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KATO COMPLEXES OF RECIPROCITY SHEAVES AND APPLICATIONS

SANDEEP S AND ANAND SAWANT

Abstract. We show that every reciprocity sheaf gives rise to a cycle (pre)module in the
sense of Rost over a perfect field. Over a perfect field of positive characteristic, we show that
the first cohomology group of a logarithmic de Rham-Witt sheaf has a partial cycle module
structure. As a consequence, we show that Kato complexes of logarithmic de Rham-Witt
sheaves satisfy functoriality properties similar to Rost’s cycle complexes.
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1. Introduction

The notion of homotopy invariance is the cornerstone of Voevodsky’s construction of the
triangulated category of motives [31] in the sense that the category of homotopy invariant
sheaves with transfers on smooth schemes a field is used as an essential building block. How-
ever, especially in positive characteristic, many sheaves of interest are not homotopy invariant,
but satisfy a weaker condition. This lead to the study of reciprocity sheaves started in [17],
which in turn, has lead to the development of the theory of motives with modulus, extend-
ing Voevodsky’s theory of motives. A certain special class of homotopy invariant sheaves
with transfers, called homotopy modules, was identified with cycle modules in the sense of
[27] in the Ph.D. thesis of Déglise [4] (see also [5]). Rost’s theory of cycle modules gives an
alternate approach and a generalization of classical intersection theory and can be seen as an
axiomatization of fundamental properties of Milnor K-theory.

One of the aims of this article is to investigate to what extent this special property of
homotopy modules extends to reciprocity sheaves. Let k be a perfect field and let Sm/k
denote the big Nisnevich site of smooth, separated finite type schemes over k. The first main
result of this article is to show that every reciprocity sheaf gives rise to a cycle (pre)module,
extending the work of Déglise (see Theorem 3.9 and Remark 3.10).

The authors acknowledge the support of SERB MATRICS grant MTR/2023/000228, India DST-DFG
Project on Motivic Algebraic Topology DST/IBCD/GERMANY/DFG/2021/1 and the Department of Atomic
Energy, Government of India, under project no. 12-R&D-TFR-5.01-0500.
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Theorem 1. Let k be a perfect field. Let F be a reciprocity sheaf on Sm/k. Then for any
finitely generated field extension K of k, the association

F(K) := colim
φ 6=U⊂X

F(U),

where U varies over all the open subsets of a model X of K, defines a cycle premodule.
Moreover, this cycle premodule structure satisfies the cycle module axioms. Consequently, the
inclusion of the category of homotopy modules into the category of reciprocity sheaves admits
a left adjoint.

The key difference from the work of Déglise is the construction of the residue map in the
absence of A1-invariance and purity. This is done in Theorem 3.5 for reciprocity sheaves by
using the recent work of Binda, Rülling and Saito [1] on the cohomology of reciprocity sheaves
and especially, on the Gysin triangle.

Let us now assume that k is a perfect field of characteristic p > 0. One of the main examples
of an interesting reciprocity sheaf that is not A1-invariant is the logarithmic de Rham-Witt
sheaf of Illusie [15]. The importance of this example is that over the étale site, the logarithmic
de Rham-Witt sheaf νr(q) in weight q can be identified up to a shift with the étale motivic
complex Z/prZ(q) in weight q, by the work of Geisser and Levine [8].

In [20], Kato defined a family of complexes for q ∈ Z when n ∈ Z \ {1} and q ≥ 0 when
n = 1 given (in homological conventions) by:

C(X,Z/prZ(q), n) :

0 →
⊕

x∈X(d)

Hd+q+n(k(x),Z/prZ(d+ q)) → · · · →
⊕

x∈X(0)

Hq+n(k(x),Z/prZ(q)) → 0

Under the identification Z/prZ(q)[q] = νr(q), this takes the form (in cohomological conven-
tions)

C•(X,Z/prZ(q), n) : 0 →
⊕

x∈X(0)

Hn(k(x), νr(q)) → · · · →
⊕

x∈X(d)

Hn(k(x), νr(q − d)) → 0.

The complex C(X,Z/prZ(q), n) is nonzero only for n = 0 or n = 1. In the case n = 0, it can
be identified with Rost’s cycle complex for the cycle module corresponding to mod-pr Milnor
K-theory under the isomorphism Hn

ét(F,Z/p
rZ(n)) ≃ KM

n (F )/p
r for any field F obtained

by Bloch-Gabber-Kato (see [2]). In fact, this observation was the main motivation behind
investigating whether reciprocity sheaves under mild hypotheses give rise to cycle premodules,
leading to Theorem 1 above.

In the case n = 1, it is known that the groups H1(−, νr(q)) do not form a cycle module as
the residue map is not defined for all valuations. However, we verify in Section 4.2 that this
partial cycle premodule data does satisfy the cycle premodule and cycle module axioms. We
also verify that the classical Gysin maps for logarithmic de Rham-Witt sheaves constructed
by Gros [11] agree with the ones given by Binda, Rülling and Saito. As a consequence, we
show the following functoriality properties for Kato complexes analogous to cycle modules in
Section 5 (see Definition 5.1, Definition 5.8 and Proposition 5.11).

Theorem 2. Let k be a perfect field of characteristic p > 0 and let r ≥ 0 be an integer.
The assignment of the Kato complex C(X,Z/prZ(q), 1) to a smooth k-scheme X admits the
following functoriality properties:
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• a proper morphism f : X → Y induces a push-forward morphism

f∗ : C(X,Z/prZ(q), 1) → C(Y,Z/prZ(q), 1),

where δ = dimY − dimX;
• an arbitrary morphism g : X → Y induces a pullback morphism

g∗τ : C(Y,Z/prZ(q + δ), 1) → C(X,Z/prZ(q), 1)[δ],

which depends on the choice of a coordination τ of the tangent bundle of Y .

Consequently, for any proper schemes X,Y,Z over k with X,Z smooth and a correspondence
in CHdimZ(Y × Z) represented by a cycle z ∈ ZdimZ(Y × Z), there exists an action

z∗ : C(X × Y,Z/prZ(q), 1) → C(X × Z,Z/prZ(q), 1)

such that the induced action on the cohomology groups passes through rational equivalence
and agrees with the usual action of correspondences.

Although we follow the approach outlined in the works of Rost [27] and Déglise [4], the
key difference here is that the classical argument using the deformation to the normal cone to
construct general pullbacks has to be slightly modified in the absence of homotopy invariance.
This has been alluded to in [21, Section 4, page 147].

One of the motivations for this work is to develop some tools needed to attack the question
of Rost nilpotence for cycles having torsion primary to the characteristic of the base field,
using a combination of the methods in [26], [3] and [10]. A precise obstruction to the Rost
nilpotence principle for smooth projective varieties of dimension ≥ 3 can be explicitly written
down in terms of actions of correspondences on certain cohomology groups of étale motivic
complexes Qℓ/Zℓ(q) (see [26, Remark 4.7] and [3, Theorem 2.4]), where ℓ runs through all the
primes. Theorem 2 above gives an action of a correspondence at the level of Kato complexes
that is compatible with the correspondence action on the cohomology groups. Applications
to Rost nilpotence using the methods developed in this article will be explored elsewhere.

Acknowledgements. We thank Amit Hogadi for his helpful comments on an earlier version
of this article.

Conventions. We work over a perfect field k. We assume that every scheme is equidimen-
sional, separated and of finite type over k.

All fields will be assumed to be finitely generated over k. Let Fk denote the category of
finitely generated field extensions of k. All valuations on a field are assumed to be of rank 1
and of geometric type over k, which means that the local ring of the valuation is a regular
local ring which is the localization of a height 1 prime ideal of an integral domain finitely
generated over k.

For a field F , we will denote its Henselization by F h and its strict Henselization by F sh,
with respect to a separable closure F sep. The absolute Galois group of F will be denoted by
ΓF := Gal(F sep/F ). The ith Milnor K-group of F will be denoted by KM

i (F ). For any ΓF -
module M , the Galois cohomology groups H i(ΓF ,M) will be denoted by H i(F,M), which is
also the notation for the corresponding étale cohomology groups. We will abuse the notation
and denote the Galois cohomology classes and cocycles representing them by the same symbol
as long as there is no confusion.
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For a scheme X over k, we write X(i) for the set of points of codimension i on X and X(i)

for the set of points of dimension i on X. We will write Zi(X) for the group of algebraic cycles
of codimension i on X and CHi(X) for the Chow group of algebraic cycles of codimension i
on X (that is, the quotient of Zi(X) modulo rational equivalence).

2. Preliminaries on reciprocity sheaves

In this section, we briefly recall the notions regarding reciprocity sheaves required for our
purposes from [1].

A modulus pair is a pair (X,D) where X a separated scheme of finite type and D is an
effective (or empty) Cartier divisor on X such that X \ D is a smooth. A modulus pair
(X,D) is said to be proper if X is proper over k. Let (X ′,D′) be another modulus pair. A
proper prime correspondence from (X,D) to (X ′,D′) is defined to be a prime correspondence

Z ⊂ X × X ′ between X ′ \ D′ and X \ D such that the normalization of its closure Z
N

is
proper over X and D|

Z
N ≥ D′|

Z
N . We write the free abelian group generated by such proper

prime correspondences as MCor((X,D), (X ′,D′)). The category of modulus pairs along with
these as morphisms will be denoted by MCor and its full subcategory consisting of proper
modulus pairs will be denoted by MCor.

Let MPST (respectively, MPST) denote the category of additive presheaves on MCor

(respectively, MCor). We have a functor τ∗ : MPST −→ MPST given by restriction; this
has a left adjoint τ!. We also have functors

ω! : MPST ⇄ PST :ω∗,

where ω! is left adjoint to ω
∗. For F ∈ MPST and G ∈ PST, we have

ω!F (X) = F (X, ∅)

and
ω∗G(X,D) = G(X \D).

For F ∈ MPST and X = (X,D), we have a presheaf FX on the small étale site of X given
by FX (U) = F (U,D|U ). If FX is a Nisnevich sheaf for all modulus pairs X , then we say that
F is a Nisnevich sheaf. We denote the category of such sheaves by MNST.

