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Pseudo-inverse reconstruction of bandlimited signals from
nonuniform generalized samples with orthogonal kernels
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Abstract—Contrary to the traditional pursuit of research on
nonuniform sampling of bandlimited signals, the objective of the
present paper is not to find sampling conditions that permit
perfect reconstruction, but to perform the best possible signal
recovery from any given set of nonuniform samples, whether it is
finite as in practice, or infinite to achieve the possibility of unique
reconstruction in L2(R). This leads us to consider the pseudo-
inverse of the whole sampling map as a linear operator of Hilbert
spaces. We propose in this paper an iterative algorithm that
systematically performs this pseudo-inversion under the following
conditions: (i) the input lies in some closed space A (such as
a space of bandlimited functions); (ii) the samples are formed
by inner product of the input with given kernel functions; (iii)
these functions are orthogonal at least in a Hilbert space H that
contains A. This situation turns out to appear in certain time
encoders that are part of the increasingly important area of event-
based sampling. As a result of pseudo-inversion, we systematically
achieve perfect reconstruction whenever the samples uniquely
characterize the input, we obtain minimal-norm estimates when
the sampling is insufficient, and the reconstruction errors are
controlled in the case of noisy sampling. The algorithm consists
in alternating two projections according to the general method of
projections onto convex sets (POCS) and can be implemented by
iterating time-varying discrete-time filtering. We finally show that
our signal and sampling assumptions appear in a nontrivial man-
ner in other existing problems of data acquisition. This includes
multi-channel time encoding where H is of the type L2(R)M , and
traditional point sampling with the adoption of a Sobolev space
H. This thus uncovers the unexpected possibility of sampling
pseudo-inversion in existing applications, while indicating the
potential of our formalism to generate future sampling schemes
with systematic pseudo-inverse reconstructions.

Index Terms—bandlimited signals, nonuniform sampling, gen-
eralized sampling, time encoding, bandlimited interpolation,
pseudo-inverse, Kaczmarz method, POCS, frame algorithm,
Sobolev spaces.

I. INTRODUCTION

The reconstruction of bandlimited signals from nonuniform
samples is a challenging topic that has been studied since
the 50’s [1], [2], [3], [4], [5], [6], [7], although its practical
development has remained somewhat limited. But this subject
is currently attracting new attention with the increasing trend
of event-based sampling in data acquisition [8], [9], [10], [11],
[12], [13], [14]. This approach to sampling has grown in
an effort to simplify the complexity of the analog sampling
circuits, lower their power consumption and simultaneously
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increase their precision. This is made possible in particular
by the replacement of amplitude encoding by time encoding,
which takes advantage of the higher precision of solid-state
circuits in time measurement [15]. Time encoding has however
induced the use of nonuniform samples that were not com-
monly studied in the past literature. A well-known example
is the time encoder introduced by Lazar and Tóth in [16]
which acquires the integrals of an input signal over successive
nonuniform intervals, based an asynchronous Sigma-Delta
modulator (ASDM).

In their most general form, nonuniform samples of an input
signal x in some Hilbert space (A, ⟨·, ·⟩) are scalars of the
form

sk = ⟨x, gk⟩, k ∈ Z (1)

where Z is some set of indices and (gk)k∈Z is a given family of
functions in A, which we call the sampling kernel functions
[17]. Reconstructing x from s = (sk)k∈Z can be presented
as solving the linear equation Su = s where S is the linear
operator

S : u ∈ A 7→
(
⟨u, gk⟩

)
k∈Z

. (2)

When A is a set of bandlimited functions and Z is finite, a
basic approach is to reduce S to a matrix and estimate x by
S+s, where S+ is the matrix pseudo-inverse of S [18]. This
problem reduction to finite-dimensional linear algebra is how-
ever incompatible with the theoretically infinite time support of
bandlimited signals. Even in practice where signals are always
time limited, their time support are typically seen in signal
processing as virtually infinite compared to the windows of
operation. It was proposed to split the resolution of Su = s by
finite blocks of signals, in which exact algebraic inversions are
performed [19]. With bandlimited signals, block truncations
however creates analytically uncontrolled distortions at the
block boundaries and necessitates ad-hoc empirical methods
of compensations. This also departs from traditional signal
processing which on the contrary preserves input signals in
their entirety, while performing finite-complexity approxima-
tions of the ideal operations by sliding-window processing
(such as FIR filtering). In traditional LTI processing, errors
of approximation are well controlled by Fourier analysis. In
the context of nonuniform sampling, Fourier analysis is no
longer applicable by loss of time invariance. However, linear
operations are still rigorously analyzed by functional analysis.
With such an approach, the first rigorous numerical method of
bandlimited interpolation of nonuniform point samples, called
the frame algorithm, was derived by Duffin and Schaeffer
[1]. The method used by Lazar and Tòth in [16] for input
reconstruction from integrals has a similar structure, based on
an algorithm by Feichtinger and Gröchenig [5]. It was shown
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in [20], [21] all these types of algorithm can be be converted
into iterative time-varying linear filtering, with potential of
sliding-window implementations.

Until recently, these iterative methods have been limited to
cases where S is exactly invertible, based on some sufficient
(and not always necessary) sampling conditions. The goal of
this paper is to find iterative algorithms of similar type that
converge more generally to the pseudo-inverse S† of S in the
theoretical sense of linear operators in Hilbert spaces. The
motivation is to achieve perfect reconstruction whenever S
is effectively invertible, while proposing an optimal recon-
struction whenever S is not invertible (in case of insufficient
sampling) or the sampling sequence (sk)k∈Z is corrupted
by noise. In this way, a goal is to incorporate within a
single method an algorithm whose behavior is consistent with
the theoretical results of sampling from harmonic analysis
while giving optimal solutions in real practical situations of
sampling.

Solving this question in the most general case of nonorthog-
onal sampling kernels (gk)k∈Z is difficult. At the other ex-
treme, reconstructing x from the samples of (1) is trivial when
the family (gk)k∈Z is an orthogonal basis of the input space A.
This is the case of Shannon’s sampling theorem. In this paper,
we consider an intermediate situation where achieving the
pseudo-inverse S† becomes possible by successive filtering,
and which is described by the following condition:

(gk)k∈Z is orthogonal in a Hilbert space (H, ⟨·, ·⟩)
and x is in a closed subspace A ⊂ H.

(3)

Although seemingly ideal, this condition turns out to be
realized in the time-encoding system of Lazar and Tòth [16], in
the case where H = L2(R) and A is a subspace of bandlimited
signals. This was noticed and utilized in [20] to construct an
algorithm achieving S† in the specific application of [16]. The
algorithm was based on a particular application of the method
of projection onto convex sets (POCS) [22], [23]. This was
later generalized to integrate-and-fire encoding with leakage in
[21]. The purpose of the present article is to extract from [20],
[21] the most general framework of pseudo-inversion of S by
successive filtering under the abstract assumption of (3). In
this generalization, the content of these references is revisited
and reformulated to reach its most fundamental ingredients
and obtain a self-sufficient theory that is independent of the
applications. Our formalism contains theoretical results as well
as efficient techniques of practical implementations. A goal is
to propose a new framework of nonuniform sampling schemes
for which a pseudo-inverse input reconstruction method by
successive filtering is readily available. While this objective is
meant to influence the design of future sampling schemes, we
also show in this paper an immediate impact of the proposed
theory by applying it to two existing sampling/reconstruction
schemes: one in multi-channel time encoding [24], [11] and
one in the original case of nonuniform point sampling [4].
In these two sampling applications, the authors studied their
proposed reconstruction algorithms under specific assumptions
of unique reconstruction. In both cases, we show that their
own algorithms coincide with our generic POCS algorithm.
In this process, we end up pointing previously unknown prop-

erties that their algorithm possess, including their ability to
achieve perfect reconstruction even in situations where proofs
of unique reconstruction are not available, the characteristics
of their limit when the sampling is insufficient, and their
behavior towards sampling noise. But on the theoretical side,
an important role of these two applications is to show that the
abstract condition (3) can be found in unexpected situations,
using some non-standard technique of signal analysis. In the
first example, condition (3) is extracted after some non-trivial
reduction of the complex algorithm of [24], [11]. Beyond
pointing out the unknown properties of their method, our
high-level formalization allows a concise reformulation of it
together with an organized presentation of its implementation
at the level of discrete-time filters. For a complementary
demonstration, the difficulty of the second example is not in
the complexity of the sampling system, but in the non-trivial
signal theoretic approach that is required. For condition (3) to
be realized in this case, the traditional Hilbert space L2(R)
needs to be replaced by the homogeneous Sobolev space
Ḣ1(R) [25], [26]. This only allows us to prove convergence
up to a constant component but does lead for the first time to
a result of pseudo-inversion of point sampling by successive
filtering.

The paper is organized as follows. We start in Section II by
reviewing the basic knowledge that samples of the form (1)
bring about an input signal x in a general Hilbert space H

and without any assumption on the sampling kernels (gk)k∈Z.
We give the basic principle of the POCS algorithm for finding
estimates that are consistent with the samples of (1). In Section
III, we show how condition (3) leads a specific configuration
of POCS algorithm that is more efficient and that will be later
shown to have special connections with the pseudo-inversion
of S. For that purpose, we devote Section IV to reviewing
the notion of pseudo-inverse for linear operators in infinite
dimension, which is not commonly used knowledge in signal
processing. Section V then contains the major mathematical
contribution of this article. By starting from a zero initial
estimate, we prove that the POCS iteration tends to S†s by
contraction whenever the sampling configuration theoretically
allows a stable consistent reconstruction (which is systemati-
cally the case when Z is finite). When the initial estimate is a
signal u(0) ̸= 0, we show that the POCS limit is more generally
the signal of the type S†s+ v that is closest to u(0) under the
constraint v ∈ A and Sv = 0. This is of particular interest
when consistent reconstruction is not unique due to insufficient
sampling, and one wishes to pick a consistent estimate that is
close to a signal guess of statistical or heuristic nature [9]. This
reconstruction simultaneously takes care of sampling errors
with an action of “noise shaping” in the case of oversampling
[27]. In Section VI, we discuss some important aspects of
practical implementations. We finally present in Sections VII
and VIII the two mentioned examples of application.

II. CONSISTENT RECONSTRUCTION FROM GENERALIZED
SAMPLES

In this section, we review the background on the use of
POCS for the reconstruction of bandlimited signals from non-
uniform generalized samples. Without loss of generality, we
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assume that the considered bandlimited signals have Nyquist
period 1 and call their space B.

