. The
summation is often solved by making use of λ(k), the
characteristic function (k-space transform) of a single
jump ∆r distribution p(∆r) defined by λ(k) = 〈eik·∆r〉 =
∑

∆r
p(∆r)eik·∆r. Then, by using the convolution theo-

rem we have WN (k) = λ(k)N and W̃z(r) can now be

found by transforming back to r-space:

W̃z(r) =
1

(2π)2

∫ π

−π

∫ π

−π

(

∞
∑

N=0

λ(k)NzN

)

d2k

=
1

(2π)2

∫ π

−π

∫ π

−π

e−ik·r

1− zλ(k)d
2
k. (S.3)

Here λ(k) is

λ(k) = 2B
[

cos (kx) cosh(F/2)

+i sin (kx) sinh(F/2) + cos (ky)
]

, (S.4)

and B = 1/[2 cosh(F/2) + 2] is the normalization of the
transition probabilities of a single step.
To evaluate the return probability Q∗0 for the bounded

system in quasi 2d (of a channel geometry) with a finite
lattice Ω we use the solution of the infinite lattice in 2d
and invoke periodic boundary conditions at the channel
walls [74]:

W ∗N (r) =
∑

m

WN (r+ (0, wm)), (S.5)

where w is the width of the channel and m is an integer.
This implies for the generating function of the bounded
system

W̃ ∗z (r) =
∑

m

W̃z(r+m(0, w)) (S.6)

=
∑

m

1

(2π)2

∫ π

−π

∫ π

−π

e−ik·(x,y+mw)

1− zλ(k) d2k.

We make use of the well-known representation of the
delta function

∞
∑

m=−∞

e−imk = 2π

∞
∑

m=−∞

δ(k − 2πm), (S.7)

hence
∑

m

e−imwky = 2π
∑

m

δ (wky − 2πm) (S.8)

=
2π

w

∑

m

δ

(

ky −
2πm

w

)

.

The integrand in Eq. (S.6) is periodic, so that we may
replace the integration region B = [−π, π]2 by the region
[−ǫ, 2π − ǫ]2. We choose ǫ such that 0 < ǫ < 2π

w , and
interchange order of summation and integration. The
singularity of the delta function δ(ky − 2πm

w ) is in the
integration region if and only if (0,m) ∈ Ω, therefore

W̃ ∗z (r) =
1

w

1

2π

∫ π

−π

dkx

w−1
∑

m=0

e−ir·(kx,
2πm
w )

1− zλ
((

kx,
2πm
w

)) . (S.9)

To obtain the return portability, we need to evaluate this
function at r = 0

W̃ ∗z (0) =
1

2πw

∑

m

∫ π

−π

dkx

1− zλ
((

kx,
2πm
w

)) . (S.10)
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We first solve the integral in the sum in Eq.(S.10) for
arbitrary k = (kx, ky), i.e. with λ(kx, ky). For that pur-
pose, we use the relation

∫ ∞

0

e−sads = 1/a (a > 0), (S.11)

and find

U =

∫ π

−π

dkx
1− zλ(k) =

∫ π

−π

dkx

∫ ∞

0

dse−s(1−zλ(k))

=

∫ ∞

0

e−sds

∫ π

−π

dkxe
szλ(k). (S.12)

Now we substitute the value of λ(k) from Eq. (S.4),

U = e2szB cos(ky)

∫ ∞

0

e−sds

∫ π

−π

dkx (S.13)

× exp
[

2szB
(

cos(kx) cosh(F/2) + i sin (kx) sinh(F/2)
)]

and make use of the relation (Eq. (64) from [75])
∫ π

−π

dk

2π
exp[−ikm] exp[C1 cos(k) + iC2 sin(k)] =

[

C1 + C2
√

C2
1 − C2

2

]m

Im

(

√

C2
1 − C2

2

)

, (S.14)

where Im(. . . ) is a modified Bessel function of the first
kind of integer order m [64]. With m = 0, C1 =
2szB cosh(F/2) and C2 = 2szB sinh(F/2), we obtain

U =

∫ ∞

0

dse−se2szB cos(ky)2πI0 (2szB) . (S.15)

Substituting this back into the generating function yields

W̃ ∗z ( 0) = (S.16)

1

w

w−1
∑

m=0

∫ ∞

0

dse−sI0 (2szB) exp

[

2szB cos

(

2πm

w

)]

.

To evaluate the integral we use the formula (Eq. (4), page
695 in [76]),

∫ ∞

0

e−sbI0(sa) =
1√

b2 − a2
, a < b (S.17)

with a = 2zB and b = 1− a cos
(

2πm
w

)

, and obtain

W̃ ∗z ( 0) = (S.18)

1

w

w−1
∑

m=0

[

(

1− 2Bz cos

(

2πm

w

))2

− 4z2B2

]−1/2

.

