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The influence of hopper width on dense granular flow in a two−dimensional hopper is investigated

through experiments and simulations. Though the flow rate remains stable for larger hopper widths,

a slight reduction in hopper width results in a significant increase in flow rate for smaller hopper

widths. Both Beverloo′s and Janda′s formula accurately capture the relationship between the flow

rate and outlet size. Flow characteristics in the regions near the outlet exhibit local self−similarity,

supporting Beverloo and Janda’s principles. Moreover, global self−similarity is analysed, indicated

by the transition in flow state from mass flow in regions far from the outlet to funnel flow near the

outlet. The earlier occurrence of this transition favors to enhance the grain velocity and consequently

increases the dense flow rate. An exponential scaling law is proposed to describe the dependencies

of flow rate, grain velocity, and transition height between the mass flow pattern and the funnel flow

pattern on silo width.

PACS numbers: 45.70.Mg, 64.60.-i, 75.40.Gb

I. INTRODUCTION

Granular flow exists extensively in nature and indus-

trial processes, attracting significant attention from the

fields of science and engineering[1–6]. It exhibits com-

plex flow behaviors, such as the segregation of binary

mixtures[7–9], the transition between dilute state and

dense state[10–14]. Gravity−driven granular flow in a

hopper serves a good example where various intrinsic

flow properties can be observed. Numerous theoretical

and technological efforts have been focused on studying

this special process because of its ubiquity [15–25]. How

to control the flow rate and understanding the governing

principles are fundamental and critical issues.

In classical research, differential relationship between

the physical quantities is the key point to define the dy-

namical characteristics. Given this consideration, Bever-

loo law is a successful empirical formula describing the

relationship between the dense flow rate Q and the outlet

size D by using a simple physical analysis.[17]

Q = C
√
g∗(D − kd)n−1/2, (1)

where n is the spatial dimension, i.e., n = 2 or 3 for two

or three dimensions, respectively. d denotes the grain di-

ameter, g∗ denotes the effective acceleration due to grav-

ity. C represents a dimensional fitting coefficient that

∗ Corresponding author: hdc@njust.edu.cn

may be associated with factors such as the friction coef-

ficient and bulk density. k is believed to result from the

empty−annulus effect related to the geometrical shape

of the grain and the outlet. Within this argument, the

grains are strongly crowed in the hopper and the last-

ing collisions between the grains dissipate the gravity en-

ergy. This high packing density leads to the occurrence of

Jassen effect[26]. A hypothesis is thus proposed regard-

ing existence of a half−circular shape of contact force

around the outlet, named as free fall arch (FFA). The ini-

tial velocities of the grains are negligible and they freely

accelerate downward under the self gravities below the

FFA. In the past decades, the expression of Eq.1 has been

verified for various situations, such as different kind of

grains in size and shape, different outlet geometrical con-

figuration. [14, 27–37]. Some modifications to the coeffi-

cients of C and k have been proposed to adapt the change

of flow situations. However, the physical mechanism of

Beverloo law is retained, in which the basic hypothesis

of the FFA is considered to dominate the flow proper-

ties. Recently, a controversy was recently put forward

by Janda et al. and their experimental and numerical

results are not supported by the arguments of FFA, es-

pecially for the case of small outlet.[28] A self−similarity

in dense flow state for the packing density and grain ve-

locity are first discovered. A new expression is proposed

as the following:

Q = C ′√g∗(1− α1e
−R/α2)R3/2, (2)
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where C is a parameter related to the grain diameter d

and packing density at the outlet, α1 and α2 are fitting

coefficients affected by the packing density at the center

of the outlet, and R = D/2 is the half of exit size D.

This local self−similar behavior around the outlet are

examined under different conditions, such as the bidis-

persed flow and eccentrical−outlet hopper.[35, 38, 39]

These studies have demonstrated that changes in grain

properties and geometrical configuration of the hopper

do not affect the local self−similar behavior.

In the Beverloo and Janda arguments, the local flow

properties around the outlet have attracted much atten-

tion. However, the global flow properties at the positions

far from the outlet, i.e., mass and funnel flow patterns,

and the transition between them, have been found to sig-

nificantly affect on the dense flow rate. [37, 40–46] In the

mass flow pattern, all the grains flow simultaneously in

the hopper having uniform and slow velocities, whereas

in the funnel flow pattern, grains exhibit higher veloci-

ties at the hopper center than those near the side walls.

