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Describing open quantum systems in terms of effective non-Hermitian Hamiltonians gives rise
to non-unitary time evolution. In this paper, we study the impact of non-unitary dynamics on
the emergent hydrodynamics in quantum systems with a global conservation law. To this end, we
demonstrate how linear-response correlation functions can be generalized and interpreted in the
case of non-Hermitian systems. Moreover, we show that dynamical quantum typicality provides
an efficient numerical approach to evaluate such correlation functions, even though the non-unitary
dynamics leads to subtleties that are absent in the Hermitian case. As a point of reference for
our analysis, we consider the Hermitian spin-1/2 XXZ chain, whose high-temperature transport
properties have been characterized extensively in recent years. Here, we explore the resulting hy-
drodynamics for different non-Hermitian perturbations of the XXZ chain. We also discuss the role of
integrability by studying the complex energy-level statistics of the non-Hermitian quantum models.

I. INTRODUCTION

The relaxation of many-body quantum systems to-
wards thermal equilibrium is a topic which has attracted
much interest over the last few decades [1–4]. In the
presence of a global conservation law, e.g., energy, parti-
cle number, or magnetization, the long-time dynamics of
such systems are governed by an effective hydrodynamic
description that arises from the underlying microscopic
equations of motion [5–7]. In chaotic systems, the emerg-
ing hydrodynamics are usually expected to be diffusive
[5–10]. In contrast, in the case of integrable systems, the
extensive set of constants of motions typically leads to
ballistic or superdiffusive transport [11, 12], which can
also be understood within the framework of generalized
hydrodynamics [13, 14]. Exploring the emergence of dif-
ferent types of transport is an active area of research
both on the experimental side, especially in cold-atom
and trapped-ion platforms [15–17], but also in more tra-
ditional solid-state settings [18, 19], as well as on the the-
oretical side, where sophisticated numerical techniques
are being developed [20–23].

While the time evolution of an ideally isolated quan-
tum system is unitary and described by the Schrödinger
equation, perfect isolation from an environment is not al-
ways realistic. The dynamics of the actual open system
might then be described in terms of, e.g., quantum mas-
ter equations or by considering suitable non-Hermitian
Hamiltonians [24–27]. Not least spurred by the improved
experimental control over non-Hermitian systems [28–
32], various fascinating aspects have been explored in
recent years, including the non-Hermitian skin effect [33–
35], exceptional points and generalizations of topological
phases [36–41], quantum chaos [42–51], eigenstate ther-
malization [52, 53], and many-body localization [54–57].
The study of non-Hermitian systems is interesting also in
a broader context, as the non-unitary dynamics provides
a framework to study new phenomena and realize novel
out-of-equilibrium phases of matter [58–62].

In this paper, we explore how non-unitary time evo-

lution, governed by non-Hermitian Hamiltonians, affects
the emerging hydrodynamics in quantum systems with
a conserved quantity. While there is a long history of
studying transport in boundary-driven systems, where
the system-bath setup is modelled by a Lindblad mas-
ter equation [7, 63], studying transport directly from the
point of view of non-Hermitian Hamiltonians has received
less attention. As a convenient starting point, we con-
sider the integrable and Hermitian spin-1/2 XXZ chain,
the high-temperature transport properties of which are
well established in the literature [7, 12, 64]. In particular,
we will study different non-Hermitian deformations of the
XXZ model, including an interacting spin-chain version
of the Hatano-Nelson model with asymmetric hopping
amplitudes, as well as a disordered spin chain with non-
Hermitian random-field terms.

Transport in many-body quantum systems is com-
monly studied in terms of time-dependent linear-response
correlation functions [7]. We here proceed in an analo-
gous way for the non-Hermitian setting and propose a
generalization of such correlation functions to systems
with non-unitary dynamics [65]. This generalization has
an appealing experimental interpretation and connects
to standard definitions of non-unitary time evolution in
quantum systems. In order to numerically evaluate these
correlation functions, we moreover demonstrate that the
concept of dynamical quantum typicality (DQT) is appli-
cable also in the case of non-Hermitian quantum systems.
In particular, we show that on the time scales where the
dynamics exhibit hydrodynamic behavior, DQT yields
accurate results if the system sizes are sufficiently large.

The non-Hermitian perturbations considered in this
paper are found to affect the transport properties of the
original XXZ chain in different ways, with relaxation be-
coming faster or slower depending on the model. We
also study the role of integrability and find that while
certain non-Hermitian perturbations leave the integra-
bility of the XXZ chain intact, others induce the emer-
gence of chaos and random-matrix energy level statis-
tics. Interestingly, our results suggest that there exist
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short-range non-Hermitian quantum systems which sup-
port faster than diffusive, or even ballistic, transport,
despite being chaotic and nonintegrable.

The rest of this paper is structured as follows. We de-
fine the models and observables in Sec. II, including the
complex eigenvalue-gap ratio as an indicator of chaos in
non-Hermitian systems [45]. We also discuss our gener-
alization of dynamical correlation functions in the case
of non-Hermitian systems. In Sec. III, we then highlight
DQT as a means to simulate such correlation functions
for systems sizes beyond the range of full exact diag-
onalization (ED). Our numerical results are presented
in Sec. IV, where we explore integrability-breaking and
transport properties for different non-Hermitian Hamil-
tonians. We also discuss the challenges that occur when
applying DQT for systems undergoing non-unitary time
evolution. We summarize and conclude in Sec. V.

II. MODELS AND OBSERVABLES

We study an interacting version of the Hatano-Nelson
model written in terms of spin-1/2 operators [54, 55, 66–
69],

H =

L∑
ℓ=1

1

2

(
egS+

ℓ S
−
ℓ+1 + e−gS−

ℓ S
+
ℓ+1

)
(1)

+ ∆SzℓS
z
ℓ+1 + ∆2S

z
ℓS

z
ℓ+2 ,

where S±
ℓ = Sxℓ ± iSyℓ , ∆ ≥ 0 (∆2 ≥ 0) controls the

strength of (next-)nearest neighbor interactions, L is the
system size, and we consider periodic boundary condi-
tions. While Eq. (1) is Hermitian at g = 0, a finite g ̸= 0
leads to an asymmetry in the hopping amplitudes such
that the model becomes non-Hermitian, H† ̸= H.

At g = 0 and ∆2 = 0, H reduces to the paradigmatic
integrable spin-1/2 XXZ chain. While spin transport is
ballistic in the XXZ chain for ∆ < 1 with a finite Drude
weight, numerical evidence indicates that it is diffusive
for ∆ > 1 [7]. Moreover, at the isotropic point ∆ = 1,
spin transport appears to be superdiffusive with certain
features being described by Karder-Parisi-Zhang univer-
sality [70]. For finite ∆2, the XXZ chain becomes non-
integrable and transport appears diffusive for all choices
of ∆ ̸= 0 and ∆2 ̸= 0 [71]. In this paper, we study how
integrability and transport characteristics change when
turning to the non-Hermitian system with g ̸= 0.

