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AN APPROACH TO ANNIHILATORS IN THE CONTEXT OF

VECTOR FIELD LIE ALGEBRAS

CHARLES H. CONLEY AND WILLIAM GOODE

Abstract. We present a general method for describing the annihilators of
modules of Lie algebras under certain conditions, which hold for some tensor
modules of vector field Lie algebras. As an example, we apply the method to
obtain an efficient proof of previously known results on the annihilators of the
bounded irreducible modules of VecR.
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teacher and friend. His generosity and his passion for doing mathematics elegantly
have been a lasting inspiration, which we have sought to communicate forward to
his academic descendants.
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1. Introduction

Suppose that π : g → End(V ) is a representation of a Lie algebra g on a vector
space V . Write π|U(g) : U(g) → End(V ) for its extension to a representation of the
universal enveloping algebra U(g).

Definition. The annihilator of π is the kernel of π|U(g), a two-sided ideal in U(g).
We denote it by Anng(V ):

Anng(V ) := ker
(

π|U(g)

)

.

The first author was partially supported by Simons Foundation Collaboration Grant 519533.
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In this article we present a method for describing Anng(V ) under certain condi-
tions on g and π. It is completely elementary, relying solely on linear algebra. The
basic version applies only to annihilators generated in a single degree, but it can
be modified to apply to annihilators generated in multiple degrees. The conditions
are restrictive, but they are satisfied by the irreducible admissible modules of the
Lie algebra of vector fields on the line, VecR. Moreover, it may be that they are
satisfied by a reasonably general class of modules of vector field Lie algebras, one
which includes the tensor field modules of VecRm.

The irreducible admissible modules of VecR (as well as those of the Virasoro Lie
algebra) were classified by Mathieu [Ma92]. They are the tensor density modules,
which are deformations of the standard module of VecR on the functions C[x]. The
single degree version of our method applies to C[x], and also to the direct sum of
all of the tensor density modules. It shows that the annihilators of both of these
modules are generated in degree 2. Note that the annihilator of the direct sum is
simply the intersection of the annihilators of all of the tensor density modules, and
so by Mathieu’s result it may be thought of as the “admissible Jacobson radical”
of U(VecR).

These two annihilators were originally considered by Martin and the first author,
using less efficient techniques [CM07]. They observed that with the description of
the admissible Jacobson radical in hand, it is easy to describe the annihilators of
each of the individual tensor density modules: those other than that of C[x] itself
turn out to be generated in degrees 2 and 3. We will see that the multidegree
version of our method gives a way to deduce these annihilators directly.

The second author wrote his dissertation on the analogous project for K1|1, the

Lie superalgebra of contact vector fields on the superline R1|1 [Go23]. There the
techniques of [CM07] were used. In a forthcoming article we will use our method
to present more efficient proofs of the results.

The indecomposable extensions composed of two tensor density modules of VecR
were classified by Feigin and Fuchs [FF80], and projectively split uniserial exten-
sions of arbitrary length were analyzed by O’Dell (another grandstudent of Raja’s)
[O’D18]. The annihilators of the simplest class of projectively split extensions were
studied by Kenefake (also a grandstudent of Raja’s) [Ke19]. He was not able to
describe them fully, but he did describe their intersections with the subalgebra of
U(VecR) spanned by lowest weight vectors. We expect that complete descriptions
of these annihilators, and perhaps also of the annihilators of more complicated ex-
tensions of length 2, may be obtained using the multidegree method. We plan to
work with Kenefake to address these questions in a future article.

In order to place our results in some context, recall that by a well-known theorem
of Duflo, the annihilators of the Verma modules of a finite dimensional semisimple
Lie algebra are generated by their intersection with the center of its universal en-
veloping algebra [Du71]. The universal enveloping algebras of vector field algebras
such as VecRm and K(2m+1)|n have no center, so they cannot admit exact analogs
of Duflo’s result. However, each of them contains a distinguished finite dimensional
semisimple subalgebra, its projective subalgebra, and the tensor field modules of the
parent vector field algebra restrict to relative co-Verma modules of the projective
subalgebra, induced from a specific maximal parabolic subalgebra.

For VecR and K1|1, the projective subalgebras are sl2 and osp1|2, respectively:
the rank 1 cases. Here all tensor field modules are tensor density modules, and
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they restrict to co-Verma modules of the projective subalgebra. Therefore, their
annihilators over the projective subalgebra are generated by shifts of the Casimir
element (except in the case of the self-opposite-dual Verma module of osp1|2; its
annihilator is generated by the “ghost”, the square root of a shift of the Casimir
element [Pi90]). These shifted Casimir elements play roles in the study of the full
annihilators over the vector field algebra, although they do not generate them.

This article is organized as follows. In Section 2 we establish general notation,
and in Section 3 the single degree method is given. In Sections 4 and 5 we review
VecR, its universal enveloping algebra, and its modules, and in Sections 6 and 7
the single degree method is applied to the two modules of VecR discussed above.
In Section 8 we give the multidegree method, and in Sections 9 and 10 it is applied
to the individual tensor density modules of VecR. Section 11 contains remarks on
further applications, and Section 12 discusses relations to work of Sierra and Walton
[SW14, SW16], Billig and Futorny [BF16], and Petukhov and Sierra [PS20, SP23].

2. Notation

Throughout the article we work over C. Given any vector space W , let S(W ) be
its symmetric algebra, and let Sk(W ) be the kth homogeneous component of S(W ).
If W ′ is a subspace of W , we write projW ′ for the algebra epimorphism induced by
the canonical projection from W to W/W ′:

projW ′ : S(W ) ։ S(W/W ′).

Let g be a Lie algebra, with universal enveloping algebra U(g). Write Uk(g) for
the subspace of U(g) of elements of degree ≤ k, and

projk : Uk(g) ։ Sk(g)

for the canonical projection with kernel Uk−1(g). The graded commutativity of
U(g) is the following homomorphic property: for Θ1 ∈ Uk1

(g) and Θ2 ∈ Uk2
(g),

projk1
(Θ1) projk2

(Θ2) = projk1+k2
(Θ1Θ2).

The symmetrizer map in degree k is

symk : Sk(g) → Uk(g), symk(X1 · · ·Xk) :=
1
k!

∑

σ∈Sn

Xσ(1) · · ·Xσ(n).

It is a g-map and a right-inverse of projk. It follows that the full symmetrizer map
sym is a degree-preserving g-isomorphism:

sym :=
⊕

k

symk : S(g) → U(g).

Definition. Given any subspace I of U(g), let 〈I〉 be the ideal it generates:

〈I〉 := U(g)IU(g).

Definition. Let I be an ideal in U(g). We say that I is generated in degree d if

• I ∩ Ud−1(g) = 0;

• I ∩ Ud(g) generates I.
More generally, we say that I is generated in degrees d1 < · · · < dr if

• I ∩ Ud1−1(g) = 0;

• for 1 < s ≤ r,
〈

I ∩ Uds−1
(g)

〉

contains I ∩ Uds−1(g), but not I ∩ Uds
(g);

• I ∩ Udr
(g) generates I.
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Definition. The augmentation ideal U+(g) is the annihilator of the trivial module:

U+(g) := Anng(C) = 〈g〉 = sym
(

g⊕ S2(g)⊕ S3(g)⊕ · · ·
)

.

