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Abstract. For the simulation-based design of fiber melt spinning processes, the accurate mod-
eling of the processed polymer with regard to its material behavior is crucial. In this work, we

develop a high-speed elongational rheometer for Carreau-type materials, making use of process
simulations and fiber diameter measurements. The procedure is based on a unified formulation of

the fiber spinning model for all material types (Newtonian and non-Newtonian), whose material

laws are strictly monotone in the strain rate. The parametrically described material law for the
elongational viscosity implies a nonlinear optimization problem for the parameter identification,

for which we propose an efficient, robust gradient-based method. The work can be understood as

a proof of concept, a generalization to other, more complex materials is possible.

1. Introduction

Melt spinning of polymers is an important process for the production of continuous fibers [3],
which is very often used in the technical textile industry, e.g., for the manufacture of hygiene prod-
ucts, filter media, insulation and soundproofing materials, [5]. Synthetic fibers currently dominate
the industrial market due to their comparatively low production costs and wide range of appli-
cations. In the spinning process the molten polymer is forced through a fixed diameter die and
then stretched either by a draw-off device or by aerodynamic stretching via an aspirator. In case
of aerodynamic stretching, an air stream is directed into a tube so that it exerts a force on the
fiber surface, which leads to drawing. Process design and fabric optimization ask for the ability to
simulate the process. Thereby, a major challenge is the accurate modeling of the polymer fibers
with respect to their material behavior.

The elongational (extensional) viscosity relates the extensional stresses to the strain rates and
was first investigated by Trouton in 1906 [13]. He showed that in Newtonian fluids elongational
and shear viscosity just differ by a factor of 3. However, polymers are not necessarily Newtonian
fluids. In the hot spinning regime they might behave like generalized Newtonian fluids where the
scalar-valued viscosity depends not only on temperature but also on strain rate. Various procedures
have been developed to measure elongational viscosity, since it can be not deduced from shear
viscosity information for generalized Newtonian and non-Newtonian fluids. The main disadvantage
of all these devices is that they only work at elongational strain rates of up to 10 s−1. The strain
rates occurring during fiber spinning can be at least one order of magnitude higher, so that the
conventional measurement methods are not applicable [9].

Recently, a novel high-speed elongation rheometer has been introduced in [1]. In a lab, a smaller
spinning apparatus with a single die, correspondingly lower throughput and aspirator was consid-
ered, cf., Fig. 1. The aspirator enables high speed and the generation of higher stretching rates.
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Figure 1. Spinning apparatus with single die and aspirator, used in [1]

To avoid effects such as crystallization, fiber-air interactions an amorphous polymethylmethacry-
late (PMMA) with a linear structure was spun in still, isothermal air. On top of measurements
for fiber diameter and shear viscosity, a rheometer was developed by help of aspirator theory [7],
[10]. Combining it with temperature approximations from Newtonian simulations, the findings sug-
gested a non-Newtonian material behavior described by a Carreau-type model. Concerning fiber
spinning simulations, generalized Newtonian material models differ in the strain rate dependence
of the elongational viscosity, whose handling in principle requires sophisticated material-dependent
numerics.

The aim of this work is the mathematical foundation of the high-speed elongational rheometer
from [1] and its embedding in a closed, consistent simulation framework. We propose a proce-
dure that allows for the unified formulation of the fiber spinning model as boundary value problem
of explicit first order ordinary differential equations for all material types (Newtonian and non-
Newtonian), whose material laws are strictly monotone in the strain rate. This provides a simplifi-
cation and generalization of the numerical treatment and a reduction of the computational complex-
ity. For the class of generalized Newtonian fluids with Carreau-type material model we formulate
the parameterization and determination of the elongational viscosity as a nonlinear optimization
problem and present an efficient, robust gradient-based method for parameter identification. In
contrast to [1], we exclusively rely on the measurements and do without any further assumptions
or heuristics. The study can be understood as a proof of concept for the proposed simulation-based
parameter identification procedure. Application and generalization to other more complex materials
is possible.