The nonreciprocal hopping terms in Eq. (1) are remi-
niscent of the dynamical rules in asymmetric simple ex-
clusion processes known from nonequilibrium statistical
mechanics [72, 73]. Indeed, mappings between such clas-
sical hopping models and non-Hermitian Hamiltonians
have been considered [74]. Moreover, analogous to the
standard XXZ chain, the asymmetric variant in Eq. (1)
with ∆2 = 0 is known to be Bethe-Ansatz integrable
[75] (see also a similarly integrable non-Hermitian Bose-
Hubbard model in [76]). We confirm its integrablity be-
low in terms of the level-spacing statistics.

More recently, the Hamiltonian (1) has been stud-
ied in different contexts, including the addition of
quenched disorder which can induce non-Hermitian
many-body localization [54, 55]. In the context of
transport, let us note that the asymmetric hopping
terms can be obtained from cosh(g)HXY + i sinh(g)J ,
where HXY = (1/2)

∑
ℓ S

+
ℓ S

−
ℓ+1 + S−

ℓ S
+
ℓ+1, and J =

(i/2)
∑
ℓ S

+
ℓ S

−
ℓ+1 − S−

ℓ S
+
ℓ+1 is the spin-current operator.

The non-Hermiticity in Eq. (1) can thus be interpreted
as an external driving by the current J [68].

While our focus will be on the model with asymmetric
hopping in Eq. (1), we will also study an XXZ chain
perturbed by imaginary random on-site potentials [77,
78],

H =

L∑
ℓ=1

Sxℓ S
x
ℓ+1 + Syℓ S

y
ℓ+1 + SzℓS

z
ℓ+1 − ihℓnℓ , (2)

where nℓ = Szℓ + 1
2 , and the hℓ ∈ [0,W ] are drawn

at random from a uniform distribution with W setting
the disorder strength. Equation (2) closely resembles
the disordered XXZ chain that has become the proto-
typical model to study the MBL transition [79]. In our
case, however, the disorder in Eq. (2) is non-Hermitian.
The dynamics generated by the Hamiltonian in Eq. (2)
can be interpreted as the no-jump trajectory in the
stochastic unravelling of a Markovian open quantum sys-
tem. In the trajectory approach, pure states evolve ac-
cording to an effective non-Hermitian Hamiltonian [80],

Heff = H − (i/2)
∑
j γjL

†
jLj , where Lj are the jump op-

erators occurring in the Lindblad equation, γj > 0, and
Eq. (2) would correspond to Lj ∼ S−

j . While at large
W , this type of disorder might cause a localization tran-
sition [77], we expect the non-Hermitian terms in Eq. (2)
to favor thermalization if disorder is moderate. This ex-
pectation is substantiated by our numerical results below
for W = 1.

A. Level-spacing statistics with complex
eigenvalues

In the case of Hermitian systems with real-valued spec-
trum, a useful quantity to distinguish integrable from
chaotic systems is the ratio of adjacent level spacings,
min(δm, δm+1)/max(δm, δm+1), where δm = Em+1 − Em
[81]. A generalization of such level-spacing ratios to non-
Hermitian systems with complex spectra has been intro-
duced in [45]. In particular, given a Hamiltonian with
complex eigenvalues Em, one can define,

zm =
ENN
m − Em

ENNN
m − Em

≡ ϱme
iθm , (3)

where ENN
m and ENNN

m are the nearest and next-nearest
neighbors of Em (i.e., the eigenvalues that minimize
the euclidian distance on the complex plane). The zm
are complex numbers within the unit circle (ϱm ≤ 1;
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−π ≤ θm ≤ π), for which we can study the full distri-
bution Pz(ϱ, θ), as well as average values, e.g., ⟨ϱ⟩ and
⟨cos θ⟩. In particular, for integrable systems, the zm are
expected to be uniformly distributed such that ⟨ϱ⟩ = 2/3
and ⟨cos θ⟩ = 0. In contrast, for nonintegrable non-
Hermitian systems, the distribution of zm is anisotropic,
which will lead to different ⟨ϱ⟩ and ⟨cos θ⟩ [45].

B. Dynamical correlation functions

A common approach to study transport properties in
Hermitian many-body quantum systems is to consider
dynamical correlation functions (often at formally infinite
temperature), C(r, t) = tr[Szℓ+r(t)S

z
ℓ ρ∞], where Szℓ (t) is

the time-evolved operator in the Heisenberg picture, r
is a distance between two sites, and ρ∞ = 1/2L is the
infinite-temperature density matrix. In the case of non-
Hermitian systems with non-unitary time evolution, one
has to be careful how to meaningfully define such cor-
relation functions, see Appendix B. Building on previ-
ous works [65], we define the time evolution of a non-
Hermitian system prepared in some density matrix ρ(t)
as,

ρ(t) =
e−iHtρ(0)eiH

†t

tr[e−iHtρ(0)eiH†t]
, (4)

where the time-dependent renormalization becomes triv-
ial if H is Hermitian. Next, we use that Szℓ commutes
with the total magnetization Mz =

∑
ℓ S

z
ℓ , and we de-

compose both operators in terms of projectors onto their
eigenspaces, i.e., Szℓ =

∑
s sΠs and Mz =

∑
mmΠm,

where s = ±1/2 and m = −L/2, . . . , L/2. As we discuss
more generally in Appendix B, we can then write,

C(r, t) =
∑
s,m

s tr[Πs,mρ∞]⟨Szℓ+r(t)⟩Πs,m
, (5)

where we introduced the time-dependent expectation
value,

⟨Szℓ+r(t)⟩Πs,m = tr[Szℓ+rρs,m(t)] , (6)

which is conditional on the measurement outcome
of Szℓ and Mz at t = 0. Namely, ρs,m(0) =
Πs,mρ∞Πs,m/tr[Πs,mρ∞] is the infinite-temperature den-
sity matrix projected into a common eigenspace of Szℓ and
Mz with eigenvalues s and m. Since Πs,m is a projection,
Π2
s,m = Πs,m. Moreover, the time evolution of ρs,m(t) in

Eq. (6) is interpreted as in Eq. (4).
From a, say, experimental point of view, writing the

correlation function C(r, t) as in Eq. (5) has a straight-
forward interpretation. Measure Szℓ and Mz at t = 0,
measure Szℓ+r at time t, and over many runs compute
the time-dependent expectation value conditional on the
measurent outcomes and corresponding probabilities at
t = 0.