The former is typically observed in regions far from the

outlet, whereas the latter is found near the outlet. The

transition height is a critical value affecting the dense flow

rate. In the study of Ji et al., an external pressure ap-

plied to the top of the hopper causes the transition height

to move closer to the outlet, leading to an increase in the

flow rate.[44, 45] In the work of Kalyan et al., it was noted

that flow with bulky−shaped grains does not transition

to the mass flow pattern; instead, the funnel flow pattern

dominates the entire flow within the hopper.[46] This flow

pattern results in a higher flow rate compared to flows

comprising elongated or angular grains. Our previous re-

search indicated that a well−designed mixed binary flow

containing different−sized grains can achieve the max-

imum dense flow rate.[37] The findings suggest that an

earlier transition from the mass flow pattern to the funnel

flow pattern can enhance grain velocity and consequently

increase the flow rate. Other factors that have been iden-

tified to affect the dense flow rate include outlet geom-

etry and the presence of obstacles in the hopper.[47–50]

However, the hopper width stands out as another critical

factor whose influence remains to be fully understood.

In this study, both experiments and numerical simula-

tions are conducted to investigate the impact of hopper

width on dense granular flow in a two−dimensional hop-

per. The experimental setup and corresponding simula-

tion model are detailed in Section II. In Section III, we

first explore the influence of hopper width on the dense

granular flow rate, followed by an examination of the

relationship between the dense flow rate and outlet size

using the Beverloo and Janda laws. Subsequently, we an-

alyze the flow properties at both local and global scales.

We revisit the self−similarities concerning packing den-

sity and grain velocity around the outlet and introduce

the global similarity regarding the transition between the

mass flow pattern and the funnel flow pattern. Finally,

our main results are summarized in Section IV.

II. EXPERIMENT SETUP AND SIMULATION

MODEL

The experiments are carried out in a quasi

two−dimensional(2D) rectangular hopper with an incli-

nation angle of 15◦ as shown in Fig. 1(a). The hopper

is built with two glass plates on the bottom and the top,

which are separated by two steel stripes that also act as

lateral walls. The gap between the glass plates is 2.2 mm

to allow for a quasi single−layer flow of steel grains with

a diameter of d = 2± 0.01 mm.

A central outlet is formed by two flat aluminum baf-

fles at the bottom of the hopper. The steel stripes and

aluminum baffles are movable to adjust the hopper width

W and the outlet size D. The hopper is empty at the be-

ginning time and the outlet is closed by placing an baffle.

The steel grains are poured randomly into the hopper and

an initial piling height is Hp ≈ 400 mm. Then, the baf-

fle is removed and the flow is triggered. The discharged

grains are collected by a container which is placed on

force sensor (LH−Z05A) with a precision of 1 g at 50

Hz. The temporal evolution of the mass of the grains is

recorded and the flow rate is determined by calculating

the slope of the mass. Each experiment is repeated five

times to get the average value.

In the simulations, the same quasi−2D hopper is used

with a height of H = 450 mm and a thickness T = 2 mm

as shown in Fig. 1(b). Two flat baffles are placed at the

heightHb = 25.0 mm to form the outlet with sizeD. The

widths of the baffleWB can be changed. Discrete element

method is used to investigate the granular flow and the

grain motion is described using Newton′s equations, as in

our previous works[10–12, 14, 36, 37]. The effective accel-

eration due to gravity is set as g∗ = sin 15◦ × 9.8 m/s2 to

keep consistent with the experiment. The positions and

velocities of the grains at each simulation time step are

updated by using the Verlet algorithm. The translational

motion in the hopper plane and the rotational motion
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FIG. 1. (Color online). Snapshots of (a) experiment setup
and (b) simulation system.

perpendicular to the hopper plane are both considered.

The contact interaction between two grains is calculated

in the normal and tangential directions. The normal force

at the contact point is modeled by the Cundall−Strack

form [51, 52]:

Fn =
4

3
E∗

√
R∗δn

3/2 − 2.0

√
5

6
β
√

Snm∗Vn. (3)

The tangential component is considered as the minor

tangential force with a memory effect and the dynamic

frictional force:

Fτ = −min(Sτδτ − 2.0

√
5

6
β
√
Sτm∗VτµFn)sign(δτ ).