For two modulus pairs (X,D) and (X ′,D′), we set

(X,D)⊗ (X ′,D′) := (X ×X ′, p∗D + q∗D′),

where p and q are the projection maps from X × X ′ to X and X ′ respectively. We set
� := (P1,∞).

Definition 2.1. For F ∈ MPST, we say that

(1) F is cube-invariant if for each X ∈ MCor, the map F(X ) −→ F(X⊗�) induced by the
projection X ⊗� −→ X is an isomorphism. We denote the category of cube-invariant
presheaves by CI

(2) F has M-reciprocity if the map τ!τ
∗F −→ F is an isomorphism.

(3) F is semipure if the map F −→ ω∗ω!F is injective.

We denote the category of the cube-invariant, semipure presheaves having M-reciprocity
by CIτ,sp and set CI

τ,sp
Nis := MNST ∩CIτ,sp.
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Definition 2.2. We say that a Nisnevich presheaf (respectively, sheaf) with transfers F
is a reciprocity presheaf (respectively, reciprocity sheaf ) if there exists some G ∈ CIτ,sp

(respectively, CI
τ,sp
Nis ) such that ω!G = F . Note that a reciprocity sheaf is a reciprocity

presheaf, which is a Nisnevich sheaf.

Examples 2.3.

(1) For every integer n, the nth Milnor K-theory sheaf KM
n is an example of a reciprocity

sheaf.
(2) The n-th logarithmic de Rham-Witt sheaf νr(n) =WrΩ

n
X,log (defined in [22], [15]) for

any integer n ≥ 0 is an example of a reciprocity sheaf. There is a quasi-isomorphism

νr(n) =WrΩ
n
X,log ≃ Z/prZ(n)[n]

of étale motivic complexes, due to [8], [7], where p > 0 is the characteristic of the base
field. Note that for every integer N coprime to p, the sheaf νr(n) has no N -torsion.

There are inclusions i0, i1 : (Spec k, ) −→ � corresponding to the k-rational points 0 and 1
of P1. For a modulus pair X , set

h0(X ) := Coker(MCor(− ⊗�,X )
i∗0−i

∗
1−−−→ MCor(−,X )) ∈ MPST.

There is a canonical surjection Ztr(X \D) −→ ω!h0(X,D).

Definition 2.4. Let F be a presheaf with transfers and let α ∈ F (U), for a smooth k-scheme

U . We say that α has modulus (X,D) ∈ MCor if X \D = U and the morphism Ztr(U)
α
−→ F

corresponding to α factors through Ztr(U) −→ ω!h0(X,D).

Theorem 2.5. [18, Theorem 3.2.1, Corollary 3.2.3] A presheaf with transfers F is a reciprocity
presheaf if and only if for each smooth separated scheme U , every element α ∈ F (U) has
modulus X for some proper modulus pair X .

Notation 2.6. For an integral scheme C a closed subscheme D of C defined by an ideal I,
set

G(C,D) :=
⋂

x∈D

Ker(O×
C,x

−→ O×
D,x) =

⋂

x∈D

I×
x .

With this notation, for f ∈ G(C,D), we have fn ∈ G(C,nD). Also, for two closed subschemes
Y, Y ′ of C such that IY ⊂ IY ′ , we have G(C, Y ) ⊂ G(C, Y ′).

Remark 2.7. One gets an equivalent characterization of Definition 2.4 by [17, Theorem 2.1.5]
and [18, Theorem 3.2.1], which is often helpful in practical applications.

Suppose that for a smooth separated scheme S, an integral normal scheme C and a proper
modulus pair (X,D) with U = X \D quasi affine, we are given a commutative diagram

(2.1) C
pφ

||②②
②②
②②
②②
②②

φ

��

γφ

##❋
❋❋

❋❋
❋❋

❋❋

S X × Soo // X

satisfying the following conditions:

(1) φ is finite;
(2) For some generic point η of S, dimC ×S η = 1;
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(3) The image of γφ is not contained in D.

Then for any f ∈ G(C, γ∗φD), we have φ∗divC(f) ∈ Cor(S,X). With this setting, the

element α ∈ F(U) has modulus (X,D) if and only if for every diagram as above, and each
f ∈ G(C, γ∗φD), we have (φ∗divC(f))

∗(a) = 0.

3. Cycle module structure associated with a reciprocity sheaf

In [4], a cycle module in the sense of Rost [27] is associated with every homotopy module,
which is a homotopy invariant presheaf with transfers satisfying an additional condition. In
this section, we associate a cycle premodule with every reciprocity sheaf. The construction
goes exactly analogous to [4], except for the definition of the residue map, which in the case
of homotopy modules relies on homotopy invariance. The key point of our work is to bypass
this use of homotopy invariance by using appropriate results from [1].

3.1. The cycle premodule data.

Definition 3.1. Let R be an essentially smooth local k-algebra. Let X be an integral sepa-
rated smooth k-scheme with a dominant morphism x : SpecR −→ X inducing an isomorphism
between R and OX,x, where we denote by x the image of the closed point of SpecR as well
by abuse of notation. We call such a pair (X,x) a model for R and a compatible morphism
of schemes a morphism of models. Existence of models is guaranteed by [4, Lemma 2.1.39].

Definition 3.2. Let F be a reciprocity sheaf. For a finitely generated field K over k, define
F(K) = H0(K,F) as follows. Choose a model X for K and set

F(K) = H0(K,F ) := colim
φ 6=U⊂X

F(U),

where U varies over all the open subsets of X.

Definition 3.3. For every reciprocity sheaf F , we define its contraction F−1 to be the internal
Hom

F−1 := HomPST(K
M
1 ,F).

By induction, we define
F−n := (F−n+1)−1 ,

for all positive integers n. We have F−n = HomPST(K
M
n ,F), for all positive integers n.

In the following data regarding the cycle premodule structure, items (D1), (D2) and (D3)
are given exactly as in [4] and hold for all presheaves with transfers, which we restate for the
convenience of readers.

(D1) [4, Definition 5.2.1] For every field extension φ : K −→ L in Fk, define the map
φ∗ : F(K) −→ F(L) as follows: there exist models X and Y of L and K, respectively
and a morphism of models f : X −→ Y . We define φ∗ to be the induced map

colimφ 6=V⊂Y F(V ) −→ colimφ 6=U⊂X F(U)

given by the restrictions along f and F(V ) −→ F(f−1V ).
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(D2) For each finite field extension φ : K −→ L in Fk, the map φ∗ : F(L) −→ F(K) defined as
follows: there exist models X,Y of L,K respectively and a finite dominant morphism
of models f : X −→ Y [4, Lemma 5.3.16]. Since the graph of f is finite and surjective
over both X and Y , it may be considered as a correspondence f t ∈ Cor(Y,X). Open
subsets of the form f−1V where V is an open subset of Y are cofinal among the open
subsets of X. So we define

φ∗ : F(L) ∼= colimφ 6=U⊂X F(U) ∼= colimφ 6=V⊂Y F(f−1V ) −→ colimφ 6=V⊂Y F(V )

as the one given by the restrictions along f t and F(f−1V ) −→ F(V ).
(D3) We have a natural pairing KM

n × HomPST(K
M
n ,F) −→ F . This defines an action

KM
n (K) × F−n(K) −→ F(K) for every K ∈ Fk by taking the colimit of the above

pairing over the sections over the open subsets of some model of K.

Remark 3.4. Let F be a reciprocity sheaf and let m,n be integers. We note that every
α ∈ KM

m(K) induces a morphism

F−n−m
α·−
−−→ F−n

defined as follows. The element α defines a map Ztr(X) −→ KM
m, which induces a morphism

KM
n ⊗tr Ztr(X) → KM

m ⊗tr KM
n ⊗tr Ztr(X) → KM

m+n ⊗
tr Ztr(X).

For any G ∈ PST, since we have HomPST(F ,G)(X) = HomPST(F ⊗tr Ztr(X),G), we obtain
a morphism

F−n−m ≃ HomPST(K
M
n+m,F) −→ HomPST(K

M
n ,F) ≃ F−n,

which we denote by α · −.

The data (D4) is given by Theorem 3.5 below.

Theorem 3.5. Let F be a reciprocity sheaf. For every valuation v of K ∈ Fk with residue
field k(v), there is a residue map ∂v : F(K) → F−1(k(v)).

Proof. By [4, Lemma 5.4.53], we have a model X for Ov such that the closed point of SpecOv

maps to a codimension 1 point z of X and the reduced subscheme Z = {z} is smooth. Note
that this also gives a model for K and that k(v) ∼= k(z).

We first define a map

δ : F(K) → H1
z (X,F) := colim

z∈V
H1
Z∩V (V,F)

as follows. Abusing notation, let α ∈ F(K) be represented by α ∈ F(V ) for some open subset
V of X. If X \ V + Z, define δV (α) = 0. Otherwise, define δV (α) to be the image of α under
the composition

F(V ) → H1
X\V (X,F) → H1

Z∩U(U,F) → H1
z (X,F),

where U is the complement of the union of the other irreducible components of X \ V . We
next show that H0(k(z),F−1) injects inside H

1
z (X,F) and that the image of δ falls inside it,

thus giving the desired residue map.

By [1, Theorem 7.16], for a smooth scheme X and a smooth subvariety i : Z → X of
codimension 1 and a modulus presheaf with transfers G ∈ CI

τ,sp
Nis we have an exact triangle

i∗G(Z,∅)−1
[−1]

gZ/X
−−−→ G(X,∅) −→ G(X,Z).
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ApplyingRΓZ(X,−) to the above triangle and taking cohomology, we get the exact sequence:

H0
Z(X,G(X,Z)) → H0(Z,G(Z,∅)−1

) → H1
Z(X,G(X,∅)) → H1

Z(X,G(X,Z)).

Note that H0
Z(X,G(X,Z)) = 0 since G(X,Z) → G(X \ Z, ∅) is injective by semipurity.