Conceptually, the advantage of Eq. (5) is that the to-
tal density,

∑
r C(r, t), remains conserved over the course

of the non-unitary time evolution such that the analy-
sis of transport properties is meaningful. In standard
Hermitian systems, the conservation of magnetization is
already guaranteed by [H,Mz] = 0. In contrast, for non-
Hermitian systems, the renormalization (4) of the state
during the non-unitary time evolution could cause Mz to
be non-conserved if one were to proceed without project-
ing ρ(0) into a fixed Mz sector; see Appendix B for more
details.

Given the correlation function C(r, t), the type of
transport can then be inferred from its spatiotemporal
dynamics. For instance, at sufficiently long times, the
on-site correlator C(0, t) is expected to develop a hydro-
dynamic power-law tail, C(0, t) ∝ t−β , where (in one
dimension) β = 1/2 indicates diffusion, β = 1 indicates
ballistic transport, and 1/2 < β < 1 (β < 1/2) signals
superdiffusion (subdiffusion) [7].

III. METHODS

A. Dynamical quantum typicality

The notion of quantum typicality describes the fact
that random pure quantum states, drawn from a high-
dimensional Hilbert space, can accurately represent prop-
erties of the full statistical ensemble [82–85]. From a
numerical point of view, this can be exploited to approx-
imate equilibrium expectation values by estimating the
trace over the Hilbert space using random pure states
[86–92], see [93, 94] for reviews. More concretely, taking
the spatiotemporal correlation function C(r, t) in Eq. (5)
as an example, we can approximate it by the pure-state
estimate,

Cψ(r, t) =
∑
s,m

s
Tr[Πs,m]

2L
⟨ψs,m(t)|Szℓ+r |ψs,m(t)⟩ , (7)

where we have introduced the projected state |ψs,m⟩,

|ψs,m⟩ =
Πs,m |ψ⟩√
⟨ψ|Πs,m|ψ⟩

, (8)

and |ψ⟩ =
∑2L

k=1 ck |k⟩, is a random state in the computa-
tional basis with the complex coefficients ck drawn from
a Gaussian distribution with zero mean, and then nor-
malized so that || |ψ⟩ || = 1. (See Appendix C for more
details.) Thus, |ψs,m⟩ is a random state in a subspace
with fixed eigenvalue s of Szℓ and m of Mz.

The numerical advantage of DQT stems from the fact
that one does not need to treat the full density matrix
ρ(t), but only has to deal with pure states instead. Cru-
cially, for local Hamiltonians, the time evolution of pure
states can be achieved by efficient sparse matrix tech-
niques without full exact diagonalization. As a conse-
quence, system sizes beyond the range of ED can be stud-
ied and we here present results for C(r, t) up to L ≤ 24.
Analogous to Eq. (4), we explicitly preserve the state’s
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norm over the course of the time evolution governed by
the non-Hermitian H, i.e.,

|ψs,m(t)⟩ =
e−iHt |ψs,m(0)⟩

||e−iHt |ψs,m(0)⟩ || , (9)

where, in practice, we will actually evolve the state by
a (sufficiently small) discrete time step using a Runge-
Kutta scheme, |ψs,m(t+ δt)⟩ = e−iHδt |ψs,m(t)⟩, and
normalize after each such time step.

DQT has been applied extensively as a useful numer-
ical tool to study Hermitian many-body quantum sys-
tems. It relies on the largeness of the Hilbert space such
that the accuracy of the random-state approximation
Cψ(r, t) ≈ C(r, t) improves exponentially with increas-
ing system size [93]. In practice, a single realization of
the random state |ψ⟩ is often enough to obtain results
with negligible statistical errors.

In case of non-Hermitian H, however, the time evolu-
tion in Eq. (9) will enhance (suppress) the relative weight
of the wave function’s components. Namely, in the long-
time limit, |ψs,m(t)⟩ will converge towards the eigenstate
of H that belongs to the eigenvalue with the largest imag-
inary part (or a superposition of such eigenstates if that
eigenvalue has a degeneracy). Thus, with growing t,
fewer eigenstates will contribute to |ψs,m(t)⟩ such that
the typicality approximation is expected to become less
accurate.

We can study the accuracy of DQT by considering the
relative variance [95],

R(t) =
Cψ(r, t)2 − Cψ(r, t)

2

Cψ(r, t)
2 , (10)

where the overline indicates averaging over random real-
izations of the state |ψ⟩. Self-averaging behavior is indi-
cated by an R(t) that decreases with increasing system
size [95]. In the Hermitian case, R(t) decreases exponen-
tially with L, highlighting that only a single instance of
|ψ⟩ is required if L is sufficiently large [96].

IV. RESULTS

A. Breaking of integrability

We study the impact of g > 0 and ∆2 > 0 on the
integrability of the Hamiltonian in Eq. (1) by consider-
ing its energy-level statistics. In order to avoid mixing
of eigenvalues with different quantum numbers, our re-
sults are obtained in the symmetry subspace with lattice
momentum q = 2π/L and total magnetization Mz = 1.
This choice also resolves potential spin-flip or reflection
symmetries of H.

In Fig. 1, we study the distribution of level-spacing
ratios z, cf. Eq. (3), for L = 22, ∆ = 1.5, and fixed
non-Hermitian hopping asymmetry g = 0.2. In Fig.
1 (a) - (c), data are shown for the nearest-neighbor

−1 1<(z)

−1

1

=(
z)

(a) ∆2 = 0

0 1%
0

2

P
(%

)

(b) ∆2 = 0

−π πθ
0

1
2π

P
(θ

)

(c) ∆2 = 0

−1 1<(z)

−1

1

=(
z)

(d) ∆2 = 1.5

0 1%
0

2

P
(%

)

(e) ∆2 = 1.5

−π πθ
0

1
2π

P
(θ

)

(f) ∆2 = 1.5

FIG. 1. Level-spacing statistics for the Hatano-Nelson model
with L = 22, ∆ = 1.5, and g = 0.2. [(a) - (c)] Distribution
of z = ϱeiθ on the complex plane [Eq. (3)], as well as marginal
distributions P (ϱ) and P (θ), obtained for ∆2 = 0. [(d) - (f)]
Analogous data, but now for ∆2 = 1.5.

chain with ∆2 = 0. We find that the z are approx-
imately homogeneously distributed over the unit circle
with the corresponding marginal distributions P (ϱ) ≈ 2ϱ
and P (θ) ≈ 1/(2π). Such behavior is expected for inte-
grable non-Hermitian systems [45]. Thus, while a finite
g breaks the Hamiltonian’s Hermiticity, g > 0 is not suf-
ficient to lift the original integrability of the XXZ chain
[45, 74, 75].