The article is structured as follows. Section 2 deals with the fiber spinning simulation model. We
introduce the unified formulation of the model equations for general material laws and present a
collocation-continuation scheme for the numerical treatment. In Section 3 we explain the gradient-
based parameter identification procedure. In Section 4 we show and discuss the identified material
parameters and fiber behavior for the spinning setup taken from [1] and investigate the performance
of our approach. Details to model closure and simulations are provided in the appendix.
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2. Fiber Spinning Simulation Model

In the following we present the fiber spinning model and discuss its numerical treatment. For
the material behavior we consider a parameterically described material law of Carreau-type, which
leads to a problem of parameter identification.

2.1. Fiber model. Uniaxial spinning in the direction of gravity can be described by a stationary one-
dimensional fiber model based on the balances of mass, momentum and energy and on a material
law with strain rate-dependent extensional viscosity. The state variables are the convective speed
u, the contact force N and the temperature T of the fiber, as the mass balance implies a constant
mass flow Q

d

ds
(ρAu) = 0 → Q = ρAu = const

and thus, under the assumption of circular cross-sections, allows the elimination of a potential
geometric state variable for cross-sectional area A or diameter d, i.e.,

A = A(u, ρ) =
Q

ρu
, d = d(u, ρ) = 2

√
Q

πρu
.(1)

The density ρ is treated here as an argument to cover temperature dependencies. The model reads

Q
d

ds
u =

d

ds
N + ρAg + fair

cpQ
d

ds
T = N

d

ds
u− πdα(T − Tair)

N = Aµe(T,
d

ds
u)

d

ds
u

with

ρ = ρ(T ), cp = cp(T ), fair = fair(u, d, s), α = α(u, d, s).

Fiber density ρ and heat capacity cp are considered as temperature-dependent, the elongational
viscosity µe as temperature- and strain rate-dependent. The air force per unit length fair and the
heat transfer coefficient α depend not only on fiber velocity u and diameter d, but also on the
ambient airflow and thus explicitly on the position s. The ambient temperature Tair = Tair(s)
occurs also in the heat transfer. The gravitational acceleration is denoted by g.

We consider spinning processes on the interval s ∈ [0, L], where s = 0 is identified with the nozzle
position or a position near by (e.g., after a die swell not covered by the model) and s = L with the
take-off position or a take-up point. At the take-off we prescribe the fiber velocity or, alternatively,
the diameter. This yields the boundary conditions

T (0) = Tin, u(0) = uin, and u(L) = uout or d(u(L), ρ(T (L)) = dout.

Each dimensional quantity x is non-dimensionalized by help of a typical referential value x◦
according to x = x◦x̃ with dimensionless counterpart x̃. We leave open the exact choice of s◦, u◦,
T◦, ρ◦, cp,◦, µ◦, α◦ and also Q◦, but for simplicity we choose L◦ = s◦, N◦ = Q◦u◦, f◦ = Q◦u◦/s◦,
uin,◦ = uout,◦ = u◦, Tin,◦ = T◦. Since the auxiliary geometric quantities A and d can be inserted
as state functions into the differential equations, it is useful to preserve their form in the non-
dimensionalization, yielding A◦ = Q◦/(ρ◦u◦) and d◦ =

√
A◦. The only remaining model constant

g merges into the dimensionless Froude number. Dropping the superscript ˜ for readability, the
dimensionless system is given by, s ∈ [0, L],

Q
d

ds
u =

d

ds
N +

Q

Fr2
1

u
+ fair(2a)

cpQ
d

ds
T = EcN

d

ds
u− Stπdα(T − Tair)(2b)

Re

Q
ρuN = µe(T,

d

ds
u)

d

ds
u(2c)
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with

ρ = ρ(T ), cp = cp(T ), fair = fair(u, d, s), α = α(u, d, s), d = d(u, ρ) = 2

√
Q

πρu
,

supplemented by

T (0) = Tin, u(0) = uin, and u(L) = uout or d(u(L), ρ(T (L)) = dout(2d)

The dimensionless numbers are the Reynolds number Re (ratio of inertial and viscous forces), the
Froude number Fr (ratio of inertial and gravitational forces), the Eckert number Ec (ratio of the
kinetic energy and enthalpy difference) and the Stanton number St (measure of the relative cooling
intensity during heat transfer),

Re =
ρ◦u◦s◦
µ◦

, Fr =
u◦√
gL◦

, Ec =
u2
◦

cp,◦T◦
, St =

α◦d◦s◦
cp,◦Q◦

Remark 1. Note that the model equations can be simplified by clever choice of typical quantities as
model constants, e.g.,