A. Nonuniform generalized samples

To understand the specific contribution of POCS to signal
reconstruction from samples, we first need to give the most
general definition of signal sampling. Let x be a function in
some Hilbert space H equipped with an inner product ⟨·, ·⟩.
We call a generalized sample of x ∈ H any scalar value of
the type

s = ⟨x, g⟩

where g is a known function of H [28], which we call
a sampling kernel function. In the most basic example of
bandlimited signal sampling, the Hilbert space is H = B

equipped with the canonical inner product ⟨·, ·⟩2 of L2(R).
The point sample of x ∈ B at instant τ yields the form

x(τ) = ⟨x, g⟩ with g(t) := sinc(t− τ) (4)

where
sinc(t) := sin(πt)/(πt). (5)

The point sample of the nth derivative of x ∈ B at τ is also
viewed as a generalized sample of x as it can be shown using
integration by parts that
dnx

dtn
(τ) = ⟨x, g⟩ with g(t) := (−1)n

dnsinc

dtn
(t− τ).

We also trivially have generalized samples by integration as
illustrated by the following example,∫ b

a
x(t) dt = ⟨x, g⟩ with g(t) := 1[a,b](t)

where 1[a,b](t) is the indicator function of [a, b].
When H is a space of functions on R, we say that a set

of samples (sk)k∈Z = (⟨x, gk⟩)k∈Z is uniform when Z = Z
and there exists a function g ∈ H and a period T such that
gk(t) = g(t−kT ) for all k ∈ Z. Shannon’s sampling theorem
applies to the particular case where g(t) = sinc(t) and T = 1
in our bandlimited setting. Nonuniform sampling then consists
in all of the other cases. This could be when gk(t) = g(t− tk)
where the instants tk are not regularly spaced, or when (gk)k∈Z

are just not the shifted versions of a single function.

B. Set theoretic view of sampling

The output of each sample sk = ⟨x, gk⟩ gives us the
deterministic knowledge that x belongs to the hyperplane

Hk :=
{
v ∈ H : ⟨v, gk⟩ = sk

}
. (6)

Thus, a full sampling sequence s = (sk)k∈Z tells us that x
belongs to the intersection

Hs :=
⋂
k∈Z

Hk. (7)

Perfect reconstruction is possible if and only if Hs is limited to
a singleton. When this is not the case, there is no deterministic
knowledge from (sk)k∈Z to distinguish x from any other
element of Hs. We call the functions of Hs the consistent
estimates of x. The next proposition gives some general
knowledge on the algebraic structure of Hs.

Proposition 2.1: Let s = (sk)k∈Z be any sequence. If Hs ̸=
∅, then, for any u ∈ Hs,

Hs = u+ G⊥ (8)

where G is the closed linear span of (gk)k∈Z

G := span(gk)k∈Z

and G⊥ is its orthogonal complement in H.

Proof: By assumption, sk = ⟨u, gk⟩ for each k ∈ Z.
Hence, v ∈ Hk ⇔ ⟨v, gk⟩ = sk = ⟨u, gk⟩ ⇔ ⟨v−u, gk⟩ = 0.
Thus, v ∈ Hs if and only if v−u ∈ G⊥. In other words,
Hs = u+ G⊥.

Since a linear subspace always contains the 0 vector, then Hs

is a singleton if and only if G⊥ = {0}. This is equivalent to
G = H, which means that the linear span of (gk)k∈Z is dense
in the whole space H. Thus, the unique reconstruct of x solely
depends on the sampling kernels (gk)k∈Z, and not on the input
x itself.

C. Systematic estimation

As mentioned in the introduction, the objective of this paper
is not to study the question of unique reconstruction of an
input x from its samples. The goal is to perform the best
possible approximation of x from given samples s, whatever
they are. While the term of “best possible” would require some
definition, it is at least intuitive that any reconstruction of x
that is not consistent with its samples cannot be optimal. This
idea is in fact rationally supported by the following property.

Proposition 2.2: Let C be a closed affine subspace of H

that contains x. Then,

∀u ∈ H, ∥PCu− x∥ ≤ ∥u− x∥ (9)

where PC designates the orthogonal projection of H onto C

and ∥ · ∥ is the norm induced by the inner product ⟨·, ·⟩ of H.
Moreover, the inequality is strict whenever u /∈ C.

Proof: For u ∈ H given, PCu is the unique element v ∈ C

such that u−v ⊥ v−w for all w ∈ C. By the Pythagorean
theorem, ∥u−w∥2 = ∥u−v∥2 + ∥v−w∥2 ≥ ∥v−w∥2 with a
strict inequality when u ̸= v, which happens whenever u /∈ C.
The result of (9) is the particular case w = x.

Then, a systematic reconstruction procedure is to pick the
consistent estimate

x̂ := PHsu
(0) (10)

where u(0) is some initial estimate proposed by the user. While
u(0) can be obtained by heuristic or statistical means, x̂ is an
estimate of x that is guaranteed to be better than u(0) and
cannot be further improved deterministically. It is also the
consistent estimate that is closest to u(0) with respect to ∥ · ∥.
The strength of this procedure is that whenever uniqueness
of reconstruction is effective, whether one is able to prove it
or not, x̂ is guaranteed to be the perfect reconstruction of
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x. In the case of non-unique reconstruction, the type (10)
of reconstruction was first considered by Yen in [2] for the
estimation of a bandlimited signal of L2(R) from a finite
number of point samples, with the specific choice of u(0) = 0.
In this case, x̂ is the consistent estimate that is closest to 0,
and hence of minimum norm. It can be easily shown from
the knowledge of (8) that this x̂ must be in G. We note here
that [17] studied the case where consistent reconstruction is
constrained to a linear subspace that may be different from G.

The next proposition gives a more analytical description of
PHs .

Proposition 2.3: If x ∈ Hs, then

∀u ∈ H, PHsu = u+ PG(x− u) (11)

where G was defined in Proposition 2.1.

Proof: Let v := u − PG(x−u). While v ∈ u + G, v =
x + (u−x) − PG(u−x) ∈ x + G⊥. So v is the orthogonal
projection of u onto x+ G⊥ = Hs.

Note that while x is unknown, PG(x−u) can still be theoret-
ically evaluated as it can be shown to only depend on u and
(sk)k∈Z.

D. POCS algorithm

In the most general case, there is unfortunately no closed
form expression for PGu. When Z is a small finite set, PG

can only be obtained by inversion (or pseudo-inversion) of a
matrix whose ill conditioning in nonuniform sampling rapidly
grows with the size of Z [29]. The basic technique used in
this paper to find PHsu is the POCS method [22], [23] whose
basic function is to retrieve an element in the intersection of
N closed convex sets. As closed affine spaces, the sets Hk

of (6) are a particular case of closed convex sets. Assuming
a finite set Z = {1, · · ·, N}, the basic version of the POCS
method applied to (7) consists in the iteration

u(n+1) := PHN
· · ·PH1u

(n), n ≥ 0. (12)

Since x belongs to every set Hk, we conclude from Propo-
sition 2.2 that the estimate error ∥u(n)− x∥ strictly decreases
with n as long as u(n) has not reached Hs. It is actually known
[22, §III.B] that not only u(n) always eventually converges to
an element u(∞) in Hs in norm, but the limit is more precisely

u(∞) = PHsu
(0).

As an intersection of closed affine subspaces, note that Hs

is itself a closed affine subspace. Thus, u(∞) is the consistent
estimate of x that is closest to the initial iterate u(0).

E. Kaczmarz algorithm

The Kaczmarz algorithm is the specific name that is given to
the iteration of (12) when the sets Hk are simply hyperplanes,
as is the case of (6). Given the explicit description of (6), PHk

yields the following simple expression [23, p.403]

∀u ∈ H, PHk
u = u+

sk − ⟨u, gk⟩
∥gk∥2

gk (13)

(this can also be obtained from (11) in the case where G is
the linear span of gk alone). The Kaczmarz algorithm was
first used in sampling by Yeh and Stark in [30] for solving
numerically the problem of Yen in [2]. Since then however,
this method has not known much development in nonuniform
sampling of bandlimited signals, primarily due to its slow
convergence.

A randomized version of the Kaczmarz algorithm was later
introduced in [31] for potential statistical accelerations of the
convergence. A standard version of it consists in performing
a random permutation of the N projections of (12) at each
iteration. But this variant is till not suitable for real-time causal
signal processing.

III. ORTHOGONAL SAMPLING KERNELS

The slow convergence of the Kaczmarz method is primarily
due to the non-orthogonality of the sampling kernels (gk)k∈Z.
Another fundamental shortcoming of this method is the impos-
sibility to reduce it to an iteration of the type u(n+1) = Ru(n)

with some fixed transformation R when Z is infinite. While
the number of samples is always finite in practice, an infinite
index set Z is always needed when dealing with the theoretical
question of perfect reconstruction of a bandlimited signal in
L2(R). Under the assumption of condition (3) where A is
the input space, we show in this section that there is a way to
reduce the POCS algorithm to alternating two projections only.
This even allows Z to be infinite. After giving some practical
examples of this situation in data acquisition, we present this
special POCS algorithm and its properties in absence of noise.

A. Practical examples of orthogonal sampling kernels
The cases of orthogonal kernels that have appeared in the

literature in nonuniform sampling until now [20], [21] take
place in the space H := L2(R) with A := B as the closed
subspace of inputs. Consider a sampling scheme where the
samples of x ∈ B are of the type

sk :=

∫ tk

tk−1

fk(t)x(t) dt, k ∈ Z (14)

for some increasing sequence of time instants (tk)k∈Z and
some family of functions (fk)k∈Z in L2(R). This takes the
form of (1) with

gk(t) := fk(t) 1[tk−1,tk](t), k ∈ Z.

Clearly, the functions (gk)k∈Z are orthogonal since their
supports do not overlap (up to discrete points). The samples
of (14) are those of leaky integrate-and-fire encoding (LIF)
when the functions (fk)k∈Z are of the type

fk(t) := e−α(t−tk−1)

for some constant α > 0 [21]. In the case α = 0, the samples
are of the simple form

sk :=

∫ tk

tk−1

x(t) dt, k ∈ Z (15)

which are also the type of samples that one extracts from
integrate-and-fire [8], [10], [11], [12], [13], [32] or from an
asynchronous Sigma-Delta modulator (ASDM) [16], [20].