The picture is clearly different when considering next-
nearest neighbor interactions with ∆2 = 1.5, see Fig.
1 (d) - (f). In particular, we find that spacing ratios
z with small ϱ → 0 are less likely to occur. Moreover,
the distribution becomes θ-dependent with suppressed
weight around θ = 0. This indicates that, analogous to
the Hermitian XXZ chain [71], a finite ∆2 > 0 will make
the model nonintegrable.

From the distributions P (ϱ) and P (θ) in Fig. 1, we
obtain the averages ⟨ϱ⟩ and ⟨cos θ⟩, which are shown in
Fig. 2 versus system size L. While for ∆2 = 0, ⟨ϱ⟩ and
⟨cos θ⟩ are close to the expected values of the integrable
Poisson distribution, we find that the data for ∆2 = 1.5
approaches with increasing L the prediction of the non-
integrable Ginibre ensemble as described in [45]. These
results substantiate our findings from Fig. 1 that the non-
Hermitian perturbation g > 0 is not sufficient to break
integrability, whereas the next-nearest neighbor interac-
tion ∆2 > 0 causes the model to become chaotic.

In Appendix A, we present additional results for the
level-spacing statistics of the XXZ chain perturbed by
random imaginary fields, cf. Eq. (2). In contrast to the
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0.66

0.68

0.70

0.72

0.74
〈%
〉

(a)

g=0.1

g=0.2

Poisson
Ginibre

(b)

16 18 20 22
L

−0.2

−0.1

0.0

0.1

〈c
os

(θ
)〉

(c)

16 18 20 22
L

(d)

FIG. 2. Finite-size scaling of average values ⟨ϱ⟩ and ⟨cos θ⟩
for g = 0.1, 0.2 and L = 16, 18, 20, 22. Data are compared to
the predictions of the Poisson (dotted) and Ginibre (dashed-
dotted) ensembles [45]. [(a), (b)] ⟨ϱ⟩ for ∆2 = 0 and ∆2 =
1.5. [(c), (d)] ⟨cos θ⟩ for ∆2 = 0 and ∆2 = 1.5. We have
∆ = 1.5 in all cases.

non-Hermitian hopping asymmetry g ̸= 0 [Fig. 1 (a)], the
results in Appendix A suggest that the XXZ chain indeed
becomes nonintegrable in the presence of non-Hermitian
disorder [77].

B. DQT in non-Hermitian systems

Let us now analyze the accuracy of dynamical quan-
tum typicality applied to systems with non-unitary time
evolution. To this end, in Fig. 3, we present a comparison
between DQT and ED using a small system size L = 10.
We consider the on-site spin correlation function C(0, t)
and study both Hermitian (g = 0) and non-Hermitian
(g = 0.2) systems. For a single exemplary realization
of the random state |ψ⟩, we find that the pure-state es-
timate Cψ(0, t) exhibits clear deviations from the exact
result.

These fluctuations are expected for L = 10 where the
Hilbert-space dimension is still not big enough to sup-
press the statistical error sufficiently. Moreover, while
the fluctuations of Cψ(0, t) in the Hermitian case remain
fairly controlled for all times shown here [Fig. 3 (a)], they
become more pronounced with increasing t for g = 0.2
[Fig. 3 (b)]. This phenomenon is discussed in more detail
in the context of Fig. 4 below.

As mentioned in Sec. III, the accuracy of the pure-state
approximation (7) can be improved by averaging over
multiple random realization of |ψ⟩. Indeed, as shown in

Fig. 3, the averaged correlation function Cψ(0, t) (here
obtained from 200 independent runs) agrees perfectly
with the ED data. Furthermore, in Appendix E, we show
that such a convincing agreement between the random-

100 101

time t

10−2

10−1

C
(0
,t

)

(a) g = 0

ED

Cψ(0, t), 200 runs

Cψ(0, t)

100 101

time t

(b) g = 0.2

FIG. 3. Comparison between dynamical quantum typicality
and exact diagonalization for system size L = 10. [(a), (b)]
Spin autocorrelation function C(0, t) for g = 0 and g = 0.2.
DQT data (solid curves), averaged over 200 random |ψ⟩, agree
convincingly with ED (symbols). DQT data obtained from
a single random state (dashed curves) show clear deviations
from the average especially in the non-Hermitian case. We
have ∆ = 1.5 and ∆2 = 0 in all cases.

state approach and ED can be obtained for other classes
of correlation functions as well, i.e., current-current cor-
relation functions also relevant in the context of trans-
port.

Strictly speaking, quantum typicality refers to the fact
that (for large Hilbert spaces) the pure-state estimate
Cψ(r, t) is close to the exact result such that no averaging
is required. To study this issue in more detail, we show in
Fig. 4 the averaged correlation function Cψ(0, t) for g = 0
and g = 0.2 [Fig. 4 (a), (b)] together with their corre-
sponding relative variance R(t) [Fig. 4 (c), (d)]. Plotting
data for different system sizes L, we find that R(t) de-
creases exponentially with increasing L if H is Hermitian
[96]. In other words, choosing a single random |ψ⟩ will

yield results very close to the ensemble average C(0, t) in
the Hermitian case.

In the non-Hermitian case, we find that R(t) also de-
creases with L on short to intermediate time scales. How-
ever, R(t) becomes essentially independent of L at longer
times, where the correlation function C(0, t) has approx-
imately reached its long-time value C(0, t → ∞) →
1/(4L). Thus, at these time scales, self-averaging and
typicality are absent such that averaging over multiple
|ψ⟩ is still required at larger L.

Eventually, it is instructive to connect the behavior of
R(t) to the inverse-participation ratio of the state |ψ(t)⟩,

I(t) =
1

(
∑
m | ⟨ϕm|ψ(t)⟩ |2)

2

∑
n

| ⟨ϕn|ψ(t)⟩ |4 , (11)

which measures how extended |ψ(t)⟩ is in a certain basis.
Here, we will choose the |ϕn⟩ as the right eigenvectors of
H in a fixed symmetry subspace of dimension N . While
it is possible to choose bases of left and right eigenvectors
for a non-Hermitian Hamiltonian which are biorthogo-
nal, it is not possible to simultaneously make every right
eigenvector normalized and every left eigenvector normal-
ized [26]. In Eq. (11) we take each right eigenvector to
be normalized. For Hermitian systems, Eq. (11) reduces
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to the well-known expression,

I(t) =
∑
n

| ⟨ϕn|ψ(t)⟩ |4 . (12)

An interpretation of Eq. (12) in terms of the outcomes of
a particular measurement process is given in Appendix
D such that Eq. (11) becomes a natural extension of Eq.
(12) to non-Hermitian systems.

For a Haar-random initial state |ψ⟩, we expect it to be
fully extended in any given basis such that | ⟨ϕn|ψ(t)⟩ |4 ∼
1/N 2 and I(0) ∼ 1/N [95].

