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ABSTRACT

We aim to perform sound event localization and detection (SELD)
using wearable equipment for a moving human, such as a pedes-
trian. Conventional SELD tasks have dealt only with microphone
arrays located in static positions. However, self-motion with three
rotational and three translational degrees of freedom (6DoF) shall be
considered for wearable microphone arrays. A system trained only
with a dataset using microphone arrays in a fixed position would be
unable to adapt to the fast relative motion of sound events associated
with self-motion, resulting in the degradation of SELD performance.
To address this, we designed 6DoF SELD Dataset1 for wearable sys-
tems, the first SELD dataset considering the self-motion of micro-
phones. Furthermore, we proposed a multi-modal SELD system that
jointly utilizes audio and motion tracking sensor signals. These sen-
sor signals are expected to help the system find useful acoustic cues
for SELD on the basis of the current self-motion state. Experimen-
tal results on our dataset show that the proposed method effectively
improves SELD performance with a mechanism to extract acoustic
features conditioned by sensor signals.

Index Terms— sound event localization and detection, motion
tracker, six degrees of freedom, microphone array, dataset

1. INTRODUCTION

Sound event localization and detection (SELD) is a combined task
of sound event detection, which estimates the class of event and its
onset/offset time, and sound source localization [1, 2]. In this study,
we newly defined and addressed 6DoF SELD, a SELD using micro-
phone arrays worn by a self-moving human in six degrees of free-
dom (6DoF). Here, 6DoF is the sum of three rotational and three
translational degrees of freedom, corresponding to behaviors such
as walking, looking around, and bending over. The output of 6DoF
SELD is similar to that of SELD, but the direction of arrival (DOA)
of the sound source is estimated in relative coordinates for the head’s
orientation. For example, when the sound source is fixed, the esti-
mated DOA moves in the opposite direction of the head motion. One
promising application is pedestrian safety assistance through notifi-
cation of approaching vehicles and humans. Another application is
in immersive communication, where the status of the surrounding
environment is shared remotely [3, 4]. Moreover, SELD on moving
vehicles, such as autonomous cars [5,6] and surveillance drones [7],
can also be considered an application of 6DoF SELD. As a practical
constraint in these applications, the system shall be developed under
the causal constraint of being able to operate online [8].

Conventional SELD systems mainly use first-order ambisonics
(FOA) signals as input and the deep neural networks (DNN) as a
regression or classification function for SELD, as shown in Fig. 1
(a), (b) [9–14]. In particular, Fig. 1 (a) shows the most investigated

1The dataset is available in https://github.com/nttrd-mdlab/
6dof-seld (DOI: 10.5281/zenodo.10473531)
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Fig. 1: Conventional and our problem settings of SELD

SELD systems that use FOA signals. Such a system would be useful
in applications where a device placed in a room, such as a smart
speaker, analyzes indoor events. Although the SELD using wearable
microphone arrays has rarely been addressed, our previous work [14]
addressed wearable SELD by using a microphone array attached to
a head and torso simulator (HATS).

On the other hand, applications that support moving humans,
such as pedestrian safety support, require the ability to handle self-
motion microphones. In this problem setting, rapid relative motion
of the surrounding sound sources is caused by self-motion, espe-
cially rotation. For example, given a look-back motion in one sec-
ond, all surrounding sound sources move at 180 deg./sec., faster than
a 60 km/h car crossing 3 meters from a human. Considering that
moving sound sources degrade the localization performance in the
conventional SELD task [15], this rapid relative motion should also
cause degradation. Adapting to such rapid system changes is consid-
ered more difficult for online systems that use only past observations.

In contrast to the difficulties in 6DoF SELD, it has been reported
that humans can localize sound sources more accurately when their
heads are moving rather than stationary [16–18]. The major reason
for this is that dynamic cues, such as dynamic changes in inter-time
difference and inter-level difference, play an important role in source
localization during self-motion [16]. Considering these human audi-
tory characteristics, utilizing dynamic cues in the 6DoF SELD sys-
tem is a promising strategy. For this purpose, training data in the
6DoF SELD situation needs to be collected to train a system that
can capture the dynamic cues of acoustic features. Furthermore, if
the system can observe self-motion in the same way humans use
semicircular canals, it is expected to capture dynamic cues more ef-
fectively. In fact, the effectiveness of using head rotation information
in binaural source localization has been reported [19]. Observation
of self-motion is the low-cost option by using inertial sensors, which
are commonly used in wearable devices.