5

B. Consistent reconstruction
Under the new assumptions, x belongs to both A and Hs

when s = (sk)k∈Z is obtained from (1). So the set of consistent
estimates is

As := A ∩Hs. (16)

We are going to see that As has a similar structure to Hs

within A. Let

g̃k := PAgk, k ∈ Z. (17)

Since gk − g̃k is orthogonal to A, then ⟨u, gk − g̃k⟩ = 0 for
any u ∈ A. Thus,

∀u ∈ A, ∀v ∈ H, ⟨u, gk⟩ = ⟨u, g̃k⟩. (18)

It then follows from (7) and (6) that

As :=
⋂
k∈Z

Ak where Ak := A ∩Hk (19)
=

{
v ∈ A : ⟨v, g̃k⟩ = sk

}
.

With a proof similar to that of Proposition 2.1, we have the
following result.

Proposition 3.1: Let s = (sk)k∈Z be any sequence. If As ̸=
∅, then, for any u ∈ As,

As = u+ F⊥ (20)

where F is the closed linear span of (g̃k)k∈Z

F := span(g̃k)k∈Z (21)

and F⊥ is the orthogonal complement of F in A.

Again, the reconstruction of x is unique if and only if F⊥ =
{0}. As this is equivalent to F = A, this means that the linear
span of (g̃k)k∈Z is dense in the whole space A.

C. POCS for orthogonal sampling kernels
The main point of the previous section was to prepare

the detailed notation of the new sampling framework and
reformulate the theoretical condition of unique reconstruction.
Now, the new contribution is that the POCS method can be
directly applied to the 2-set decomposition of (16). This is
because PHs is now accessible via its expression of (11).
Indeed, since (gk)k∈Z is now an orthogonal basis of G, we
have the explicit expansion of PG,

∀u ∈ H, PGu =
∑
k∈Z

〈
u,

gk
∥gk∥

〉
gk

∥gk∥
=

∑
k∈Z

⟨u, gk⟩
∥gk∥2

gk. (22)

It then results from (11) and (1) that

∀u ∈ H, PHsu = u+
∑
k∈Z

sk − ⟨u, gk⟩
∥gk∥2

gk. (23)

We can thus implement the POCS iteration

u(n+1) = PAPHsu
(n), n ≥ 0. (24)

As a consequence of Section II-D, we know that ∥u(n)− x∥
strictly decreases as long as u(n) /∈ As, and

u(∞) = PAs u
(0). (25)

But the new contribution is double: while the POCS iteration
of (24) is reduced to two projections only, it simultaneously
allows Z to be infinite! This is crucial for achieving perfect
reconstruction in infinite-dimensional spaces such as L2(R).

V

u

PVu

P 2
Vu

Pλ
Vu x

Fig. 1. Illustration of PCu and Pλ
C
u for λ ∈ (1, 2).

D. Relaxed projections

The estimate error reduction of Proposition 2.2 has in fact
the following generalized version.

Proposition 3.2: [23] Let C be a closed affine subspace of
H that contains x and

Pλ
Cu := u+ λ(PCu− u) (26)

for any λ ∈ R and u ∈ H. Then,

∀λ ∈ [0, 2], ∀u ∈ H, ∥Pλ
Cu− x∥ ≤ ∥u− x∥. (27)

Moreover, the inequality is strict when λ ∈ (0, 2) and u /∈ C.

We illustrate this result graphically in Fig. 1. The parameter
λ is called a relaxation coefficient. By iterating

u(n+1) = PAP
λn

Hs
u(n), n ≥ 0 (28)

where (λn)n≥0 is some sequence of coefficients in (0, 2), one
draws the same conclusion as in Section III-C: assuming that
x ∈ As, the estimate error ∥u(n)−x∥ strictly decreases with n
as long as u(n) has not reached As. To the best of the authors
knowledge, the actual convergence in norm of such a sequence
u(n) to a point of S is not explicitly discussed in the literature.
But this can be at least deduced from results in [33], which
leads to the following theorem.

Theorem 3.3: Assume that As ̸= ∅ and (λn)n≥0 is a
sequence of coefficients in [0, 2] such that

∑
n≥0 λn(2−λn) =

+∞. Then the relaxed POCS iteration of (28) starting with
u(0) ∈ A yields the limit of (25).

We justify this in Appendix A. The additional relaxation free-
dom allows in practice to accelerate the convergence. There
is no analytical result on the optimal relaxation coefficients,
which in practice are typically found empirically.

IV. SAMPLING OPERATOR AND PSEUDO-INVERSE

We have assumed until now that the sampling sequence
s = (sk)k∈Z is given exactly by (1). In practice however,
samples are often corrupted by noise. The question is what
happens to the POCS iteration of (24) when s is deviated by
some error. The worst case is when s can no longer be the
sampled version of any signal in A. We will see that the POCS
iteration is guaranteed to converge with any s (up to some
theoretical condition on its norm) when the linear operator S
of (2) that maps any x ∈ A into the sequence (⟨x, gk⟩)k∈Z has
a pseudo-inverse S†. In this case, the limit u(∞) will appear
to be exactly S†s when u(0) = 0. For the moment, the present
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section reviews some necessary material on operator theory
that will be needed in Section V to prove the above mentioned
POCS behavior.

A. Sampling operator S

In finite dimension, the above mentioned transformation S
is typically formalized as a matrix. One would then naturally
estimate x by applying the matrix pseudo-inverse S+ on
s. Under certain conditions, this is also possible in infinite
dimension, but the setting is substantially more involved. In
this case, a linear transformation typically involves infinite
summations whose convergence must be guaranteed with
respect to some norm. With the needed tool of orthogonal
projection and the objective to invert S, this requires both
the domain and the destination of S to be Hilbert spaces. A
rigorous way to construct our operator S is to present it as
follows:

S : A → D

u 7→ Su :=
(
⟨u, gk⟩

)
k∈Z

(29)

where

D :=
{
c :

(
ck/∥gk∥

)
k∈Z

∈ ℓ2(Z)
}

(30)

and ℓ2(Z) is the set of square-summable sequences indexed
by Z. We call S the sampling operator. While A is by default
seen as a Hilbert space with respect to the inner product ⟨·, ·⟩
of the ambient space H, D is a Hilbert space with respect to
the inner product ⟨·, ·⟩D defined by

∀c,d ∈ D, ⟨c,d⟩D :=
∑
k∈Z

ck dk

∥gk∥2
. (31)

Next, note that Su does belong to D for all
u ∈ A. Writing Su = (ck)k∈Z, this is because
(ck/∥gk∥)k∈Z =

(〈
u, gk/∥gk∥

〉)
k∈Z

, which belongs to
ℓ2(Z) since (gk/∥gk∥)k∈Z is orthonormal. When Z is finite,
note also that ℓ2(Z) is just RZ. Finally, when the sampling
is uniform (implying that ∥gk∥ is constant), note that ⟨·, ·⟩D
coincides with the canonical inner product ⟨·, ·⟩2 of ℓ2(Z),
up to a scaling factor. Otherwise, ⟨·, ·⟩D can be interpreted
as a weighted version of ⟨·, ·⟩2 to compensate for the
non-uniformity.

The sampling operator leads to a more concise way to
characterize the set of consistent estimates As. Indeed, it
follows from (19) and (29) that

As =
{
v ∈ A : Sv = s

}
= S−1(s). (32)

With this presentation,

As ̸= ∅ ⇔ s ∈ ran(S) (33)

where ran(S) denotes the range S. Finally, it will be useful
to note that the null space null(S) of S is given by

null(S) = F⊥ (34)

as a result of (21) and (18).

B. Adjoint operator S∗

In finite dimension, the matrix pseudo-inverse S+ is funda-
mentally linked to the matrix transpose S⊤ of S. Generalizing
pseudo-inversion in infinite dimension will also be based on
a generalization of matrix transpose, which is as follows: a
linear operator S∗ from D back to A is said to be adjoint to
S when

∀u ∈ A, ∀c ∈ D, ⟨u, S∗c⟩ = ⟨Su, c⟩D. (35)

A difficulty is that this uniquely defines S∗ only when S is
bounded, i.e., when there exists β ≥ 0 such that

∀u ∈ A, ∥Su∥D ≤ β∥u∥ (36)

where ∥·∥D is the norm induced in D by ⟨·, ·⟩D. Let us verify
that this is indeed realized with the operator S of (29). As

∀c ∈ D, ∥c∥2D = ⟨c, c⟩D =
∑
k∈Z

|ck|2

∥gk∥2
(37)

from (31),

∥Su∥2D =
∑
k∈Z

|⟨u, gk⟩|2

∥gk∥2
=

∑
k∈Z

∣∣〈u, gk
∥gk∥

〉∣∣2 = ∥PGu∥2 (38)

from (22) and by orthonormality of (gk/∥gk∥)k∈Z. By Bessel’s
inequality, PG is non-expansive. So (36) is satisfied with β =
1. The next expression gives the explicit description of S∗.

Proposition 4.1: The adjoint S∗ to the operator S of (29)
is given by

S∗ : D → A

c = (ck)k∈Z 7→ S∗c =
∑
k∈Z

ck
∥gk∥2

g̃k

. (39)

Proof: Using (39) as the definition of S∗, we have for all
u ∈ A and s ∈ D,

⟨u, S∗c⟩ =
〈
u,

∑
k∈Z

ck
∥gk∥2

g̃k

〉
=

∑
k∈Z

⟨u, g̃k⟩ck
∥gk∥2

= ⟨Su, c⟩D

as a result of (18) and (31).

The well known basic properties of operator adjoint [34] are

null(S) = ran(S∗)⊥ and null(S∗) = ran(S)⊥. (40)

C. Pseudo-inverse S†

The Moore-Penrose pseudo-inverse of S is the linear oper-
ator S† from D back to A such that [35, §11]

∀s ∈ D, S†s = argmin
v∈Ms

∥v∥, (41)

where
Ms :=

{
v ∈ A : ∥Sv − s∥D is minimized

}
. (42)

Contrary to the finite dimensional case, S† does not always
exist for the simple reason that ∥Sv − s∥D does not always
have a minimizer v ∈ A. This minimizer systematically exists
only when

ran(S) is closed in D. (43)
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Assuming this condition, the following are some useful prop-
erties of S† that can be found in [35, §11]:

S†S = Pran(S∗), (44a)

S S† = Pran(S), (44b)

ran(S†) = ran(S∗), (44c)

null(S†) = null(S∗) (44d)

((44d) is a consequence of Theorem 11.1.6 of [35]). By
assumption of (43), note that ran(S∗) is also closed (see for
example Lemma 2.5.2 of [36]). This allows the valid statement
of (44a) and implies that

ran(S†) = ran(S∗) = null(S)⊥ = F (45)

as a result of (44c), (40), (34) and the fact that F is closed.
Next is a result on the algebraic structure of the set Ms of
(42).

