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ABSTRACT

We measure the dependence of planet frequency on host star mass, ML, and distance from the

Galactic center, RL, using a sample of planets discovered by gravitational microlensing. We compare

the two-dimensional distribution of the lens-source proper motion, µrel, and the Einstein radius crossing

time, tE, measured for 22 planetary events from Suzuki et al. (2016) with the distribution expected from

Galactic model. Assuming that the planet-hosting probability of a star is proportional to Mm
L Rr

L, we

calculate the likelihood distribution of (m, r). We estimate that r = 0.10+0.51
−0.37 and m = 0.50+0.90

−0.70 under

the assumption that the planet-hosting probability is independent of the mass ratio. We also divide

the planet sample into subsamples based on their mass ratio, q, and estimate that m = −0.08+0.95
−0.65

for q < 10−3 and 1.25+1.07
−1.14 for q > 10−3. Although uncertainties are still large, this result implies a

possibility that in orbits beyond the snowline, massive planets are more likely to exist around more

massive stars whereas low-mass planets exist regardless of their host star mass.

1. INTRODUCTION

More than 5500 planets have been discovered to date and gravitational microlensing is one of the most effective

methods to detect planets. Gravitational microlensing is a unique method that can detect planets residing in a wide

range of parameter space, such as planets in the Galactic disk (Gaudi et al. 2008; Bennett et al. 2010) or bulge

(Bhattacharya et al. 2021), planets around late M-dwarfs (Bennett et al. 2008, S. K. Terry et al. in prep.) or G-dwarfs

(Beaulieu et al. 2016), and even planets around white dwarfs (Blackman et al. 2021). Measuring the planet frequency

as a function of host star mass and location in our Galaxy via microlensing enables us to study the comprehensive

picture of planet formation throughout our Galaxy. However, there is a difficulty in determining mass and distance in

the microlensing method.

For most planetary events, the angular Einstein radius, θE, and Einstein radius crossing time, tE, can be measured

via light curve analysis as informative parameters of the host star. These parameters are related by the following

equations:

tE =
1

µrel

√
κML

(
1 au

DL
− 1 au

DS

)
, (1)

θE = tE × µrel, (2)

where κ = 8.144 mas M−1
⊙ , DL and DS are distance to the lens and source, respectively, and ML is the lens mass.

The lens-source relative proper motion µrel is given by µrel = |µL − µS| where µL is the lens proper motion vector,

and µS is the source proper motion vector. It is clear from these equations that the two parameters tE and θE alone

cannot determine ML and DL, even assuming that the source star is located in the Galactic bulge (i.e., DS ∼ 8 kpc).

Therefore, to determine the lens mass and distance, it is necessary to measure at least one of the additional quantities
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that determine the mass–distance relations: microlens parallax or lens brightness. However, there are too few planetary

events with measured microlens parallax to obtain statistically useful constraints, since the microlens parallax signal

is usually subtle and it is mostly difficult to detect such a signal with ground-based surveys. Also, the lens brightness

measurements require high-angular-resolution follow-up observations several years after the event (Bhattacharya et al.

2021; Blackman et al. 2021), making it difficult to obtain sufficient statistics at this moment.

Due to these difficulties, the dependence of planetary frequency on the host star mass and the location in our Galaxy

is not yet well understood. Koshimoto et al. (2021a) attempted to measure the dependence of planet frequency on

both host star mass (∼ ML) and on the Galactocentric distance (RL) by assuming the planet-hosting probability

Phost ∝ Mm
L Rr

L. They have compared the µrel distribution for given tE of 28 planetary events by Suzuki et al. (2016),

Gould et al. (2010) and Cassan et al. (2012) with the distribution expected by a Galactic model to estimate m and r.

They estimated r = 0.2± 0.4 and concluded that there is no large dependence of planet frequency on Galactocentric

distance. However, their estimate for the parameter of the dependence on host mass was highly uncertain, m = 0.2±1.0.

The large uncertainty in m is partly because they used the distribution of µrel given tE instead of the distribution of tE
and µrel. This contrivance enabled them to avoid detection efficiency calculations but corresponded to a reduction of

the two-dimensional information contained in the original distribution of tE and µrel to the one-dimensional information

contained in the distribution of µrel given tE. This in turn means that the two-dimensional distribution of tE and µrel

can be used to further constrain m and r, as long as the detection efficiency is available.

Recently, Koshimoto et al. (2023) (hereafter, K23) calculated the detection efficiency for single lens events for the

MOA-II 9-yr survey by image-level simulations. This study utilizes their image-level simulations combined with the

detection efficiency for planetary signals by Suzuki et al. (2016) (hereafter, S16) to calculate the detection efficiency for

planetary events of the S16 sample. By using this combined detection efficiency, we compare the (tE, µrel) distribution

of the MOA-II planet sample (S16) with the predicted one from the Galactic model optimized toward the Galactic

bulge (Koshimoto et al. 2021b) to estimate m and r.

This paper is organized as follows. We describe our method in Section 2. Section 3 presents the analysis for the

S16’s planetary event sample to calculate the likelihood distribution of (m, r). Discussions are presented in Section 4

and Section 5 contains the conclusions.