Therefore, we propose and publish a new dataset for 6DoF
SELD, called 6DoF SELD Dataset1. Unlike conventional SELD
datasets, our dataset is designed to identify sound events that oc-
cur around a moving human. It uses headphone-type equipment
with three motion tracking sensors and 18-channel microphones to
measure the position and posture of the head and acoustic signals.

We also propose a new multi-modal SELD system that com-
bines acoustic signals with velocity and angular velocity observa-
tions from motion tracking sensors. The system introduces sensor
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Fig. 2: Recording setup and equipment configuration for 6DoF SELD Dataset. In (a) and (e), red circles indicate the range of movement of
the subject and blue circles indicate the range of the sound source position.

Table 1: Specification of conventional and proposed SELD datasets.

Amount Event Other Self-motion Source # of # of SNR
Dataset of data generation modalities of mic. Subjects movement classes mic. [dB] Rooms

TAU-NIGENS Spatial 13.3h IR-based - stat. - Moving 12 4 6 - 30 18
Sound Events 2021 [11]
STARSS23 [2] 7.4h Real Video stat. - Moving 13 4 natural 16
Wearable SELD [14] 8.3h IR-based - stat. 1 (HATS) Fixed 12 12 10 - 20, clean 3
Ours: 6DoF SELD 20.1h Speaker Motion tracker stat./3DoF/6DoF 3 (Human) Fixed 12 18 6 - 20 3

signal-based excitation of the acoustic features to mimic humans’
ability to utilize dynamic cues. It was implemented by introduc-
ing a multi-modal transfer module (MMTM) proposed for multi-
modal speech enhancement and action recognition into SELDNet,
the baseline model for the DCASE 2023 task3. Numerical experi-
mental results showed that training the system using the data with
the proposed dataset improved 6DoF SELD performance compared
to using the data from a stationary microphone array. In addition, us-
ing sensor information of velocity and angular velocity was shown
to effectively improve 6DoF SELD performance.

2. PROPOSED DATASET

In this section, we describe an overview and specifications of our
proposed 6DoF SELD Dataset and a comparison with conventional
SELD datasets.

2.1. Dataset overview
We propose a 6DoF SELD Dataset1 for detecting and localizing
sound events from the view of a self-motioning human. Unlike
conventional SELD datasets with a fixed microphone array [2, 9–
11] or a wearable SELD dataset with HATS [14], we record sound
events with headphone-type equipment worn by a subject with 6DoF
self-motion, i.e., walking and looking around. The 18-channel mi-
crophone array and three motion tracking sensors are installed in
headphone-type equipment. Motion tracking sensors allow us to ob-
serve the position and posture of the head. By time differentiating
the position and posture acquired by the motion tracking sensors, it
is also possible to simulate the observation of head motion by a more
practical sensor such as a 6-axis inertial measurement units (IMUs).

2.2. Dataset and equipment specifications
Figure 2 shows the recording setup and equipment configuration for
the 6DoF SELD Dataset. The recording was conducted in a vari-
able reverberation room, as shown in Fig. 2 (a). A human wearing

headphone-type equipment moves in the red circle area, and sound
events are played randomly in the blue area. Fig. 2 (b) shows the
details of the headphone-type equipment. Each left and right plas-
tic earpad has an 8-channel microphone on the outer edge and a
1-channel microphone on the center. In the experimental section
of this paper, only microphones 0, 4, 8, and 12 of these channels
were used. Future studies could include array processing using two
circular microphone arrays or a more realistic setup using only the
two central microphones. Three motion trackers are attached to the
headband. The head position and posture are observed as centroid
and posture of a triangular composed by these three motion trackers.
Fig. 2 (c) shows the sound event generation system. Sound events
are generated by randomly playing audio clips from two loudspeak-
ers. Variations of directions of arrival of sound events are reproduced
by manually moving the speakers to various heights and angles. The
sound source position is recorded by the motion tracking sensor in
the absolute coordinate system of the room and then converted to a
relative coordinate system to the central human’s head on the basis
of the observed head posture information.