Proposition 4.2: Assuming that ran(S) is closed,

∀s ∈ D, Ms = As̄ = S†s+ F⊥ (46)

where s̄ := Pran(S)s.

Proof: Let s ∈ D. According to Theorem 11.1.1 of [35],
∥Sv−s∥D is minimized if and only if Sv = s̄. This proves that
Ms = As̄. It follows from (44b) that S(S†s) = Pran(S)s = s̄.
It then results from (32) that S†s ∈ As̄. The second equality
of (46) is then obtained by applying (20) after replacing s and
u by s̄ and S†s, respectively.

Remark: When s ∈ ran(S), one simply has Ms = As since
s̄ = s in this case. Now, as a result of (33), while As becomes
empty when s /∈ ran(S), note that Ms = As̄ is never empty
since s̄ ∈ ran(S).

D. Stable sampling

While condition (43) may seem abstract, it is seen in this
section as a necessary condition for stable reconstruction.
The next proposition first gives some equivalent analytical
properties to the fact that ran(S) is closed. One of them
involves the reduced minimum modulus of S, which is defined
by

γ(S) := inf
u∈F\{0}

∥Su∥D
∥u∥ (47)

given that F = null(S)⊥ from (34) as F is closed.

Proposition 4.3: The following statements are equivalent:
(i) ran(S) is closed in D.

(ii) γ(S) > 0,
(iii) (fk)k∈Z is a frame of F with fk := g̃k/∥gk∥, k ∈ Z.

The definition of a frame and the proof of this result are
in Appendix B. The connection of (ii) with reconstruction
stability is as follows. Consider the estimation of x ∈ A from
noisy samples s = Sx + e where e is some error sequence.
To simplify the problem, assume that F = A, guaranteeing
uniqueness of reconstruction, and e ∈ ran(S). Then Su = s

will imply that u = x + e where e is in F while satisfying
Se = e. As ∥e∥/∥e∥D = ∥e∥/∥Se∥D, this ratio has no
upper bound if (ii) is not satisfied. In other words, for a given
sampling error norm ∥e∥D, the reconstruction error norm ∥e∥
can be arbitrarily large. This prevents reconstruction stability.
On the other hand, if (ii) is satisfied, we will automatically
have ∥e∥ ≤ ∥e∥D/α. For this reason, (ii) is called the
condition of “stable sampling”1 [3], [37]. Note that this is
indeed an intrinsic property of the sampling (and not of the
chosen reconstruction method) since it is solely dependent
on the sampling kernels (gk)k∈Z as seen for example in the
equivalent formulation of (iii).

As a final remark, ran(S) is always closed when the number
of samples is finite, as is always the case in practice. This is
because ran(S) is of finite dimension. At the same time, (ii) is
systematically satisfied in this case with α equal to the smallest
positive singular value of S.

V. CONNECTION OF POCS ITERATION TO SAMPLING
PSEUDO-INVERSION

In this section, we show that the POCS iteration u(n+1) =
PAP

λn

Hs
u(n) of (28) belongs to a larger family of algorithms

that lead to the pseudo-inversion of S, and that is simulta-
neously a generalization of the frame algorithm [1], [3], [5].
At the end of the section, this will allow us to deduce the
theoretical effect of sampling noise on the limit of u(n) .

A. Generic form of iterated map

The first step is to connect PAP
λ
Hs

to the operators S and
S∗. It follows from (11) and (26) that

∀u ∈ H, Pλ
Hs

u = u+ λPG(x− u). (48)

We then obtain from (51) and (22) that

∀u ∈ A, PAP
λ
Hs

u = u+ λ
∑
k∈Z

sk − ⟨u, gk⟩
∥gk∥2

g̃k

where g̃k was defined in (17). Since s − Su =(
sk−⟨u, gk⟩

)
k∈Z

, it then follows from (39) that

∀u ∈ A, PAP
λ
Hs

u = u+ λS∗(s− Su). (49)

B. Generalized frame algorithm

The previous section has shown that the iteration of (28) is
of the type

u(n+1) = Rλn
s u(n), n ≥ 0 (50)

where Rλ
s u := u+ λS∗(s− Su) (51)

for any u ∈ A and λ ∈ R. We are going to see a direct con-
nection between the iteration of (50) and the pseudo-inversion
of S under very general assumptions on S. Specifically, we
will only assume in this subsection and the next that S is a
bounded operator from (A, ⟨·, ·⟩) to any other Hilbert space

1In the literature, “stable sampling” also implies uniqueness of reconstruc-
tion, .i.e., F = A. But in this paper, we use this expression in the more
general context where F ⊂ A. This refers more generally to the stability of
reconstruction of a consistent estimate.
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(D, ⟨·, ·⟩)D (not necessarily made of sequences). Section IV
will still be applicable, except (29-31), (37-39) and Proposition
4.3 (iii) ((45) will be used as the definition of F).

Starting from u(0) ∈ F, note first from (50) and (51) that u(n)

must remain in F since ran(S∗) = F from (45). Therefore, if
u(n) is convergent, its limit must be a fixed point of Rλ

s in F.
The next proposition then gives an immediate connection of
(50) with the pseudo-inversion of S.

Proposition 5.1: Assume that S has closed range. For any
s ∈ D and λ ∈ R, S†s is a fixed point of Rλ

s in F.

Proof: Note first that S†s ∈ F from (45). Next, it is easy
to see from (51) that any solution u to the equation S∗(s −
Su) = 0 is a fixed point of Rλ

s . It follows from (44b) that
s−SS†s = s−Pran(S)s) ∈ ran(S)⊥ = null(S∗) due to (40).
So S∗(s− SS†s) = 0.

What remains is to find a condition for (50) to be convergent.
This question turns out to be resolved in the analysis of the
frame algorithm [1], [3], [5] which falls in the particular
case where D = ℓ2(Z), s ∈ ran(S) and F = A. In the
following proposition, we reproduce this analysis under the
general Hilbert space assumptions of this section.

Proposition 5.2: For any s ∈ D and λ ∈ R,

∀v, w ∈ F, ∥Rλ
s v −Rλ

sw∥ ≤ cλ ∥v − w∥ (52)

where cλ = max
(
|1−λ∥S∥2|, |1−λ γ(S)2|

)
, (53)

∥S∥ := sup
u∈F\{0}

∥Su∥D/∥u∥ (54)

and γ(S) is defined in (47).

Proof: It follows from (51) that

Rλ
s u = Qλu+ λS∗s where Qλu := u− λS∗Su. (55)

Thus, Rλ
s v −Rλ

sw = Qλ(v −w). Then, (52) is satisfied with
cλ := supu∈F\{0} ∥Qλu∥/∥u∥. Because Qλ is self-adjoint, it
is known (see for example [38, §2.13]) that cλ is equivalently
the supremum of

∣∣⟨u,Qλu⟩
∣∣ over the set UF := {u ∈ F :

∥u∥ = 1}. We have

⟨u,Qλu⟩ = ∥u∥2 − λ∥Su∥2D
since ⟨u,Qλu⟩ = ⟨u, u⟩ − λ⟨u, S∗Su⟩ = ∥u∥2 − λ⟨Su, Su⟩D
due to (35). It then follows from (54) and (47) that the infimum
and the supremum of ⟨u,Qλu⟩ over UF are 1 − λ∥S∥2 and
1− λ γ(S)2, respectively. This leads to (53).

If cλ < 1 in (52) for some given λ, then Rλ
s is a contraction

within F and u(n) from (50) is guaranteed to converge starting
from u(0) ∈ F with λn = λ for all n ≥ 0. By property
of contraction [39], S†s will have to be the unique fixed
point of Rλ

s in F and hence the limit of u(n). When S is
bounded of closed range, it is shown in [1], [3] that cλ is
minimized with λ = 2/(γ(S)2+∥S∥2) of minimum value
(∥S∥2−γ(S)2)/(∥S∥2+γ(S)2). The interest of the present
paper will be more generally to know the values of λ that
lead to a coefficient cλ < 1.

Proposition 5.3: Let cλ be defined by (53). For ϵ > 0,

λ ∈
[
ϵ, 2∥S∥−2−ϵ

]
⇒ cλ ≤ ρϵ := 1− ϵ γ(S)2. (56)

If S has closed range, ρϵ < 1.

Proof: By construction, γ(S) ≤ ∥S∥. In this case,
it can be verified that cλ is more specifically equal
to max

(
λ∥S∥2−1 , 1−λ γ(S)2

)
. Now, while λ∥S∥2−1 ≤

(2∥S∥−2−ϵ)∥S∥2−1 = 1 − ϵ∥S∥2, we have 1−λ γ(S)2 ≤
1−ϵ γ(S)2. The second upper bound is the larger one, which
proves (56). When S has closed range, γ(S) > 0 by Proposi-
tion 4.3, and hence ρϵ < 1.

C. Generalized iteration
In the previous section, we focused on the case where

u(0) ∈ F and (λn)n≥0 is constant. We now give a general
result of convergence of u(n) from (50) in absence of these
two conditions. The case where u(0) /∈ F will be resolved
thanks to the following property.

Proposition 5.4: For all v ∈ F and w ∈ F⊥,

Rλ
s (v + w) = Rλ

s v + w.

Proof: It follows from (55) that Rλ
s (v+w) = Qλ(v+w)+

λS∗s = Rλ
s v + Qλw by linearity of Qλ. But due to (34),

Sw = 0. Therefore, Qλw = w.

By combining this with Propositions 5.1-5.3, we obtain the
following result.