(4)

In Eqs. (3) and (4), n and τ respectively denote the

normal and tangential directions at the contact point,

and δn and δτ denote the normal and tangential displace-

ments since time t0 at which contact is initially estab-

lished. The calculation details as follows:

β =
lne√

ln2e+ π2
,

1

m∗ =
1

mi
+

1

mj
,

Sn = 2E∗
√
R∗δn, Sτ = 8E∗

√
R∗δn,

E∗ =
1− ν2i
Ei

+
1− ν2j
Ej

,
1

R∗ =
1

Ri
+

1

Rj
,

where e is the coefficient of restitution. The quantitiesmi

and mj are the masses of grains i and j making contact,

respectively, and Sn and Sτ characterize the normal and

tangential stiffness of the grains. E and ν denote the

Young′s modulus and Poisson′s ratio, respectively. In

our simulations, the friction coefficient µ is fixed, and

a collision between a grain and a wall is treated as a

grain−grain collision, except that the wall has infinite

mass and diameter. Table I lists the values of the mate-

rial parameters of the grains.

Table I Grain parameters

Quantity Symbol Value

Diameter of grain [mm] d 2.0

Density [103kg/m
3
] ρ 7.8

Young′s modulus [GPa] E 1.0

Poisson ratio ν 0.3

Friction coefficient µ 0.5

Simulation time-step [s] dt 10−6

The process of simulation is similar to that used in the

experiments. The outlet is closed at the beginning of

simulation. Grains are generated randomly at the top of

the hopper and fall down under gravity. The initial piling

height of grains is set to Hp ≈ 400 mm. The grains start

to flow when the outlet is opened. Periodical condition is

used, in which the grains flowing out the hopper reenter

the hopper from the top. Thus a fixed piling height is

kept and a stable dense granular flow can be obtained

after two seconds in the simulation. The position and

velocity of each grain and the interaction between the

grains are recorded for the calculation.

III. RESULTS AND DISCUSSION

The experiment and simulation results of flow rate as

a function of hopper width are plotted in Fig. 2(a). The

experiment results exhibit similar flow properties to the

simulations. When the hopper width is sufficiently large,

the flow rate remains at a constant value, as indicated

by dash lines, i.e., QExp
0 = 477 s−1 and QSim

0 = 863 s−1.

However, the presence of the sidewalls begins to influ-

ence the flow rate for smaller hopper widths. A decrease

in hopper width leads to a significant increase in the

flow rate. Moreover, the simulation results are notice-

ably higher than the experimental results, which may be

attributed to the friction between the grains and the two

glass plates at the bottom and top in the experiments.

In Fig. 2(b), an exponential scaling law is obtained de-

scribing the relation between the flow rate and the baffle
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FIG. 2. (Color online). (a) Outflow rate as a function of hop-
per width for experiment and simulation results. The outlet
size is fixed at D = 18 mm. The dash and the dotted lines do-
nate the mean flow rate of large hopper widths. (b) Outflow
rate normalized by the mean flow rate of large hopper widths
as a function of scaled baffle length. The dash and the dotted
lines donate the fitted results for D/d = 9 by using Eq.(5).
The other outlet sizes, D/d = 7, 10, 11 and 12, are used in the
simulations and donated by different types of symbols.

length for outlet size D/d = 9 as the following:

Q/Q0 = 1 + β1e
−WB

β2d (5)

where β1 and β2 are fitting parameters.We can see that

the fitting parameter β1, 0.29 for the experiment and

0.49 for the simulation, indicates the maximum increase

of flow rate corresponding to the baffle with an infinite

small length compared to that with a large baffle length.

The other fitting parameter β2, 1.3 for the experiment

and 1.38 for the simulation, represents the critical baf-

fle length below which the sidewall starts to significantly

influence on the flow rate. Additionally, several other

outlet sizes, i.e., D/d = 7, 10, 11 and 12, are also used in

the simulations, and all the results collapse well with the

fitted curve as shown in Fig. 2(b). This good agreement

suggests that the flows with different baffle lengths share

some inherent common kinematic characteristics. There-

fore, these characteristics the focus of the next study.