We take G to be such that F = ω!G. Then the above exact sequence takes the form

0 → H0(Z,F−1) → H1
Z(X,F) → H1

Z(X,F
′),

where F ′ := G(X,Z). Taking the colimit over affine open sets containing z, we get an exact
sequence

0 −→ H1(k(z),F−1) −→ H1
z (X,F) −→ H1

z (X,F
′).

We claim that if X \ Z is quasi-affine, then the composite map

H0(X \ Z,F) → H1
Z(X,F) → H1

Z(X,F
′)

vanishes. This implies that the image of δ falls inside H1(k(z),F), proving Theorem 3.5.

We obtain the following commutative diagram with exact rows by taking the localization
sequences for F and F ′.

H0(X \ Z,F)
t //

��

H1
Z(X,F)

s

��

H0(X,F ′)
r // H0(X \ Z,F ′)

q
// H1

Z(X,F
′)

p
// H1(X \ Z,F ′)

It is clear from the diagram that p ◦ s ◦ t = 0. We need to show that s ◦ t = 0, so it suffices
to show that p is injective. This, in turn, follows if we show that r is surjective.

We have H0(X,F ′) = G(X,Z) and H0(X \ Z,F ′) = G(X \ Z, ∅). These groups can be
calculated as follows (see [24, Definition 1.11]): let (X,Z+B) be a proper modulus pair such
that X = X \B and Z = Z ∩X. Then

G(X,Z) = {α ∈ F(X \ Z) | α has modulus (X,Z +NB) for some N ≥ 0},

and

G(X \ Z, ∅) = {α ∈ F(X \ Z) | α has modulus (X,NZ +NB) for some N ≥ 0}.

Now, X \ Z is quasi-affine, so we can use the characterization mentioned in Remark 2.7.
Suppose that an integral scheme C and a diagram as in (2.1) has been given for the proper
modulus pair (X,Z + B). Let α ∈ G(X \ Z, ∅), so that α has modulus NZ +NB, for some
integer N ≥ 0 and let f ∈ G(C, γ∗φ(Z +NB)). Then for every M ≥ N , we have

fM ∈ G(C, γ∗φ(MZ +MNB)) ⊂ G(C, γ∗φ(NZ +NB)).

Therefore, (φ∗(divC(f
M )))∗(α) = 0, for everyM ≥ N . However, since F is additive, for every

M ≥ N we have

(φ∗(divC(f
M )))∗(α) = (φ∗(M ·divC(f)))

∗(α) = (M ·φ∗(divC(f)))
∗(α) =M ·(φ∗(divC(f)))

∗(α).

Taking M = N and M = N +1 in the above equation, we conclude that φ∗(divC(f)))
∗α = 0.

Thus, α ∈ G(X,Z). This shows that r is surjective, as desired. This completes the proof. �

This allows us to associate the data of a cycle premodule to every reciprocity sheaf.
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3.2. The cycle premodule axioms. In this subsection, we verify that the cycle premodule
data associated with a reciprocity sheaf F satisfies the cycle premodule axioms of [27]. The
axioms not involving the residue map have been proved in [4]; we list them here for the sake
of completeness.

R1a. For field extensions φ : K −→ L and ψ : L −→M , we have (ψ ◦ φ)∗ = ψ∗ ◦ φ∗ [4, 5.2.2].
R1b. For finite field extensions φ : K −→ L and ψ : L −→ M , we have (ψ ◦ φ)∗ = φ∗ ◦ ψ∗ [4,

Corollary 5.3.22].
R1c. For field extensions φ : K −→ L and ψ : K −→ M , where φ is finite and R = L ⊗K M ,

we have
ψ∗ ◦ φ

∗ =
∑

p∈SpecR

l(Rp)φ
∗
p(ψz)∗,

where φp is the extension K −→ L −→ R −→ R/p and ψz is similarly defined [4, Corollary
5.3.22].

R2a. For a field extension φ : K −→ L, α ∈ KM
n (K) and ρ ∈ H0(K,F−n), we have φ∗(α·ρ) =

φ∗(α) · φ∗(ρ) [4, 5.5.18].
R2b. If φ : K −→ L is a finite extension and µ ∈ H0(L,F−n), then φ

∗((φ∗α) · µ) = α · φ∗(µ)
[4, Corollary 5.5.19(1)].

R2c. If φ : K −→ L is a finite extension and β ∈ KM
n (L), then φ∗(β · φ∗(ρ)) = φ∗(β) · (ρ) [4,

Corollary 5.5.19(2)].
R3a. Let φ : K −→ L be a field extension and v be a valuation on L restricting to a nontrivial

valuation w on K. Let φ : k(w) −→ k(v) be the induced map on residue fields and e be
the ramification index of the extension. Then ∂vφ∗ = eφ∗∂w.

Proof. There exist models X,X ′ of v,w respectively with codimension 1 points z, z′

such that OX,z
∼= Ow and OX′,z′

∼= Ov . Let {z} = Z and {z′} = Z ′. We can also
assume that there exists a morphism f : X ′ −→ X compatible with v and w such that
f(z′) = z and Z ′ is an eth order thickening of Y := f−1Z. For this, it suffices to show
the commutativity of the following diagram.

H0(X \ Z,F) H1
Z(X,F) H0(Z,F−1)

H0(X ′ \ Z ′,F) H1
Z′(X ′,F) H0(Z ′,F−1)

e.

gZ/X

gZ′/X′

The left square is commutative by functoriality. It remains to prove the commutativity
of the right square. A special case of [1, Proposition 7.9] states that when e = 1,
that is, Z ′ = f−1Z, the right square commutes. We shall modify the proof of [1,
Proposition 7.9] for the special case we need: Z and Z ′ = (f−1Z)red are of codimension
1. Therefore, the excess intersection in [1, Proof of Proposition 7.9] becomes trivial.
The only modification we need to make is after [1, (7.9.4)]. We still have a cartesian
square as follows

Z ′ Z

E′
1 E1

s

fZ

s′

f̃E1
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in which E1 = P(N∨
Z/X⊕OZ), E

′
1 = P(N∨

Z′/X′ ⊕OZ) and s and s
′ are the zero sections

of the bundles. Let ζ = c1(OE′
1
(1)) ∈ CH1(E′

1) and ξ = c1(OE1(1)) ∈ CH1(E1). We

need to show that f̃∗E1
ξ = e · ζ. We have ζ = s′∗Z

′ and ξ = s∗Z. Hence,

f̃∗E1
ξ = f̃∗E1

s∗Z = s′∗f
∗
Z = s′∗[f

−1Z] = e · s′∗Z
′ = e · ζ.

�

R3b. Let φ : K −→ L be a finite extension and v a valuation on K and let w be extensions
of v to L. Let φw : k(v) −→ k(w) be the induced extensions. Then

∂v ◦ φ
∗ =

∑

w

φ∗w ◦ ∂w.

Proof. We may assume that v is a complete valuation that extends to a unique com-
plete valuation w on L. We have models Y and X of w and v respectively, with the
closed points of Ov and Ow mapping to codimension one points z ∈ X and t ∈ Y with
reduced closures Z and T respectively. We also have a dominant finite map f : Y −→ X
such that T is the reduced subscheme associated with f−1Z. We have the following
diagram, where the left square is commutative by functoriality and we need to show
that the right square is commutative.

H0(Y \ T,F) H1
T (Y,F) H0(T,F−1)

H0(X \ Z,F) H1
Z(X,F) H0(Z,F−1)

gT/Y

(f t)∗

gZ/X

(f t)∗ (f t
|T

)∗

By [1, Theorem 8.8(3)], we have (f t)∗ = f∗ and (f t|T )
∗ = (f |T )∗, where f∗ is the

pushforward defined in [1, Sections 8.7 and 9.5]. Also, gZ/X = i∗ and gT/Y = j∗,
where i and j are the inclusion maps of Z and T respectively. By [1, Theorem 9.7],
we obtain f∗ ◦ j∗ = (f ◦ j)∗ = (i ◦ f |T )∗ = i∗ ◦ (f |T )∗, as desired. �

R3c. Let φ : K −→ L be a field extension v a valuation on L that becomes trivial on K.
Then ∂v ◦ φ∗ = 0.

Proof. This is exactly analogous to [4, Proposition 5.4.58] with the appropriate re-
placement of the residue map. �

R3d. With the same notation as above, let φ : K −→ k(v) be the induced extension of residue
fields, π be a uniformizer of v and ρ ∈ H0(K,F−1). Then ∂v({−π} · φ∗(ρ)) = φ∗.

Proof. We use the notation of the proof of R3c. We may assume that f−1(U) = X
and that π ∈ O×

V , where V = X \ Z. Restricting further, we may assume that

π ∈ OX(X) and that Z is cut out by π. Then φ∗(ρ) is the class of the image of ρ
under the composition

F−1(U)
f∗
−→ F−1(X) −→ F−1(Z)

gZ/X
−−−→ H1

Z(X,F )

and ∂v({−π} · φ∗(ρ)) is the class of the image of ρ under the composition

F−1(U)
f∗
−→ F−1(X) −→ F−1(V )

{−π}
−−−→ F(V )

∂Z−→ H1
Z(X,F).
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Thus, it suffices to show that the following diagram is commutative for a sufficiently
small open subset W of X.

F−1(W ) F−1(W ∩ Z)

F−1(V ∩W ) F(V ∩W ) H1
Z(W,F)

i∗

j∗

{−π}· ∂Z

gZ/X

Let ΓZ : Sh(X) −→ Sh(X) be the functor given by ΓZ(F)(W ) = ΓZ∩W (W,F) for
W ∈ XNis. Consider the localization sequence for W ∈ XNis:

0 −→ H0
W∩Z(W,F ) −→ H0(W,F ) −→ H0

Z(V ∩W,F ) −→ H1
W∩Z(W,F ) −→ H1(W,F ).

Since the Nisnevich sheafification of the presheafW 7→ H1(W,F) is zero and R1ΓZFX
is the sheafification of the presheaf W 7→ H1

W∩Z(W,F), there exists an isomorphism
R1ΓZFX

∼= j∗FV /FX . Consequently, for a sufficiently small open subsetW of X, the
residue morphism ∂Z : F(V ∩W ) −→ H1

Z∩W (W,F) is given by the map induced by the
restriction F(V ∩W ) −→ F(V ∩W )/F(W ). Set f∗(ρ) = α. Then ∂Z({−π} · α|V ∩W )
is given by the class of {−π|V ∩W } · α|V ∩W .