2. METHOD

We follow the method of Koshimoto et al. (2021a) except that we do not give tE as a fixed value and consider

detection efficiency instead. The main objective of this study is to estimate a dependence of planet frequency on

the host star mass and the Galactocentric distance by comparing the (tE, µrel) distribution observed in planetary

microlensing events with that distribution predicted from a Galactic model. In this paper, a Galactic model refers to

a combination of stellar mass function, stellar density and velocity distributions in our Galaxy, which enables us to

calculate the microlensing event rate Γ as a function of microlensing parameters.

We denote the parameter distribution of microlensing events expected from a Galactic model as Γall (tE, µrel,ML, RL).
Note that Γall represents the parameter distribution for all microlensing events, regardless of whether each system has

a planet or not, or whether each microlensing events are detected. If we assume that the planet-hosting probability is

proportional to Mm
L Rr

L, the (tE, µrel) distribution for planetary events, Γhost, is given by

Γhost (tE, µrel|m, r) ∝
∫

dMLdRL Γall (tE, µrel,ML, RL)M
m
L Rr

L . (3)

Then, the probability of observing a planetary event with (t
(obs)
E , µ

(obs)
rel ) is given by

f
(
t
(obs)
E , µ

(obs)
rel |m, r

)
=

∫
dt,Edµ

,
rel

[
k
(
t
(obs)
E , µ

(obs)
rel ; t,E, µ

,
rel

)
Γhost (t

,
E, µ

,
rel|m, r) ϵ (t,E, µ

,
rel)
]
, (4)

where ϵ(tE, µrel) is the detection efficiency for a planetary event. Note that the dependence of detection efficiency on

µrel is negligible for the S16 planetary event sample as discussed in Section 3.2. k(t
(obs)
E , µ

(obs)
rel ; t,E, µ

,
rel) is a kernel

function, and we adopt a Gaussian kernel,

k(t
(obs)
E , µ

(obs)
rel ; t,E, µ

,
rel) =

1√
2πσ

(obs)2
tE

exp

(
−
(t

(obs)
E − t,E)

2

2σ
(obs)2
tE

)
1√

2πσ
(obs)2
µrel

exp

(
−
(µ

(obs)
rel − µ,

rel)
2

2σ
(obs)2
µrel

)
, (5)
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where σ
(obs)
tE and σ

(obs)
µrel are the uncertainty of tE

(obs) and µ
(obs)
rel respectively. The introduction of a kernel function is

intended to allow some uncertainty in the observed values.

Note that we use the parameter set of (tE, µrel) rather than (tE, θE) because µrel is less correlated with tE than θE
and usually has a smaller error bar when it is determined via the finite source effect (Alcock et al. 1997; Yoo et al.

2004). The angular Einstein radius and the relative proper motion are represented by θE = θ∗/ρ and µrel = θ∗/(tE ρ),

respectively, with the finite source parameter ρ and the angular source radius θ∗. While tE ρ—which is often defined

as the source radius crossing time t∗— is well determined by the light curve as also suggested by Yee et al. (2012),

ρ tends to be anti-correlated with tE. Thus, the correlation between tE and µrel is smaller than the one between tE
and θE. Nevertheless, we performed the same analysis by using the parameter set of (tE, θE) and confirmed that our

results would not change significantly.

When a sample of Nsample events is given, the probability of observing those events under a specific combination of

(m, r), L(m, r), is expressed as

L(m, r) =

Nsample∏
i=1

f(t
(obs)
E,i , µ

(obs)
rel,i |m, r). (6)

By calculating Eq. (6) under various values of (m, r) and comparing the values of L(m, r), it is possible to evaluate

which (m, r) values are more likely. In this paper, we calculate L(m, r) in a grid of 0.2 increments in the range of

−3 ≤ m ≤ 3 and −3 ≤ r ≤ 3. This corresponds to applying a uniform prior distribution of -3 to 3 for m and r and

calculating the posterior probability distribution.

In this study, we use the Galactic model developed by Koshimoto et al. (2021b) and their microlensing event

simulation tool, genulens1 (Koshimoto & Ranc 2022). This model was designed to reproduce the stellar distribution

toward the Galactic bulge by fitting to the Gaia DR2 velocity data (Gaia Collaboration et al. 2018), OGLE-III red

clump star count data (Nataf et al. 2013), VIRAC proper motion catalog (Smith et al. 2018; Clarke et al. 2019), BRAVA

radial velocity measurements (Rich et al. 2007; Kunder et al. 2012), and OGLE-IV star count and microlensing rate

data (Mróz et al. 2017, 2019). The stellar mass considered in this model ranges from 10−3 M⊙ to 5.3 M⊙ and the

typical lens mass ranges from 0.02 M⊙ to 1.0 M⊙. Although the model is optimized for a microlensing study toward

the Galactic bulge, we would like to ensure that no significant bias is introduced in our result by the model since our

analysis strongly depends on the Galactic model used.