0 5 10 15 20 25
0

600

1200

1800

FIG. 3. (Color online). Simulated results of flow rate as a
function of outlet size for different baffle lengthsWB = 1.5 and
15d. The red dash curves and blue dotted curves are obtained
by using the Beverloo and the Janda equations, Eqs.(1) and
(2), respectively.

The first question is whether the classical theories pro-

posed by Beverloo and Janda et al. can describe the rela-

tion between the flow rate and the outlet size. Two baffles

with lengths of WB/d = 1.5 and 15 are used, as shown

in Fig.3. The simulation results agree well theoretical

predictions, indicating that the flow rate increases pro-

portionally to the outlet size in the power of D3/2. This

characteristic suggests that the local mechanical prop-

erties around the outlet significantly dominate the rela-

tionship between the flow rate and the outlet size. As a

result, the obtained fitting parameters shown in Fig.3 are

generally consistent with the original hypothesis. Large

values of C1 = 11.48 and C2 = 9.59 are obtained for a

narrow hopper with a baffle length of WB = 1.5d com-

pared to smaller values of C1 = 9.65 and C2 = 8.19

for wide hopper with baffle length WB = 15d, respec-

tively. However, there are some discrepancies. In the

Beverloo case, the effective outlet size does not change

significantly, i.e., k = 1.65 and 1.67 for WB = 1.5d and

15d, respectively. This implies that grain velocity has lit-

tle influence on the flow rate. In Janda case, the packing

density appears to have a minor change on the flow rate

because the variation in silo width has little effect on α1

and α2.

Fig.4(a) plots the spatial distribution of contact force

between grains in a flow with a large baffle length of

WB/d = 22.5. In the regions far from the outlet, the con-

tact forces between grains are evenly distributed, with

the contour lines appearing nearly horizontal. As the

grains continues to flow downward, a large arch−shaped

structure with strong mutual contact forces becomes
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FIG. 4. (Color online). Spatial distribution of (a)-(d) contact force between grains and (a′)-(d′) the kinetic force. Four baffle
lengths are used, i.e., (a)(a′)WB/d = 22.5, (b)(b′)WB/d = 15, (c)(c′)WB/d = 5, (d)(d′)WB/d = 1.5.

prominent throughout the entire hopper in the regions

labeled as 220.0. This arch−shaped structure is main-

tained until the grains reach the region just above the

outlet. The magnitude of the contact force gradually de-

creases, as indicated by labels 130 and 30.When the baffle

length is reduced, i.e., WB/d = 15, as shown in Fig.4(b),

a series of arch−shaped contact forces occur in the region

just above the outlet, labeled as 90 and 30. However, the

adjacent arch−shape structure begins to deform, as in-

dicated by 130. When the baffle length continues to de-

crease, i.e., WB/d = 5, only a localized arch−shape struc-

ture is still observed labeled as 30, as shown in Fig.4(c).

Significant deformation has occurred in the arch−shaped

structure for the contact forces of 65 and 90s. This defor-

mation becomes more pronounced for the contact forces

of 65 and 40 when the baffle length is WB/d = 1.5, as

shown in Fig.4(d). Only the arch−shaped structure la-

beled as 30 is locally maintained just above the outlet.

The presence of the arch−shape structure in the contact

force above the outlet provides substantial evidence for

the hypothesis of FFA. On the other hand, the defor-

mation of the contact force structure far from the outlet,

especially for small baffle length, indicates the occurrence

of the transition of flow states within the hopper.

Based on Rubio−Largo’s arguments[20], the spa-

tial distributions of the kinetic force are plotted in

Fig.4(a′)(b′)(c′)(d′). When the baffle length is large, such

as WB/d = 22.5, the maximum kinetic force, such as

0.005, is localized. It just crosses the top of the outlet,

forming an arch−shape structure as shown in Fig.4(a′).

Compared to the contact force shown in Fig.4(a), the

kinetic force decreases along the direction opposite to

that of granular flow, indicated 0.0015, 0005 and 0.00035.