Let G ∈ CI
τ,sp
Nis be such that F = ω!G. By [1, Theorem 7.12], gZ/X i

∗ = H1(X, cZ),

where cZ is the cupping action defined in [1, Section 5.8] for the class of Z in CH1
Z(X).

Now we apply [1, Lemma 5.10] for G ∈ CI
τ,sp
Nis , taking E = Z and D = ∅, U = (V, ∅)

and e = −π. It states that the map

H1(cZ) : (G−1)X −→ R1ΓZGX
∼= j∗GV /GX

factors through the natural injection G(X,Z)/GX →֒ j∗GV /GX . The map H1(cZ)(α)

is given as follows: take a representative of α ∈ F((A1, 0) ⊗ X) and pull it back to
G(X,Z) under the morphism γ⊗ id : (X,Z) −→ (A1, 0)⊗ (X,Z), where γ is induced by
the morphism X −→ A1 corresponding to −π ∈ OX(X). Now, for a sufficiently small
open subset W of X, we have

H0(W,R1ΓZGX)
∼= H1

Z(W,GX ) ∼= G(W ∩ V )/G(W ).

Therefore, by [1, Lemma 5.6], we get

H1(W, cZ)(α) = {−π|W∩V } · α|W∩V ∈ G(W ∩ V )/G(W ).

Since the images of α under gZ/X ◦ i∗ and ∂Z{−π} · ◦j
∗ agree on W , we are done. �

R3e. For an arbitrary unit u for the valuation v and ρ ∈ F−1(K), we have ∂v({u} · ρ) =
−{u} · ∂v(ρ).

Proof. Let X be a model for v with the closed point of Ov mapping to z. Let Z = {z}
and V = X \ Z. By passing to a small enough open subset, we may assume that u ∈
OX(X)∗ so that we have a map u : X −→ Gm. We may assume that ρ ∈ H0(V,F−1).
We have the following commutative diagram, where r is the morphism induced by
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{u} : (F−1)−1 −→ F−1.

H0(V,F−1) H0(V,F)

H1
Z(X,F−1) H1

Z(X,F)

H0(Z, (F−1)−1) H0(Z,F−1)

{u}·

{u}·

r

We claim that r = −{u}. We make the following convention: the adjunction map
Hom(KM

n ⊗tr F ,G) −→ Hom(KM
n−1 ⊗

tr F ,Hom(KM
1 , G)) corresponds to the map KM

1 ×

KM
n−1 −→ KM

n . Consider the following diagram

Hom(KM
1 ⊗tr Ztr(X),F−1) Hom(Ztr(X), F−1)

Hom(KM
2 ⊗tr Ztr(X),F) Hom(KM

1 ⊗tr Ztr(X),F)

Hom(KM
2 ⊗tr Ztr(X),F) Hom(KM

1 ⊗tr Ztr(X),F)

∼

ǫ

{u}·

r′

r

1

∼

in which ǫ is induced by the map KM
2 −→ KM

2 given by {a, b} −→ {b, a} and therefore,
multiplication by −1. The top square is commutative since r′ is merely the adjunction
isomorphism applied to r. For the commutativity of the bottom square, observe that
r′ is given by the map

KM
1 ⊗tr Ztr(X) −→ KM

1 ⊗tr KM
1 ⊗tr Ztr(X) −→ KM

2 ⊗tr Ztr(X)

given by a ⊗ b −→ u(b) ⊗ a ⊗ b, while {u} is given by a ⊗ b −→ a ⊗ u(b) ⊗ b and ǫ
interchanges the first two factors. �

3.3. The cycle module structure associated with a reciprocity sheaf. We are now set
to show that the cycle premodule structure associated with a reciprocity sheaf in Sections 3.1
and 3.2 is in fact a cycle module structure in the sense of Rost [27]. Throughout the section,
F will denote a reciprocity sheaf. The following is the first cycle module axiom.

Proposition 3.6 (Finite support). Let X be a normal integral scheme of finite type over k
with fraction field K and ρ ∈ H0(K,F). Then for all but finitely many x ∈ X(1), ∂x(ρ) = 0,
where by ∂x, we mean ∂v, where v is the valuation of K corresponding to x.

Proof. Since X is normal, X(1) lies inside the smooth locus of X; so we may assume that X
is smooth. Let ρ be represented by an element of F(U). Suppose x ∈ U (1); then {x} and U

intersect non-trivially and therefore ∂x(ρ) = 0 by definition. Since X(1) \ U (1) is a finite set,
we are done. �

Let q be an integer. Let x ∈ X(i+1) and y ∈ X(i) for a scheme X; put Z = {x}. We define
a map

∂xy : H
0(k(x),F) −→ H0(k(y),F−1)
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as follows: if y /∈ Z(1), set ∂xy = 0. Otherwise, let Z̃ −→ Z be the normalization of Z. For

any point z of Z̃ lying over y, let φz : k(y) −→ k(z) denote the induced finite extension and

∂z : H
0(k(Z̃),F) −→ H0(k(z),F−1) denote the residue map. Define

∂xy :=
∑

z∈Z̃;z 7→y

φ∗z∂z.

By Proposition 3.6, there are only finitely many points y for a given x ∈ X such that ∂xy 6= 0.
Therefore, for a scheme X, the ∂xy give a differential graded module

C(X,F(q)) :

0 −→
⊕

x∈X(d)

H0(k(x),Fd+q) −→ · · ·
⊕

x∈X(i)

H0(k(x),Fi+q) −→ · · ·
⊕

x∈X(0)

H0(k(x),Fq) −→ 0.

We also have the cousin complex (introduced in [14, Chapter IV])

C ′(X,F(q)) :

0 −→
⊕

x∈X(d)

H0
x(X,Fd+q) −→ · · ·

⊕

x∈X(i)

Hd−i
x (X,Fd+q) −→ · · ·

⊕

x∈X(0)

Hd
x(X,Fd+q) −→ 0.

Suppose that G ∈ CI
τ,sp
Nis is such that F = ω!G. We now define a differential graded map

g : C(X,F(q)) −→ C(X ′, F (q)). Let z ∈ X(i) and set Z := {z}. For open subsets U such that

U ∩ Z is smooth, we have the Gysin morphism gZ∩U/U : H0(Z ∩ U,Fi+q) −→ Hd−i
Z∩U(U,Fd+q).

Taking the colimit over such open subsets, we get a map H0(k(z),Fi+q) −→ Hd−i(U,Fd+q).
This gives a map g : C(X,F(q)) −→ C ′(X,F(q)). It can be verified that this morphism
commutes with the differentials.

Definition 3.7. We say that F satisfies weak purity if for each smooth schemes X and a
smooth closed subscheme Z of codimension r, the Gysin map gZ/X : H0(Z,F−r) −→ Hr

Z(X,Z)
is injective.

Now if F satisfies weak purity, then the morphism of complexes

g : C(X,F(q)) −→ C(X ′, F (q))

is injective in each degree. Since C ′(X,F(q)) is a complex, this implies that C(X,F(q)) is
also a complex. By the work of Saito [28], every reciprocity sheaf F satisfies weak purity
Zariski locally, in the sense made clear at the end of the proof of Proposition 3.8. The second
cycle module axiom can be deduced from this.

Proposition 3.8 (Closedness). For any reciprocity sheaf F on Sm/k, the differential graded
module C(X,F(q)) is a complex.

Proof. Since C ′(X,F(q)) is a complex, it suffices to show that g is injective. On each direct
summand

⊕
z∈X(d−r)

H0(k(z),Fd−r+q), g is defined by

colimz∈U H
0(Z ∩ U,Fd−r+q)

gZ∩U/U
−−−−−→ colimz∈U H

r
Z∩U(U,Fd+q),

where Z = {z}. Let G ∈ CI
τ,sp
Nis be such that Fd+q = ω!G. By [1, Section 7.4], we have an

exact triangle

i∗(G−r)Z [−r] −→ GX −→ Rρ∗G(X̃,E)

+1
−−→,
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where ρ : X̃ −→ X is the blow-up of X at Z with exceptional divisor E. Applying RΓZ(X,−)
and taking the long exact sequence, we get an exact sequence

Hr−1
E (X̃,G(X̃,E)) −→ H0(Z, (G−r)Z) −→ Hr(X,GX ).

By [1, Theorem 2.12], we have Hr−1
E (X̃,G

(X̃,E)
) ∼= Hr−1

Z (X,G(X,Z)). So to prove the injec-

tivity of g, we only need to show that colimz∈U H
r−1
U∩Z(U,G(X,Z)) ∼= Hr−1

z (X,G(X,Z)) = 0. But
this is true by [28, Corollary 8.3(2)]. �

We end this section by summarizing the results.

Theorem 3.9. Let F be a reciprocity sheaf on Sm/k. Then for any finitely generated field
extension K of k, the association

F(K) := colim
φ 6=U⊂X

F(U),

where U varies over all the open subsets of a model X of K, defines a cycle premodule.
Moreover, this cycle premodule structure satisfies the cycle module axioms.

Remark 3.10. We have the following classes of Nisnevich sheaves on Sm/k:

Homotopy modules ⊂ Homotopy invariant sheaves with transfers ⊂ Reciprocity sheaves.

Following the work of Déglise [4], the categories of cycle modules and homotopy modules
are equivalent. Moreover, the first inclusion above admits a left adjoint (see [4, Proposition
3.1.7, Remarque 3.1.8]). The cycle module associated with a reciprocity sheaf is defined by
the formula analogous to the one used by Déglise. A consequence of Theorem 3.9 is that the
inclusion

Homotopy modules ⊂ Reciprocity sheaves

admits a left adjoint. The proof is exactly analogous to [4, Proof of Proposition 3.1.7, Re-
marque 3.1.8].