To validate the approach of this study, we present two types of analysis in Appendices. First, Appendix A presents

mock data analysis, where we generate 50 artificial planetary events based on the Galactic model with certain (m, r)

values and calculate the likelihood distributions. As a result, we confirmed this method can reproduce the input (m, r)

values properly. Then, Appendix B compares the (tE, µrel) distribution of the MOA-II 9-yr FSPL sample with the

distribution predicted by the Galactic model. This confirmed no significant bias would be introduced in our result by

using the Galactic model by Koshimoto et al. (2021b).

3. APPLICATION

3.1. Planetary Microlensing Event Sample

Koshimoto et al. (2021a) used 28 planetary events consisting of 22 events from the MOA-II survey during 2007–20122

(S16) and 6 additional events from Gould et al. (2010) and Cassan et al. (2012). The mixture of samples from different

surveys was valid because they did not need to consider the detection efficiency by focusing on the one-dimensional

distribution of µrel for given tE. However, our analysis, which focuses on the two-dimensional distribution of tE and

µrel, requires consideration of detection efficiency as described in Section 2. Because the detection efficiency used in

this analysis is optimized for the MOA-II survey as described in Section 3.2, we only use the 22 planetary events from

the MOA-II survey as our sample in this study.

Zhu et al. (2014) predicted that 55% of planets would be detected without caustic crossing for a high-cadence

microlensing survey the KMTNet sample confirmed this prediction. On the other hand, 5 events out of our 22

planetary events were detected without caustic crossing. It indicates a higher percentage of caustic crossings than

1 https://github.com/nkoshimoto/genulens
2 The S16 original sample consists of 23 events. However, the ambiguous event OGLE-2011-BLG-0950 turned out to be a stellar binary event
(Terry et al. 2022).

https://github.com/nkoshimoto/genulens
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Figure 1. Comparison of the (tE, µrel) distributions for the planetary event sample of S16 between the observations (black
points) and the prediction by the Galactic model combined with the detection efficiency (color maps). The color map in the
left panel shows the distribution predicted by the model with Phost ∝ const, i.e., assuming that all stars are equally likely to
host planets, regardless of their mass or location in our Galaxy. The color map in the right panel is the distribution predicted
by the model with Phost ∝ M0.4

L R0.2
L , corresponding to the grid that gives the maximum likelihood.

the prediction by Zhu et al. (2014). This might be due to differences in observation cadence or signal-to-noise ratio

between the MOA-II survey and the KMTNet survey.

The black points in Fig. 1 show the (tE, µrel) distribution of the 22 planetary events. These values are taken from

the discovery or follow-up papers of each event. Some notes are as follows: MOA-2011-BLG-322 (Shvartzvald et al.

2014) has only a lower limit on µrel; MOA-2011-BLG-262 (Bennett et al. 2014) has the fast and slow solutions, but

we use only the slow solution because it has a much larger prior probability as discussed in Bennett et al. (2014). The

tE and µrel values of the following events are from papers in preparation regarding follow-up high-angular resolution

imaging: MOA-2007-BLG-192 (S. K. Terry et al. in prep.), MOA-2010-BLG-328 (A. Vandorou et al. in prep.), and

OGLE-2012-BLG-0563 (A. Bhattacharya et al. in prep.).

Although the following analysis will be performed with the updated values taken from the papers in preparation,

we have also performed the same analysis with the values from the original discovery papers and confirmed that our

results would not change significantly.

3.2. Detection Efficiency

As discussed in Section 2, our method requires the detection efficiency for the S16’s planetary event sample. When

calculating the detection efficiency of a sample, we need to carefully consider how the sample was collected. The

event selection process of S16 can be interpreted by the following two steps; (i) the 1474 “well-monitored” events were

selected from the 3300 events alerted by the MOA group during 2007–2012 based on the selection criteria summarized

in Table 1 of S16, and (ii) the 22 planetary and 1 ambiguous events were selected among them based on the χ2

difference between the single-lens model and the planetary model. Therefore, we represent the detection efficiency for

the S16’s planetary event sample by

ϵpl(tE) = ϵWM(tE) ϵano(tE), (7)

where ϵWM is the detection efficiency for the well-monitored events in S16 and ϵano is the detection efficiency for the

planetary anomaly feature.

The detection efficiency for the planetary anomaly feature was calculated by S16, and we use the data shown in

Figure 10 of S16 as ϵano(tE). The dependence of the detection efficiency on tE changes according to the mass ratio.

Therefore, we use different detection efficiencies corresponding to the mass ratio for each event. In principle, the

detection efficiency for a planetary anomaly feature depends not only on tE but also on µrel through the source radius

crossing time, t∗ = θ∗/µrel, where θ∗ is the angular source radius. However, as discussed in Koshimoto et al. (2021a),
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Figure 2. Comparison of the cumulative distributions of the Einstein radius crossing time, tE, among the three samples; the
S16 sample (orange dashed line), the MOA-II 9-yr sample (gray solid line), and the 9-yr sample re-selected by adding the S16’s
cut-2 criteria (blue solid line).

this effect can be considered negligible in the current case because the dependence of the detection efficiency for the

anomaly feature on t∗ is negligibly small for a mass ratio of q > 10−4 (see Figure 7 of S16), which dominates our

sample.