Remark. Suppose that I is an adjoint-invariant subspace of U(g). Then the left,
right, and two-sided ideals which it generates are all the same. However, it may
nevertheless happen that the minimal degree occurring in 〈I〉 is lower than that
occurring in I. For example, if g is simple, the image of sym2 generates U+(g).

Given any subspace U of U(g), we sometimes write Uk for U ∩Uk(g) and Uk for
projk(Uk). We shall remind the reader of this convention when using it.

3. Annihilators generated in a single degree

We now give the basic version of our method for describing annihilators. As noted
in the introduction, it applies only under a rather restrictive set of conditions.

Proposition 3.1. Let π be a representation of g on a space V such that there exist

• a positive integer d;

• a subspace J of g;

• a subspace J of U(g);

• a subspace I of Anng(V ) ∩ Ud(g);

satisfying the following conditions:

(a) π : U(g) → End(V ) is injective on J ;

(b) Ud−1(g) ⊂ J ;

(c) for k ≥ d, projk maps J ∩ Uk(g) onto Sk−d+1(J)Sd−1(g);

(d) projJ ◦ projd maps I onto Sd(g/J).

Then

(i) Anng(V ) is generated in degree d.

(ii) Anng(V ) ∩ Ud(g) = I.

(iii) Anng(V ) = 〈I〉.
(iv) J is a cross-section: U(g) = Anng(V )⊕ J .

Proof. During this proof, we use the following abbreviations:

Uk := Uk(g), I := Anng(V ), Ik := I ∩ Uk, Jk := J ∩ Uk.

Applying conditions (a) and (b), we find that

I ∩ J = 0, Id−1 = 0.

We first prove that Ud = Id ⊕ Jd and I = Id. The sum is direct, and I ⊆ Id by
assumption. Hence by (b) it suffices to prove that

(1) Sd(g) = projd(I) + projd(Jd).

By (c) and (d), projJ : Sd(g) → Sd(g/J) has kernel projd(Jd) and is surjective on
projd(I). This proves the claim.

The next step is to prove that for k > d,

(2) Uk = IUk−d ⊕ Jk.
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Because IUk−d ⊂ Ik and Ik ∩ Jk = 0, we only need Uk = IUk−d + Jk. Assuming
this for k − 1, applying projk and condition (c) bring us down to proving

Sk(g) = projd(I)Sk−d(g) + Sk−d+1(J)Sd−1(g).

The following additional abbreviations clarify the computations:

gℓ := Sℓ(g), Jℓ := Sℓ(J), I := projd(I).

The right side of the equation, I gk−d + Jk−d+1gd−1, may be rewritten as

I(gk−d + Jgk−d−1) + Jk−d+1gd−1 = I gk−d + J(I gk−d−1 + Jk−dgd−1).

By induction, the term in parentheses is gk−1, so the expression becomes

I gk−d + Jgk−1 = (I + Jgd−1)gk−d.

Here the term in parentheses is gd, by (1) and condition (c). This completes the
proof of (2). The remainder of the proposition follows easily. �

The following auxiliary lemma will be convenient:

Lemma 3.2. Assume that conditions (a)-(c) of Proposition 3.1 hold. Then

(i) J ∩ Ud(g) = JUd−1(g) + Ud−1(g).

(ii) projd(I) ∩ JSd−1(g) = 0.

(iii) projJ ◦ projd injects I to Sd(g/J).

Proof. Conditions (b) and (c) imply (i). For (ii), suppose that Θ is in projd(I) ∩
Jgd−1. By (c), Jgd−1 is projd(Jd), so there are ΘI in I and ΘJ in Jd both mapping
to Θ under projd. The difference ΘI − ΘJ must be in Ud−1(g), which is in Jd.
Since (a) implies I ∩ Jd = 0, we find that ΘI and hence Θ are 0.

For (iii), if projJ ◦ projd(Θ) = 0 for some Θ ∈ I, then projd(Θ) is in Jgd−1.
Therefore it is 0 by (ii), so Θ is in Ud−1(g). As before, this implies Θ = 0. �

4. VecR and the tensor density modules

In this section we review VecR and its irreducible admissible representations;
see for example [CM07, Ma92] and their references. We write N for Z≥0.

Definition. The Lie algebra VecR of polynomial vector fields on the line and its
monomial vector fields en are

VecR := C[x]∂x = spanC
{

en : n ∈ −1 + N
}

, en := xn+1∂x.

The projective, affine, and constant subalgebras are, respectively,

(3) a := span
{

e−1, e0, e1
}

, b := span
{

e−1, e0
}

, c := Ce−1.

Here a is isomorphic to sl2, b is a Borel subalgebra, and c is its nilradical. The
corresponding Cartan subalgebra is spanned by e0, the Euler operator of VecR.

Definition. In any module of VecR, the eigenspaces, eigenvectors, and eigenvalues
of e0 are, respectively, the weight spaces, weight vectors, and weights. Weight vectors
annihilated by e−1 are lowest weight vectors. Given a module V , its µ-weight space,
the subspace of µ-lowest weight vectors, and the subspace spanned by all lowest
weight vectors are denoted, respectively, by

Vµ, V e−1

µ , V e−1 .

A module is said to be admissible if it is spanned by its weight spaces, and all of
them are finite dimensional.
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The defining module of VecR is C[x] with the natural action: a vector field f(x)∂x
maps a polynomial g(x) to fg′. This action extends to the Laurent polynomials
C[x, x−1], and further to the formal space xaC[x, x−1], for any a ∈ C/Z. Deforming
it gives the tensor density modules:

Definition. For λ ∈ C and a ∈ C/Z, the tensor density module Fa,λ of VecR and
its action πλ are given by

Fa,λ := dxλxa
C[x, x−1], πλ(f∂x)(dx

λg) := dxλ(fg′ + λf ′g).

Here dxλ is a place-holder symbol of geometric origin. Note that dxλxµ is a
weight vector of weight λ+ µ. It is a lowest weight vector if and only if µ = 0.

For a nonintegral, Fa,λ is irreducible. For a ≡ 0, the polynomials span a sub-
module, denoted by Fλ. The corresponding quotient, which we will denote by F−

λ ,
may be thought of as being spanned by the negative monomials:

Fλ := dxλ
C[x], F−

λ := Fλ,λ/Fλ = dxλ
C[x−1]x−1.

These modules are both irreducible, excepting F0 and F−
1 , which each have exactly

one submodule: C and dxC[x−1]x−2, respectively. The de Rham differential dx∂x
gives isomorphisms from the quotient F0/C to F1 and from F−

0 to dxC[x−1]x−2.
The quotient of F−

1 by dxC[x−1]x−2 is trivial and is given by the residue map,
the unique VecR-covariant surjection from any tensor density module to the trivial
module. It extends to all of F1:

Definition. The residue map res : F1 → C is res
(

dxg(x)
)

:= 1
2πi

∮

0
dxg(x).

There is a natural multiplication map on the tensor density modules:

mult : Fa,λ ⊗Fa′,λ′ → Fa+a′,λ+λ′ , dxλxµ ⊗ dxλ′

xµ′ 7→ dxλ+λ′

xµ+µ′

.