Remark 3.11. Let F be a reciprocity sheaf on Sm/k and let X ∈ Sm/k. The cycle complex
C(X,F) is in general only a subcomplex of the cousin complex C ′(X,F). If F is a homotopy
invariant sheaf with transfers, then the complexes C(X,F) and C ′(X,F) are isomorphic.
This difference can be attributed to semi-purity of reciprocity sheaves; more specifically, the
lack of purity in general. In the situation where purity is known (for example, in the case of
logarithmic de Rham-Witt sheaves following the work of Gros [11]), one can conclude that
cycle complex and the cousin complex are isomorphic.

4. Logarithmic de Rham-Witt sheaves and their Kato complexes

4.1. Gysin maps for Logarithmic de Rham-Witt sheaves. Let k be a perfect field of
characteristic p > 0. Let X be a scheme of dimension d over k. For any integer r > 0,
let WrΩ

•
X denote the de Rham-Witt complex of X defined in [15]. For any integer q ≥ 0,

we denote by νr(q) := WrΩ
q
X,log the logarithmic de Rham-Witt sheaf of X defined in [29,

Definition 2.6] to be the étale sheaf on X defined to the image of
(
O×
X

)⊗q
→WrΩ

q
X ; x1 ⊗ · · · ⊗ xq 7→ dlog[x1] ∧ · · · dlog[xq],

where [xi] ∈WrOX is the Teichmüller representative of xi, for each i.
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In [20], Kato defined a family of complexes for q ∈ Z when n ∈ Z \ {1} and q ≥ 0 when
n = 1 given by:
(4.1)

C•(X,Z/prZ(q), n) : 0 →
⊕

x∈X(0)

Hn(k(x), νr(q)) → · · · →
⊕

x∈X(d)

Hn(k(x), νr(q − d)) → 0,

under the identification Z/prZ(q)[q] = νr(q). The complex C•(X,Z/prZ(q), n) is nonzero
only for n = 0 or n = 1. In the case n = 0, it can be identified with Rost’s cycle com-
plex for the cycle module corresponding to mod-pr Milnor K-theory under the isomorphism
Hn

ét(F,Z/p
rZ(n)) ≃ KM

n (F )/pr for any field F obtained by Bloch-Gabber-Kato (see [2]).

Our aim is to show functoriality properties analogous to those for Rost’s cycle complexes
in the case n = 1 above. It is known that the functor F 7→ H1(F, µr(q)) does not give rise
to a cycle module [30]. In Section 4.2, we will exhibit that although this data comprises a
slightly weaker structure than that of a cycle module, it is good enough to define the required
functoriality properties for the associated Kato complexes, thanks to the recent purity results
obtained in [1]. We begin with a comparison of the Gysin maps for logarithmic de Rham-Witt
sheaves constructed by Gros [11] and by Binda-Rülling-Saito [1].

Let i : Z −→ X be a codimension r closed immersion of smooth schemes, F a reciprocity
sheaf and G ∈ CI

τ,sp
Nis such that F = ω!G. In [1, Section 7.4], a Gysin map

gZ/X : i∗(G−r)Z [−r] −→ GX

is defined. Applying Hr
Z(X,−), we get a map

H0(Z,F−r) −→ Hr
Z(X,F).

We take F = Rτ∗WrΩ
q
log, where τ : Xét → XNis is the canonical morphism of sites.

(4.2) gX/Z : H0(Z,WnΩ
q−r
X,log) −→ Hr

Z(Xet,WnΩ
q
X,log),

which we also denote by gZ/X abusing notation. On the other hand, a Gysin map

(4.3) g′X/Z : H0(Z,WnΩ
q−r
X,log) −→ Hr

Z(Xet,WnΩ
q
X,log)

was constructed in [11, Chapitre II, Définition 1.2.1], which we denote by g′Z/X .

Proposition 4.1. With the above notation, we have the equality gZ/X = g′Z/X of morphisms

mentioned in (4.2) and (4.3).

Proof. Let F be a reciprocity sheaf and G ∈ CI
τ,sp
Nis such that F = ω!G. In [1, Section 5.8],

for each α ∈ CHrZ(X), a map cα : (G−r)X [−r] −→ RΓZGX is defined. By [1, Theorem 7.12],
we have the equality gZ/X ◦ i∗ = Hr

Z(X, cZ) of morphisms

H0
Z(X,F−r)

i∗
−→ H0(Z,F−r)

gZ/X
−−−→ Hr

Z(X,F).

On the other hand, [11, Chapitre II, Corollaire 2.2.8] states that g′Z/X i
∗ is the multiplication

by cl(Z/X), where cl(Z/X) is the image of 1 under the map

g′Z/X : H0(Z,WnΩ
0
log) = Z/pnZ −→ Hr(Xet,WnΩ

r
log).
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By [1, Theorem 7.14], i has a retraction Nisnevich locally. Therefore, i∗ is an epimorphism and
in order to show that g′Z/X = gZ/X , it suffices to show that cZ coincides with multiplication

by cl(Z/X). Note that

Hr(Xet,WnΩ
r
log)

∼= H2r(Xet,Z/p
nZ(r)) ∼= CHr(X)/pn.

Under the above isomorphism, cl(Z/X) is sent to the class of Z in CHr(X,Z/pnZ) and
multiplication by cl(Z/X) is same as the action of the class of Z, which is exactly the map
cZ . This completes the proof. �

4.2. Weak cycle module structure. Let X be a variety of dimension d over k, which is
assumed to be perfect of characteristic > 0. Fix a positive integer r. Let

νr(m) =WrΩ
m
X,log = Z/prZ(m)[m]

be the logarithmic de Rham-Witt sheaf on Xét defined in [15] (see also [29, Section 2]).

Notation 4.2. Fix a positive integer r. For any any field extension F of k and any integer
i, we write Mi(F ) := H1(F, νr(i)).

It is known that the family of functors M∗ from the category of field extensions of k to
abelian groups do not form a cycle module since the homology of the Kato complex is not
A1-invariant (see [25], for instance). However, they are still endowed with the following data
analogous to the definition of cycle premodules [27, Definition 1.1].

(D1) For a field extension ϕ : E → F , there are restriction maps ϕ∗ : Mi(E) →Mi(F ).
(D2) For a finite field extension ϕ : E → F , there are corestriction maps ϕ∗ : Mi(F ) −→

Mi(E) defined as in [16, Section 0.7]: if π is the induced map on schemes, the norm
map in Milnor K-theory induces a map of étale sheaves π∗νr,F (i) −→ νr,E(i). Taking
cohomology and using the isomorphism H1(F, νr,F (i)) ∼= H1(E, π∗νr,F (i)), we get the
desired map. This agrees with Kato’s transfer map defined in [19, p.658].

(D3) There is an action KM
i (F )×Mj(F ) −→Mi+j(F ) induced by the cup product in Galois

cohomology and an isomorphism H0(F, νr(i)) ∼= KM
i (F )/pr compatible with the cup

product. We will use · to denote the product as well as the action of Milnor K-theory
groups.

(D4) For a valuation v on F such that (k(v) : k(v)p) ≤ pi , there is a residue map
∂v : Mi+1(F ) −→Mi(k(v)) defined in [20] as the composite:

H1(F, νr(i+ 1)) −→ H1(F h, νr(i+ 1))
∼=
−→ H1(k(v),H0(F sh, νr(i+ 1)))

H1(k(v),∂v)
−−−−−−−→ H1(k(v),H0(k(v)sep, νr(i))) ∼= H1(k(v), νr(i)).

Here the ∂v : H
0(F sh, νr(i + 1)) −→ H0(k(v)sep, νr(i)) is defined in [20] through the

isomorphism with Milnor K-theory.

The key difference above from the cycle module axioms is that the data (D4) is defined
only for valuations satisfying an additional condition.

Remark 4.3. We will freely use the description of elements ofMi(F ) = H1(F, νr(i)) in terms

of 1-cocycles. If F is Henselian, then H1(F h, νr(i + 1))
∼=
−→ H1(k(v),H0(F sh, νr(i + 1))) and

the residue map in terms of 1-cocycles representing H1(k(v),H0(F sh, νr(i+ 1))) is given by:

∂v(α)(σ) = ∂Mv (α(q−1σ)),
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where σ ∈ Γk(v), q is the quotient map ΓF −→ Gal(F sh/F ) ∼= Γk(v) and the ∂Mv is the residue

map on Milnor K-theory under the identification H0(F, νr(i+ 1)) ∼= KM
i+1(F )/p

r.

We will use the explicit description of the corestriction map in (D2) in terms of cocycles
[23, Chapter 1, Section 5.4]. If H is an open subgroup of a profinite group G and A is a
G-module, the corestriction map H1(H,A) −→ H1(G,A) is as follows: let α : H −→ A be a
cocycle; then the corestriction of α to G sends σ ∈ G to

∑

τ∈H\G

s(τ)−1α(s(τ)σs(τσ)−1),

where s is a set-theoretic splitting of G −→ H\G.

Remark 4.4. The definition of the residue ∂v given in (D4) above agrees with the following
definition given in [12]: Take a smooth variety X such that the valuation ring of v is the
local ring at a codimension 1 point x so that OX,η = K, where η is the generic point and
k(x) = k(v). For a point z ∈ X, let Hp

z (X,G) = colimz∈U H
p

{z}∩U
(U,G) for G ∈ Sh(Xét).

From the differential of the E1 page of the coniveau spectral sequence Ep,q1 = Hp
x(X, νr(s+q)),

we get a map H0
η (X, νr(i + 1)) −→

⊕
y∈X(1) H1

y (X, νr(i + 1)). By purity [11, Theorem 3.5.8],

for a point z of codimension c, we have an isomorphism H0(k(z), νr(i)) ∼= Hc
z(X, νr(i + c)).

So the differential becomes H0(K, νr(i + 1)) −→
⊕

y∈X(1) H0(k(y), νr(i)). Projecting to the
factor of x, we get a morphism that is compatible with ∂v under the isomorphism with mod-pr

Milnor K-theory given by (D3).

Following [27], given a valuation v on F ∈ Fk and a uniformizer π for v, we define the
specialization homomorphism sπv :Mi(F ) →Mi(F ) by

sπv (α) := ∂v({−π} · α).