On the other hand, S16 did not calculate the detection efficiency for the well-monitored events, ϵWM, because they

did not use the tE information for their analysis and ϵWM(tE) was not needed. The well-monitored events were selected

from the events alerted by the MOA alert system, which depends on the observer who was monitoring the light curve

of each microlens candidate at the time. Although it is difficult to reproduce the exact selection process, we here

utilize the results of the image-level simulation of the 6.4 × 107 artificial events conducted by K23 for their MOA-II

9-yr analysis to estimate ϵWM. In Fig. 2, the orange dashed line and gray line show the cumulative tE distributions

for the S16 sample and 9-yr sample, respectively. We can see a lack of short timescale events in the S16’s sample

compared to the 9-yr sample. This is expected because K23 studied free-floating planets, which have very short

timescales, by selecting all events including short timescale events, whereas S16 selected only well-monitored events

which preferentially have longer timescales. To make the tE distribution of the 9-yr sample closer to the S16’s one,

we added the S16’s cut-2 criteria, i.e., σu0
/u0 < 0.40 or σu0

< 0.02 and σtE/tE < 0.25 and σtE < 20 days, to the

original selection process of the 9-yr sample. The blue solid line in Fig. 2 shows the cumulative tE distribution of

the re-selected 9-yr sample with the additional S16’s cut-2 criteria, which almost perfectly follows the orange dashed

line of the S16’s sample. To quantify the similarity, we performed a Kolmogorov-Smirnov test on the two samples

and got a p-value of p = 0.949, which supports the idea that the two distributions were sampled from populations

with approximately the same distributions. This provides a basis for considering that the detection efficiencies of the

S16 sample and the re-selected 9-yr sample are almost the same. Therefore, we follow the K23’s detection efficiency

calculation using their artificial event sample from the image-level simulation with the S16’s cut-2 criteria in addition

to the original criteria listed in Table 2 of K23, and we use it as the detection efficiency for the well-monitored events,

ϵWM(tE). See Appendix B.2 for an example calculation of the detection efficiency using the simulated artificial events

(and see K23 for more detail).

3.3. Likelihood Analysis

We calculate the likelihood given by Eq. (6) for the 22 planetary events, and Fig. 3 shows the resulted relative

likelihood distribution as a function of m and r. The relative likelihood value at (m, r) = (0, 0) is 0.24 and the relative

likelihood takes its maximum value of 1 at (m, r) = (0.4, 0.2). We find m = 0.50+0.90
−0.70 and r = 0.10+0.51

−0.37 from the

marginalized distributions. Our result is consistent with (m, r) = (0, 0), i.e., the idea that all stars are equally likely

to host planets. However, it prefers m > 0, suggesting a possible correlation between the planet frequency and the

host star mass. On the other hand, no preference is seen in either positive or negative r, which confirms the result of

Koshimoto et al. (2021a) who found no large dependence of planet frequency on the Galactocentric distance.
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Figure 3. Relative likelihood distribution of (m, r) calculated by Eq. (6) for the S16’s 22 planetary event sample. The top
panel shows a relative probability distribution of r integrated over −3 < m < 3 uniformly, and the side panel shows a relative
probability distribution of m integrated over −3 < r < 3 uniformly.

Table 1. Result of the likelihood analysis

all two-bin three-bin

10−4.25 < q < 10−1.55 q < 10−3 10−3 < q q < 10−3.5 10−3.5 < q < 10−2.5 10−2.5 < q

Nsample 22 13 9 6 10 6

m 0.50+0.90
−0.70 −0.08+0.95

−0.65 1.25+1.07
−1.14 0.46+1.29

−0.98 −0.34+1.02
−0.57 1.63+0.92

−1.18

r 0.10+0.51
−0.37 0.41+0.95

−0.54 −0.22+0.68
−0.45 0.29+0.98

−0.58 0.76+1.22
−0.81 −0.68+0.74

−0.78

Note—This table shows median and 1 σ error for each sample.

The color maps of Fig. 1 show the (tE, µrel) distributions expected by the model, i.e., Γhost(tE, µrel|m, r)× ϵpl(tE), at

(m, r) = (0, 0) on the left and (m, r) = (0.4, 0.2) on the right. Fig. 1 certainly shows that the expected distribution at

the best-fit grid of (m, r) = (0.4, 0.2) is more matched with the observational distribution from S16 than the expected

distribution at (m, r) = (0, 0).

We also divide the 22-event sample into subsamples by mass ratio and perform the same analysis for these subsamples

to see if there is any relationship between the mass ratio of a planetary system and planet frequency. We try two

types of bin patterns for dividing the sample; the first one is the two-bin subsamples with log q < −3.0 (13 events) and

−3.0 < log q (9 events), and the second one is the three-bin subsamples with log q < −3.5 (6 events), −3.5 < log q <

−2.5 (10 events), and −2.5 < log q (6 events).