It is VecR-covariant, and is known as the zeroth transvectant. In conjunction with
the residue map, it defines a family of nondegenerate invariant bilinear forms:

res ◦mult : Fa,λ ⊗F−a,1−λ → C.

Thus we have the following identifications of restricted duals:

(4) F∗
a,λ

∼= F−a,1−λ, F∗
λ
∼= F−

1−λ.

Mathieu obtained the following result en route to his proof of the Kac conjecture:

Theorem 4.1 ([Ma92]). The trivial module and the tensor density modules exhaust
the irreducible admissible modules of VecR.

5. The structure of U(VecR)

Here we review U(VecR) and its action on the Fλ.

Lemma 5.1. The adjoint representation of VecR on itself is isomorphic to F−1,
via the map f(x)∂x 7→ dx−1f(x).

Thus the symmetrizer map shows that the adjoint action on U(VecR) is isomor-
phic to the action on the symmetric algebra S(F−1).

Lemma 5.2. For any scalars λ1, . . . , λk, there is a b-module isomorphism

k
⊗

j=1

Fλj

b∼=
∞
⊕

n=0

tk(n)Fn+λ1+···+λk
, tk(n) :=

(

n+ k − 2

k − 2

)

.
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Proof. First use the fact that e−1 acts surjectively on Fλ to see that it also acts sur-
jectively on

⊗

j Fλj
. Then check that any b-module on which e−1 acts surjectively

and whose weights are bounded below is a direct sum of tensor density modules.
Standard counting arguments show that the dimension of the

(

n+
∑

j λj

)

-weight

space of
⊗

j Fλj
is wk(n) :=

(

n+k−1
k−1

)

. By the e−1-surjectivity, the dimension of the

subspace of lowest weight vectors is wk(n)− wk(n− 1), which is tk(n). �

Lemma 5.3. For any scalar λ, there is a b-module isomorphism

Sk(Fλ)
b∼=

∞
⊕

n=0

qk(n)Fn+kλ,

where qk(n) denotes the number of partitions of n with all part sizes in [2, k].

Proof. A Young diagram conjugation argument shows that the dimension of the
(n + kλ)-weight space of Sk(Fλ) is pk(n), the number of partitions of n with all
part sizes in [1, k]. As before, e−1 acts surjectively on Sk(Fλ), and so the dimension
of the subspace of lowest weight vectors is pk(n)− pk(n− 1), which is qk(n). �

We emphasize that these are only b-decompositions, and they are not unique.
The precise a-decompositions may be found in the appendix of [CM07]. Under
VecR these modules are in general indecomposable.

Observe that the tensor density action πλ carries U(VecR) into the Weyl algebra
C[x, ∂x]. This restricts the possible actions of lowest weight elements. It also
permits us to reduce the study of the annihilators of the Fa,λ to those of the Fλ.

Lemma 5.4. Let Θ be an element of U(VecR)
e−1

n . For all λ ∈ C,

(i) If n > 0, then πλ(Θ) = 0.

(ii) If n ≤ 0, then πλ(Θ) is a multiple of ∂
|n|
x .

Proof. The commutant of ∂x in C[x, ∂x] is C[∂x]. Because πλ(e−1) = ∂x and Θ is
a lowest weight element of weight n, πλ(Θ) must lie in C[∂x]n. �

Lemma 5.5. Suppose that U is a b-invariant subspace of U(VecR) which is b-
isomorphic to Fn, for some n > 0. Then πλ(U) = 0 for all λ.

Proof. Suppose that πλ(Θ) 6= 0 for some Θ ∈ U of weight n + m, where m ∈ N.
Note that ad(e−1)

m+1Θ = 0. Let m0 be maximal for πλ(ad(e−1)
m0Θ) 6= 0. Deduce

that πλ(ad(e−1)
m0Θ) is an element of C[∂x] of positive weight, a contradiction. �

Proposition 5.6. For all a, the annihilator of Fa,λ is equal to that of Fλ:

AnnVecR(Fa,λ) = AnnVecR(Fλ) = AnnVecR(F−
λ ).

Proof. Recall that as spaces, Fλ is C[x], F−
λ is x−1C[x−1], and Fa,λ is xaC[x±1];

dxλ is just a place-holder indicating the action of U(VecR), which acts by polyno-
mial differential operators in all cases. Any polynomial differential operator which
annihilates any one of these spaces must annihilate all of them. �
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6. The structure of U2(VecR)

In order to analyze annihilators generated in degree 2, we must recall the struc-
ture of U2(VecR). The degree 2 symmetrizer map, sym2, is a VecR-injection from
S2(VecR) to U2(VecR). It will be helpful to abbreviate its image as U2:

(5) U2(VecR) = C⊕VecR⊕ U2, U2 := sym2

(

S2(VecR)
)

.

By Lemma 5.1, U2 is VecR-isomorphic to S2(F−1), and by Lemma 5.3, there
exists a (non-unique) b-isomorphism

(6) S2(F−1)
b∼= F−2 ⊕F0 ⊕F2 ⊕F4 ⊕ · · · .

In particular, for each weight in −2 + 2N, the lowest weight space of U2 is 1-
dimensional. In weight −2, it is clearly Ce2−1, and there is a well-known technique
for constructing it in other weights: the action of the step algebra element

S := 2e2(2e0 − 1)− 3e21

of U(VecR) on any module maps any lowest weight vector of weight µ either to zero
or to a lowest weight vector of weight µ+ 2. Keeping track only of the coefficient
of e2ℓ+1e−1, one obtains ad(S)ℓ+1e2−1 6= 0 for all ℓ. This proves:

Lemma 6.1. For ℓ ∈ −1 + N, ad(S)ℓ+1e2−1 is a lowest weight element of U2 of
weight 2ℓ. These elements form a basis of the lowest weight space (U2)e−1 .

The lowest weight space of U2 of weight 0 is spanned by the Casimir element of
a, the generator of the center of U(a):

Q := e20 − e0 − e1e−1 = − 1
48 ad(S)e

2
−1.

In any a-module, this element acts by the scalar λ2−λ on any lowest weight vector
of weight λ. This can be used to see that it acts by this same scalar on the tensor
density modules Fa,λ, for all a. We write q(λ) for said scalar:

(7) πλ(Q) = q(λ) := λ2 − λ.

Observe that q(λ′) = q(λ) if and only if λ′ is λ or 1− λ.
We will also encounter the lowest weight space of U2 of weight 2. It is spanned

by ad(e2)Q, which we abbreviate as Qe2 :

(8) Qe2 = 3e21 − 2e2(2e0 + 1) + e3e−1 = − 1
96 ad(S)

2e2−1.

The Casimir element gives a refinement of (6):

Lemma 6.2. There is a unique a-decomposition

S2(F−1)
a∼= F−2 ⊕F0 ⊕F2 ⊕F4 ⊕ · · · .