The data (D1)–(D4) given above for the logarithmic de Rham-Witt sheaves satisfies the
cycle premodule axioms (R1)–(R3) of [27, Definition 1.1]. The axioms (R1) and (R2) are
easy to verify and are left to the reader.

R1a. For field extensions ϕ : E −→ F and ψ : F −→ K, we have (ψ ◦ ϕ)∗ = ψ∗ ◦ ϕ∗.
R1b. For finite field extensions ϕ : E −→ F and ψ : F −→ K, we have (ψ ◦ ϕ)∗ = ϕ∗ ◦ ψ∗.
R1c. For field extensions ϕ : E −→ F and ψ : F −→ K, where ϕ is finite and R = F ⊗E K,

we have
ψ∗ ◦ ϕ

∗ =
∑

p∈SpecR

l(Rp)ϕ
∗
p(ψz)∗,

where ϕp is the extension E −→ F −→ R −→ R/p and ψz is similarly defined.

R2a. For a field extension ϕ : E −→ F , α ∈ KM
n (E) and ρ ∈ Mi(E), we have ϕ∗(α · ρ) =

ϕ∗(α) · ϕ∗(ρ).
R2b. If ϕ : E −→ F is a finite extension and µ ∈Mi(F ), then ϕ

∗((ϕ∗α) · µ) = α · ϕ∗(µ).
R2c. If ϕ : E −→ F is a finite extension and β ∈ KM

n (F ), then ϕ
∗(β · ϕ∗(ρ)) = ϕ∗(β) · (ρ).

We verify the axiom R3 below. This may be well-known to experts; we include the verifi-
cation here for the convenience of readers.

Proposition 4.5. Let ϕ : E → F be a field extension in Fk and let v be a valuation on F
restricting to a valuation w on E. Let ϕv : k(w) → k(v) be the induced extension of residue
fields. The following relations hold.
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R3a. If w is a nontrivial valuation with ramification index e, then

∂v ◦ ϕ∗ = e · ϕ∗ ◦ ∂w.

R3b. If ϕ is a finite extension, then

∂w ◦ ϕ∗ =
∑

v′

ϕ∗
v′ ◦ ∂v′ ,

where v′ runs through the extensions of w to F and ϕv′ : k(w) → k(v′) denotes the
induced extension of residue fields.

R3c. If v is trivial on E (that is, w is trivial), then

∂v ◦ ϕ∗ = 0.

R3d. If v is trivial on E and ϕ : E → k(v) denotes the induced map, then for any uni-
formizer π for v, we have

sπv ◦ ϕ∗ = ϕ∗.

R3e. For a unit u with respect to v and for any ρ ∈Mi(F ), we have

∂v({u} · α) = −{u} · ∂v(α).

Proof. The isomorphism H0(F, νr(n)) ∼= KM
n (F )/pr in (D3) is compatible with corestriction

and residue maps. Since mod-pr Milnor K-theory satisfies the cycle premodule axioms (R1)–
(R3) of [27, Definition 1.1], so do the functors F 7→ H0(F, νr(∗)). This fact will be used
repeatedly.

We first prove R3a. Note that we have commutative diagrams

H1(E, νr(i+ 1)) //

ϕ∗

��

H1(Eh, νr(i+ 1)) //

ϕ∗

��

H1(k(w),H0(Esh, νr(i+ 1)))

H1(ϕ∗)
��

H1(F, νr(i+ 1)) // H1(F h, νr(i+ 1)) // H1(k(v),H0(F sh, νr(i+ 1)))

and

H1(k(w),H0(Esh, νr(i+ 1))) //

ϕ∗

��

H1(k(w),H0(k(w)sep, νr(i)))

e·ϕ∗

��

H1(k(v),H0(F sh, νr(i+ 1))) // H1(k(v),H0(k(v)sep, νr(i)))

,

where the commutativity of the latter diagram follows from that of the corresponding diagram
for mod-pr MilnorK-theory as the horizontal arrows in the diagram are induced by the residue
maps

H0(Esh, νr(i+ 1)) ∼= KM
i+1(E

sh)/pr
∂w−−→ KM

i (k(w)sep)/pr ∼= H0(k(w)sep, νr(i))

and

H0(F sh, νr(i+ 1)) ∼= KM
i+1(F

sh)/pr
∂v−→ KM

i (k(v)sep)/pr ∼= H0(k(v)sep, νr(i)).

This implies R3a. We next prove R3c. By the explicit formula given in the datum (D4), it
suffices to assume that F is henselian. Let α ∈ Mi(E) and consider a 1-cocycle representing
α. By Remark 4.3, we have

∂v ◦ ϕ∗(α)(σ) = ∂v(ϕ∗α(q
−1σ)) = ∂v(ϕ∗(α(ϕ̃(q

−1σ)))) = 0,
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by the corresponding result for Milnor K-theory. Now, suppose that v is trivial on E and
let α ∈ Mi(E). We prove (d) by a similar computation involving cocycles as above. For any
σ ∈ Γk(v),

sπv ◦ ϕ∗(α)(σ) = ∂v(({−π} · ϕ∗α)(π
−1σ)) = ∂v({−π} · ϕ∗(α(ϕ̃(π

−1σ))))

= sπvϕ∗(α(ϕ̃(π
−1σ)))

= ϕ∗(α(ϕ̃(π
−1σ))) = ϕ∗(α)(σ).

For a unit u with respect to v, we have

∂v({u} · α)(σ) = ∂v({u} · α(π
−1σ)) = −{u} · ∂v(α(π

−1(σ))) = −{u} · ∂v(α)(σ)

= −{u} · ∂v(α)(σ).

This proves R3e.

It remains to prove R3b. Let Ew and Fv denote the completions of E and F with respect
to w and v, respectively. Consider the diagram

H1(F, νr(i+ 1)) //

ϕ∗

��

⊕
v′
H1(Fv′ , νr(i+ 1)) //

��

⊕
v′
H1(k(v′), νr(i+ 1))

∑
v′ ϕ

∗
v′

��

H1(E, νr(i)) // H1(Ew, νr(i)) // H1(k(w), νr(i))

in which the commutativity of the outer square is the assertion of (b). The left square is
commutative by (R1), since F ⊗E Ew ∼=

⊕
v′ Fv′ . Thus, in order to prove R3b, we are

reduced to proving it for the extensions Ew → Fv′ . Therefore, replacing E by Ew and F by
Fv′ , we may assume that w is a complete valuation on E that extends uniquely to v on F . By
a standard argument (see [9, Proof of Proposition 7.4.1] for instance), we reduce to the case
where ϕ and ϕ are Galois extensions. We need to show the commutativity of the following
diagram, in which all the vertical arrows are appropriate corestriction maps.

H1(F, νr(i+ 1))
∼= //

ϕ∗

��

H1(k(v),H0(F sh, νr(i+ 1))) //

ϕsh∗

��

H1(k(v),H0(k(v)sep, νr(i)))

��

H1(k(v),H0(Esh, νr(i+ 1))) //

ψ∗

��

H1(k(v),H0(k(w)sep, νr(i)))

��

H1(E, νr(i+ 1))
∼= // H1(k(w),H0(Esh, νr(i+ 1))) // H1(k(w),H0(k(w)sep, νr(i)))

Since the analogue of R3b holds for Milnor K-theory, applying it to F sh
ϕsh

−−→ Esh and then
applying H1(k(w),−), we conclude that the top right square is commutative. The bottom
right square commutes because of the functoriality of corestriction. So, it suffices to show
that the diagram on the left commutes.
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We have the following commutative diagram of groups, in which H, H ′ and H ′′ are defined
so as to have exact rows and columns.

0 // H ′′ //

��

H ′ //

��

H //

��

0

0 // ΓF //

��

ΓE
p1

//

p4

��

Gal(F/E) //

p2

��

0

0 // Γk(v) // Γk(w)
p3

// Gal(k(v)/k(w)) // 0

Choose (set-theoretic) splittings s1, s2, s3, s4 of p1, p2, p3, p4 respectively such that the lower
right square in the above diagram commutes also when the maps pi are replaced by the split-
tings si. The map ϕsh

∗
is given by applying H1(k(w),−) to the norm map N : H0(F sh, νr(i+

1)) −→ H0(Esh, νr(i+1)). Let α ∈ H1(F, νr(i+1)). Then ϕ∗(α) is represented by the 1-cocyle
that sends σ ∈ ΓE to

ϕ∗(α)(σ) =
∑

τ∈Gal(E/F )

s(τ)−1α(s1(τ)σs1(τσ)−1)

=
∑

ω∈Gal(k(w)/k(v))

∑

h∈H

s1(hs2(ω))
−1α(s1(hs2(ω))σs1(hs2(ω)σ)−1)

=
∑

ω∈Gal(k(w)/k(v))

s3(ω)
−1

∑

h∈H

s1(h)
−1α(s3(ω)σs3(ωσ)

−1)

=
∑

ω∈Gal(k(w)/k(v))

s3(ω)
−1N(α(s3(ω)σs3(ωσ)

−1)

= ψ∗ ◦ ϕsh
∗
(α)(σ),

where we have used the equalities s1(hs2(ω) = s1(ω), s1(hs2(ω)σ)−1 = s1(s2(ω)σ)−1 and
s1(s2(ω)) = s4(s3(ω)) coming from the above diagram of Galois groups and the fact that the
action of s4(s3(ω)) on H

0(F sh, νr(i+1))) is the same as that of s3(ω). This proves R3b. �

Remark 4.6. The fact that the above weak cycle premodule structure on the first cohomology
groups of logarithmic de Rham-Witt sheaves also satisfies the cycle module axioms follows
exactly as in Section 3.3 by the work of Gros [11].

Remark 4.7. Note that the residue map in data (D4) is constructed in [20] by using
the degeneration of the Hochschild-Serre spectral sequence and using the definition of the
residue in the case of mod-pr Milnor K-theory. This is enabled by the vanishing of the group

H1(K̂sh, νr(i)), for any finitely generated field extension K of k. One can get a similar partial
cycle module structure on the functor K 7→ H1(K,F) for a reciprocity sheaf F provided one

has H1(K̂sh,F) = 0, for any finitely generated field extension K of k.