Fig. 4 shows the results of the likelihood analysis for the subsamples, where Fig. 4 (a) is for the two-bin subsamples

and Fig. 4 (b) is for the three-bin subsamples. In each of Figs. 4 (a) and (b), the middle panel plots the mean of

log q vs the median and 1σ range of the marginalized m distribution of each subsample, while the bottom panel shows

those for the marginalized r values. Both results show that m is likely to be higher than 0 at the highest log q bin

while m is fully consistent with 0 at the other bins. This result might suggest that massive planets are more likely to

exist around more massive stars whereas low-mass planets are more universal regardless of their host star mass. On

the other hand, the r value seems to have a smaller mass ratio dependence than the m value, although there is an

anti-correlation between m and r.
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Figure 4. Relative likelihood distributions for (a) the two-bin subsamples and (b) the three-bin subsamples. In each of (a)
and (b) figures, the top panels show the likelihood distribution of (m, r) for the subsample in each bin. The middle panel shows
the median and 1σ error of the marginalized m distribution versus the mean of log q for each bin. The bottom panel is the same
for the marginalized r distribution.

While these are potentially interesting features, it is statistically too weak to conclude whether these features are

real or not. We further discuss the possible dependence of m on the mass ratio in Section 4.1. The median and 1 σ

values of all likelihood analyses are listed in Table 1.

4. DISCUSSION

4.1. Dependence of planet frequency on the host star mass
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Figure 5. Comparison of the results with Koshimoto et al. (2021a)’s method (red) that uses one-dimensional µrel distributions
for given tE and this study’s method (blue) that uses two-dimensional (tE, µrel) distributions.

We estimated the planet–hosting probability as Phost ∝ M
0.50+0.90

−0.70

L × R
0.10+0.51

−0.37

L by using the 22 planetary event

sample (Fig. 3 and Table 1) for planets beyond the snowline. Although all the host star masses in our sample have

not been measured, the typical mass of the host star is ∼ 0.6 M⊙ (S16). The result that the likelihood distribution

prefers m > 0 suggests that the planet frequency has a possible positive correlation with the host star mass. A

possible positive correlation is also seen in massive planet subsamples with q >∼ 10−3, whereas m is consistent with 0

in lower-mass ratio subsamples. This implies that giant planets are more likely to exist around more massive stars,

whereas lower-mass planets more uniformly exist regardless of the host star mass.

A positive correlation between planet frequency and host star mass, Mhost, for giant planets is also suggested by RV

studies for inner planets (Johnson et al. 2007, 2010; Reffert et al. 2015). Johnson et al. (2010) analyzed 1266 stars

and estimated that planet frequency is ∝ M1.0±0.3
host . Their sample ranges from low-mass M-dwarfs with 0.2M⊙ to

intermediate-mass subgiants with 1.9M⊙. Reffert et al. (2015) found that the giant planet frequency increases in the

host star mass from 1M⊙ to 1.9M⊙ by analyzing samples from Lick Observatory. Fulton et al. (2021) also suggest

an increase in giant planet frequency beyond roughly 1M⊙ using the 178 planets discovered by the California Legacy

Survey (Rosenthal et al. 2021). Importantly, part of their planet sample overlaps with our giant planet sample in the

parameter space of mass ratio and semi-major axis. On the other hand, the planet samples in the RV studies do not

include lower-mass planets beyond the snow line whereas our sample does. Note that the RV planet samples were

selected based on the planet masses while our subsamples were divided based on the mass ratios.

Simulations based on the core accretion theory also suggest that the population of massive planets increases as the

host star mass grows (Burn et al. 2021). In particular, at Mhost ≥ 0.5M⊙, giant planets are predicted to emerge and

lead to the ejection of low-mass planets. Liu et al. (2019) and Liu et al. (2020) calculate the population of single planets

around stars with masses between 0.1M⊙ and 1M⊙, and show that gas giant planets are more likely to exist around a

massive star. Ida & Lin (2005) also predict that the Jupiter-mass planet frequency has peaks around G-dwarfs. These

theoretical results suggest m > 0 for massive planets, which is consistent with our result.

On the other hand, results from the Kepler telescope suggest that the frequency of sub-Neptunes at orbital periods

less than 50 days is higher for M-dwarf rather than for FGK stars (Mulders 2018). These results prefer m < 0

for low-mass planets in inner orbits. This can be compared with our results for planets beyond the snowline that

are m = −0.08+0.95
−0.65 for the q < 10−3 subsample and m = 0.46+1.29

−0.98 for the q < 10−3.5 subsample. However, the

uncertainties of our results in m are large, and further investigation is needed.

4.2. Prior for Planetary Event Analysis
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The results of this study are also important for the analysis of planetary events. In microlensing event analysis,

Bayesian analysis using the Galactic model as a prior has been used to obtain a posterior probability distribution of the

lens mass and distance. For planetary events, we have been making assumptions regarding the dependence of planet

frequency on the host star mass and location in our Galaxy, i.e., assumptions on m and r in the context of this study.