More importantly, the contour of the equivalent kinetic

force in the regions far from the outlet is extended, cross-

ing the entire width of the hopper in the transverse di-

rection. Their shapes also change from a hemispherical

form to a more flat form appearance. In Fig.4(b′), a

similar evolution of the kinetic force is observed when

WB/d = 15. Larger kinetic forces are localized and form

an arch−shape structure above the outlet. As the flow

moves away from the outlet along in opposition to the
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FIG. 5. (Color online). Spatial distribution of (a)-(d) packing density and (a′)-(d′) grain velocity for different baffle lengths.
The outlet size is D = 18 mm. The solid lines of different colors indicate the contours of different values.

direction of granular flow, the kinetic force decreases,

marked by labels 0.003, 0.0015 and 0.00075. Simultane-

ously, as the kinetic force extends across the entire width

of the hopper, the height of the corresponding enclosed

structure diminishes. When the baffle length is further

decreased, i.e., WB/d = 5, a significant change in the evo-

lution of the kinetic force occurs, as shown in Fig.4(c’).

Although the larger kinetic forces still occur around the

outlet, they now form a dumbbell−shaped distribution,

marked with a label of 0.0005. This distribution extends

across the entire hopper while decreasing in magnitude

opposite to the direction of the flow, as indicated by label

0.0003. When the flow is far from the outlet, a U−shaped

structure of the kinetic force is observed, corresponding

to labels 0.0015 and 0.0012. In Fig.4(d′), a small baffle

length WB/d = 1.5 is used. The U−shaped structure of

the kinetic force, marked by labels 0.003 and 0.002, is

maintained in regions far from the outlet. However, for

the contour lines of the kinetic force around the outlet,

only two hammers in the dumbbell shape remain, located

at the sides of the outlet, and labeled as 0.006. For the

contour line of 0.005, it comprises an upward triangle and

a downward triangle.

The results of the contact force and kinetic force

strongly support the arguments proposed by Bever-

loo’s and Janda’s formula regarding the local properties

around the outlet. Moreover, variations in baffle length

have a significant impact on the contact force and kinetic

force in regions around the outlet. This leads to two dis-

tinct flow states: mass flow far from the outlet and funnel

flow near the outlet. In conditions of large baffle length,

the mass flow pattern is observed over a large−scale re-

gion due to the presence of a significant arch−shaped con-

tact force. This arch−shaped structure provides robust

support for grains located far from the outlet, facilitat-

ing their movement in a mass flow pattern. Conversely,

when a U−shaped structure of the kinetic force emerges,

it indicates the presence of funnel flow. As the baffle

length decreases, the transition point from mass flow to

funnel flow occurs further away from the outlet. This

shift in flow dynamics plays a crucial role in the sudden

increase in flow rate. Additionally, packing density and
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FIG. 6. (Color online). Self−similar horizontal profiles of (a) vertical velocity, (b) packing density, and (c) flow rate, and
corresponding normalized profiles of (a′) vertical velocity, (b′) packing density, and (c′) flow rate for different baffle widths. xc

is the location of outlet center. The outlet size is D = 18 mm.

grain velocity are two key factors that determine the flow

rate. Next, we will examine how these quantities change

in their spatial distribution as the hopper width varies.

The spatial distribution of packing density is first an-

alyzed for the baffle length of WB = 22.5d shown in

Fig.5(a). For the flow far from the outlet, the mass

flow pattern occurs, where the grains are highly crowded

together, ϕ > 0.8. This high packing density leads to

a strong contact force between the grains. The pack-

ing density starts to decrease when the grains reach the

region above the outlet forming an arch−shaped struc-

ture, while still maintaining a high value, ϕ = 0.8 above

the outlet. As the grains continue to flow, approach-

ing the outlet, the packing density decrease further and

the arch−like structure flattens, indicated by ϕ = 0.75.

This suggests that self−gravity has started to dominate

the flow, pushing the grains into a funnel flow pattern.

The packing density continuously decreases, marked by

ϕ = 0.7 and 0.65, until the grains flow across the outlet.

These flow properties in packing density are observed

again for the baffle length of WB/d = 15 as shown in

Fig.5(b). The grains first flow downward in a mass flow

pattern with a high packing density, indicated by ϕ = 0.8.

Around the outlet regions, a funnel flow pattern occurs

in which the packing density decreases gradually, marked

by labels 0.75, 0.7 and 0.65. When the baffle length is

WB/d = 5, a U−shaped structure of packing density la-

beled as 0.8, 0.75 and 0.7 is observed, as shown Fig.5(c).