• choosing Q◦ as the constant mass flux of the problem yields the dimensionless Q = 1
• choosing L◦ = s◦ as the spinning length yields the dimensionless L = 1 and thus s ∈ [0, 1]
• choosing T◦ and u◦ as the temperature and velocity at the nozzle, the boundary conditions
simplify to T (0) = 1 and u(0) = 1 as well as u(L) = Dr with the dimensionless draw ratio
Dr (ratio of take-off and spin velocity)

The simplifications make sense when dealing with a single problem. But if one aims at a common
non-dimensionalization for various scenarios, which differ in the model constants, as it is the case
in optimization, the more general approach should be used.

We assume that the material law Pe(T,
d
dsu) = µe(T,

d
dsu)

d
dsu is strictly monotone in the strain

rate. Then, its inverse P−1
e (T, .) exists and the fiber model can be formulated as boundary value

problem of explicit first order ordinary differential equations. The constitutive equation (2c) par-
ticularly becomes the differential equation for the velocity u,

d

ds
u = P−1

e (T,
Re

Q
ρ(T )uN).

If the inverse is not analytically available, we introduce the strain rate as additional variable ϵ̇,
differentiate the constitutive equation (2c) and use the resulting equation as differential equation
for the strain rate. As boundary condition we pose the constitutive equation at the nozzle,

d

ds
u = ϵ̇(3a)

d

ds
ϵ̇ =

Re
Q (ρNϵ̇+ ρu d

dsN) + (Re
Q uN∂T ρ− ϵ̇∂Tµe)

d
dsT

µe + ∂ϵ̇µeϵ̇
,

Re

Q
ρ(T )uN − µe(T, ϵ̇)ϵ̇

∣∣∣∣
s=0

= 0.(3b)

Note that the positivity of the denominator is hereby ensured by the strict monotony of Pe(T, .).
The broad class of generalized Newtonian fluids satisfies the monotonicity assumption and allows

the (re-)formulation (3), cf., [4]. The Carreau fluid is a type of generalized Newtonian fluid. Its
elongational viscosity in dimensionless form is modeled as

µe(T, ϵ̇) = µe,∞(T ) + (µe,0(T )− µe,∞(T ))
(
1 + De2 (λ(T )ϵ̇)

2
)n−1

2

with power index n ≥ 0, temperature-dependent relaxation time λ as well as zero and infinite strain-
rate viscosities µe,0, µe,∞ and Deborah number De. In the strain thinning regime, n < 1, of interest,
the Carreau model can be considered as interpolation between Newtonian models with µe,0 at ϵ̇ = 0
and µe,∞ for ϵ̇→∞, in particular it holds µe,∞(·) = limϵ̇→∞ µe(·, ϵ̇)≪ µe,0(·). Expecting moderate
strain rates in the application, a simplified Carreau-type model has been proposed in [1], setting
µe,∞(T ) = 0 and λ(T ) = µe,0(T )/K. The simplified model hence depends only on two scalar-
valued parameters n, K and the temperature-dependent zero strain-rate elongational viscosity µe,0.
For n → 1 or K → ∞ it provides Newtonian behavior, µe(·, ·) → µe,0(·). Elongational and shear
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viscosity are proportional, i.e., µe = Trµs. In generalized Newtonian materials, the Trouton number
is Tr = 3. Thus, µe,0 can be prescribed in terms of the zero-shear rate viscosity µs,0, e.g., by help
of a Vogel-Fulcher-Tammann model with material constants µc, B and Vogel temperature TV F . In
this work we follow [1] and consider the five-parametric model for the elongational viscosity,

µe(T, ϵ̇) = µe,0(T )

(
1 + De2

(
µe,0(T )

K
ϵ̇

)2
)n−1

2

(4a)

µe,0(T ) = 3µs,0(T ), µs,0(T ) = µc exp

(
B

T − TV F

)
.

Here, µc, B, TV F can be straightforward determined from shear viscosity measurements for small
shear rates. For mathematical reasons (cf., Sec. 3.3) we introduce κ via

K = exp(κ).(4b)

Then, the identification of the following two scalar-valued material parameters remains

p = (n, κ) ∈ Ωp ⊆ [0, 1]× R(5)

Note that the inverse P−1
e (T, ·) of the resulting material law is not analytically given.