5. Functoriality of Kato complexes of logarithmic de Rham-Witt sheaves

5.1. The Kato complex and the four basic maps at the level of complexes. Let X
be a variety of dimension d over a perfect field k of characteristic p > 0. We have the Kato
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complexes for n = 0, 1:
(5.1)

C(X,Z/prZ(q), n) : 0 →
⊕

x∈X(d)

Hn(k(x), νr(d+ q))
d
−→ · · ·

d
−→

⊕

x∈X(0)

Hn(k(x), νr(q)) → 0.

One can pass from the cohomological conventions (4.1) to the homological conventions using
the formula

Ci(X,Z/prZ(q), n) = Cd−i(X,Z/p
rZ(q − d), n).

Throughout this section, we will follow the homological convention for complexes. The dif-
ferential of the Kato complex is defined as follows. Let x ∈ X(i+1), y ∈ X(i) and α ∈

H1(k(x), νr(i + 1 + q)). If y /∈ Z = {x}, then we set the y- component of d(α) to be zero.

Suppose y ∈ Z = {x} and consider Z with the reduced induced subscheme structure. Then
R = OZ,y is a 1-dimensional k-algebra with residue field k(y) and fraction field k(x). Let R′

be its normalization; this is a 1-dimensional semilocal finite R-algebra. For each valuation w
of k(x) corresponding to the maximal ideals of R′, we get a finite extension ϕw : k(y) −→ k(w).
We define the y-component of d(α) in this case to be

∑
w ϕ

∗
w ◦ ∂w(α). Kato proved in [20]

that C(X,Z/prZ(q), n) defines a complex.

We will focus on the case n = 1, as in the case n = 0, the complex C(X,Z/prZ(q), 0) can
be identified with Rost’s cycle complex associated with KM

∗ /p
r. Now we define the four basic

maps for the Kato complex in the same way as done in [27] for cycle complexes.

Definition 5.1 (Proper pushforward). For a morphism f : X −→ Y , we define

f∗ : C(X,Z/p
rZ(q), 1) −→ C(Y,Z/prZ(q), 1))

as the map that sends α ∈ Mi+q(k(x)) with x ∈ X(i) to 0 if k(y) −→ k(x) is not finite and to
f∗x,y(α) if k(y) −→ k(x) is finite, where fx,y denotes the induced map on the residue fields. We
write the pointwise components as (f∗)

x
y . When f is proper, f∗ is a morphism of complexes.

Definition 5.2 (Flat pullback). For a flat morphism f : Y −→ X of constant relative dimension
n, we define a map of complexes

f∗ : C(X,Z/prZ(q + n), 1) −→ C(Y,Z/prZ(q), 1)[n])

as follows: for α ∈Mi+q+n(k(x)) and y ∈ Y
(0)
x , set (f∗(α))y = l(OYx,y)·φy,x∗(α). For y /∈ Y

(0)
x ,

we set (f∗(α))y = 0. We denote the pointwise components of f∗ by (f∗)xy .

Definition 5.3 (Multiplication by a unit). For t ∈ OX(X)∗, define the map

{t} : C(X,Z/prZ(q), 1) −→ C(X,Z/prZ(q + 1), 1)

by α 7→ ({tx} · αx)x. While this is not a map of complexes, it satisfies d ◦ {t} = −{t} ◦ d by
the axioms R2b and R3e.

Definition 5.4 (Boundary). Let U be an open subset of X and let Y be its complement in
X. Define

∂UY : C(U,Z/prZ(q), 1) −→ C(Y,Z/prZ(q), 1)[−1]

to be the composite of the canonical inclusion C(U,Z/prZ(q), 1) → C(X,Z/prZ(q), 1) and
the projection composed with the boundary map C(X,Z/prZ(q), 1) → C(Y,Z/prZ(q), 1)[−1].
This map satisfies dY ◦ ∂UY + ∂UY ◦ dU = dX ◦ dX = 0.
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5.2. The Kato complex of a vector bundle. One of the main constructions in [27] is the
homotopy property for affine bundles at the level of cycle modules. More precise, for every
affine bundle π : V → X, Rost shows in [27, Section 9] that the pullback map π∗ at the level
of cycle complexes is a chain homotopy equivalence. This homotopy inverse is then used in
the construction of the general pullback using the deformation to normal cone. For the Kato
complex (5.1) in the case n = 1, we do not have the full homotopy property. However, we will
show that the pullback π∗ admits a retract, which enables us to define the general pullback
in this case.

We first define the homotopy inverse for a trivial bundle X × An → X. First consider the
case n = 1 and write A1 = Speck[t]. Define rX to be the composite

rX : C(X × A1,Z/prZ(q), 1)[1] −→C(X ×Gm,Z/p
rZ(q), 1)[1]

{−1/t}
−−−−→

C(X ×Gm,Z/p
rZ(q + 1), 1)[1]

∂
−→ C(X,Z/prZ(q + 1), 1),

where the leftmost morphism is the flat pullback induced by the inclusion X×Gm →֒ X×A1,
the complement X × 0 of which we identify with X. Iterating this, we can define the map of
complexes

(5.2) rX : C(X × An,Z/prZ(q), 1)[n] −→ C(X,Z/prZ(q + n), 1).

Let π : V −→ X be a vector bundle of rank n. We will define a map of complexes

r(τ) : C(V,Z/prZ(q), 1)[n] −→ C(X,Z/prZ(q + n), 1),

depending upon a coordination of V in the sense of [27, page 371], which is a sequence of
closed subsets

∅ ⊂ X1 ⊂ X2 ⊂ · · · ⊂ Xm = X

such that VXi\Xi−1
is a trivial bundle for each i. Such a sequence always exists because X is

noetherian. Since

C(X,Z/prZ(q), 1) = C(X \Xm−1,Z/p
rZ(q), 1) ⊕ C(Xm−1,Z/p

rZ(q), 1)),

we define r(τ) inductively as rX\Xm−1
⊕ r(τ |Xm−1). Since X \Xm−1 is a trivial bundle and

we have already defined r in that case in (5.2), we are done.

Proposition 5.5. r(τ) is a left inverse to π∗.

Proof. It suffices to show this for a rank 1 trivial bundle. Let A1 = Spec k[t] and let V = X×A1

and view it as the open subscheme of X × (P1 \ 0) of X × P1. Let π̃ : X × P1 → X denote
the projection onto X and consider the section of π̃ identifying X with X ×∞ ⊂ X × P1 cut
out by the rational function −1/t. Let π′ : X × (P1 \ 0) → X ×∞ denote the restriction of
π̃. We need to show that the composition ∂ ◦ {−1/t} ◦ π′∗ is the identity map

C(X ×∞,Z/prZ(q + 1), 1) = C(X,Z/prZ(q + 1), 1) → C(X,Z/prZ(q + 1), 1).

As in the above paragraph, we reduce to the case X = SpecE. With the same notation as in

the above paragraph, the composition ∂ ◦ {−1/t} ◦ π′∗ takes the form s
−1/t
v ◦ϕ∗, which is the

identity map by R3d. �

Theorem 5.6. Let τ, τ ′ on X be two coordinations of V on X, then r(τ) and r(τ ′) induce
the same map on homology.
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Proof. Let τ = ∅ ⊂ X1 ⊂ X2 ⊂ · · · ⊂ Xs = X and τ ′ = ∅ ⊂ X ′
1 ⊂ X ′

2 ⊂ · · · ⊂ X ′
t = X.

We use double induction on the lengths of the coordinations. Let U = X \X ′
t−1. If we show

that r(τ) = r(τ |U )⊕ r(τ |X′
t−1

), then by induction, we have r(τ |U ) = r(τ ′|U ) and r(τ |X′
t−1

) =

r(τ ′|X′
t−1

) and consequently, r(τ) = r(τ ′).

Therefore, it suffices to show the following: if U is an open subset of X with complement
Z, then r(τ) = r(τ |U )⊕ r(τ |Z). Since, r(τ) =

⊕
rXi\Xi−1

and we have analogous expressions
for r(τ |U ) and r(τ |Z), it suffices to show this for each Xi \Xi−1. Therefore, we may assume
that V is a trivial bundle and that τ is trivial. By induction, it suffices to consider the
case V = X × A1. So, it suffices to show that rX = rU ⊕ rZ at the level of homology for

V = X × A1 π
−→ X.

Let α ∈ C(X×A1,Z/prZ(q), 1)[1] such that dX×A1(α) = 0. Suppose that α is concentrated

at a point P ∈ X × Gm. Let Q ∈ X × ∞ be such that Q ∈ {P} and dimP = dimQ + 1.
Let φ be the projection to X × A1 → A1 and η be the generic point of A1. Then φ(P ) = η.

We now claim that π(P ) = π(Q). We have π(Q) ∈ {π(P )}. If π(P ) 6= π(Q), then we would
have dimπ(Q) ≤ dimπ(P )−1, which would imply that dimQ ≤ dimP −2, contradicting our
assumption. Therefore, it follows that if α is concentrated in U × A1 (respectively, Z × A1),
then rX(α) coincides with rU (α) (respectively, rZ(α)). This proves the theorem. �

5.3. The general pullback. In order to define the action of correspondences at the level
of Kato complexes, we need to show that any morphism of smooth schemes gives rise to
a pullback morphism at the level of complexes. This is done using the deformation to the
normal cone technique in [27]. Our construction of the general pullback for Kato complexes of
logarithmic de Rham-Witt sheaves is analogous, but with necessary modifications in absence
of homotopy invariance for vector bundles.

We begin by constructing the deformation map at the level of complexes. Let π : X×Gm −→
X be the projection onto X and consider t ∈ OX×Gm(X ×Gm)

∗. Although we only defined
the complexes C(X,Z/prZ(1), 0) for q ≥ 0, the construction of the Gysin map will involve
graded groups of the form

Ci(X ×Gm,Z/p
rZ(−1), 1) :=

⊕

y∈X×Gm(i)

H i(k(y),Z/prZ(i− 1)).