Finally, the result for the return probability in a channel
with periodic boundary conditions is

Q∗0 = 1− 1/W̃ ∗1 (0) (S.19)

= 1− w

∑w−1
m=0

[

(

1− 2B cos
(

2πm
w

))2 − 4B2
]− 1

2

.

B. The response for small forces

In this section we derive the response along parallel
direction to the walls for small force F . We first expand
the return probability Q0 of a RW in a channel for small
forces, then plug it into equation (7) from the main text:

〈x(t)〉 ∼ tanh(F/4)

AΓ[1 + α]

Q0

(1 −Q0)2Li−α(Q0)
tα. (S.20)

The denominator in the return probability Q0 in
Eq. (S.19) is expanded for small F ,

w−1
∑

m=0

[

(

1− 2B cos

(

2πm

w

))2

− 4B2

]−1/2

(S.21)

≈
w−1
∑

m=0

[

1

4
(ξ − 2)2 − 1

4
−
(

(ξ − 1)2 − 2
) F 2

32

]−1/2

,

where we set for convenience ξ = cos
(

2πm
w

)

. We rewrite
Eq. (S.21) as

4

F
+ (1− δw,1)

(

1

4
(ξ − 2)2 − 1

4

)−1/2

(S.22)

×
w−1
∑

m=1

[

1− (a− 1)2 − 2
1
4 (ξ − 2)2 − 1

4

F 2

32

]−1/2

,

where δi,j is Kronecker’s delta function. Expanding again
for small F the argument in the sum and rearranging as
a series in powers of F , Eq. (S.22) (the denominator of
Q0 in Eq. (S.19)) becomes

4

F
+ (1− δw,1)

w−1
∑

m=1

(

1

4
(ξ − 2)2 − 1

4

)−1/2

(S.23)

+ (1− δw,1)
w−1
∑

m=1

(ξ − 1)2 − 2
(

1
4 (ξ − 2)2 − 1

4

)3/2

F 2

32
+O(F 4).

For small F the first two terms are the dominant ones.
We check when does the second term (the force free) can
also be neglected. The maximum value in the sum is
achieved when 2πm/w = π, therefore the sum has an
upper bound,

∥

∥

∥

∥

∥

∥

w−1
∑

m=1

[

1

4

(

cos

(

2πm

w

)

− 2

)2

− 1

4

]−1/2
∥

∥

∥

∥

∥

∥

(S.24)

≤
w−1
∑

m=1

[

1

4
(cos(π)− 2)2 − 1

4

]−1/2

=
w√
2
.

So as long as 4/F ≫ w/
√
2, we are safe to assume that

the value found for Q0 in Eq. (S.19) for the channel sys-
tem obeys

w−1
∑

m=0

[

(

1− 2ξ cos

(

2πm

w

))2

− 4ξ2

]−1/2

≈ 4

F
. (S.25)
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The return probability for small F and 4/F ≫ w/
√
2

now becomes

Q0 = 1− wF

4
. (S.26)

We use this result in Eq. (S.20) together with the asymp-
totic relation Li−α(1− ǫ) ∼ Γ[1+α]ǫ−α−1 in the limit of
ǫ→ 0 [64] and obtain

〈x(t)〉 ≈ (F/4)

AΓ2[1 + α]

[

(

wF

4

)α−1

−
(

wF

4

)α
]

tα

≈ 1

AΓ2[1 + α]

(

1

w

)1−α(
F

4

)α

tα. (S.27)

C. Analytical derivation for the transport
enhancement vs. the unbounded system

In this section we show the analytical derivation of
the mobility enhancement: the ratio of the 〈x(t)〉 for a
given w, and the average displacement for unrestricted
2d motion, 〈x∞(t)〉, i.e., w → ∞. The average position
〈x∞(t)〉 in the unbounded system will be provided again
by expanding the return probability Q0 for small forces.
In Ref. [5]) (see Eqs. (6.43-6.44), the return probability
Q0 for the unbounded system was found to be

Q0 = 1− 1/

[
∫ ∞

0

dse−s [I0(2sB)]
2

]

(S.28)

= 1− 1/

[

2

π
K
(

16B2
)

]

,

where K(k) =
∫ π/2

0 dγ
(

1− k sin2 γ
)−1/2

is the complete
elliptic integral of the first kind. Using the approxima-
tion (2/π)K(z2) ≈ (1/π)Log(8/(1− z)) for the complete
elliptic integral of the first kind as z → 1 from Ref. [77]
we obtain,

Q0 = 1− 1/

[

2

π
K

(

16

(

1

2 + 2 cosh(F/2)

)2
)]

= 1− π/
[

ln(128/F 2)
]

. (S.29)

In this case, the return probability decays much faster
than the channel system (Q0 ≈ 0.9 already at F ≈ 10−8),
and we have to take more terms in the series expansion
of Li−α(1− ǫ) around ǫ→ 0. By using Mathematica we
find,

Li−α(Q0) ∼ Γ[α+ 1]