A traditional assumption is (m, r) = (0, 0), and it has been implicitly or explicitly assumed in many studies to date

(e.g., Bennett et al. 2014; Shvartzvald et al. 2014; Shin et al. 2023). Some studies consider other possibilities for m like

m = 1 (Koshimoto et al. 2017; Ishitani Silva et al. 2022; Olmschenk et al. 2023) based on results by other techniques

like RV (Johnson et al. 2010) which has a very different sensitivity region than microlensing, or based on a possible

trend inferred from some high-angular resolution follow-up observation results for microlensing planets (Bhattacharya

et al. 2021).

Koshimoto et al. (2021a) imposed constraints on the r value, r = 0.2 ± 0.4. Because this is consistent with r = 0,

the traditional assumption of r = 0 was observationally justified. On the other hand, the previous study has a large

uncertainty regarding the host star mass dependence. Our results succeeded in making more constraints, and in

particular, found that m > 0 is preferred for microlensing planetary events with q >∼ 10−3. Therefore, using m > 0

(e.g., m = 1) might be a better choice than the traditional assumption of m = 0 for events with q >∼ 10−3.

4.3. Comparison with the Previous Method

As we discussed in Section 1, this study is an extension of Koshimoto et al. (2021a). As a comparison, we analyzed

the same 22 planet samples used in our study by using the method by Koshimoto et al. (2021a). Fig. 5 compares

the result with these two methods. This corresponds to a comparison between the result using the one-dimensional

distribution of µrel for given tE and the result using the two-dimensional distribution of tE and µrel. As expected, Fig.

5 shows that using a two-dimensional distribution allows for more constraint of m and r values compared to using the

one-dimensional distribution.

A disadvantage of the new method is that the number of samples is limited to apply proper detection efficiency as

described in Section 3.1. In fact, in this study, 6 planetary events from Gould et al. (2010) and Cassan et al. (2012)

were excluded for that reason. On the other hand, the previous method has the advantage of easily increasing the

sample size by avoiding the detection efficiency issue, and Koshimoto et al. (2021a) used the 6 events mentioned above

in addition to the 22 events used in this study.

Nevertheless, we were able to impose more constraint of m = 0.50+0.90
−0.70 compared to m = 0.2 ± 1.0 by Koshimoto

et al. (2021a). This fact indicates that the two-dimensional approach is more informative than the one-dimensional

approach even considering the decrease in the number of samples. Hence, when detection efficiency is available, it is

preferable to use the method described in this study as much as possible.Note that both methods require a Galactic

model, and one needs to ensure that the model is unbiased, for instance, by a sanity test as performed in Appendix B.

5. CONCLUSION

We estimated the dependence of planet frequency on the host star mass and the Galactocentric distance by comparing

the (tE, µrel) distribution of the 22 microlensing planetary events from S16 with the one expected from the Galactic

model. By assuming the power law Phost ∝ Mm
L × Rr

L as the planet-hosting probability, we estimated r = 0.10+0.51
−0.37

and m = 0.50+0.90
−0.70. We also divided our sample into subsamples by the mass ratios and found that the giant planet

sample with q >∼ 10−3 prefers m > 0 whereas m is consistent with 0 for the lower-mass ratio samples. It suggests

that massive planets are more likely to exist around more massive stars. On the other hand, there is no significant

preference in either positive or negative r, i.e., no large dependence of planet frequency on the Galactocentric distance,

which is consistent with the result of Koshimoto et al. (2021a).

The analysis method of this study and Koshimoto et al. (2021a) can be used for planet samples from other mi-

crolensing survey projects. The Korea Microlensing Telescope Network (KMTNet; Kim et al. 2016) has operated their

microlensing survey since 2016 and more than 200 planets have already been detected. The PRime-focus Infrared

Microlensing Experiment (PRIME) began their survey toward the Galactic bulge and center in 2023 (Kondo et al.

2023; Yama et al. 2023). PRIME is expected to discover 42 − 50 planets per year (Kondo et al. 2023). The Nancy

Grace Roman Space Telescope is planned to launch in late 2026 (Spergel et al. 2015) and a total of ∼ 1400 planets is

expected to be discovered (Penny et al. 2019). A similar analysis with the planet sample by these surveys can further

constrain the dependence of planet frequency on the host star mass and the location in our Galaxy.
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Figure 6. (a) Two-dimensional distribution of tE and µrel. The blue dots show the 50 samples used in this mock data analysis.
(b) Result of the mock data analysis. Each panel has a different correct (m, r) value and the intersection of the dotted lines
shows its correct value. Each analysis is based on 50 artificially generated samples, weighted according to their respective (m, r)
value.
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APPENDIX

A. VALIDATION OF METHOD BY MOCK DATA ANALYSIS

As described in Section 2, we conduct mock data simulations to validate our method. We adopt a certain (m,r) value

and generate 50 mock planetary event samples with weights of Γhost(tE, µrel|m, r)× ϵ. This sample can be regarded as

a sample of actually observed planetary events in the virtual galaxy which has a specific value of (m, r) and we know

this specific value. Therefore, if the analysis method is correct, it is expected that we can reproduce the actual values

of (m, r) by analyzing these mock planetary events. We produced mock data with nine combinations of m = −1, 0, 1,

and r = −1, 0, 1, and analyzed these artificial planetary events.