Theorem 5.5: Assuming that S is bounded of closed range,
let (u(n))n≥0 be a sequence satisfying the recursion of (50)
for some s ∈ D and initial iterate u(0) ∈ A, with a sequence
of coefficients (λn)n≥0 such that λn ∈

[
ϵ, 2∥S∥−2−ϵ

]
for all

n ≥ 0 and some constant ϵ > 0. Then, (u(n))n≥0 is convergent
of limit

u(∞) = S† s+ PF⊥u(0) = PMsu
(0) (57)

and ∥u(n)− u(∞)∥ ≤ ρnϵ ∥u(0)− u(∞)∥, ∀n ≥ 0 (58)

where Ms and ρϵ are defined in (42) and (56).

Proof: Let u(0) ∈ A. We can write that u(0) = v(0) +w(0)

where v(0) := PFu
(0) and w(0) := PF⊥u(0). Let v(n+1) :=

Rλn
s v(n) for all n ≥ 0. Since v(0) ∈ F, we saw in the

previous section that v(n) remains in F for all n ≥ 0.
By assumption on λn, it follows from Proposition 5.3 that
cλn

≤ ρϵ. Then, by applying this with Propositions 5.1 and
5.2 on the sequence (v(n))n≥0, we obtain that ∥v(n+1)−S†s∥ =
∥Rλn

s v(n)− Rλn
s (S†s)∥ ≤ ρϵ∥v(n)− S†s∥. Since ρϵ < 1, this

proves that v(n) is convergent of limit v(∞) = S†s and that

∥v(n)− v(∞)∥ ≤ ρnϵ ∥v(0)− v(∞)∥, ∀n ≥ 0. (59)

Meanwhile, one easily finds by induction from Proposition
5.4 that u(n) = v(n) + w(0) for all n ≥ 0. Therefore, u(n)

tends to u(∞) = v(∞) + w(0) = S† s + PF⊥u(0). On the one
hand, (58) is deduced from (59) by a mere space translation by
w(0). On the other hand, it results from (46) that PMsu

(0) =
P(F⊥+S†s)u

(0) = PF⊥(u(0)− S†s) + S†s = PF⊥u(0) + S†s
since S†s ∈ F from (45). This proves (57).
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D. Application to POCS iteration

A known shortcoming of the frame algorithm is that the
range of admissible relaxation coefficients depends on ∥S∥
which is not necessarily accessible in practice. This problem
is however less critical with the iteration of (28) which
corresponds to Rλ

s = PAP
λ
Hs

. Returning to the beginning of
Section V, this is the case of (51) where S is defined by (29)
with (30) under the assumption of (3). Because of (38) and the
fact that PG is non-expansive, we know that ∥S∥ ≤ 1. In this
case, the interval

[
ϵ, 2∥S∥−2−ϵ

]
includes [ϵ, 2−ϵ] as a subset.

Theorem 5.5 then has the following consequence.

Corollary 5.6: Let (u(n))n≥0 be recursively defined by (28)
for some s ∈ D, coefficients (λn)n≥0 and initial iterate u(0) ∈
A with the following assumptions: the operator S defined by
(29) and (30) has closed range and λn ∈ [ϵ, 2−ϵ] for all n ≥ 0
and some ϵ > 0. Then (u(n))n≥0 is convergent of limit u(∞)

satisfying (57) and (58).

Note that the above assumption on λn implies that∑
n≥0 λn(2−λn) = +∞. Theorem 3.3 is then applicable

without the condition that ran(S) is closed, and hence with
no stable sampling condition. The requirement of this theorem,
however, is that As must be non-empty. Now when ran(S) is
closed, (57) can be seen as an extension of (25) allowing As

to be empty (due to sampling noise for example) following
the remark at the end of Section IV-C. Also, we have from
(58) that the convergence of u(n) is linear (referring to the
exponent of γn), which is not guaranteed by Theorem 3.3.

E. Consequence on noisy sampling

In absence of sampling noise. we already know the signal
implications of the POCS limit PAsu

(0) of (25). In practice
however, the sampling sequence that is injected into (25) is
often not s, but

ŝ := s+ e where s := Sx (60)

and e = (ek)k∈Z is some unknown error sequence. It then
follows from (57) and (46) that

u(∞) = PF⊥u(0)+ S†ŝ =
(
PF⊥u(0)+ S†s

)
+ S†e

= PAsu
(0) + S†e

since s ∈ ran(S) and hence s̄ = s. While PAsu
(0) is the

noise-free POCS iteration limit, S†e is the deviation of this
limit due to the sampling error sequence e.

Proposition 5.7: Let ē := Pran(S)e. Then,

S†e = S†ē and ∥ē∥D ≤ ∥e∥D

Proof: It follows from (44d) and (40) that null(S†) =
null(S∗) = ran(S)⊥. By construction, ē − e ∈ ran(S)⊥ =
null(S†). Thus S†e = S†ē. Meanwhile, ∥ē∥D ≤ ∥e∥D is
from Bessel’s inequality.

Hence, only the component ē of e in ran(S) contributes to
the reconstruction deviation. Thus, the POCS iteration has a
filtering effect on the noise sequence e. Meanwhile, the error

ē is irreversible. Indeed, since ē ∈ ran(S), then ē = Sē for
some ē ∈ A. There is no more knowledge to discriminate x
from x+ ē.

To have a strict inequality ∥ē∥D < ∥e∥D, note that ran(S)
must be a proper subspace of D. This necessitates some
oversampling. The higher the oversampling ratio is, the smaller
ran(S) is compared to D, and the smaller ∥ē∥D is compared
to ∥e∥D. This corresponds to the noise-shaping effect of
oversampling in uniform sampling [27].

VI. PRACTICAL IMPLEMENTATION ASPECTS

We present a rigorous way to implement the iterative part
of (50) in discrete-time, without the need to involve generic
discrete-time decompositions of the signals of A (such as sinc-
basis decompositions for bandlimited signals). Although not
studied in this paper, we will then touch on the issue of finite-
complexity implementations.

A. Discrete-time implementation of iteration

Using (49), (50) takes the form

u(n+1) = u(n) + λnS
∗(s− Su(n)), n ≥ 0. (61)

This is in practice an iteration of continuous-time functions.
For digital signal processing, one expects this iteration to be
discretized. Now, whether the space A has a countable basis
or not, there is a way to obtain u(n) by a pure discrete-time
iteration in D. The principle is as follows. Note from (61)
that u(n+1) − u(n) ∈ ran(S∗) for all n ≥ 0. Hence, u(n) − u(0)

must be in ran(S∗) as well. This implies that there exists
some discrete-time sequence c(n) ∈ D such that u(n) = u(0) +
S∗c(n). The next proposition implies a way to construct c(n)

recursively.

Proposition 6.1: For any given initial estimate u(0), the
iterate u(n) of (50) is equivalently obtained by iterating the
system

c(n+1) = c(n) + λn(s0 − SS∗c(n)) (62a)
u(n) = u(0) + S∗c(n) (62b)

for n ≥ 0, where s0 := s− Su(0), starting with c(0) = 0.

Proof: It follows from (62b) and (62a) that

u(n+1) = u(0)+ S∗c(n+1) = u(0)+ S∗(c(n)+λn(s0−SS∗c(n))
)

=
(
u(0)+ S∗c(n)

)
+ λnS

∗(s− Su(0)− SS∗c(n)
)

= u(n) + λnS
∗(s− Su(n))

which leads to (61).

The outstanding contribution of (62) compared to (50) is that
the pure discrete-time operation of (62a) can be iterated alone
until the targeted iteration number m. Then, the continuous-
time operation of (62b) just needs to be executed once at n =
m. The operator SS∗ involved in (62a) can be seen as a square
matrix of coefficients

SS∗ =

[
⟨g̃k′ , gk⟩
∥gk′∥2

]
(k,k′)∈Z×Z

(63)
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which needs to be predetermined before the iteration. In
general, the coefficients can only be obtained numerically.
It was proposed in [20], [21] to obtain them from a single-
argument lookup table.

B. Finite-complexity implementation

A remaining issue is the finite-complexity implementation
of (62). The most critical part is the recurrent operation of
SS∗ in (62a). For any c = (sk)k∈Z ∈ D, the kth component
of SS∗c is

SS∗c|k =
∑
k′∈Z

hk,k′ sk′ (64)

where hk,k′ := ⟨g̃k′ , gk⟩2/∥gk′∥22. For concrete analysis, let us
assume the traditional case where H = L2(R), A = B and
Z ⊂ Z. When the sampling is uniform, i.e., gk(t) = g(t−kT )
for some g(t) ∈ L2(R), hk,k′ reduces to hk′−k where
hk := ⟨g̃, gk⟩2/∥g∥22. So SS∗c is just a convolution operation.
Note that (hk)k∈Z are simply the squared uniform samples of
g̃(t) with some scaling factor. With the bandlimitation, hk
decays towards infinity in a sinc-like manner. For operation of
finite complexity, it is necessary to approximate hk using stan-
dard FIR windowing methods, which creates reconstruction
distortions. When the sampling is nonuniform, SS∗ loses its
time invariance. But it can still be seen as a linear filter of time-
varying impulse response hk,k′ , with expected decays when k′

gets far away from k. However, the windowing of time-varying
filters plus the effect of filter distortions to the POCS iteration
remain virgin topics that require new substantial investigations
not tackled in this article and to be addressed in the future.
Some preliminary experiments can been found in [20].

VII. MULTI-CHANNEL ORTHOGONAL SAMPLING

In this section, we illustrate the theoretical power of our
formalism by revisiting the sampling/reconstruction system
designed in [32], [11] for multi-channel time encoding. A
basic POCS algorithm was used to reconstruct a multi-channel
signal from the elaborate sampling system shown in Fig. 22.
We show that this encoding system turns out to satisfy the
abstract conditions of (1) and (3). While the reconstruction
iterates of [32], [11] coincide with those of (84) under our
formalism, our theory uncovers the full pseudo-inversion prop-
erty of this method, which was only studied in a noise-free
case of perfect reconstruction in these references. Moreover,
while the reconstruction method was mostly presented at
a conceptual level in [32], [11], our abstract reformulation
simultaneously allows a more explicit descriptions of practical
implementations.

A. System description

The time-encoding system of [32], [11] assumes that the
source signals are multidimensional bandlimited functions

y(t) = (y1(t), · · ·, yN (t)) ∈ BN .