Table 1 shows the specifications of the 6DoF SELD Dataset and
the conventional SELD dataset. Our dataset generates sound events
by playing back pre-recorded sound samples from the speakers as
described above. Impulse response (IR)-based generation has the
advantage of increased data volume and a high degree of control
over experimental conditions but is unsuitable for self-motion mi-
crophones. Using real-life sound events, as in STARSS23, is most
compatible with real-life scenarios, but collecting a large amount of
labeled data is difficult. Our dataset uses a speaker-based playback
of sound events, allowing us to record sound events with the self-
motion microphone and collect a sufficient amount of labeled data
(20.1 hours). Our dataset and STARSS23 record multimodal sig-
nals as a dataset for SELD. The STARSS23 records 360◦ video of
a human generating sound events. Although video modalities can
be used to record body movements, they are not suitable for our pur-
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Fig. 3: (a) MMTM for excitation of acoustic features on the basis of sensor signals. CA and CS are the number of channels of the sensor and
acoustic features, F is the number of dimensions of the acoustic features, and ⊙ denotes the Adamar product. (b) Network architecture of
proposed multi-modal SELD system. “AmpSpec” denotes the amplitude of the spectrogram.

pose of SELD with wearable equipment, so we used motion tracking
sensors. The self-motion of the microphone is included only in our
dataset. The dataset is divided into three subsets (“stat.”, “3DoF”,
and “6DoF”) in accordance with the self-motion condition. In “stat.”
the subject is seated in a chair; in “3DoF,” the subject makes ro-
tational movements of the head and body while standing; and in
“6DoF,” the subject walks, changes direction, and swivels within
a circle of 0.75m. These subsets’ actual velocity and acceleration
distributions are shown in Fig. 2 (f). Sound events consisting of 12
classes were recorded by an 18-channel microphone (Fig. 2-(b)) at-
tached to headphone-type equipment. Signal-to-noise ratios (SNR)
were controlled to 6, 10, and 20 dB, allowing quantitative analysis
of the system’s noise robustness. The recording room is equipped
with a variable reverberation room, where the reverberation time is
controlled in three steps (T 500Hz

60 = 0.12, 0.30, 0.41 sec).
All microphones used for recording were Hosiden KUB4225,

with a sampling frequency of 48k and a bit depth of 16 bits. A
combination of HTC Vive Tracker (2018) and HTC SteamVR Base
Station 2.0 was adopted for the motion tracking sensors. The sensor
signals were recorded at a nonuniform sampling rate of about 40 fps
and then downsampled to a uniform sampling rate of 20 fps.

3. PROPOSED METHOD

In this section, we describe the proposed wearable SELD system
utilizing the joint feature of audio and sensor signals.

3.1. Basic concept
For a 6DoF SELD system to maintain robust performance during
self-motion, it is desirable to exploit appropriate acoustic features as
cues depending on the state of self-motion. Estimating self-posture
from acoustic signals has been explored [20–22], but online estima-
tion of velocity and angular velocity, which are considered relevant
to the dynamic cue, is still difficult. Utilizing tracking sensor obser-
vations, especially velocity and angular velocity, is expected to en-
able these self-motion states to be acquired and the system to more
appropriately utilize dynamic cues to improve SELD performance.

Therefore, we propose a multi-modal SELD system that com-
bines acoustic signals with velocity and angular velocity signals ob-
tained by tracking sensors. This system mimics the mechanism by
which people utilize dynamic cues as excitation of specific acoustic
features on the basis of velocity and angular velocity. It is repre-
sented by weighting the CA channel and F dimensional acoustic
features ϕc ∈ RF (c ∈ [1, CA]) by the excitation vector E ∈ RCA ,
which depends on velocity ν ∈ R3 and angular velocity ω ∈ R3:

[ϕ̃1, . . . , ϕ̃C ] = [ϕ1, . . . ,ϕC ]⊙E(ν,ω) (1)

As an implementation of this principle, we used MMTM [23],
a method for fusing convolutional neural network (CNN) features
of multi-modal signals. Fig. 3 (a) shows the block diagram of the

MMTM applied to our problem setting. In MMTM, the acoustic
features obtained at each layer of the CNN are first averaged in the
frequency axis. This operation is called “squeeze” in the original
MMTM. From these squeezed acoustic features and sensor features,
a joint embedding Z ∈ RDz is then extracted. Finally, The excitation
for each modality feature is computed based on Z. Note that in our
implementation, the original MMTM is modified to avoid squeezing
the time axis of the features to excite the appropriate acoustic fea-
tures at each time frame. Since the excitation to acoustic features
is dependent on the sensor signal through the joint embedding Z,
MMTM is an appropriate implementation of the principle of Eq. 1.