In the Hermitian case [Fig. 4 (e)], the dynamics of I(t)
are trivial. The unitary time evolution merely leads to
different phases of the eigenstates such that I(t) remains
constant. In contrast, for non-Hermitian systems, the
spectrum of H is complex in general. The imaginary
parts of the eigenvalues, combined with the renormaliza-
tion of |ψ(t)⟩ in Eq. (9), will suppress or enhance the con-
tributions of certain eigenstates [68]. Indeed, as shown in
Fig. 4 (f), we find that I(t) starts growing significantly
for t ≳ 5. Thus, the random state |ψs,m(t)⟩ in Eq. (8)
becomes less extended (i.e., less typical) with increasing
t. As a consequence, the statistical error of the pure-
state estimate Cψ(0, t), which relies on the randomness
of |ψs,m(t)⟩, is expected to increase. This explains that
the relative variance R(t) in Fig. 4 (d) ceases to decay
with L at long times.

The analysis in Fig. 4 suggests that DQT is less useful
in systems with non-unitary time evolution. Neverthe-
less, we have demonstrated in Fig. 3 that highly accurate
results, which agree with ED, can certainly be obtained
if the pure-state data are averaged over sufficiently many
random |ψ⟩. Moreover, in practice, we are not interested
in the long-time regime where the correlation function
has completely decayed and self-averaging breaks down.
Rather, our focus will be on the intermediate time scales
for which C(r, t) exhibits hydrodynamic behavior. On
these time scales, R(t) still decreases with L such that
the accuracy of DQT is expected to improve with in-
creasing system size. We will confirm this expectation in
the next section, where we discuss transport properties
based on DQT data with system sizes up to L = 24.

C. Transport

1. Asymmetric XXZ chain

We now turn to the transport properties of the Hatano-
Nelson model (1). The on-site spin-spin correlation func-
tion C(0, t) is shown in Fig. 5 for an integrable (∆ = 1.5,
∆2 = 0) and a nonintegrable (∆ = ∆2 = 1.5) param-
eter choice with fixed system size L = 24. In both
cases, we show data for the Hermitian g = 0 chain
as well as for finite non-Hermitian hopping asymmetry
g = 0.1, 0.15, 0.2.

For concreteness, we especially focus the nonintegrable
model in the following [Fig. 5 (b)], for which the nu-
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C
ψ
(0
,t

)

(a) g = 0
L = 10

L = 12

L = 14

(b) g = 0.2

10−8

10−6

10−4

10−2

100

R
(t

)

(c) g = 0 (d) g = 0.2

10−1 100 101

time t

10−3

10−2

I
(t

)

(e) g = 0

10−1 100 101

time t

(f) g = 0.2

FIG. 4. [(a), (b)] Cψ(0, t) obtained by averaging over 256
random states for system sizes L = 10, 12, 14 with g = 0 and
g = 0.2. In all panels we have ∆ = 1.5 and ∆2 = 0. [(c), (d)]
Corresponding relative variances R(t), cf. Eq. (10). [(e), (f)]
Averaged inverse participation ratio I(t), as defined in (11),
of the state |ψs,m(t)⟩ for the subspace with m = 0.

merical data is somewhat cleaner and easier to inter-
pret. The overall phenomenology, however, also applies
to the ∆2 = 0 model. As a point of reference, we
observe a hydrodynamic power-law tail consistent with
C(0, t) ∝ t−1/2 for the Hermitian g = 0 case, indicating
diffusive transport as expected in the easy-axis regime of
the (nonintegrable) XXZ model [7]. Moreover, we find
that adding a finite hopping-asymmetry has a striking
effect on the resulting dynamics, with C(0, t) decaying
significantly faster. Specifically, on the finite time and
length scales numerically available to us, the dynamics
at g = 0.2 are consistent with C(0, t) ∝ t−β with β ≳ 1,
which suggests that transport becomes ballistic in the
non-Hermitian model. In particular, these signatures of
ballistic transport represent an exception to the common
belief that chaotic systems with short-range interactions
exhibit conventional diffusion.

We note that the data in Fig. 5 for L = 24 are obtained
using the pure-state approach (7) by averaging over just
a few (≤ 10) random pure states. We find that this yields
sufficiently small statistical fluctuations in the interme-
diate time regime where C(0, t) decays as a power law.
This demonstrates that DQT indeed provides a useful
numerical tool to study the dynamics of non-Hermitian
many-body quantum systems.

To proceed, we can study the emerging hydrodynamics
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1
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∝
t −
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∝
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∝
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1.17

(b) ∆2 = 1.5

FIG. 5. Spin-Spin autocorrelation function C(0, t) for L = 24
and g = 0, 0.1, 0.15, 0.2, obtained using DQT. Each curve is
obtained by averaging over 6 random-state realizations, and
the area within ±2 standard errors of the mean (assuming
Gaussian errors) is shaded. (a) ∆ = 1.5 and ∆2 = 0. (b)
∆ = 1.5 and ∆2 = 1.5. The dashed lines are power-law fits
(beginning at t = 5) to the hydrodynamic tail. The horizontal
line indicates the equilibrium long-time value of C(0, t). For
visual clarity, curves are not shown after the average of C(0, t)
reaches its equilibrium long-time value.

in more detail by analyzing the full spatial profile C(r, t)
at a fixed time t = 9 in Fig. 6, where we again consider
the integrable ∆2 = 0 chain [Fig. 6 (a)] and a nonin-
tegrable ∆ = ∆2 = 1.5 parameter choice [Fig. 6 (b)].
In the Hermitian g = 0 model, C(r, t) is known to be
well described by Gaussians signalling normal diffusion
[7, 71]. Consistent with the faster decay of C(0, t) in Fig.
5, we find that the profiles C(r, t) are broader for g > 0
compared to the Hermitian reference case. Interestingly,
at least in the bulk of the system where finite-size effects
are less relevant, C(r, t) appears to remain approximately
Gaussian in the non-Hermitian model. In this context,
let us also emphasize that, even though a finite g > 0
leads to an asymmetry between left and right hopping
amplitudes, the spreading of correlations measured by
C(r, t) remains symmetric. This is due to the fact that
we here consider the “grand-canonical ensemble”, i.e., we
average C(r, t) over all subsectors of total magnetization
Mz.