2The letters ‘x’ and ‘y’ from [32], [11] have been interchanged in Fig. 2
to be compatible with the notation of the present article.

x1(t) TEM1

x2(t) TEM2

x3(t) TEM3

xM (t) TEMM

(t1j )j∈Z1

(t2j )j∈Z2

(t3j )j∈Z3

(tMj )j∈ZM

y1(t)

y2(t)

yM (t)

a1,1

a2,1
a
3,1

a
M

,1

Fig. 2. Multi-channel system of time-encoding machines (TEM) from [32],
[11].

Next, instead of sampling the functions yi(t) individually, the
system first expands y(t) into a redundant representation

x(t) := Ay(t), t ∈ R

where A is an M×N matrix that is assumed in [32], [11] to
be full rank with M ≥ N . In our present analysis, we will not
necessarily assume so. The signal x(t) is thus of the form

x(t) = (x1(t), · · ·, xM (t)), t ∈ R.

Each component xi(t) is then processed through an integrate-
and-fire encoding machine, which outputs a sequence of spikes
located at some increasing time instants (tij)j∈Zi

, where Zi is
some index set of consecutive integers. From the derivations of
[16], this provides the knowledge of successive integral values

si,j :=

∫ tij

tij−1

xi(t) dt, j ∈ Zi. (65)

The work of [32], [11] uses a POCS iteration to retrieve x(t),
before y(t) is recovered with the relation

∀t ∈ R, y(t) = A+x(t) (66)

where A+ is the matrix pseudo-inverse of A.

B. Signal and system formalization

We now show the existence of spaces H and A that allow
to present the samples si,j of (65) in the form of (1) with
condition (3). Let H := (L2(R))M . Each element u ∈ H is
a function of time u(t) = (u1(t), · · ·, uM (t)). The canonical
inner product of H is defined by

⟨u,v⟩ :=
M∑
i=1

⟨ui, vi⟩2 =

∫
R
u(t)⊤v(t) dt, u,v ∈ H

(67)
where in the last expression, u(t) and v(t) are seen for each
t ∈ R as M -dimensional column vectors. The signal x(t) to
be retrieved is an element x ∈ H that specifically lies in the
closed subspace

A :=
{
v ∈ BM : ∀t ∈ R, v(t) ∈ ran(A)

}
.

Next, let us show that si,j of (65) can be formalized as

si,j =
〈
x, gi,j

〉
, (i, j) ∈ Z. (68)

Naturally,

Z :=
{
(i, j) : i ∈ M and j ∈ Zi

}
where M := {1, · · · ,M}.
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Then, (68) clearly coincides with (65) by taking

gi,j(t) :=
(
0, · · ·, 0, gij(t), 0, · · ·, 0

)
(69)

where gij(t) is at the ith coordinate position and is equal to

gij(t) = 1Ii
j
(t) where Iji := [tij−1, t

i
j ]. (70)

It is clear as a result that (gi,j)(i,j)∈Z is an orthogonal family
of H. Thus, condition (3) is realized. In fact, to obtain this
property, it is sufficient to have

(gij)j∈Zi
orthogonal in L2(R) for each i ∈ M. (71)

We will just assume this condition for now. and will apply the
explicit assumption of (70) only later on in Section VII-F.

C. POCS iteration implementation

All of Sections III and V is applicable. In this process, we
are thus uncovering the general pseudo-inversion properties of
the POCS iteration limit of (28), which was only studied in a
noise-free case of perfect reconstruction with λn = 1 in [24],
[11]. But the more specific contribution of interest here is the
application of Section VI-A on a practical implementation of
the POCS iteration. We recall that the relaxed POCS algorithm
of (61) is efficiently implemented by iterating the system (62).
Using the specific function notation of Section VII-B, this
system is

c(n+1) = c(n) − λnSS
∗c(n) + s0 (72a)

u(n) = u(0) + S∗c(n) (72b)

starting from c(0) = 0, where

s0 := λn(s− Su(0)), (73a)

SS∗ =

[
⟨g̃i′j′ , gi,j⟩
∥gi′j′∥2

]
((i,j),(i′,j′))∈Z×Z

, (73b)

S∗c =
∑

(i,j)∈Z

si,j
∥gij∥2

g̃i,j , c = (si,j)(i,j)∈Z ∈ D (73c)

and g̃i,j = PA gi,j , (i, j) ∈ Z. (73d)

In the next two subsections, we derive the expressions of SS∗

and S∗c n terms of the family of scalar functions (gji )(i,j)∈Z.

D. Discrete-time iteration

The derivation of SS∗ needed in (72a) starts with the
following preliminary result.

Proposition 7.1: If u(t) = u(t)u where u(t) ∈ L2(R) and
u ∈ RM , then,

PAu(t) = ũ(t)AA+u.

We prove this in Appendix C. Then, the coefficients of the
operator SS∗ described in (73b) are given as follows.

Proposition 7.2: For all (i, j), (i′, j′) ∈ Z,

∥gi,j∥2 = ∥gij∥
2

2
and

〈
g̃i′,j′ , gi,j

〉
= ⟨g̃i

′

j′ , g
i
j⟩2 aii′ (74)

where ũ := PB u for any u ∈ L2(R), and aii′ is the entry of
matrix AA+ at index (i, i′) ∈ M×M.

Proof: The first equality of (74) is clear from (69) and
(67). Let ei designate the ith coordinate vector of RM . It
follows from (69), (73c) and Proposition 7.1 that

gi,j(t) = gij(t) ei and g̃i,j(t) = g̃ij(t)AA+ei (75)

for all (i, j) ∈ Z. Thus, both gi,j(t) and g̃i,j(t) are of the form
u(t)u. The general identity〈

u(t)u, v(t)v
〉
= ⟨u, v⟩2 u⊤v

that results from (67) then implies the second equality of (74)
with aii′ := (AA+ei)

⊤ei′ = e⊤i (AA+)ei′ since AA+ is an
orthogonal projection and hence symmetric.

E. Final continuous-time output

Once (72a) has been iterated the desired number of times
m, one can output the continuous-time multi-channel signal
u(m)(t) from (72b). For that purpose, we need to know the
explicit expression of S∗c in terms of c = (si,j)(i,j)∈Z ∈ D.
It follows from (73c), (74) and (75) that S∗c is the continuous-
time function

S∗c =
∑

(i,j)∈Z

si,j
∥gij∥22

g̃ij(t)AA+ei =
∑
i∈M

PB(c
i(t))AA+ei

where ci(t) :=
∑
j∈Zi

si,j
∥gij∥22

gij(t). (76)

If one needs to provide an estimate of the source signal y(t),
the relation (66) naturally leads us to consider the estimate

v(m)(t) := A+u(m)(t) = A+S∗c(m) ∈ BN .

For any c ∈ D, it results from (76) that

A+S∗c =
∑
i∈M

PB(c
i(t))a+i

where a+i := A+AA+ei = A+ei as a general result of matrix
pseudo-inverse. Then, a+i is nothing but the ith column vector
of A+.

F. Explicit case of samples of (65)

We now look at the more specific implementation for the
samples sij considered in (65). As shown in Section VII-B,
this corresponds to the case where gij(t) is given by (70). The
quantities that need to be derived more explicitly are

∥gij∥2, ⟨g̃i
′

j′ , g
i
j⟩2 and ci(t)

for (74) and (76). It is first clear that

∥gij∥22 = tij − tij−1.

As a generalization of a derivation from [20] in the case of a
single channel, it can be derived that〈
g̃i

′

j′ , g
i
j

〉
2
= f(T i,i′

j,j′−1)−f(T i,i′

j−1,j′−1)−f(T i,i′

j,j′)+f(T i,i′

j−1,j′)
(77)

where T i,i′

j,j′ := tij − ti
′

j′ and f(t) :=
∫ t

0
(t−τ) sinc(τ) dτ .

Although ⟨g̃i′j′ , gij⟩2 depends on the four time instants
(tij , t

i
j−1, t

i′

j′ , t
i′

j′−1) and is composed of four terms, it is the
same single-argument numerical function f(t) that is used.
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The values of this function can be stored in a lookup table, so
that the required computation is just limited to a few additions
and subtractions.

Finally

ci(t) =
∑
j∈Zi

sij 1Ii
j
(t) where sij :=

si,j
tij − tij−1

.

This is nothing but the piecewise constant function equal to
sij in Iij for each j ∈ Zi. This is produced by analog circuits
using a zero-order hold.

VIII. BANDLIMITED INTERPOLATION BY ITERATIVE
PIECEWISE-LINEAR CORRECTIONS

Until now, the examples of orthogonal sampling kernels
we have provided all result from sampling by integration. An
ultimate goal would be to have such a type of kernels for point
sampling. For x(t) that is at least continuous on R, one wishes
to have x(tk) = ⟨x, hk⟩2 where the functions (hk)k∈Z have
non-overlapping supports so that they are orthogonal in L2(R).
The only way to do that would be to take hk(t) := δ(t−tk)
where δ(t) is the Dirac impulse. However, this is not a function
of L2(R). We show in this section that orthogonal kernels can
actually be obtained for point sampling by choosing as ambient
space H a homogeneous Sobolev space. The resulting POCS
method turns out to coincide with an existing algorithm by
Grochenig [4, §4.1]. However, as in the example of Section
VII, this algorithm was only analyzed in a case of noise-free
perfect reconstruction, while our analysis leads to a complete
set of pseudo-inversion properties.

A. Initial idea

Assume that a bandlimited function x is given by point
samples (x(tk))k∈Z at some known increasing sequence of
instants (tk)k∈Z. For functions u(t) of sufficient regularity,
the point samples (u(tk))k∈Z yield the relation

u(tk)−u(tk−1) =

∫ tk

tk−1

u′(t) dt =
〈
u′, 1[tk−1,tk]

〉
2
= ⟨u′, g′k⟩2

(78)
where

gk(t) :=


0 , t ∈ (−∞, tk−1)

t− tk−1 , t ∈ [tk−1, tk)
tk− tk−1 , t ∈ [tk,∞)

, k ∈ Z. (79)

Using the notation

∆ak := ak− ak−1 and ⟨u, v⟩ := ⟨u′, v′⟩2, (80)

we obtain from (78) that

∆u(tk) = ⟨u, gk⟩, k ∈ Z. (81)

From the point samples (x(tk))k∈Z, we can then form the
generalized samples

sk = ⟨x, gk⟩ where sk := ∆x(tk), k ∈ Z. (82)

Moreover, since g′k = 1[tk−1,tk], (g′k)k∈Z is an orthogonal
family in L2(R). So (gk)k∈Z is orthogonal with respect to
⟨·, ·⟩. The main issue is to find a Hilbert space H in which
⟨·, ·⟩ is a well defined inner product.