This characteristic indicates that the transition between

the mass flow pattern and the funnel flow pattern has

occurred. Compared with the results in Figs.5(a)(b), the

position of the transition between the mass flow pattern

and the funnel flow pattern has further shifted upward.

This shift becomes more significant when a small baffle

length is used WB/d = 1.5d shown in Fig.5(d). A series

of U−shaped structure of packing density with a convex

bottom occur, labeled as 0.8, 0.75 and 0.7. Furthermore,

this convex U−shaped structure extends across the out-

let, marked by the label 0.65.

Similarly, two different spatial distributions of grain ve-

locity are reproduced, as shown in Figs.5(a′)(b′) (c′)(d′).

The first one is an open shape, located in regions far

from the outlet. One side of the contour line is located

adjacent the baffle, while the other side extends towards

the hopper wall or the upper side of the hopper. The

second flow state is located around the outlet and forms
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a closed loop. When the size of the outlet decreases,

the occupied region of the former expands, while that of

the latter shrinks. Additionally, the shape of the latter

changes from a half circle to a reversed U−shape. Conse-

quently,the mass and funnel flow patterns occurs in the

occupied regions having the open and closed shapes of

grain velocity. Furthermore, reducing the baffle length

leads to an increase in the height of the transition be-

tween the mass and funnel flow patterns.

Given that the hopper width significantly influences

the spatial distribution flow dynamics in both local and

global scales, it is essential to perform a comprehensive

quantitative analysis of packing density and grain veloc-

ity. Let us first present the horizontal profile of packing

density ϕ at the outlet with a size of D = 18 mm for

different baffle widths, as shown in Fig.6(a). It is evident

that a symmetric profile is observed independently of the

baffle length. The self−similar characteristic is found

when considering the corresponding normalized case us-

ing the maximum packing density ϕc at the outlet center,

as shown in Fig.6(a′). The horizontal profile of the verti-

cal grain velocity vy,c is plotted in Fig.6(b). A decrease

of the baffle length clearly increases the grain velocity in

the vertical direction vy,cm at the outlet. Once again,

the self−similar profile is observed in the correspond-

ing normalized case using the maximum grain velocity in

the vertical direction vy,c at the outlet center shown in

Fig.6(b′). These self−similar properties of packing den-

sity and grain velocity are also maintained in the flow

rate profiles, as shown in Figs.6(c)(c′). Furthermore, al-

though a decrease in baffle length results in an increase

in flow rate, the normalized results for different baffle

widths collapse remarkably well together. These results

provide strong evidence for the presence of self−similarity

in the packing density, grain velocity, and flow rate at the

local region around the outlet, as suggested by Janda et

al.

Now, we consider the influence of the baffle length

on the packing density and the vertical grain velocity

at the outlet center, as shown in Fig.7. It can be ob-

served that the change in hopper width has little im-

pact on the packing density, which remains constant at

ϕc = 0.693, although a slight increase occurs for small

hopper widths. Similarly, the grain velocity in the ver-

tical direction remains constant at v0y,c = 0.306 m/s for

large hopper widths. However, for small hopper widths,

a sudden increase in grain velocity occurs, similar to the

sudden increase observed in flow rate. Therefore, it is

0 5 10 15 20 25 30
0.6

0.7

0.8

0.9

0.15

0.25

0.35

0.45

FIG. 7. (Color online). Packing density (squares) and mean
vertical velocity (circles) at the center of the exit as a function
of baffle length. The width of the outlet is D = 18 mm. The
dashed curve is obtained by using Eq.(6).

reasonable to use a similar equation to describe the rela-

tionship between grain velocity and hopper width.

vy,c = v0y,c[1 + γ1e
−WB

γ2d ] (6)

The simulation results of the grain velocity show good

agreement with Eq. 6, where γ1 = 0.36 and γ2 = 1.29.

Compared with the results shown in Fig. 2, the similarity

between the flow rate and the grain velocity indicates

that the grain velocity plays a more significant role in

determining the flow rate than the packing fraction in

the local region around the outlet.

Since the relationship between the flow rate and grain

velocity has exhibited inherent self−similarity at the out-

let, we now investigate their dependence on a global scale.