2. Spin chain with non-Hermitian disorder

We now study the model given in Eq. (2), i.e., an XXZ
chain perturbed by a non-Hermitian random potential.
In Fig. 7 (a), the on-site correlation function C(0, t) is
shown for W = 0 and W = 1 with L = 16, 18. As a point
of reference, superdiffusive ∝ t−2/3 scaling of C(0, t) is
expected in the Hermitian W = 0 case [7, 12, 64, 70]. In
contrast, for the non-Hermitian chain with W = 1, we

10−3

10−2

C
(r
,t

=
9)

(a) ∆2 = 0 g = 0.00

g = 0.10

-9 -6 -3 0 3 6 9
r

10−3

10−2

C
(r
,t

=
9)

(b) ∆2 = 1.5

FIG. 6. C(r, t) for g = 0, 0.1 at fixed time t = 9. (a) ∆ = 1.5
and ∆2 = 0. (b) ∆ = 1.5 and ∆2 = 1.5. We have L = 24
in all cases, with the average of 6 random-state realizations
shown per choice of parameters. Dashed lines are Gaussian
fits. To reduce finite-site effects, the 5 sites furthest from
the central site are not shown here and are not used in the
Gaussian fits. Error bars are ±2 standard errors of the mean
(assuming Gaussian errors).

find that C(0, t) decays notably slower, but is consistent
with eventual thermalization in the weakly disordered
regime [77] as it appears to approach the equilibrium
value 1/(4L) at long times.

The full spatial profile C(r, t) at fixed time t = 10 is
shown in Fig. 7 (b). We find that the presence of dis-
order has a clear effect on the spreading of correlations.
In particular, C(r, t) decays approximately exponentially
with r for W = 1. This slow anomalous dynamics of
C(r, t) is akin to the spreading of correlations in the puta-
tive subdiffusive regime of the standard Hermitian MBL
model below the localization transition [97–99]. While it
is challenging to numerically confirm the asymptotic scal-
ing form of C(r, t) at very long times and distances, Fig.
7 (b) shows that the non-Hermitian disorder has a quali-
tatively stronger impact on the shape of C(r, t) compared
to the non-reciprocal hopping studied in Fig. 6. In the
future, it would also be interesting to study the transport
properties and the dynamics of Eq. (2) at stronger disor-
der strengths, where the level-spacing statistics indicate
a crossover from chaotic to localized behavior [77].

V. CONCLUSION

The diverse properties of non-Hermitian Hamiltonians
have recently attracted increased attention in the context
of nonequilibrium many-body quantum dynamics. In
this paper, we have studied the impact of non-Hermiticity
on transport properties and integrability in systems with
a global conservation law. More specifically, we have con-
sidered different non-Hermitian perturbations to the one-
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FIG. 7. (a) Spin-Spin autocorrelation function C(0, t) for L =
18 and W = 0, 1, obtained using DQT. The W = 1 curve is
the average of ∼ 104 random-state und disorder realizations,
and the area within ±2 standard errors of the mean (assuming
Gaussian errors) is shaded. A power-law fit (starting at t = 9)
to theW = 1 hydrodynamic tail in shown as well. TheW = 0
curve shows data from two random-state realizations, which
can be seen to agree almost perfectly. The horizontal dashed
line indicates the expected long-time value of C(0, t). (b)
Spatial profiles for same data as above showing snapshot at
t = 10. As can be seen from the semilogarithmic plot, C(r, t)
decays approximately exponentially with r in the disordered
model.

dimensional spin-1/2 XXZ chain and analyzed the hydro-
dynamic scaling of time-dependent spin-spin correlation
functions. We have proposed a generalization of such dy-
namical correlation functions to the case of non-unitary
time evolution with a straightforward experimental in-
terpretation.

For the asymmetric XXZ chain (i.e., Hatano-Nelson
model), which is non-Hermitian due to the non-reciprocal
hopping amplitudes, we observed a crossover from diffu-
sive to fast (seemingly ballistic) transport even for rather
weak values of the non-Hermitian perturbation. Interest-
ingly, the signatures of ballistic transport emerged even
in the presence of next-nearest neighbor interactions for
which the model becomes nonintegrable. This finding
is surprising as it contrasts the usual expectation that
chaotic quantum systems with short-ranged interactions
show diffusive transport. We also considered a spin chain
subjected to a non-Hermitian disorder potential, which
may undergo a transition to a non-Hermitian many-body
localized phase at strong disorder [77]. Here, we fo-
cused on moderate disorder strengths for which the model
is chaotic (Appendix A) and observed seemingly ther-
malizing, yet anomalous transport with a non-Gaussian
spreading of spatiotemporal correlations.

From a technical point of view, we obtained our nu-
merical results by exploiting the concept of dynamical
quantum typicality. Even though the non-unitary time

evolution reduces the accuracy of DQT at long times,
we have shown that DQT still allows to accurately simu-
late correlation functions on intermediate time scales for
system sizes beyond the range of standard exact diago-
nalization. While random states and DQT are by now
well established numerical tools, this work represents, to
the best of our knowledge, the first application of DQT
to the dynamics of non-Hermitian many-body systems
(but see [100, 101] for related ideas).

A natural direction of future research is to study non-
unitary quantum dynamics and transport in a wider
range of models, such as non-Hermitian models with
higher-order multipole conservation laws [102]. It would
also be interesting to better understand the properties
of off-diagonal matrix elements entering the eigenstate
thermalization hypothesis in non-Hermitian many-body
quantum systems [52], including their effect on dynamics,
transport, and thermalization.

The code used to generate the data in this paper can
be found at the following repository: https://github.
com/DylanMahoney/NonHermitianSystems.

Acknowledgements

We thank Vedika Khemani, Yaodong Li, József Mák,
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Appendix A: Integrability-breaking in the XXZ
chain perturbed by random imaginary fields

Analogous to Fig. 1 in the main text, Fig. 8 shows
results for the level statistics of the disordered non-
Hermitian Hamiltonian in Eq. (2). The data are obtained
in the Mz = 1 subspace and are accumulated over 100
random disorder realizations using a moderate value of
W = 1. As can be clearly seen in Fig. 8, the distri-
bution P (z) is inhomogeneous with suppressed weight
around ϱ = 0 and θ = 0. Thus, in contrast to the non-
Hermitian hopping asymmetry g ̸= 0 in Eq. (1), which
did not break the integrability of the XXZ chain, the
random non-Hermitian potential appears to render the
model in Eq. (2) chaotic and nonintegrable.

Appendix B: General discussion of correlation
functions for non-Hermitian systems

Let us provide further details on the generalization of
correlation functions to non-Hermitian systems. In the

https://github.com/DylanMahoney/NonHermitianSystems
https://github.com/DylanMahoney/NonHermitianSystems
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following, we will restrict ourselves to correlation func-
tions at formally infinite temperature, i.e., evaluated with
respect to the maximally-mixed state ρ∞ = 1/(dimH),
where H denotes the Hilbert space of the system.

Thus if A and B are Hermitian operators H → H such
that [A(t), B] = 0 for all t ≥ 0 in the Heisenberg picture
with a Hermitian Hamiltonian, we can define the infinite-
temperature correlation function as,

C(t) ≡ ⟨A(t)B⟩∞ = tr[A(t)Bρ∞] , (B1)

i.e., the expectation value of the Heisenberg operator
A(t)B given density matrix ρ∞. Note that we here as-
sume, without loss of generality, that ⟨A⟩∞ = ⟨B⟩∞ = 0.