Fig. 6 (a) shows the distribution of tE and µrel under each (m, r) value, and Fig. 6 (b) shows the result of the

likelihood analysis for the mock data indicated by dots in Fig. 6 (a). It can be seen that the correct m and r values

are well reproduced in each analysis regardless of the true (m, r) values although the strength of the (m, r) correlation

differs depending on the true (m, r) values.
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B. VERIFICATION OF GALACTIC MODEL BY MOA-II FSPL SAMPLE

Although our method was validated by the mock data analysis in Appendix A, the simulations using mock data are

not sufficient to truly justify the results from this study, because the same Galactic model was used both to generate

the mock data and to calculate the likelihood. Since the real data are generated following the real distribution of our

Galaxy, the validity of the Galactic model needs to be verified.

In this section, we compare the (tE, µrel) distribution predicted by the Galactic model with the distribution of the

finite-source point-lens (FSPL) event sample from the MOA-II 9-yr Galactic bulge survey (K23) to evaluate the amount

of bias in the Galactic model that would affect our measurement of (m, r). Because the FSPL sample should reflect

the distribution of random stars in our Galaxy, their (tE, µrel) distribution can be fairly compared with the predicted

distribution by the Galactic model if the detection efficiency is properly taken into account.

For the comparison in this section, we use a slightly modified version of Eq. (4) for the model predicted distribution,

i.e.,

fFSPL(t
(obs)
E , µ

(obs)
rel |mbias, rbias) =

∫
dt,Edµ

,
rel

[
k
(
t
(obs)
E , µ

(obs)
rel ; t,E, µ

,
rel

)
Γbias (t

,
E, µ

,
rel|mbias, rbias) ϵFSPL (t

,
E, µ

,
rel)
]
,

where (t
(obs)
E , µ

(obs)
rel ) are from the MOA-II 9-yr FSPL sample described in Section B.1, ϵFSPL(tE, µrel) is the detection

efficiency corresponding to the sample described in Section B.2. Γbias (tE, µrel|mbias, rbias) is defined as

Γbias (tE, µrel|mbias, rbias) ∝
∫

dMLdRL ΓFSPL(tE, µrel,ML, RL)M
mbias

L Rrbias
L ,

where ΓFSPL is the event rate for FSPL events calculated by the Galactic model and ΓFSPL ∝ Γall θ
−1
E . mbias and rbias

are the parameters to quantify the bias level in the Galactic model and (mbias, rbias) = (0, 0) corresponds to no bias.

We evaluate (mbias, rbias) for the Koshimoto et al. (2021b) Galactic model in Section B.3.

B.1. MOA-II 9-yr FSPL sample

K23 systematically analyzed the MOA-II Galactic bulge survey data during the 9 years from 2006 to 2014 and

selected ∼ 3500 single-lens events. There are 13 FSPL events in the MOA-II 9-yr sample where the finite source effect

(Alcock et al. 1997; Yoo et al. 2004) was detected, and both tE and µrel were measured thanks to the effect. Two of

the FSPL events are free-floating planet candidates with tE < 0.5 days, and modeling their distribution requires an

additional part of the mass function for a planetary mass range that is irrelevant to our sample of the S16’s events with

tE > 2 days. Therefore, we do not use the two events and consider the remaining 11 FSPL events. This corresponds

to applying an additional selection criterion of θE > 0.03 mas to the 9-yr sample in addition to the original selection

criteria applied by K23. This additional selection criterion allows us to avoid considering events with extremely small

θE and to erase the µrel dependency from the detection efficiency for single-lens events, ϵSL(tE), which is defined below

in Section B.2.

The black dots in the left panel of Fig.7 show the (tE, µrel) distribution of the selected 11 FSPL events.

B.2. Detection Efficiency

K23 performed image-level simulations of 6.4×107 artificial events to calculate the detection efficiency as a function

of (tE, θE) which is equivalent to the detection efficiency as a function of (tE, µrel) because θE = µrel tE. However, their

original detection efficiency is for their sample of ∼ 3500 single-lens events including both PSPL and FSPL events, and

not suitable for our sample of the 11 FSPL events. Therefore, we recalculate the detection efficiency for our sample,

ϵFSPL(tE, µrel), using their simulation results by the following procedure.

Their simulated artificial events were distributed uniformly in 0 < u0 < 1.5, where u0 is the impact parameter in

units of θE. To define the detection efficiency against FSPL events that follow ΓFSPL ∝ Γall θ
−1
E , we first limit to their

artificial events with 0 < z0 < 5, where z0 ≡ u0/ρ and ρ = θ∗/θE is the size of the angular source radius θ∗ in units of

θE. Then, we further limit the artificial events to those with θE > 0.03 mas as described in Section B.1. The remaining

artificial events are used as the total number of valid simulated events, Nsim,z0 . Note that event counts here are done

after considering the weight for each event based on its event rate given by Eq. (13) of K23.