To analyze the transition between the mass flow pat-

tern and the funnel flow pattern, we employ the same

method as previously reported in our work[37]. In this

analysis, three narrow rectangular regions are subdivided

into numerous squares with edge length 5mm, as shown

Fig. 8(a). The dependence of the vertical grain veloc-

ity vy on the granular packing height Hy is plotted in

Figs. 8(b)−8(d) for WB/d = 1.5, 5, 15 and 22.5, respec-

tively. Given the symmetry, the results at two sidewalls

are averaged. The transition height HTr is introduced to

describe the position of the transition between the mass

flow pattern and the funnel flow pattern. HTr is ob-

tained when ∆Vy = VC − VW < ∆Vy,max×5%, where VC

and VW are the grain velocities in the vertical direction

at the positions of center and sidewall. When Hy > HTr,

the flow has a uniform grain velocity in the vertical direc-
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FIG. 8. (Color online). (a) Snapshot of extraction area for granular vertical velocity. Vertical grain velocity of selected areas
as a function of the packing height for baffle length (b) WB/d = 22.5, (c) WB/d = 15, (d) WB/d = 5 and (e) WB/d = 1.5. The
width of the outlet is D = 18 mm.
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FIG. 9. Relationship between the transition height and the
baffle length. Circles are the simulation results. Dashed line
is the fitting result by using the equation HTr = H0

Tr[1 +

λ1e
−WB

λ2d ]. Dotted line indicates the critical transition height
H0

Tr = 28.

tion, indicating the mass−flow state. When Hy < HTr,

the funnel−flow state occurs, where grains at the center

of the hopper have higher velocities than those near the

sidewalls. A reduction in hopper width tends to increase

the transition height HTr. Therefore, Fig. 9 plots the

relationship between the transition height and the baf-

fle length. A similar asymptotic form is observed as in

Fig. 2 and Fig. 7. For sufficiently large baffle lengths,

a stable characteristic transition height of H0
Tr = 28 is

obtained. However, for smaller baffle lengths, reducing

the baffle length leads to a significant jump in the transi-

tion height. The existence of the characteristic transition

height indicates that considering only local flow proper-

ties is insufficient for modeling dense flow rates. Con-

sequently, the transition between the mass flow pattern

and the funnel flow pattern on a global scale results in

an exponential increase in the dense flow rate.
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IV. CONCLUSIONS

In this work, both experiments and discrete element

simulations are conducted to explore the influence of hop-

per width on dense granular flow in a 2D hopper. The

flow rate remains constant when the hopper width is

large, whereas a significant increase in flow rate is ob-

served as the hopper width decreases. Additionally, the

relationship between the flow rate and baffle length can

be described by an exponential scaling law over a wide

range of outlet sizes, indicating the self−similarity of flow

properties across different baffle lengths.

The simulation results confirm the existence of the

arch−shaped structure around the outlet for contact

forces and kinetic forces, providing strong support for

Beverloo’s and Janda’s arguments. The spatial distri-

butions of flow properties, such as contact force, kinetic

force, packing density, and grain velocity, indicate that

the flow state has a global similarity exhibiting a tran-

sition between mass flow pattern and funnel flow pat-

tern. Decreasing the baffle length causes the funnel flow

pattern to expand into regions further from the out-

let. Meanwhile, local self−similarities in packing density,

grain velocity, and flow rate are again observed, consis-

tent with Janda’s findings.

The variance in baffle length has little influence on

grain velocity in the local regions around the outlet; how-

ever, a similar exponential change, like the relationship

between dense flow rate and baffle length, is observed for

the first time. Furthermore, the dependence of the transi-

tion height from the mass flow pattern to the funnel flow

pattern on the baffle length is also identified for the first

time. These results demonstrate a global similarity of the

flow behaviors throughout the entire hopper in terms of

exponents. The earlier occurrence of the transition from

the mass flow pattern to the funnel flow pattern leads

to higher grain velocity, resulting in a larger flow rate.

These findings indicate that a similar transition between

the interior flow patterns near and far from the outlet af-

fects the dense flow rate in the hopper. This exponential

similarity also provides further insights for developing a

general constitutive framework for dense granular flow.
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Arévalo, and D. Maza, Silo clogging reduction by the

presence of an obstacle, Phys. Rev. Lett. 107, 278001

(2011).

[48] D. Gella, D. Maza, I. Zuriguel, A. Ashour, R. Arévalo,
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