Generalizing this to the non-Hermitian case is challeng-
ing due to the definition of non-unitary time evolution in
Eq. (4). In particular, it is unclear how to meaningfully
define the Heisenberg-evolved operator A(t) in the non-
Hermitian case.

However, we can find another expression for the
infinite-temperature correlator of A and B, which agrees
with Eq. (B1) for Hermitian Hamiltonians, but remains
applicable for non-Hermitian Hamiltonians as well. To
this end, we decompose the operator B into B =∑
b bΠB=b, where each ΠB=b is a projector onto the

B = b eigenspace. Then, using the linearity of the trace,
we can write,

tr[A(t)Bρ∞] =
∑
b

btr[A(t)ΠB=bρ∞] . (B2)

Note that for Hermitian Hamiltonians, using the cyclic
property of the trace, this is equivalent to,

C(t) =
∑
b

btr[Ae−iHtΠB=bρ∞e
iHt] . (B3)

Let ρb=B now be the density matrix of the system start-
ing at infinite temperature, immediately after measuring
B to be b. Then ρB=b = ΠB=bρ∞ΠB=b/tr[ΠB=bρ∞], so
C(t) can be rewritten (where we also used the projection

property Π2
B=b = ΠB=b),

C(t) =
∑
b

btr[ΠB=bρ∞]tr[Ae−iHtρB=be
iHt] , (B4)

or, in the Schrödinger picture,

C(t) =
∑
b

btr[ΠB=bρ∞]tr[AρB=b(t)] . (B5)

This expression can be generalized to non-Hermitian
Hamiltonians via Eq. (4). If B commutes with a third
observable, say the total magnetization Mz with eigen-
values m, similar algebra allows us to (equivalently in the
Hermitian case) write the correlator of A and B as,

C(t) =
∑
b,m

btr[ΠB=b,Mz=mρ∞]tr[AρB=b,Mz=m(t)] ,

(B6)
where we have used that Mz and B have simultaneous
eigenspaces, and where ρB=b,Mz=m is the density matrix
of the system if it starts in density matrix ρ∞ and mea-
surements are made of B and Mz yielding results b and
m.

Equation (B5) can be interpreted as the outcome of the
following procedure: Measure B at time 0 and measure
A at time t, and over many runs compute the expected
value of A at time t conditional on the different possible
outcomes for B, and the probability of each measure-
ment outcome for B. Equation (B6) can be interpreted
as following the same procedure, except also measuring
Mz at time 0 and keeping track of the expected value
of A given the different possible outcomes for B and Mz

simultaneously.
Equations (B5) and (B6) agree in the Hermitian case,

but they do not always agree in the case of non-Hermitian
Hamiltonians due to the non-unitary time evolution (see
below). In this paper, using A = Szℓ , B = SzL/2, we will

take Eq. (B6) as our definition of the infinite-temperature
correlator so that total spin Mz is conserved, thereby
enabling meaningful discussion of transport properties.

Details on the disagreement of Eqs. (B5) and (B6) in
non-Hermitian systems

A key aspect is that the time evolution of density ma-
trices in non-Hermitian systems [Eq. (4)] becomes nonlin-
ear. Consider, for instance, a two-level system with eigen-
vectors |0⟩ and |1⟩ with eigenvalues +i and −i, respec-
tively. The density matrices ρ0 = |0⟩ ⟨0| and ρ1 = |1⟩ ⟨1|
are both constant in time using Eq. (4), which means
that if time evolution were linear, the density matrix
ρmix = (ρ0 + ρ1)/2 would also be constant in time. But
we can compute that,

e−iHtρmixe
iH†t

tr[e−iHtρmixeiH
†t]

=
1
2e

2t |0⟩ ⟨0| + 1
2e

−2t |1⟩ ⟨1|
tr[ 12e

2t |0⟩ ⟨0| + 1
2e

−2t |1⟩ ⟨1|]

=
e2t

2 cosh(2t)
ρ0 +

e−2t

2 cosh(2t)
ρ1 (B7)
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is not constant in time.
A more concrete example of the disagreement between

Eqs. (B5) and (B6) for one of our models can be seen
analytically for the Hamiltonian defined in Eq. (2) when
L = 2, h1 = 2, and h2 = 0, where B = Sz1 and A =
Mz = Sz1 + Sz2 . (Note that Eq. (B5) and Eq. (B6) are
both linear in A, so setting A = Mz is the same as first
setting A = Sz1 , then setting A = Sz2 , and adding the two
results.) In this case the matrix expressions appearing
in Eqs. (B5) and (B6) are simple enough to be evaluated
symbolically, and we get,

C(B5)(t) =
1

4
− t4

4t4 + (4t2 + 2) cosh(2t) − 4t sinh(2t) + 2
,

(B8)
while,

C(B6)(t) =
1

4
. (B9)

Thus we see that Eq. (B6) conserves magnetization,
whereas Eq. (B5) does not.

Appendix C: Derivation of DQT relation

In this section, we provide a derivation of the pure-
state approximation Cψ(r, t) [Eq. (7) in main text]. To
this end, we start from the expression of C(r, t) in Eq.
(5),

C(r, t) =
∑
s,m

s tr[Πs,mρ∞] tr[Szℓ+rρs,m(t)] . (C1)

Recall that ρs,m = Πs,mρ∞Πs,m/tr[Πs,mρ∞] and ρ∞ =
1/tr[1]. Now we use Eq. (4) and the cyclic invariance of
the trace to rewrite tr[Szℓ+rρs,m(t)] as,

tr[Szℓ+rρs,m(t)] =
tr[Szℓ+re

−iHtΠs,mρ∞e
iH†t]

tr[e−iHtΠs,mρ∞eiH
†t]

=
tr[Πs,me

iH†tSzℓ+re
−iHtΠs,m]

tr[Πs,meiH
†te−iHtΠs,m]

≈ ⟨ψ|Πs,me
iH†tSzℓ+re

−iHtΠs,m |ψ⟩
⟨ψ|Πs,meiH

†te−iHtΠs,m |ψ⟩
= ⟨ψs,m(t)|Szℓ+r |ψs,m(t)⟩ , (C2)

where we have used DQT to approximate the trace by
a normalized Haar-random pure state |ψ⟩, and exploited
the projection property Π2

s,m = Πs,m. Moreover, in the
last step, we have used the definition of |ψs,m(t)⟩ [Eq. (8)]
together with the definition of non-unitary time evolution
[Eq. (9)]. Plugging Eq. (C2) into Eq. (C1), we recover
Eq. (7) as desired.