Proof. By (6), there exist such decompositions under b. Since the scalars q(λ)
are distinct for λ ∈ −2 + 2N, elementary arguments show that one of these b-
decompositions is given by the eigenspaces of Q, which are a-invariant. Any a-
module which is b-isomorphic to Fλ is in fact a-isomorphic to Fλ. �

We remark that the explicit a-maps S2(F−1) → F2ℓ are instances of symmetric
transvectants. The next proposition amalgamates the preceding results:
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Proposition 6.3. There is a unique a-decomposition

U2 = G−2 ⊕G0 ⊕G2 ⊕G4 ⊕ · · · ,

where G2ℓ is an a-submodule of U2 which is a-isomorphic to F2ℓ. The lowest weight
lines are spanned by ad(S)ℓ+1e2−1, or equivalently, by e2−1, Q,Qe2 , . . ..

Definition. For ℓ ∈ −1 + N, set H2ℓ := G2ℓ ⊕G2ℓ+2 ⊕ · · · .

Proposition 6.4. (i) For ℓ ∈ −1 + N, H2ℓ is a VecR-submodule of U2.

(ii) The quotient H2ℓ/H2ℓ+2 is VecR-isomorphic to F2ℓ.

(iii) Under VecR, U2 is uniserial. Its only submodules are the H2ℓ and CQ⊕H2.

Proof. By the Poincaré-Birkhoff-Witt theorem with a on the right, the VecR-
submodule of U2 generated by H2ℓ has weights in 2ℓ+N. This implies (i). For (ii),
elementary arguments show that any VecR-module which is a-isomorphic to Fλ is
in fact VecR-isomorphic to Fλ.

For (iii), suppose that U is a VecR-submodule of U2. Then its minimal weight
is 2ℓ for some ℓ ∈ −1 + N, and it contains the lowest weight element ad(S)ℓ+1e2−1.

Consequently, it contains ad(S)m+1e2−1 for m ≥ ℓ. Since Fµ is a-irreducible for

µ 6∈ − 1
2N, we find that if ℓ > 0, then U = H2ℓ.

If ℓ = 0, then U contains Q. Because F0 has exactly one proper non-trivial
VecR-submodule, C, there are two possibilities: U could be either H0 or CQ⊕H2.
Note that they are distinguished by the dimension of the 1-weight space U1.

If ℓ = −1, then U contains e2−1. Since U2/H0
∼= F−2 is VecR-irreducible, U

must surject to it. Because ad(e3)e
2
−1 and ad(e2e1)e

2
−1 are not proportional, U1 is

2-dimensional. It follows that U = U2. The uniseriality is now clear. �

Corollary 6.5. (i) Q has a unique ad(e−1)-preimage Z in U2:

Z := 1
2 (e1e0 − e2e−1 − e1).

(ii) H0 is generated as a VecR-module by Z.

(iii) CQ⊕H2 is generated as a VecR-module by Q.

(iv) For ℓ 6= 0, H2ℓ is generated as a VecR-module by ad(S)m+1e2−1.

(v) In particular, H2 is generated as a VecR-module by Qe2 .

Proof. For (i), verify that ad(e−1)Z = Q and use the fact that U2(VecR) contains
no 1-lowest weight elements. Everything else follows from Proposition 6.4. �

Remark. In fact, Z is the only preimage of Q in U2(VecR). It projects to a lowest
weight element of the VecR-module H0/(CQ⊕H2), which is isomorphic to F1.

Lemma 6.6. For λ ∈ C, H2, Z, and H0 have the following images under πλ:

πλ(H2) = 0, πλ(Z) = q(λ)x, πλ(H0) = πλ(G0) = q(λ)C[x].

Proof. ForH2, use Lemma 5.5. For Z, combine (7) with the fact that
(

C[x, ∂x]
)e−1

1
=

0. For H0, act by e1 repeatedly on the Z-action formula. �
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7. Annihilators over VecR generated in degree 2

In this section we use Proposition 3.1 to give clarified proofs of two of the results
of [CM07]. As discussed in the introduction, the approach taken here is adaptable
to more general vector field Lie algebras and superalgebras.

We begin with some elementary results on duals. In the context of admissible
representations, they apply also to restricted duals. We omit the proofs.

Definition. Let g be a Lie algebra. The transpose anti-involution of U(g) is

Θ 7→ ΘT , (X1 · · ·Xk)
T := (−1)kXk · · ·X1.

Lemma 7.1. Transposition is ad-invariant and acts by (−1)k on symk(Sk(g)).

Lemma 7.2. For any representation (π, V ) of a Lie algebra g, the annihilator of
its dual is the transpose of its annihilator:

Anng(V
∗) = Anng(V )T .

Theorem 7.3 ([CM07]). AnnVecR(F1) = AnnVecR(F0) = 〈Z〉.
Proof. For the first equality, combining (4), Proposition 5.6, and Lemma 7.2 shows
that AnnVecR(F1) is the transpose of AnnVecR(F0). Since Z ∈ U2, it is transpose-
invariant by Lemma 7.1, so it suffices to prove the second equality.

By Lemma 6.6, Z annihilates F0. Hence Corollary 6.5(ii) implies that H0 anni-
hilates F0. Recall the constant subalgebra c from (3). The ingredients for Propo-
sition 3.1 are d := 2, I := H0, J := c, and

J := U1(VecR)U(c) = span
{

ene
k
−1, e

k
−1 : n, k ∈ N

}

.

We must check that conditions (a)-(d) of Proposition 3.1 hold. For (a), note that
the monomials ene

k
−1 act by the monomial basis elements xn+1∂k+1

x of C[x, ∂x].
Conditions (b) and (c) are clear.

For (d), by Lemma 3.2(iii) it suffices to show that H0 and S2((VecR)/c) have
the same weight space dimensions. By definition, H0 is a-isomorphic to ⊕∞

0 F2ℓ. By
Lemma 5.3, S2(F0) is b-isomorphic to ⊕∞

0 F2ℓ (in fact, a-isomorphic, by Casimir
eigenvalues). To complete the proof, note that (VecR)/c is b-isomorphic to F0. �

The following definition will be useful both here and subsequently.

Definition. Let Λ be a central indeterminate. The universal tensor density module
FΛ of VecR and its action πΛ are given by

FΛ := dxΛ
C[Λ, x], πΛ(f∂x)(dx

Λg) := dxΛ(fg′ + Λf ′g).

Theorem 7.4 ([CM07]).
⋂

λ∈C
AnnVecR(Fλ) = 〈Qe2〉.

Proof. Clearly
⋂

λ∈C
AnnVecR(Fλ) is the annihilator of both

⊕

λ Fλ and FΛ. By
Lemma 6.6, it contains H2. The ingredients for Proposition 3.1 applied to FΛ are
d := 2, I := H2, J := b, and

J := U1(VecR)U(b) = span
{

ene
k0

0 e
k−1

−1 , ek0

0 e
k−1

−1 : n ∈ Z
+, k0, k−1 ∈ N

}

.

We must check that conditions (a)-(d) of Proposition 3.1 hold. For (a), observe
that πΛ maps U(VecR) into the algebraC[Λ, x, ∂x]. Consider the total (Λ, ∂x) degree
on this algebra. Check that it defines a filtration compatible with multiplication,
and that πΛ maps Uk(VecR) to operators of total degree ≤ k. Consequently, to
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prove that πΛ is injective on J , it is enough to prove that the (Λ, ∂x)-symbols of
the πΛ-images of the given basis elements of J are linearly independent.