(

π

log
(

128
F 2

)

)−α

(S.30)

×
(

log
(

128
F 2

)

π
− 1

2
(α + 1)

)

+ ζ(−α),

where ζ(s) =
∑∞

k=1 k
−s is the Riemann zeta function

defined for Re(s) > 1 (for Re(s) < 1 we can use Rie-
mann’s functional equation ζ(s) = 2sπs−1 sin

(

πs
2

)

Γ[1 −

s]ζ(1−s)). The approximation in Eq. (S.30) has an excel-
lent agreement of one percent error for values as large as
F ≈ 0.1. Substitution of this expression into Eq. (S.20)
yields

〈x∞(t)〉 ∼ F/4

AΓ[1 + α]
(S.31)

× (ξ)−2 − (ξ)−1

Γ[1 + α]
(

(ξ)
−α−1 − 1

2 (α+ 1) (ξ)
−α
)

+ ζ(−α)
tα,

where ξ = π

log( 128

F2 )
and the subscript of ∞ signifies the

solution for the boundary-free system. The transport
enhancement is now provided by the fraction:

〈x(t)〉
〈x∞(t)〉 ∼

(

F

4

)α−1(
1

w

)1−α

(S.32)

×

(

log( 128

F2 )
π − α+1

2

)(

log( 128

F2 )
π

)α

+ ζ(−α)
Γ(α+1)

log2( 128

F2 )
π2 − log( 128

F2 )
π

.

The leading term in F is

〈x(t)〉
〈x∞(t)〉 ∼

(

4π

wF ln
(

128
F 2

)

)1−α

. (S.33)

D. The return probability with reflective boundary
conditions

In this section, we evaluate the return probability with
reflective boundary conditions using the method of im-
ages (See chapters 21.5.3 and 21.5.4 in [78]). We show
that the answer is the same as with periodic reflective
conditions (for trajectories starting at r = 0).
For reflective channel walls, i.e Neumann boundary

conditions, the derivative of the generating function per-
pendicular to the channel walls has to be zero to ensure
no flux flow. This condition can be imposed by look-
ing at the solution W̃ ∗z (r) as a linear combination of the

general solution W̃z(r). To ensure the derivative is zero
at the channel walls, for each point y0 in the interior
(0 < y0 < w), we place an image charge reflected by each
of the channel walls with the same sign, resulting in two
infinite sets of image charges located at {−y0+(2m+1)w}
and {y0 + 2mw} with m an integer. Continuing from
Eq. (S.3) and substituting r = 0 as before we get for the
first set of images,

W̃ ∗z,1(0) =
1

(2π)2

∫∫

dkxdky
1− zλ(k)

∞
∑

m=−∞

e−iky2mw.

(S.34)
Using the technique from Sec. I A, we use the delta func-
tion representation from Eq. (S.7),

W̃ ∗z,1(0) =
1

4πw

2w−1
∑

m=0

∫ π

−π

dkx

1− zλ
(

k =
(

kx, nπw
)) .

(S.35)
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The integral appearing inside the sum was evaluated in
section IA, we now have

W̃ ∗z,1(0) = (S.36)

1

2w

2w−1
∑

m=0

∫ ∞

0

dse−sI0 (2szB) exp
[

2szB cos
(mπ

w

)]

.

For the second set of image charges we have the same
solution but with a factor e−ikyw which after perform-
ing the integral over ky turns into e−imπ = (−1)m, and
therefore

W̃ ∗z,2(0) =
1

2w

2w−1
∑

m′=0

(−1)m′

(S.37)

×
∫ ∞

0

dse−sI0 (2szB) exp

[

2szB cos

(

m′π

w

)]

.

The final result is

W̃ ∗z (0) = W̃ ∗z,1(0) + W̃ ∗z,2(0) (S.38)

=
1

w

w−1
∑

m=0

∫

dse−sI0 (2szB) exp

[

2szB cos

(

2mπ

w

)]

.

Which gives the same return probability as in the peri-
odic boundary conditions.

E. The mobility enhancement as a function of time

4 6 8 10 12
log10(t)

1.0

1.5

2.0

2.5

〈 x
(t
)〉 /

〈 x
∞
(t
)〉

FIG. 3. Enhancement of mobility in a channel of width w = 5
(〈x(t)〉) with respect to mobility in unrestricted 2d geometry
(〈x∞(t)〉), as a function of time. Constants are F = 0.1,
A = 1 and α = 0.3. The red dashed line is our theoretical
description in Eq. (S.32) valid for large times. Simulations are
in symbols (squares) and represent a disorder average over 300
fixed energetic landscapes with 104 trajectories each.

In this section we investigate the channel’s mobility
enhancement effect as a function of time using simula-
tions. While our theoretical description of the mobility
enhancement (see Eq. (10) in the main text) applies only
for t → ∞ we ran simulations to see the behavior for
smaller times. We see in Fig.3 that the effect is also
preserved for smaller times.
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