The next step is to count the number of events that pass the selection criteria for the FSPL events. There are two

requirements to be selected as an FSPL event in K23: the first is to pass the selection criteria listed in Table 2 of K23
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Figure 7. Comparison of the (tE, µrel) distributions for the MOA-II 9-yr FSPL sample between the observations (black points)
and the prediction by the Galactic model combined with the detection efficiency (color maps) when (mbias, rbias) = (0, 0). The
left panel calculates the detection efficiency, ϵFSPL(tE, µrel), without the separable assumption (Eq. B1), whereas the right panel
calculates the one with the separable assumption (Eq. B2).

and be selected as a single lens event, and the second one is to have a significant ∆χ2 value between the best-fit PSPL

and FSPL models (see Section 8 of K23 for the detail). We apply the same two-step criteria and count the number of

events that pass the first step as Ndet,SL and the ones that also pass the second step as Ndet,FSPL.

Ideally, the desired detection efficiency ϵFSPL(tE, µrel) can be simply calculated by

ϵFSPL(tE, µrel) =
Ndet,FSPL(tE, µrel)

Nsim,z0(tE, µrel)
, (B1)

whereNdet,FSPL(tE, µrel) andNsim,z0(tE, µrel) are subsamples ofNdet,FSPL andNsim,z0 in a grid of (tE, µrel), respectively.

However, the number of Ndet,FSPL in each grid of (tE, µrel) is too small to have a precise value of ϵFSPL(tE, µrel) because

the K23’s simulation was not optimized for FSPL events. Therefore, we assume that ϵFSPL(tE, µrel) is separable as a

product of two single variable functions, i.e.,

ϵFSPL(tE, µrel) ≃ ϵSL(tE) ϵFS(µrel), (B2)

where

ϵSL(tE) =
Ndet,SL(tE)

Nsim,z0(tE)
, (B3)

and

ϵFS(µrel) =
Ndet,FSPL(µrel)

Ndet,SL(µrel)
. (B4)

Eq. (B2) gives us a more precise ϵFSPL(tE, µrel) distribution than Eq. (B1) because it enables us to use the numbers

of Ndet,FSPL distributed in one-dimensional bins of µrel instead of the numbers distributed in two-dimensional grids of

(tE, µrel).

The separable assumption of ϵFSPL(tE, µrel) = ϵSL(tE) ϵFS(µrel) is reasonable because the detection efficiency for

single lens events, ϵSL, only depends on tE for events with θE > 0.03 mas as shown in Figure 7 of K23. Also, the

detection efficiency for the finite source effect depends on the number of data points taken during the source radius

crossing time, t∗ = θ∗/µrel. Because the angular source radius θ∗ is independent of tE, the detection efficiency for the

finite source effect only depends on µrel.

The color maps in Fig. 7 show the model-predicted (tE, µrel) distributions, i.e., ΓFSPL(tE, µrel) × ϵFSPL(tE, µrel),

where the left panel shows the one with ϵFSPL(tE, µrel) calculated using Eq. (B1) and the right panel shows the one
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Figure 8. Relative likelihood distribution of (mbias, rbias) calculated by Eq. (B5) for the Galactic model by Koshimoto et al.
(2021b) when compared with the MOA-II 9-yr FSPL sample. The top panel shows a relative probability distribution of rbias
integrated over −3 < mbias < 3 uniformly, and the side panel shows a relative probability distribution of mbias integrated over
−3 < rbias < 3 uniformly.

with ϵFSPL(tE, µrel) calculated using Eq. (B2). As expected, the right panel shows a much smoother distribution than

the left panel. At the same time, the two distributions look like they represent a similar distribution, indicating that

the separable assumption is valid, at least to a good approximation.

B.3. Sanity Test for the Galactic Model

Fig. 7 shows the comparison of the observational (tE, µrel) distribution from the MOA-II 9-yr FSPL sample (black

dots) with the one from the Galactic model with (mbias, rbias) = (0, 0) (color map). It shows a good agreement between

the observations and the model, which implies that the Galactic model by Koshimoto et al. (2021b) is not significantly

biased. To quantify this, we calculate the likelihood distribution of (mbias, rbias) given by

L(mbias, rbias) =
∏
i

fFSPL(t
(obs)
E,i , µ

(obs)
rel,i |mbias, rbias), (B5)

and the result is shown in Fig. 8. Fig. 8 shows that the likelihood is distributed around (mbias, rbias) = (0, 0). The

best grid is at (mbias, rbias) = (−0.2,−0.2) and the likelihood at (mbias, rbias) = (0, 0) is 0.80 relative to the best grid

value. The median and 1σ uncertainty values are mbias = −0.27+0.33
−0.32 and rbias = −0.32+0.65

−0.61.

The fact that the likelihood distribution is consistent with (mbias, rbias) = (0, 0) means that the Galactic model by

Koshimoto et al. (2021b) would not cause a significant bias in our estimation on (m, r), and we can securely use the

model in our analysis in Section 3. The same test can be used for any other Galactic models to test their validity.
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