For reference, πΛ(e
k0

0 e
k−1

−1 ) and πΛ(ene
k0

0 e
k−1

−1 ) have the following (Λ, ∂x)-symbols:

πΛ(e
k0

0 e
k−1

−1 ) ≡
k0
∑

ℓ=0

(

k0
ℓ

)

xk0−ℓΛℓ∂k0+k−1−ℓ
x ,

πΛ(ene
k0

0 e
k−1

−1 ) ≡ xn+k0+1∂k0+k−1+1
x + (n+ 1)xnΛk0+1∂k−1

x(9)

+

k0
∑

ℓ=1

[(

k0
ℓ

)

+ (n+ 1)

(

k0
ℓ− 1

)]

xn+k0−ℓ+1Λℓ∂k0+k−1−ℓ+1
x .

Consider the basis elements of J of weight µ and degree k > 0. These are

eµe
k−1
0 , eµ+1e

k−2
0 e−1, eµ+2e

k−3
0 e2−1, . . . , eµ+k−1e

k−1
−1 for µ > 0,

ek+µ
0 e−µ

−1 , e1e
k−1+µ
0 e1−µ

−1 , . . . , ek−1+µe
k−1
−1 for 0 ≥ µ ≥ −k.

Using (9), one finds that in both lists the Λ-degree of the (Λ, ∂x)-symbol decreases
by 1 with each element, from k to 1 for µ > 0, and from k + µ to 1 for µ ≤ 0.
Therefore the symbols are independent.

Conditions (b) and (c) are clear. Treat (d) as in Theorem 7.3: by Lemma 3.2(iii),
it suffices to show that H2 and S2((VecR)/b) have the same weight space dimen-
sions. By definition, H2 is a-isomorphic to ⊕∞

1 F2ℓ. By Lemma 5.3, S2(F1) is
b-isomorphic to ⊕∞

1 F2ℓ. Finally, (VecR)/b is b-isomorphic to F1. �

8. Annihilators generated in multiple degrees

In this section, the method given in Section 3 is adapted to annihilators generated
in more than one degree. As before, it is applicable only under strong conditions.

Proposition 8.1. Let π be a representation of g on a space V such that there exist

• positive integers d1 < d2 < · · · < dr;

• subspaces Jd1
⊃ Jd2

⊃ · · · ⊃ Jdr
of g;

• a subspace J of U(g);

• a subspace I of Anng(V ) ∩ Udr
(g);

satisfying the following conditions:

(a) π : U(g) → End(V ) is injective on J ;

(b) Ud1−1(g) ⊂ J ;

(c) for 1 ≤ s ≤ r and ds ≤ k < ds+1 (take dr+1 to be infinity),

projk
(

J ∩ Uk(g)
)

= Sk−d1+1(Jds
)Sd1−1(g);

(d) for 1 ≤ s ≤ r,

projds

(

I ∩ Uds
(g)

)

+ Sds−d1+1(Jds
)Sd1−1(g) = Sds(g);

(e) for 1 < s ≤ r, I ∩ Uds−1(g) = I ∩ Uds−1
(g).

Then

(i) Anng(V ) is generated in some subset of the degrees d1, . . . , dr.

(ii) For 1 < s ≤ r,

Anng(V ) ∩ Uds−1(g) =
(

Anng(V ) ∩ Uds−1
(g)

)

Uds−ds−1−1(g).
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(iii) Anng(V ) = 〈I〉.
(iv) J is a cross-section: U(g) = Anng(V )⊕ J .

Remark. We index the subspaces J• by ds rather than simply by s, as it is con-
venient for their subscripts to indicate the degrees in which they take effect. Also,
note that in (c), the exponents involve d1, not ds.

Proof. We use the same abbreviations as in the proof of Theorem 3.1: Uk := Uk(g),
and for any subspaces J ⊆ g and L ⊆ U,

(10) Jk := Sk(J), Lk := L ∩ Uk, Lk := projk(Lk).

The core of the argument consists in proving 〈I〉 ⊕ J = U. By (a), 〈I〉 ∩ J = 0,

so by induction, it suffices to prove 〈I〉k + J k = gk for all k. By (b), this holds
for k < d1, and by (c) and (d), it holds for k = ds. Proceeding by induction for
ds < k < ds+1, we come down to proving that for such k,

Ids
gk−ds + Jk−d1+1

ds
gd1−1 = gk.

Expanding gk−ds as gk−ds + Jds
gk−ds−1, the left side becomes

Ids
gk−ds + Jds

(Ids
gk−ds−1 + Jk−d1

ds
gd1−1).

By induction, the space in parentheses is gk−1, so the expression is

gk−ds(Ids
+ Jds

gds−1).

By (d), this is gk.
Statements (ii)-(iv) now follow from I ⊂ Anng(V ), and (i) follows from (e). �

Remark. This argument does not rule out the possibility that Anng(V ) is gener-
ated in a proper subset of the degrees d1, . . . , dr. However, in our application of
the result, we will have r = 2, d1 = 2, and d2 = 3, and direct arguments will prove
that the ideal is generated in both degrees.

9. The structure of U3(VecR)

In this section and the next we will write U for U(VecR), and we maintain the
abbreviations (10). Building on (5), we have

(11) U3 = C⊕VecR⊕ U2 ⊕ U3, U3 := sym3

(

S3(VecR)
)

.

By Lemma 5.1, U3 is VecR-isomorphic to S3(F−1). Applying Lemma 5.3, we
find that S3(F−1) is b-isomorphic to

(12)
⊕

n2,n3∈N

F2n2+3n3−3 = F−3 ⊕F−1 ⊕F0 ⊕F1 ⊕F2 ⊕ 2F3 ⊕F4 ⊕ · · · .

There is an analog of Lemma 6.2 refining this decomposition. Let us recall the
following standard results in sl2-theory:

• For µ ∈ − 1
2N, there is up to isomorphism a unique indecomposable a-

module F̃µ that is a b-split extension of Fµ by F1−µ.

• Any a-module that is b-isomorphic to Fµ ⊕F1−µ is a-isomorphic to either

F̃µ or the a-direct sum Fµ ⊕F1−µ.

• These two a-modules are distinguished by their highest weight spaces, the
kernels of the actions of e1: F̃µ has no highest weight vectors, while the
split module has a highest weight line of weight −µ.
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• Q acts non-semisimply on F̃µ, with unique eigenvalue q(µ).

Lemma 9.1. There is a unique a-decomposition

S3(F−1)
a∼= F−3 ⊕F−1 ⊕ F̃0 ⊕F2 ⊕ 2F3 ⊕F4 ⊕ · · · .

It differs from the b-decomposition (12) only in that F0 ⊕F1 is replaced by F̃0.

Proof. First use (12) to deduce that the Q-generalized eigenspaces of S3(F−1) are
b-isomorphic to

(13) (F−3 ⊕ F4), (F−1 ⊕ F2), (F0 ⊕ F1), 2F3,

and multiples of Fm for m ∈ 5 + N.
It is not difficult to prove that the highest weight space of S(Fµ) is non-zero if

and only if µ ∈ − 1
2N, in which case it is the highest weight space of the symmetric

algebra of the unique finite-dimensional a-submodule of Fµ, the span of {dxµxn :
0 ≤ n ≤ −2µ}. It follows that S3(F−1) has exactly two highest weight lines, one
of weight 3 and one of weight 1. Therefore the first two generalized eigenspaces in
(13) are a-split, but the third is not, as there is no highest weight line of weight 0.