Appendix D: The inverse participation ratio in
non-Hermitian systems

Let us provide further motivation on the choice of Eq.
(11) as our definition of the inverse participation ratio in

non-Hermitian systems. We start with the usual defini-
tion of the inverse participation ratio in Hermitian sys-
tems, already given in Eq. (12),

I(t) =

N∑
n=1

| ⟨ϕn|ψ(t)⟩ |4 , (D1)

where N is the Hilbert space dimension. For any state
|ϕn⟩, letAn now be the Hermitian operator on the Hilbert
space defined by{

An |ϕn⟩ = |ϕn⟩
An |v⟩ = − |v⟩ |v⟩ ∈ (span(|ϕn⟩))⊥

, (D2)

where (span(|ϕn⟩))⊥ is the orthogonal complement of the
span of |ϕn⟩. Then we can rewrite Eq. (D1) as

I(t) =

N∑
n=1

Pr[a measurement of An yields +1]2 . (D3)

Now let us define a measurement procedure which we will
refer to as P:

1. Choose a uniform random number k from
{1, . . . ,N}.

2. Measure Ak.

If the outcome of Step 2 is +1, then we define the “out-
put” of P to be k. Otherwise, we define the “output” of
P to be “failure”. Then we have

I(t) =

N∑
n=1

Pr[P outputs n | P doesn’t fail]2 , (D4)

because

Pr[P outputs n | P doesn’t fail] (D5)

=
Pr[P outputs n]

Pr[P doesn’t fail]

=
Pr[P outputs n]∑N

m=1 Pr[P outputs m]

=
Pr[k = n]Pr[a measurement of An yields +1]∑N

m=1 Pr[k = m]Pr[a measurement of Am yields +1]

=
1N
1/N

Pr[a measurement of An yields +1]∑N
m=1 | ⟨ϕm|ψ(t)⟩ |2

=
Pr[a measurement of An yields +1]

⟨ψ|ψ⟩
= Pr[a measurement of An yields +1] ,

where we have used that {ϕm} form a complete basis for
the Hilbert space. Let us now turn to the case of non-
Hermitian systems, where we set {|ϕk⟩}Nk=1 to be the
normalized right eigenvectors of the Hamiltonian, either
in the whole Hilbert space or in a fixed symmetry sub-
space. The measurement procedure P remains perfectly
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well-defined for this choice of {|ϕk⟩}Nk=1, so let us define
I(t) for non-Hermitian systems to be given by Eq. (D4).
The only notable complication comes from the fact that
the right eigenvectors cannot be assumed to be an or-
thonormal basis for the Hilbert space, in which case the
reasoning of Eq. (D5) can be slightly modified to yield

Pr[P outputs n | P doesn’t fail] =
| ⟨ϕn|ψ(t)⟩ |2∑N

m=1 | ⟨ϕm|ψ(t)⟩ |2
.

(D6)
Plugging Eq. (D6) into the definition of I(t) in Eq. (D4)
yields the definition of I(t) given in Eq. (11).

Appendix E: Current-current correlation functions

In addition to spin-spin correlation functions, we
can also consider current correlation functions J (t) =
tr[J(t)Jρ∞], which we write in a form analogous to Eq.
(5) that is suitable for non-Hermitian systems with non-
unitary time evolution,

J (t) =
∑
j,m

j tr[Πj,mρ∞]⟨J(t)⟩Πj,m
. (E1)

Here, we have again exploited that Mz and the current
J =

∑
j jΠj commute with each other. Specifically, we

consider the well-known Hermitian spin-current of the
XY or XXZ chain [7],

J =
i

2

L∑
ℓ=1

(
S+
ℓ S

−
ℓ+1 − S−

ℓ S
+
ℓ+1

)
. (E2)

The current operator J =
∑
ℓ Jℓ is obtained from a lat-

tice continuity equation d
dtS

z
ℓ = i[HXXZ , S

z
ℓ ] = Jℓ−1−Jℓ

[7]. Since [Szℓ′ , Sℓ
z] = 0, the expression of J in (E2) re-

mains unchanged for the disordered non-Hermitian chain
in Eq. (2). On the other hand, for the Hatano-Nelson
model (1), the continuity equation would actually yield a
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FIG. 9. Comparison between dynamical quantum typicality
and exact diagonalization for system size L = 10, analogous
to Fig. 3 in the main text, but now for the current correlation
function J (t). Data are shown for ∆ = 1.5, ∆2 = 0 with (a)
g = 0 and (b) g = 0.2.

non-Hermitian current operator with hopping asymme-
try. We here decide to still study the form given in Eq.
(E2) in order to keep operators Hermitian (except for H
of course). Another reason for studying J (t) with the
Hermitian version of J (E2) is given by the fact that, as
mentioned in Sec. II, the asymmetric hopping terms in
Eq. (1) can be obtained as cosh(g)HXY +i sinh(g)J . The
non-Hermiticity of Eq. (1) can thus be interpreted as an
external driving by the current J [68].

DQT expressions similar to Eqs. (7) and (8) can be ob-
tained also for a pure-state approximation Jψ(t) of the
current correlation function J (t). In Fig. 9, a compari-
son of DQT and ED is shown using a small system size
L = 10. Analogous to Fig. 3 in the main text, we observe
a convincing agreement between the averaged pure-state
approach and the exact result. Let us note, however,
that in contrast to the spin-spin correlation function, it
is less obvious that DQT yields a computational advan-
tage when considering J (t). Namely, while the local spin
operator Szℓ is diagonal in the computational basis, such
that the projection Πs,m in the case of C(r, t) can be
easily applied, the projection Πj,m in Eq. (E1) requires
diagonalization of J . Thus, the system sizes reachable
using the pure-state approach will be smaller than in the
case of C(r, t). However, since a single diagonalization
of J is not necessarily the most time-consuming part of
the simulation, DQT might still allow to study slightly
larger systems than accessible by standard ED.
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L. F. Santos, Physical Review B 101, 174312 (2020).

[96] J. Richter, D. Schubert, and R. Steinigeweg, Phys. Rev.
Research 2, 013130 (2020).

[97] S. Bera, G. De Tomasi, F. Weiner, and F. Evers, Phys-
ical Review Letters 118, 196801 (2017).

[98] J. Richter, J. Herbrych, and R. Steinigeweg, Physical
Review B 98, 134302 (2018).

[99] D. J. Luitz and Y. B. Lev, Annalen der Physik 529,
1600350 (2017).

[100] T. Heitmann, J. Richter, J. Herbrych, J. Gemmer, and
R. Steinigeweg, Physical Review E 108, 024102 (2023).

[101] T. Heitmann, J. Richter, F. Jin, S. Nandy, Z. Lenarčič,
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