Remark 2. In general, the dimensionless Deborah number characterizes the rheology by representing
the ratio of the relaxation and observation times, i.e., De = λ◦u◦/s◦. In the simplified Carreau-type
model (4a), λ◦ can be traced to µ◦ and K◦, i.e., λ◦ = µ◦/K◦. Thus, since K is subject of our
parameter identification, the Deborah number can here be viewed as a simple scaling factor. It can
be arbitrarily set due to the freedom in K◦.

2.2. Collocation-continuation scheme. Formulating the fiber spinning model as boundary problem
of explicit first-order differential equations, we use a collocation scheme for the numerical approx-
imation and solve the resulting nonlinear system with Newton method. Thereby, we compute the
Jacobian by means of differentiation with complex variables. To provide suitable initializations for
the Newton method and ensure global convergence we embed the collocation into a continuation /
homotopy method. In the homotopy method we consider a family of boundary value problems with
continuation parameter c ∈ [0, 1]. Proceeding from the solution of a simple auxiliary problem for
c = 0, we follow a continuation path and solve a sequence of problems to finally obtain the solution
for our original fiber spinning problem at c = 1.

The family of boundary value problems for the state y = (u,N, T, ϵ̇)T on s ∈ [0, L] with material
model parameter p = (n, κ) and continuation parameter c reads

d

ds
y = f(y;p; c), g(y(0),y(L);p; c) = 0(6)

where

f(y;p; c) =


ϵ̇
fN
fT

(cRe+(1−c)Re0)
Q (ρNϵ̇+ ρufN + uN∂T ρfT )− ϵ̇∂Tµe(p)fT

µe(p) + ϵ̇∂ϵ̇µe(p)



g(y(0),y(L);p; c) =


u(0)− uin

d(u(L), ρ(T (L))− (cdout + (1− c)d(uin, ρ(Tin))
T (0)− Tin

(cRe+(1−c)Re0)
Q ρ(Tin)uinN(0)− ϵ̇(0)µe(Tin, ϵ̇(0);p)


with abbreviations

fN = Qϵ̇− c

(
fair +

Q

Fr2u

)
, fT =

c

cpQ
(EcNϵ̇− Stπdα(T − Tair)).

The isothermal stress-free fiber, i.e., u ≡ uin, N ≡ 0, T ≡ Tin, ϵ̇ ≡ 0, solves the auxiliary problem
with c = 0 for every p ∈ Ωp and acts as initialization for the continuation. Here, Re0 serves as initial



6 KANNENGIESSER, ARNE, BIER, MARHEINEKE, SCHUBERT, AND WEGENER

Reynolds number. Our fiber spinning problem corresponds to c = 1. Details to the step size strategy
of the continuation used in the simulation can be found in Appendix B. For the discretization of
the boundary value problem we use a three-stage Lobatto IIIa formula. The collocation polynomial
provides a once continuously differentiable solution that is fourth-order accurate uniformly in the
interval of integration. Mesh selection and error control are based on the residual of the continuous
solution, [6].

2.3. Parameter dependence. In the following we assume that our fiber spinning model S is well-
posed for every material parameter p ∈ Ωp ⊂ R2, Ωp compact. Then, there exists a unique mapping
between material parameter and fiber state

y : Ωp → (C1([0, L]))4 with S(y(p),p) = 0(7)

given by (2)-(4). On the discrete level we have the analogon

y : Ωp → R4nc with S(y(p),p) = 0.(8)

The nonlinear system S(y(p),p) = 0 consists of the parameter-dependent collocation equations for
the state values on the grid△c, i.e., y(p) ∈ R4nc with |△c| = nc. The function S : R4nc×Ωp → R4nc

is differentiable in y and p. To solve the nonlinear system for fixed p, we apply the Newton method
for which we determine the Jacobian ∂yS by means of differentiation with complex variables, [11].
Note that the regularity of the Jacobian yields the local differentiability of y with respect to p
according to the Implicit Function Theorem, i.e.,

Dpy(p) = (∂yS(y(p),p))
−1 ∂pS(y(p),p).(9)

3. Gradient-based Parameter Identification

The approach for a novel high-speed elongation rheometer by [1] provides estimates for the
material parameters based on measurements of the fiber diameter and further assumptions and
heuristics. Our parameter identification makes only use of the measured data.