3.2. Implementation details

Fig. 3 (b) shows the network architecture of the proposed method.
The inputs to the system are 4-channel acoustic signals and 6-
channel velocity/angular velocity signals. The 4-channel acoustic
signals are composed of channels 0, 4, 8, and 12 of the 18 micro-
phones in the dataset. It corresponds to the microphones embedded
in the front and rear of the left and right earpads. From these
acoustic signals, 4-channel amplitude spectrograms and 3-channel
SALSA-Lite features [24] are extracted as input features. The ve-
locity/acceleration signals are extracted by first-order differentiation
of the position/angle obtained from the tracking sensor observation
signals while smoothing them with a Savitzky-Golay filter [25].

The DNN used Causal-SELDNet, a causal modification of
SELDNet, which is the baseline model of DCASE 2023 task 3 [12].
For causal modification, there are three modifications to the network.
The first is the use of causal convolution, which uses only past time
frames for convolution in the CNN; the second is the change of the
bi-directional gated recurrent unit (GRU) to a uni-directional GRU;
and third is the removal of multi-head self-attention (MHSA). The
DNN for sensor signals was a 1D CNN with ResNet-like skip con-
nections, as in previous studies of action recognition [26]. The 1D
CNN was also modified to use causal convolution. 2D and 1D CNNs
for extracting features from acoustic and sensor signals consisted of
the same number of blocks and time frames, and MMTM excitation
was applied to all outputs for each time frame. The acoustic and
sensor features obtained as outputs of the CNNs were concatenated
in the feature axis and input to the subsequent uni-directional GRUs.
Multi-ACCDOA was used as the loss function for training [27].

4. EXPERIMENTS

4.1. Experimental setup

Hyper-parameter: For the short-time Fourier transform, a Hanning
window of 1024 points and a shift of 0.025 sec. were used. From
the extracted spectrograms, the frequencies corresponding to 50 -
9050 Hz were cut out, resulting in a frequency dimension of 64.
All model parameters of Causal-SELDNet are the same as in the



DCASE2023 baseline model. The 1D CNN used for the encoder
of the sensor signal consisted of three ResNet blocks. The number
of CNN filters was (64, 32, 16), kernel size, stride, and padding
were 5,1,2, respectively. The acoustic and sensor features extracted
by the CNN and 1D CNN were concatenated for each time frame.
The Adam optimizer was used for learning, with an initial learning
rate of 0.01 [28]. Learning was concluded in 100 epochs, and the
parameters obtained in the epoch with the lowest validation loss were
adopted.
Comparison methods: To evaluate the effectiveness of the pro-
posed method, the following conditions were compared:
(A) Baseline (stat.) A method using Causal-SELDNet trained on

the ”stat.” subset of our dataset. This is a similar situation to the
conventional Wearable SELD Dataset [14], which deals with con-
ditions where the head is fixed. We used this system to investigate
the performance degradation of a system trained with fixed micro-
phone data under self-motion conditions.

(B) Baseline A method using Causal-SELDNet trained on all the
data in our dataset. A variant of this method (B/3), trains Causal-
SELDNet on 1/3 of the data in the dataset. Since this is the same
amount of data as (A), the change in performance can be validated
when training data with and without the self-motion microphone
under the same amount of data.

(C) Audio-SENet A method using modified Causal-SELDNet
that replaces the CNN with the squeeze and excitation network
(SENet) [29]. This method can be considered as an uni-modality
version of the method (E) using MMTM. Comparing it with (E),
the change in performance due to the use of sensor signals can be
validated.

(D) Sensor-concat This method is a variation of (E) that directly
concatenates sensor signals and acoustic features extracted using
CNN. By comparing this method with (E), the performance im-
provement by using sensor signals for the excitation of acoustic
features based on self-motion can be clarified.

(E) Sensor-MMTM Proposed method described in Sec. 2

Evaluation metrics: We adopt the same metrics with DCASE 2023
task3 [30]. The metrics used for event detection were location-
dependent F1-score F≤Θ and error rate ER≤Θ. These are calcu-
lated by counting as true positives (TP) if the event class matches
the ground truth label and the event localization is correct within
the threshold angle Θ. In this experiment, we adopt Θ = 20◦ as
in DCASE 2023 task3. Class-dependent localization error LECD

and localization recall LRCD were used as metrics for event local-
ization. LECD is the angular error between the estimated source
location and the ground truth, calculated using only TP time frames;
LRCD represents recall of the number of active source estimations.
All experiments were performed three times for different initial pa-
rameters. All experimental results are shown with the standard error
of the metrics obtained from the three experiments.