B. Ambient Hilbert space

A suitable candidate for H is the homogeneous Sobolev
space [25], [26] defined by

Ḣ1(R) =
{
u(t) : u is absolutely continuous on R

and u′ ∈ L2(R)
}

where absolute continuity is here in the local sense. In this
case, u is absolutely continuous on R if and only if it is dif-
ferentiable almost everywhere of locally integrable derivative
u′ such that u(b) = u(a) +

∫ b

a
u′(t) dt for any a ≤ b [40,

§11.4.6]. Since u′ ∈ L2(R) for any u ∈ Ḣ1(R), then the
function ⟨·, ·⟩ of (80) is well defined in Ḣ1(R). The remaining
issue is that the induced function

∥u∥ := ⟨u, u⟩1/2 = ∥u′∥2 (83)

is only a seminorm, as ∥u∥ = 0 only implies that u(t) is
a constant function. In the construction of Ḣ1(R), it is in
fact implied that its functions are uniquely defined up to a
constant component (similarly to the functions of L2(R) that
are uniquely defined pointwise only up to a set of measure
0). Under this setting, ∥ · ∥ is a norm and

(
Ḣ1(R), ⟨·, ·⟩

)
is

rigorously a Hilbert space. Qualitatively, ∥u∥2 is the total slope
energy of u(t). We have the following list of properties.

Proposition 8.1:
(i) (gk)k∈Z is an orthogonal family of Ḣ1(R).

(ii) For all u ∈ Ḣ1(R), u satisfies (81).
(iii) The subspace A of all bandlimited functions of Ḣ1(R)

of Nyquist period 1 is closed.

Proof: (i) As we already saw the orthogonality of (gk)k∈Z

with respect to ⟨·, ·⟩, we just need to verify that gk ∈ Ḣ1(R).
For each k, gk is easily seen to be absolutely continuous.
Meanwhile, ∥g′k∥22 = ∥1[tk−1,tk]∥22 = ∆tk so that g′k ∈ L2(R).

(ii) By absolute continuity, every function u ∈ Ḣ1(R)
satisfies (78) and hence (81).

(iii) Let U(ω) be the Fourier transform of a function u(t).
For any interval I , let uI(t) be the function whose Fourier
transform is 1I(ω)U(ω). For any given u ∈ Ḣ1(R), we can
write u = uB + uB̄ where B := [−π.π] and B̄ := R\B.
Since ∥v′∥22 = 1

2π

∫
R ω2 |V (ω)|2 dω, it is clear that u′

B , u
′
B̄
∈

L2(R). Meanwhile, they are both absolutely continuous since
uB is infinitely differentiable and uB̄ = u−uB . So uB , uB̄ ∈
Ḣ1(R). Since ⟨v, w⟩ = 1

2π

∫
R ω2 V (ω)W ∗(ω) dω, then uB ⊥

uB̄ in Ḣ1(R). While A is the subset of Ḣ1(R) of functions
whose Fourier transforms are supported by B := [−π, π], let Ā
be the subset of Ḣ1(R) of functions whose Fourier transforms
are supported by B̄. We have just proved that A ⊕ Ā is an
orthogonal decomposition of Ḣ1(R). This proves that A is
closed in Ḣ1(R).

C. POCS algorithm

After forming the generalized samples sk := ∆x(tk) from
the point samples of x, we have shown in (82) that the generic
sampling form of (1) is achieved with H = Ḣ1(R), A = B

and the family (gk)k∈Z defined in (79) which is orthogonal
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in H. All the conditions of Section III are thus realized. The
signal x can then be estimated by iterating

u(n+1) = PAPHsu
(n), n ≥ 0 (84)

which we have simply repeated from (24) for convenience,
where Hs is defined in (7) and s := (∆x(tk))k∈Z.

Proposition 8.2: With s := (∆x(tk))k∈Z, Hs is the set of
functions u(t) ∈ Ḣ1(R) such that u(tk) − x(tk) is constant
for k ∈ Z.

Proof: From (81), ⟨u, gk⟩ = ∆u(tk) for any u ∈ Ḣ1(R).
So, from (7), u ∈ Hs if and only if ∆u(tk) = sk = ∆x(tk)
for all k ∈ Z. This is equivalent to u(tk)−x(tk) = u(tk−1)−
x(tk−1) for all k ∈ Z. This proves the proposition.

By applying the POCS results of Section III-C to (84), we
obtain the following result.

Proposition 8.3: Assume that (tk)k∈Z is any increasing
sequence of time instants. Let (u(n))n≥0 be recursively defined
by (84) starting from some u(0) ∈ A, and u(∞) be the function
of A that interpolates the points (tk, x(tk))k∈Z while minimiz-
ing ∥(u(∞)− u(0))′∥2. Then, ∥(u(n)− u(∞))′∥2 monotonically
tends to 0 with n.

Proof: Given that H = Ḣ1(R) with the norm defined
in (83), we know from Section III-C that ∥u(n) − û∥ =
∥(u(n)− û)′∥2 monotonically tends to 0 with û := PAsu

(0).
Since û ∈ As = A ∩Hs, we know by Proposition 8.2 that û
is an element of A that interpolates the points (tk, x(tk))k∈Z

up to a constant component. But since û = PAsu
(0), it also

minimizes ∥û− û(0)∥ = ∥(û− û(0))′∥2. Thus û and u(∞) differ
by just a constant. Then, û can be replaced by u(∞) in all the
above norm expressions.

D. Conincidence with Grochenig’s algorithm

As s = (∆x(tk))k∈Z is equivalent to x ∈ Hs, we recall
from Proposition 2.3 that

PHsu := u+ PG(x−u) (85)

where G is the closed linear span of (gk)k∈Z. Given the
definition of this family in (79), PG is characterized as follows.

Proposition 8.4: For any u ∈ Ḣ1(R), PGu is the function
that linearly interpolates the points (tk, u(tk))k∈Z up to a
constant component.

Proof: Let u ∈ Ḣ1(R). Since (gk)k∈Z is an orthogonal
basis of G, then

PGu =
∑
k∈Z

⟨u, gk⟩
∥gk∥2

gk(t) =
∑
k∈Z

∆u(tk)

∆tk
gk(t) (86)

using (81) and the result ∥gk∥2 = ∥1[tk−1,tk]∥22 = ∆tk . Let
û be the linear interpolant of the points (tk, u(tk))k∈Z. For
each k ∈ Z and every t ∈ (tk−1, tk), it is easy to see that
u′(t) = ∆u(tk)/∆tk = û′(t). As u and û are both absolutely
continuous, then u− û is a constant function.

Grochenig previously introduced in [4, §4.1] the following
iteration3

u(n+1) = PB

(
u(n)+ L(x−u(n))

)
, n ≥ 0 (87)

where u(n) is in the subspace B ⊂ L2(R) of bandlimited
functions, which we assume of Nyquist period 1, and Lu
is the exact linear interpolation of the points (tk, u(tk))k∈Z.
When thinking of u(n) as elements of A ⊂ Ḣ1(R), then (87)
coincides with (84) given (85).

E. Analysis comparison

It is interesting to compare the convergence analysis of (87)
from [4] with the result of Proposition 8.3. Under the condition
that

lim
k→±∞

tk = ±∞ and ∆ < 1, (88)

where ∆ := supk∈Z ∆tk, it was shown in [4] that the
transformation of (87) is a contraction with respect to the
L2-norm. As x is a fixed point of (87), this proves that u(n)

linearly converges in L2-norm to x. Meanwhile, Proposition
8.3 analyzes the convergence of u(n) in terms of the L2-norm
of its derivative. A shortcoming is the loss of information on
its constant component. However, this proposition contains a
lot more results, as follows.

Note first that none of the conditions of (88) are assumed
in Proposition 8.3. In the case where tk has a finite limit t∞
(resp. t−∞) when t goes to ∞ (resp. −∞), then we just need to
assume that Lu is constant and equal to u(t∞) (resp. u(t−∞))
in [t∞,∞) (resp. (−∞, t∞]) to be consistent with PGu as a
result of (86) with (79). We can even include the case where
Z is a finite set {1, · · ·, N}, which corresponds to the case
of N+1 sampling instants t0, · · · , tN (t0 and tN playing the
roles of t−∞ and t∞ in the construction of L).

Next, we can see that perfect reconstruction is achieved
(up to a constant component) whenever the samples uniquely
define x(t) as a bandlimited signal. There are known cases
where this is realized without the constraint that ∆ < 1. For
example, uniqueness of reconstruction is known from [1] to
be realized when (|tk−kT |)k∈Z is upper bounded for some
T ∈ [0, 1) and ∆tk has a positive lower bound. This condition
can lead to arbitrarily large ∆.

When consistent reconstruction is not unique, Proposition
8.3 implies that (87) is still convergent (up to a constant
component) and the limit u(∞) is the bandlimited interpolator
that is closest to u(0) in terms of the norm of (83). If u(0) = 0,
u(∞) can be interpreted as the bandlimited interpolator of
minimum slope energy. But choosing a nonzero function u(0)

can be useful to “attract” the interpolator u(∞) towards some
signal guess obtained by other means (see experiment in
Section VIII-G).

On top the uncertainty on constant component, a shortcom-
ing of Proposition 8.3 is the absence of linear convergence.
This would require to know the condition on (tk)k∈Z for
ran(S) to be closed. This is a difficult problem that cannot
be resolved here. However, we know by default that linear

3This iteration appears in eq.(24) of [4] in the equivalent form of u(n+1) =
u(n) + PBPG(x−u(n)) since u(n) ∈ B.
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convergence is achieved whenever Z is finite, which is the
case of interest in practice. Finally, our framework includes
the additional option of relaxation and insight on the POCS
limit under sampling noise.

The lack of knowledge on the constant components is
mostly due to the analysis in Ḣ1(R) which cannot incorporate
the fact that L performs in (87) an exact interpolation. It is
actually possible to combine the consequences of this analysis
with the latter fact and eliminate the constant-component
uncertainties. As this is beyond the main scope of the present
paper, this will be reserved for a future publication.