All the other generalized eigenspaces are a-isomorphic to multiples of Fm, be-
cause any lowest weight vector of weight µ 6∈ − 1

2N generates an a-copy of Fµ. �

Lemma 9.1 gives the U3-analog of Proposition 6.3:

Proposition 9.2. There is a unique a-decomposition

U3 = K−3 ⊕K−1 ⊕ K̃0 ⊕K2 ⊕K3 ⊕K4 ⊕ · · · ,
where the summands are a-submodules of U3 such that

K−3

a∼= F−3, K−1

a∼= F−1, K̃0

a∼= F̃0, K2

a∼= F2,

and for µ ∈ 3+N, Kµ is a-isomorphic to a multiple of Fµ. Moreover, K̃0 contains
a unique a-submodule K1 that is a-isomorphic to F1.

Combining (11) with Propositions 6.3 and 9.2 gives the a-structure of U3:

Proposition 9.3. U3 has the following a-decomposition:

U3 = C⊕VecR⊕ (G−2 ⊕G0 ⊕G2 ⊕ · · · )⊕ (K−3 ⊕K−1 ⊕ K̃0 ⊕ · · · )
a∼= F−3 ⊕F−2 ⊕ 2F−1 ⊕ C⊕F0 ⊕ F̃0 ⊕ 2F2 ⊕ 2F3 ⊕ 2F4 ⊕ 3F5 ⊕ · · · .

We will need the lowest weight elements of U3. Recall the element Z of U2 from
Corollary 6.5, and define

Y := Q(e0 − 1
2 )− Ze−1, y(λ) := (λ− 1

2 )q(λ).

Lemma 9.4. (i) πλ(Y ) = y(λ) for all λ.

(ii) The lowest weight lines of U3 of weights −3, −1, 0, 1 are spanned by

e3−1, (Q− 1
3 )e−1, Y, Qe2e−1.

(iii) K−1 = (Q− 1
3 )VecR.

(iv) ad(e1)Y = 1
2Q

e2e−1.
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Proof. For (i), apply Lemma 6.6. In (ii), the quantities are lowest weight elements
of U3 of the correct weights: this is clear for all but Y , and Corollary 6.5(i) can be
used to prove it for Y . We must prove that they are actually in U3. This is clear
for e3−1. For Y , recall from Lemma 7.1 that transposition preserves lowest weight

elements and acts by (−1)k on Uk. In particular, QT = Q and ZT = Z. Use this
to deduce Y T = −Y . Since U1 has no lowest weight elements of weight 0, Y must
be in U3. Hence Qe2e−1 is in U3 by (iv). To prove (Q− 1

3 )e−1 ∈ U3, apply sym3 to

the lowest weight element e−1e
2
0 − e2−1e1 of S3(a). This also implies (iii).

Computation gives (iv), but let us give a conceptual proof. By Proposition 9.2,

Y is the 0-lowest weight element of an a-copy of F̃0. Therefore ad(e1)Y is the

1-lowest weight element of said F̃0. By Proposition 9.3, (U3)
e−1

1 is 1-dimensional,
so it is spanned by Qe2e−1. This proves the result up to a scalar. To compute the
scalar, keep track only of terms involving e3. �

Remark. K̃0 is a-generated by any ad(e−1)-preimage of Y . An explicit basis of
the entire 0-generalized eigenspace of U3 may be found in Lemma 2.6 of [CM07].

Corollary 9.5. The following elements of U3 form a basis of the sum of its lowest
weight spaces of weight ≤ 1:

e3−1, e2−1, e−1, Qe−1, 1, Q, Y, Qe2e−1.

They act on the universal tensor density module FΛ by, respectively, the operators

∂3
x, ∂2

x, ∂x, q(Λ)∂x, 1, q(Λ), y(Λ), 0.

We now proceed toward partial analogs of Proposition 6.4 and Lemma 6.6. Con-
sider the following subspaces of U3:

L1 := K1 ⊕K2 ⊕K3 ⊕ · · · , L0 := K̃0 + L1, L−1 := K−1 ⊕ L1.

Proposition 9.6. (i) L1 = U3 ∩ 〈Qe2〉.
(ii) L1, L0, and L−1 are VecR-submodules of U3.

(iii) As VecR-modules, L0/L1
∼= F0 and L−1/L1

∼= F−1.

Proof. For (i), Lemma 5.5 implies that L1 is contained in AnnVecR(FΛ), which
is 〈Qe2〉 by Theorem 7.4. The converse follows from the fact that the non-zero
operators in Corollary 9.5 are linearly independent.

Consider (ii). By (i), L1 is VecR-invariant. Since L0 is a-invariant, applying
a PBW basis of U with a on the right, as in the proof of Proposition 6.4, shows
that the weights of ad(U)L0 are all non-negative. Therefore it is simply L0. The
same procedure shows that ad(U)L−1 and L−1 have the same 0-weightspace, which
implies that they are equal. For (iii), recall that any VecR-module a-isomorphic to
Fλ is VecR-isomorphic to it. �

Corollary 9.7. L1, L0, and L−1 have the following images under πΛ:

πΛ(L1) = 0, πΛ(L0) = y(Λ)C[x], πΛ(L−1) =
(

q(Λ)− 1
3

)

πΛ(VecR).

Proof. For L0, take repeated ad(e−1)-preimages of the actions of Q and Y . The
rest is immediate from the preceding results. �
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10. Annihilators over VecR generated in degrees 2 and 3

Here we use Proposition 8.1 to prove the third result of [CM07]. We expect that
our approach will lead to descriptions of the annihilators of the indecomposable
modules composed of two tensor density modules described in [FF80].

Theorem 10.1 ([CM07]). For λ 6= 0 or 1, AnnVecR(Fλ) =
〈

Q − q(λ), Y − y(λ)
〉

,
and it is generated in degress 2 and 3.

Proof. Proposition 8.1 does not apply to Fλ directly, but rather, to its augmentation
C⊕Fλ, where C is the trivial module: we will prove that

(14) AnnVecR(C⊕Fλ) =
〈

Qe2 , (Q − q(λ))e−1, Y − (λ− 1
2 )Q

〉

.

The theorem will then be a consequence of the following observations:

• AnnVecR(C⊕Fλ) is of codimension 1 in AnnVecR(Fλ);

• Q− q(λ) 6∈ AnnVecR(C⊕Fλ);

•
〈

Qe2 , (Q− q(λ))e−1, Y − (λ− 1
2 )Q

〉

⊂
〈

Q− q(λ), Y − y(λ)
〉

.

The ingredients for Proposition 8.1 applied to C⊕Fλ are

r := 2, d1 := 2, d2 := 3, J2 := b, J3 := c,

J := U1(VecR)U(c) + (VecR)b = span
{

ene
k
−1, ene0, e

k
−1 : n, k ∈ N

}

,

I := AnnVecR(C⊕Fλ) ∩ U3.