4.2. Result
Table 2 compares SELD performances with and without self-motion
of a subject in the training data. First, a performance comparison
for all test data shows that (B/3) outperforms (A) on all metrics.
Next, comparing performance under different self-motion conditions
in (A), a performance gap exists between the “stat.” and “3DoF”
conditions. It suggests that systems trained only on the stationary
microphone data cannot adequately cope with the rotation motion.
In addition, the “3DoF” subset performs poorly compared to the
“6DoF” subset. It is considered because “3DoF” contains faster ro-
tational motion than “6DoF” as shown in Fig. 2 (f). On the other

Table 2: SELD performance for different DoF of self-motion in-
cluded in the training data. The “stat.” “3DoF” and “6DoF” indicate
that the microphone includes data for stationary, rotating, and rotat-
ing/translating cases, respectively.

motion SELD performance

train test ER≤20◦ ↓ F≤20◦ ↑ LECD ↓ LRCD ↑

(A)
Baseline

(stat.)
stat.

all 0.63±0.007 39.0±0.5 25.6±0.2 83.3±0.04

stat. 0.48±0.003 53.8±0.5 19.5±0.1 85.8±0.04

3DoF 0.71±0.01 32.8±0.4 28.4±0.2 82.2±0.2

6DoF 0.69±0.02 31.9±1.3 28.5±0.5 81.8±0.1

(B/3)
Baseline
(1/3 data)

all

all 0.55±0.01 45.7±0.6 23.0±0.1 84.6±0.5

stat. 0.51±0.01 50.6±1.1 20.5±0.3 86.1±0.4

3DoF 0.57±0.008 44.9±0.5 24.2±0.1 83.9±0.3

6DoF 0.59±0.005 42.0±0.5 24.2±0.1 83.6±0.8

Table 3: Comparison of SELD performance for different network
architectures and input modalities.

SELD performance

ER≤20◦ ↓ F≤20◦ ↑ LECD ↓ LRCD ↑

(B) Baseline 0.55±0.003 49.1±0.2 21.6±0.1 85.2±0.1

(C) Audio-SENet 0.54±0.003 51.1±0.2 21.2±0.2 85.9±0.1

(D) Sensor-concat 0.53±0.005 51.4±0.4 20.9±0.1 85.2±0.2

(E) Sensor-MMTM 0.51±0.003 54.1±0.1 20.0±0.1 86.1±0.3

hand, in (B/3), the performance gap between the “stat.” and “3DoF”
conditions is reduced for the “3DoF” and “6DoF” conditions. These
results suggest that 6DoF SELD requires not only a dataset under
conventional stationary conditions but also a dataset including the
proposed self-motion.

Table 3 compares SELD performances for different network ar-
chitectures and input modalities. The (D) and (E), which use velocity
and angular velocity extracted from head tracking sensors as input
features, perform better on all metrics than (B) and (C), which only
use audio modality. The performance improvement in (D) indicates
the effectiveness of using sensor features for temporal modeling.
The performance improvement in (E) indicates that MMTM-based
excitation of acoustic features based on sensor signals is effective
for SELD with self-motion. This fact is consistent with the prop-
erty that changes in acoustic features obtained when a human moves
his/her head can be used as dynamic cues for source localization. In
(D), where the sensor signal is directly input to the GRU responsible
for temporal modeling, a certain performance improvement is also
observed compared to (B) and (C). These results indicate that the
use of tracking sensors in 6DoF SELD improves feature extraction
and temporal modeling, thus enhancing the performance of SELD.

5. CONCLUSION

We designed a 6DoF SELD Dataset and proposed a multi-modal
sound event localization and detection (SELD) system that combines
motion tracking sensor signals with acoustic signals. Our dataset
provides recordings of acoustic events around a subject moving at
6DoF. The data is captured using a headphone-type device with em-
bedded microphones and motion tracking sensors. The proposed
method utilizes dynamic cues by applying excitations to the acous-
tic features in accordance with the velocity and angular velocity
extracted from the sensor signals. Validation experiments on our
dataset showed that learning the system using a dataset that includes
self-motion improves SELD performance during movement. Fur-
thermore, it also demonstrated that using sensor signals can improve
SELD performance. Therefore, the proposed dataset and system ef-
fectively perform SELD on a self-motioning human.
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