This does not form a complex as the differential is not defined in general. However, the
definitions of the basic maps still give morphisms of graded groups

C(X,Z/prZ(0), 1)
π∗

−→ C(X ×Gm,Z/p
rZ(−1), 1)[1]

{t}
−−→ C(X ×Gm,Z/p

rZ(0), 1)[1].

Although the composite morphism {t} ◦ π∗ is a priori only a morphism of graded groups, it
is in fact an anti-morphism of complexes. We leave the verification to the reader.

Now, let i : Y −→ X be a closed immersion of codimension c with ideal sheaf I. Let
NYX := Spec

⊕
n≥0 I

n/In+1 be the normal cone of Y . Let D(X,Y ) := Spec
⊕

n∈Z I
nt−n be

the deformation space, where In = OX for n ≤ 0. Note that X × Gm is an open subset of
D(X,Y ) with complement NYX. Define the deformation morphism

J(i) : C(X,Z/prZ(q), 1) −→ C(NYX,Z/p
rZ(q), 1)
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to be the composite

C(X,Z/prZ(q), 1) π∗
// C(X ×Gm,Z/prZ(q − 1), 1)[1]

{t}
// C(X ×Gm,Z/prZ(q), 1)[1]

∂
��

∂
−→ C(NYX,Z/prZ(q), 1).

Since {t} ◦ π∗ and ∂ are anti-morphisms for complexes, it follows that J(i) is a morphism
complexes.

Proposition 5.7. Suppose g : X −→ Z is a flat morphism of relative dimension d such that

f : NYX −→ Y
i
−→ X

g
−→ Z is flat. Then f∗ = J(i) ◦ g∗.

Proof. The proof is exactly analogous to [6, Proof of Lemma 51.9] and is hence, omitted. �

We are now set to define the pullback for a general morphism of schemes f : Y −→ X,

where X is smooth. We may factorize f as Y
Γ
−→ Y ×X

p
−→ X, where Γ denotes the graph

of f and p is the projection. Since X is smooth, Γ is a regular closed immersion and the
tangent cone TX := NX(X × X) is a vector bundle. We choose a coordination τ of TX.
Since NY (X × Y ) = f∗TX, this induces a coordination f∗τ on NY (X × Y ). Let d = dimX,
d′ = dimY and set m := d′ − d.

Definition 5.8. Let the notation and setting be as above. Define f∗τ to be the composite

f∗τ : C(X,Z/p
rZ(q +m), 1)

p∗
−→ C(X × Y,Z/prZ(q +m− d′), 1)[d′]

J(Γ)
−−−→

C(NY (X × Y ),Z/prZ(q +m− d′), 1)[d′]
r(f∗τ)
−−−−→ C(Y,Z/prZ(q), 1)[m].

The map induced on homology by f∗τ is independent of the coordination τ since the map
induced by r(f∗τ) on homology is independent of the choice of coordination.

Proposition 5.9. If f : Y → X is flat, the map of complexes f∗τ agrees with the flat pullback
f∗ defined in Definition 5.2 and is independent of the chosen coordination.

Proof. Factorize f as Y
Γ
−→ Y × X

p
−→ X, where Γ denotes the graph of f and p is the

projection. We need to show that

f∗ = r(f∗τ) ◦ J(Γ) ◦ p∗.

Let π : NY (X × Y ) −→ Y be the projection. Since r(τ) ◦ π∗ = id, it suffices to show that
π∗ ◦ f∗ = J(Γ) ◦ p∗. Applying Proposition 5.7 with i = Γ and g = p, we get J(Γ) ◦ p∗ =
π∗ ◦ Γ∗ ◦ p∗ = π∗ ◦ f∗, as desired. �

5.4. Products and action of correspondences. As a consequence of the functoriality
properties of Kato complexes, we conclude that a correspondence induces a morphism of
Kato complexes.

Let X, Y be schemes over k, which is assumed to be perfect of characteristic p > 0. Let
q, q′ be integers. Analogous to Rost’s cycle complexes, there exists an external product

Ci(X,Z/p
rZ(q), 0)× Cj(Y,Z/p

rZ(q′), 1) −→ Ci+j(X × Y,Z/prZ(q + q′), 1); (α, β) 7→ α× β
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defined as follows. For P ∈ (X × Y )(i+j), we set (α × β)P = 0 unless P projects to a point
x ∈ X(i) and y ∈ Y(j). In the latter case, we set

(α× β)P = ℓP · resk(P )/k(x)(αx) · resk(P )/k(y)(βy),

where ℓP is the length of the local ring of P on Spec k(x)×Spec k(y) and res denotes obvious
restriction maps.

For (α, β) ∈ Ci(X,Z/prZ(q), 0) × Cj(Y,Z/prZ(q′), 1), we define their internal product (or
simply their product) by

(5.3) α · β := ∆∗
τ (α× β) ∈ Ci+j(X × Y,Z/prZ(q + q′), 1),

where ∆ : X → X × X is the diagonal and the pullback ∆∗
τ depends upon the chosen

coordination τ of the tangent bundle of X ×X.

The following proposition summarizes the basic properties of the internal and external
products. Since the proofs are exactly analogous to the corresponding statements in Rost’s
theory, we leave them to the reader and give precise references to the corresponding statements
in Rost’s theory.

Proposition 5.10. Let X and Y be schemes over k and let (α, β) ∈ Ci(X,Z/prZ(q), 0) ×
Cj(Y,Z/prZ(q′), 1). Write α ∈ Hi(C(X,Z/prZ(q), 0)) and β ∈ Hj(C(Y,Z/prZ(q′), 1)) for the
classes of α and β respectively in homology. Let f : X → X ′ and g : Y → Y ′ be morphisms.

(a) The internal and external product pairings factor through homology.
(b) (f × g)∗(α× β) = f∗(α)× g∗(β).
(c) If X,X ′, Y, Y ′ are smooth, then (f × g)∗(α × β) = f∗(α) × g∗(β), where we have

suppressed the coordinations.
(d) If X,Y are smooth and φ : Y → X is a morphism, then φ∗(α · β) = φ∗(α) · φ∗(β).
(e) (Projection formula) If X,Y are smooth and φ : Y → X is a proper morphism, then

φ∗(α · φ∗(β)) = φ∗(α) · β.
(f) Define [Y ] := p∗Y (1), where pY : Y → Speck denotes the structure morphism. If X is

smooth and φ : Y → X is a morphism, then φ∗(φ
∗(β)) = (φ∗[Y ]) · β.

Proof. The proofs are exactly analogous to those of [6, 50.3, 50.4, 55.20, 56.8, 56.9 and
56.11]. �

We are now set to construct the action of a correspondence at the level of Kato complexes.
A similar action in the case of cycle modules has been considered in [10, 1.11].

Let X,Y,Z be proper schemes over k with X,Z smooth and dimZ = d. Assume

z =
r∑

i=1

ni[Wi]

is a codimension d cycle on Y ×Z. For i = 1, . . . , r let ιi :Wi →֒ Y ×Z be the inclusion of the
closed integral subschemeWi of codimension d, and define morphisms f(i) : X×Wi → Y ×Z
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and g(i) : X ×Wi → Y × Z by the commutative diagram

X ×Wi

idX×ιi
��

g(i)

��

f(i)

��

X × Y × Z

πXYww♣♣
♣♣
♣♣
♣♣
♣♣
♣

πXZ ''◆
◆◆

◆◆
◆◆

◆◆
◆◆

X × Y X × Z

in which πXY , πXZ are the obvious projection maps. Note that the morphism f(i) is proper
for each i. The morphism of Kato complexes induced by α is given by

(5.4) z∗ =
r∑

i=1

nif(i)∗ ◦ g(i)
∗
τ : C(X × Y,Z/prZ(q), 1) → C(X × Z,Z/prZ(q), 1)

for any coordination τ of the tangent bundle of Y × Z and such that the induced maps on
cohomology groups

H i(X × Y,Z/prZ(q)) → H i(X × Z,Z/prZ(q))

depend only on the class z of z in the Chow group CHd(X ×X) and are denoted by z∗.

Proposition 5.11. Let the setting and notation be as above and let πXY , πY Z and πXZ
denote the projection maps from X × Y × Z to X × Y , Y × Z and X × Z, respectively. For
any α ∈ H i(X × Y,Z/prZ(q)), we have

z∗(α) = πXZ∗ (π
∗
Y Z(z) · π

∗
XY (α)) .

Proof. Since z =
∑r

i=1 ni[Wi], by the formula (5.4) and the equalities f(i) = πXZ ◦ (idX × ιi)
and g(i) = πXY ◦ (idX × ιi), we have

z∗(α) =
r∑

i=1

nif(i)∗ ◦ g(i)
∗
τ (α)

=
r∑

i=1

ni(πXZ ◦ (idX × ιi))∗ ◦ (πXY ◦ (idX × ιi))
∗(α)

=

r∑

i=1

ni(πXZ ◦ (idX × ιi))∗(idX × ιi)
∗(α) · π∗XY (α)

=

r∑

i=1

niπXZ∗ ((idX × ιi)∗[X ×Wi] · π
∗
XY (α)) = πXZ∗ (π

∗
Y Z(z) · π

∗
XY (α)) ,

by Proposition 5.10. �

Remark 5.12. Let X be a smooth scheme over a perfect field k of characteristic p > 0. By
the Gersten conjecture for logarithmic de Rham-Witt sheaves [13], for integers i, r, and q the
sheaf Hi

ét(Z/p
rZ(q)) on XZar has a resolution given by

C(X, i, q) : ⊕
x∈X(0)

Hi,q
ét (k(x)) → ⊕

x∈X(1)
Hi−1,q−1

ét (k(x)) → · · · → ⊕
x∈X(d)

Hi−d,q−d
ét (k(x)),

where Hm,n
ét (k(x)) := ix∗H

m
ét(k(x),Z/p

rZ(n)) for a point ix : {x} → X. Therefore, it fol-

lows that the cohomology Hj(X,Hi
ét(Z/p

rZ(q))) of this complex agrees with the homology
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Hd−j(C(X,Z/prZ(q − d), i − q)) of the Kato complex (5.1). The action of correspondences
constructed above in Proposition 5.11 agrees with the action of correspondences considered
in [3, Section 1.4].
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