We must check that conditions (a)-(d) of Proposition 8.1 hold. Recall the aug-
mentation ideal U+, the annihilator of C. Note that

πλ(en) = xn+1∂x + λ(n+ 1)xn,

πλ(ene0 − en − en+1e−1) = q(λ)(n + 1)xn.

Together with a symbol argument, this shows that πλ is injective on J ∩U+, which
verifies (a). Conditions (b) and (c) are clear, and here (e) is vacuous.

In order to check (d) we must describe I more explicitly. Define

K̃0(λ) := (K̃0 ⊕G0) ∩ AnnVecR(C⊕Fλ),

K−1(λ) := (K−1 ⊕VecR) ∩ AnnVecR(C⊕Fλ).

The reader may prove the following lemma using Lemma 9.4 and Corollary 9.5:

Lemma 10.2. Assume λ 6= 0 or 1.

(i) K̃0(λ)
a∼= F̃0, with lowest weight elements Y − (λ− 1

2 )Q and Qe2e−1.

(ii) K−1(λ) = (Q− q(λ))VecR
a∼= F−1.

(iii) I = K−1(λ)⊕ (K̃0(λ) + L1)⊕H2, and K̃0(λ) ∩ L1 = K1.

Condition (d) is to be be checked in two degrees, 2 and 3. In degree 2, we need

I2 + bVecR = S2(VecR).

By Lemma 10.2, I2 is the space H2 from Proposition 6.4, so this was already proven
in the verification of (d) for Theorem 7.4.

In degree 3, we must prove that

I3 + c2VecR = S3(VecR).
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By Lemma 10.2, sym3 projects both I and L−1 + L0 to the unique subspace of

S3(VecR) that is a-isomorphic to F−1 ⊕ F̃0 ⊕ F2 ⊕ · · · . On the other hand, it
projects c2VecR to a b-copy of F−3. Therefore (d) follows from (12).

At this point we have verified that Proposition 8.1 applies to prove

AnnVecR(C⊕Fλ) =
〈

K−1(λ) + K̃0(λ) + L1 +H2

〉

.

Consider (14). Clearly its left side contains its right side. Define

M0(λ) := K̃0(λ) + L1 +H2, M−1(λ) := K−1(λ)⊕ L1.

Use Propositions 6.4 and 9.6 and Corollary 9.5 to prove:

Lemma 10.3. (i) L1 ⊕H2 = U3 ∩ 〈Qe2〉.
(ii) M0(λ) and M−1(λ) are VecR-submodules of U3.

(iii) As VecR-modules, M0(λ)/(L1 ⊕H2) ∼= F0 and M−1(λ)/L1
∼= F−1.

Write I for the right side of (14). It contains L1 ⊕H2 because it contains Qe2 .
It contains M−1(λ), because (Q − q(λ))e−1 projects to a lowest weight element of
M−1(λ)/L1, which is irreducible under VecR.

It remains only to prove that I contains M0(λ). By Lemma 10.2, Y − (λ− 1
2 )Q

projects to a lowest weight element of M0(λ)/(L1 ⊕H2), but this does not suffice,
because F0 is not VecR-irreducible. However, it will suffice to prove that I contains
an ad(e−1)-preimage of Y −(λ− 1

2 )Q, because F0 is generated by its 1-weightspace.
In order to write such an element explicitly, recall that Z is an ad(e−1)-preimage

of Q in G0, and let Y1 be any ad(e−1)-preimage of Y in K̃0 (there is a line of such
elements, parallel to CQe2e−1). Set

X := Z
(

Y − (λ − 1
2 )Q

)

−
(

Q− q(λ)
)(

Y1 − (λ− 1
2 )Z

)

.

Since I contains K−1(λ), it contains (Q − q(λ))U+, and hence X . It is immediate
that ad(e−1)X = q(λ)(Y − (λ− 1

2 )Q). Since q(λ) 6= 0, (14) is proven.
To verify that AnnVecR(Fλ) is not generated simply in degree 2, note that

AnnVecR(Fλ) ∩ U2 = C
(

Q− q(λ)
)

⊕H2 = AnnVecR(F1−λ) ∩ U2,

but AnnVecR(Fλ) 6= AnnVecR(F1−λ): the former contains Y −y(λ), while the latter
contains Y + y(λ). �

11. Remarks and questions

Here we elaborate on some ideas mentioned in the introduction, make some
conjectures, and pose some more tentative questions.

One might ask whether or not Proposition 3.1 applies to any modules of finite
dimensional Lie algebras. In fact, it applies to the Verma modules of sl2. We
may illustrate this by showing that it applies to the Fλ restricted to a, as they are
dual to the Verma modules. The reader may check that it suffices to take d := 2,
I := C(Q − q(λ)), J := span{e−1, e1}, and

J := span
{

ej11 e
j−1

−1 , e
j1
1 e0e

j−1

−1 : j1, j−1 ∈ N
}

.

Note that here J is not a subalgebra of a. It would be amusing if Proposition 3.1
applied to any modules of other finite dimensional simple Lie algebras.

Consider indecomposable b-split modules of VecR obtained by extending Fλ by
Fµ. These were classified in [FF80] and have been studied by many authors. They
do not exist unless (λ, µ) is on the following list, in which case there is exactly one:
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• (0, 1);

• (λ, λ + δ) for λ ∈ C and δ = 2, 3, or 4;

• (−4, 1) and (0, 5);

• (− 5
2 + ρ, 72 + ρ) for ρ = ± 1

2

√
19.

These extensions are a-split if and only if Fλ and Fµ have distinct Q-eigenvalues,
i.e., λ + µ 6= 1. In particular, the extension of F0 by F1 is not a-split. Therefore,
under a it is the module F̃0 occurring in Section 9. It contains a VecR-submodule
which is an extension of C by F1. This submodule is annihilated by Q and Y but
not by Z, and we conjecture that in fact Q and Y generate its annihilator.

Another “small” extension is that of C by F2, which occurs inside the extension
of F0 by F2. It is a-split and is given by the Gel’fand-Fuchs cocycle: it is part of the
coadjoint representation of the Virasoro Lie algebra. The lowest weight elements
which annihilate it were given in [Ke19]: they include, in order of increasing degree,

ad(S)Qe2 , (Q − 2)e−1, 2Y − 3Q, Qe2e−1, Q(Q− 2),

but not Qe2 . We expect that Proposition 8.1, perhaps modified, can be used to
deduce a minimal “good” generating set for the annihilator. Clearly any such set
must contain the degree 2 weight 4 element ad(S)Qe2 . It would seem reasonable to
guess the set of the first three lowest weight elements above as a candidate.

Coming from the direction of large modules rather than small ones, consider
the “universal difference δ extension”, the direct sum of the extensions of Fλ by
Fλ+δ over all λ, where δ is fixed at 2, 3, or 4. Call its annihilator Aδ. If one
could describe Aδ, one might be able to get at the annihilators of the individual
difference δ modules by analyzing U(VecR)/Aδ. This was the strategy used to
describe AnnVecR(Fλ) in [CM07].