F. Numerical experiments in oversampling situation

We plot in Fig. 3 the MSE performance of a number of iter-
ative bandlimited reconstruction algorithms from nonuniform
point samples of similar complexity per iteration, including the
original frame algorithm introduced in the pioneering paper on
nonuniform sampling [1], the basic Kaczmarz method and its
randomized version presented in Section II-E, and Grochenig’s
algorithm without and with relaxation. For each algorithm, the
MSE of the nth iterate u(n), reported in solid lines, is measured
by averaging the relative error ∥u(n) − x∥22/∥x∥22 over 100
randomly generated bandlimited inputs x that are periodic of
period 315 (assuming a Nyquist period 1). Even though our
analysis of Grochenig’s algorithm has been constructed in the
Sobolev space Ḣ1(R), we have maintained the L2-norm in
the error measurements as this is the standard reference of
MSE in signal processing. We have however superimposed in
mixed lines the MSE obtained by averaging ∥u(n)−x∥2/∥x∥2
where ∥ · ∥ is the norm of Ḣ1(R) given in (83), specifically
for the results of Grochenig’s algorithm in curves (iv) and (v).
Even though the two norms are not equivalent, we observe
that they yield similar results. So, while we do not provide
analytical justifications for this similarity, we see that the
Sobolev norm remains an adequate tool of error predictions in
these experiments. In (v), the relaxation coefficient has been
optimized empirically.

In Fig. 3 (a,b), we compare the behavior of the algorithms
with respect to two types of sampling nonuniformity. In (a),
(∆tk)k∈Z is generated as an i.i.d sequence that is uniformly
distributed in [0.3, 1] (in Nyquist period unit), leading to an
oversampling ratio of about 1.54. Meanwhile, the sampling
instants in (b) are grouped into clusters that are nonuniformly
spaced between each other. Each cluster is made of 3 sampling
instants equally spaced by 1/4 (as opposed to 1 in Nyquist
rate sampling), and the overall density of of clusters is such
that the oversampling ratio is 2. The two figures show that the
randomized Kaczmarz method appears to be well tuned for the
random nonuniformity of (a), but not at all for the clustered
type of nonuniformity in (b), where it barely improves the
basic cyclic version of the Kaczmarz method. Meanwhile,
Grochenig’s algorithm shows its systematic superiority to
the cyclic Kaczmarz method in MSE. This is particularly
remarkable for the clustered type of nonuniformity, which is
known to be a challenge for bandlimited interpolation. Now,
the inclusion of relaxation in (v) is also of outstanding impact:
it substantially improves the unrelaxed version in a way that

could not have been predicted or justified in the the general
framework of contractions, like in the analysis of [4].

Fig. 3 (c) goes back to a nonuniformity of the type of
(a) at however a higher oversampling ratio to highlight the
noise-shaping effect of the POCS algorithm in the presence of
sampling errors. Here, the sequence (∆tk)k∈Z is uniformly
distributed in [0, 0.5], and the sample errors are Gaussian
random variables that are 45 dB’s below the input in variance.
While the randomized Kaczmarz method exhibits the same
type of fast convergence as in (a), it shows inferior capabilities
of noise filtering compared to Grochenig’s method. This is
a consequence of the pseudo-inversion property of the latter
method when formalized as a POCS algorithm. As an extra
result, the figure shows the particularly poor behavior of the
cyclic Kaczmarz method to high oversampling.

G. Numerical experiments in sub-Nyquist situation

We show in Fig. 4 an example of POCS iteration limit
in a case of sub-Nyquist sampling. In this experiment, the
samples of the bandlimited input x(t) are obtained by level-
crossing sampling [6], [8], [9], that is, from the crossings of
x(t) with fixed levels represented by horizontal grey lines
[6], [8], [9]. The resulting sampling ratio is 0.77 (the time
unit is the Nyquist period of x(t)), which prevents uniqueness
of reconstruction. While the blue curves result from a zero
initial estimate u(0)(t), the red curves are obtained by choosing
for u(0)(t) the bandlimited version of the piecewise constant
function shown in black dotted curve. This stair case function
can be generated from the mere knowledge of the level
crossings. In each of the two cases of initial estimate, the
result of 3 iteration numbers is plotted, using the following
line types in increasing order of iteration: dotted line, mixed
line, solid line. The exact iteration numbers of the plots are
indicated in the legend. To validate our convergence analysis,
we have actually plotted the result of infinite iteration by
employing the theoretical limit formula of (57) and computing
S† by matrix pseudo-inverse, given the low dimensionality of
the experiment. The figure shows the good convergence of
u(n)(t) to this ideal limit. Now, the main point of this figure
is to show an example of reconstruction improvement using a
heuristically designed nonzero initial estimate u(0)(t).

IX. SUMMARY

We have introduced in this paper an abstract frame-
work where a bandlimited input signal can be recon-
structed/estimated from nonuniform generalized samples by
pseudo-inversion of the sampling operation, using an algorithm
that consists of iterated time-varying filters. This requires
that the sampling kernel functions be orthogonal at least
in a Hilbert space that is larger than the input space. We
prove in this paper the full pseudo-inversion properties of our
algorithm. They include perfect reconstruction whenever the
samples uniquely define the input, minimum-norm reconstruc-
tion when the sampling is insufficient, and a noise-shaping
effect on sampling errors. While the required condition on
the sampling kernels was previously observed in the time
encoder of Lazar and Tóth, this condition is shown in this
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Fig. 3. MSE results of iterative bandlimited reconstructions from nonuniform point samples at randomly generated instants (tk)k∈Z with the following
statistics: (a) uniform distribution of ∆tk in [0.3, 1] (1.3 relaxation for (v)); (b) randomly positioned clusters of sampling instants (1.45 relaxation for (v)); (c)
uniform distribution of ∆tk in [0, 0.5] with sampling noise (1.05 relaxation for (v)). The solid lines correspond to MSE based on the L2-norm (as reported
in the ordinate description), while the mixed lines correspond to MSE based the Sobolev norm.
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Fig. 4. Estimation of bandlimited input x(t) from level crossing samples in
sub-Nyquist situation (sampling ratio of 0.77).

paper to appear in a non-trivial manner in a recent multi-
channel time-encoding system as well as in traditional point
sampling, Our resulting algorithms turn out to coincide with
existing reconstruction methods in these cases, But our frame-
work reveals the pseudo-inversion properties of these methods,
while proposing efficient discrete-time implementations.

APPENDIX

A. Proof of Theorem 3.3

For any closed affine subspace C and λ ∈ R, Pλ
Cu − u =

λ(PCu−u) ∈
−→
C

⊥
where

−→
C is the linear subspace associated

with C. Since P 2
Hs

u − u = 2(PHsu − u), P 2
Hs

is the
symmetry with respect to the affine space Hs, and hence is
non-expansive. Using the relation, Pλ

Cu − u = λ
2 (P

2
Cu − u),

we have PAP
λ
Cu − u = λ

2 (PAP
2
Cu − u) for all u ∈ A. By

applying this with C = Hs, λ = λn and u = u(n), the iterate
u(n) of (28) satisfies the recursion

u(n+1) = u(n) + λn

2 (Ru(n)− u(n)), n ≥ 0

where R := PAP
2
Hs

. This operator is non-expansive and the
set of its fixed points can be verified to be A ∩ Hs = As.
As

∑
n≥0

λn

2 (1−λn

2 ) = +∞ with λn

2 ∈ [0, 1], we can apply
Theorems 5.14 and 5.13 of [33], and conclude that u(n) has
a limit u(∞) ∈ As. We have Pλn

Hs
u(n) − u(n) ∈

−→
Hs

⊥
while

PAP
λn

Hs
u(n) − Pλn

Hs
u(n) ∈ A⊥. Therefore, u(n+1) − u(n) ∈

A⊥+
−→
Hs

⊥
⊂ (A ∩

−→
Hs)

⊥
=

−→
A s

⊥
. Hence, u(∞)− u(0) ∈

−→
A s

⊥
.

This proves that u(∞)= PAsu
(0).

B. Proof of Proposition 4.3

(i) ⇔ (ii): Given (29), it is known from [41] that ran(S) is
closed in D if and only if there exists a constant α > 0 such
that ∥Su∥D ≥ α∥u∥ for all u ∈ null(S)⊥. This amounts to
(ii) with the identity null(S)⊥ = F from (34).

(ii) ⇔ (iii): By definition, (fk)k∈Z is a frame of F if and
only if there exist constants 0 < A ≤ B such that

∀u ∈ F, A∥u∥2 ≤
∑
k∈Z

|⟨u, fk⟩|2 ≤ B∥u∥2 (89)

Now, it follows from (18) and (38) that

∀u ∈ A,
∑
k∈Z

|⟨u, fk⟩|2 =
∑
k∈Z

|⟨u, g̃k⟩|2

∥gk∥2
= ∥Su∥2D. (90)

We see from (38) that the upper bound of (89) is by default
satisfied with B := 1. Meanwhile, the lower bound A > 0
exists if and only if (ii) is satisfied.

C. Proof of Proposition 7.1

Lemma A.1: Let u(t) := u(t)u where u(t) ∈ L2(R) and
u ∈ RM . If u(t) ∈ B⊥ or u ∈ ran(A)⊥, then u(t) ∈ A⊥.

Proof: Let v(t) ∈ A. It follows from (67) that

⟨u,v⟩ =
〈
u(t)u,v(t)

〉
=

〈
u(t),u⊤v(t)

〉
2
.
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Clearly, u⊤v(t) ∈ B. So if u(t) ∈ B⊥, then ⟨u,v⟩ = 0.
Meanwhile, if u ∈ ran(A)⊥, then u⊤v(t) = 0 for each single
t ∈ R. Then ⟨u,v⟩ = 0 regardless of u(t). This proves the
lemma.

We now proceed with the proof of Proposition 7.1. It will
be convenient to define P := AA+. Let w(t) := ũ(t)Pu.
Its ith component is wi(t) = ũ(t) qi ∈ B, where qi is the ith
coordinate of Pu. So w(t) ∈ BM . Meanwhile, Pu ∈ ran(A),
so w(t) ∈ ran(A) for each t ∈ R. Then, w(t) ∈ A. Next, we
can write

u(t)−w(t) =
(
u(t)−ũ(t)

)
u+ ũ(t) (u−Pu).

While u(t)−ũ(t) ∈ B⊥, u − Pu ∈ ran(A)⊥ because P is
known to be the orthogonal projection of RM onto ran(A).
So u(t) − w(t) ∈ A⊥ according to the above lemma. Thus,
w(t) = PAu(t).
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