It is easy to see that Aδ contains all lowest weight elements of weight > δ. In
particular, A2 and A3 both contain ad(S)Qe2 . Recall from Proposition 9.3 that,
speaking imprecisely, there are two degree 3 weight 3 lowest weight elements. Both
are necessarily in A2. One of them is e−1 ad(S)Q

e2 ; call the other one X . It can
be shown that X is not in A3, implying that ad(S)Qe2 does not generate A2. We
conjecture that ad(S)Qe2 and X generate A3, and that this can be proven using
Proposition 8.1 in degrees 2 and 3, with J2 = a and J3 = b.

Regarding the difference 5 and difference 6 extensions, both are opposite-dual
pairs, so their annihilators are transpose pairs. The annihilators of the difference 5
extensions are the same as those of the difference 4 extensions of F1 by F5 and of
F−4 by F0. A description of the difference 6 annihilator pair would be impressive.

Coming from the direction of generators rather than modules, one could study
for example the ideals 〈ad(S)ℓQe2〉 for ℓ ≥ 1. Are they all distinct? Are they the
annihilators of any natural modules?

And one more question, related to the conjectures made at the end of [SP23]:
are the annihilators of C and the Fλ the only primitive ideals of U(VecR)?

12. Related work

We conclude by discussing some related articles. Note the following formulas:

(15)
eaeb = sym

(

eaeb +
1
2 (b− a)ea+b

)

,

eae
2
b = sym

(

eae
2
b + (b− a)ebea+b − 1

6a(b− a)ea+2b

)

.
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Work of Sierra and Walton. In [SW14], these authors proved that U(VecR) is
not Noetherian, resolving a conjecture of Dean and Small. Their proof was non-
constructive; in [SW16] they gave a constructive proof, based on the annihilator of
the universal Verma module FΛ under the positive weight subalgebra x2VecR of
VecR. They prove in Theorem 5.1 that Annx2VecR(FΛ) is generated by

g := e1e5 − 4e2e4 + 3e23 + 2e6.

Let us relate g to our description of AnnVecR(FΛ). By (15), g is symmetric, as
indeed it must be: otherwise, repeated applications of ad(e−1) would give an ele-
ment of VecR. This means we may work in S2(VecR), where a short computation
gives ad(e−1)

4g = 24Qe2 , as noted in Remark 5.15 of [SW16]. In fact, g is deter-
mined up to a scalar: it must be in the 1-dimensional space (H2)6∩U(x2VecR), the

linear combinations of the elements ad(e6−2ℓ
1 Sℓ+1)e2−1 with ℓ = 1, 2, 3 which have

no e−1e7 or e0e6 terms.
One also finds descriptions of Annx2VecR(Fλ) in [SW16]. In Proposition 2.5 it is

proven that for λ = 0 and 1 they are equal and are generated by

h0 := e1e3 − e22 − e4.

Again, this is symmetric and determined up to a scalar: ad(e−1)
3h0 = −24Z

is easily verified by working in S2(VecR), and so h0 must be an element of the
1-dimensional space (H0)4 ∩ U(x2VecR), the linear combinations of the elements

ad(e1)
3Z and ad(e4−2ℓ

1 Sℓ+1)e2−1 with ℓ = 1, 2 which have no e−1e5 or e0e4 terms.
Regarding the case λ 6= 0, 1, note Remark 3.14 of [SW16]: their parameter a

is our 1 − λ. They prove in Proposition 2.8 that Annx2VecR(Fλ) is generated by
three elements: g, which corresponds to Qe2 ; a degree 3 weight 5 element h1, and
a degree 4 weight 6 element h3. Let us relate h1 to our work. It is

h1 := e1e
2
2 − e21e3 + 2(λ− 1)e2e3 − (2λ− 3)e1e4 − (λ− 1)(λ− 2)e5.

Use (15) coupled with e2bea = −(eae
2
b)

T and Lemma 7.1 to deduce

h1 = sym
(

e1e
2
2 − e21e3 + 2(λ− 1

2 )(e2e3 − e1e4)− (q(λ) − 1
3 )e5

)

.

A not-too-long symbol computation in S3(VecR) gives

ad(e−1)
5(e1e

2
2 − e21e3) = 240(e30 − e2−1e2);

it helps to observe that the action of ad(e−1) on Sk(VecR) preserves the space of
linear combinations of monomials in the ei whose coefficients sum to zero. The
right side has the same symbol as 2 · 5!(3Qe0 − 2Y ), and so Lemma 10.2 implies

ad(e−1)
5h1 = 6!

(

Q− q(λ)
)

e0 − 4 · 5!
(

Y − (λ− 1
2 )Q

)

.

It can be shown that up to a scalar, h1 is the only degree 3 element of Annx2VecR(Fλ)
of weight 5, and there are no such elements of lower weight. We did not relate h3

to our generators, but perhaps it satisfies similar uniqueness conditions.

Work of Billig and Futorny. In [BF16], these authors make use of certain operators

Ω
(m)
k,s :=

m
∑

a=0

(−1)a
(

m

a

)

ek−aes+a.
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Let us consider them in the context of our Section 6. They satisfy the binomial

coefficient recursion Ω
(m)
k,s = Ω

(m−1)
k,s − Ω

(m−1)
k−1,s+1, whence induction gives

ad(e−1)Ω
(m)
k,s = (k + 1−m)Ω

(m)
k−1,s + (s+ 1)Ω

(m)
k,s−1.

Note that Ω
(m)
k,s is in U(VecR) if k+1−m and s+1 are non-negative. In this case,

repeated applications of ad(e−1) map it eventually to Ω
(m)
m−1,−1, and then to zero.

Consider Ω
(m)
m−1,−1. It follows from Lemma 6.1 that for m ≥ 3 and odd, it is 0, while

for m even, it is a non-zero multiple of the lowest weight element ad(S)m/2e2−1 of
weight m− 2. Working from Proposition 6.4, one finds that

(16) H2ℓ = span
{

Ω
(m)
k,s : k + 1−m, s+ 1 ∈ N, m ≥ 2ℓ+ 1

}

.

Suppose now that V is a b-trivial extension of L tensor density modules, say
Fλ1

, . . . ,FλL
, where λ1 ≤ · · · ≤ λL. (Note that the Jordan-Hölder length of V

exceeds L by the number of occurrences of F0.) Let us refer to λL − λ1 as V ’s
“total jump”. As intimated in Section 11, it is easy to prove that H2ℓ annihilates
V whenever 2ℓ exceeds the total jump. The results of [O’D18] lead us to conjecture
that if V is indecomposable, then it has total jump at most 2L + 2, and so is
annihilated by H2L+4.

Corollary 3.4 of [BF16] states that for every fixed L, there is an mL such that

for all (k, s), Ω
(mL)
k,s annihilates all extensions with the same form as V . In light

of (16), the preceding conjecture becomes mL = 2L + 5. Example 3.5 of [BF16]
explains that for L = 2, this follows from [FF80].

Work of Petukhov and Sierra. Finally, let us mention one result from [PS20], Theo-
rem 1.7: any ideal in U(x2VecR) containing a quadratic element is of finite Gel’fand-
Kirillov codimension. The VecR-analog would be that any ideal containing some
H2ℓ is of finite Gel’fand-Kirillov codimension. Are there non-zero ideals containing
no quadratic elements? Consider Question 7.2 of [CM07]: are the annihilators of
the differential operator modules non-zero? If so, they would be examples.

We also mention that [PS20], like [SP23], contains many interesting conjectures.
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