3.1. Problem formulation. Let d
(k)
meas ∈ Rn(k)

m be the data vector of measured diameters in the kth
experiment, k = 1, . . . ,M , that is made dimensionless just like the respective model quantity. Our
idea is the identification of the material parameter p ∈ Ωp for the Carreau-like viscosity model (4)
by solving a weighted least-squares problem of the form,

min
p∈Ωp

M∑
k=1

∥d(y(k)(p))− d(k)
meas∥2W(y(k)(p)).

Here,

d(y(k)) ∈ Rn(k)
m , di(y

(k)) = d(u(k)(si), ρ(T
(k)(si))), i = 1, . . . , n(k)

m

are the diameters obtained from our fiber spinning model (7) at the measurement points of the
kth experiment, cf., (1). The considered norm relies on a symmetric positive definite fiber state-

dependent weighting matrix W(y(k)) ∈ Rn(k)
m ×n(k)

m , i.e., ∥x∥2W = ⟨x,Wx⟩ with Euclidean scalar
product ⟨. , .⟩. In the following we discuss the data and specify the weighting strategy.

3.2. Data and weighting strategies. In the spinning process the fiber diameter obeys a monotonically
decreasing behavior along the spinline. However, the measurement data are subject to inaccuracies.
In particular, measurements near the take-up point are susceptible to interference. Hence, we
smooth the data with respect to an ansatz function.

We make use of the fact that the inverse squared diameter behaves like a velocity and consider
the following velocity ansatz function proposed in [1],

uf (s; b, c, v, u0) =
u0 v exp

((
s
c

)b)
(exp

((
s
c

)b)− 1)u0 + v
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Since uf (0; . ) = u0 holds, for each measurement series (spun fiber) k ∈ {1, . . . ,M} we set u0 =

(d
(k)
meas,in)

−2 (inverse squared diameter at or near the nozzle) and determine the remaining param-

eters (b, c, v) ∈ R3 by means of a nonlinear least-squares fit with respect to the (converted) data

{(d(k)meas,si)
−2, i = 1, ..., n

(k)
m } and the relative deviation. Then, we use the smooth diameter profile

d
(k)
fit (s) =

√
1

uf (s; (b, c, v)(k), u
(k)
0 )

,(10)

(b, c, v)(k) = arg min
(b,c,v)∈R3

n(k)
m∑

i=1

[uf (si; b, c, v, u
(k)
0 )(d(k)meas,si)

2 − 1]2

for the identification of the material parameters.
Non-Newtonian material behavior becomes evident at moderate/large strain rates, and, in this

sense, the Carreau-like model can be interpreted as a modification of the Newtonian behavior for
moderate/large strain rates. In the parameter identification, we emphasize regions with pronounced
strain rates and stronger non-Newtonian behavior and hence weight the data with respect to the
strain rates. The optimization problem on the continuous level becomes

min
p∈Ωp

J (p), J (p) =
M∑
k=1

∥
√
ϵ̇(k)(p) [d(u(k)(p), ρ(T (k)(p))− d

(k)
fit ]∥

2
L2([0,L(k)])(11)

with fiber state y(k) = (u,N, T, ϵ̇)(k) of (7) and the Lebesque norm ∥x∥2L2([0,1]) =
∫ 1

0
x(s)2 ds. As

discrete counter part we have

min
p∈Ωp

J(p), J(p) =

M∑
k=1

∥diag(
√

∆(k)) diag(
√
ϵ̇(k)(p)) [d(y(k)(p))− d

(k)
fit ]∥

2
2(12)

in the Euclidian norm ∥ · ∥2 with y(k) ∈ R4n(k)
c solution vector of the collocation (8) and d(y(k)),

ϵ̇(k), d
(k)
fit ∈ Rn(k)

o vectors of respective quantities on the optimization grid △(k)
o , |△(k)

o | = n
(k)
o . We

choose the optimization grid as subset of the collocation grid to avoid additional interpolation. The

vector ∆(k) contains grid size information for the quadrature, ∆
(k)
i = si − si−1, i = 1, ..., n

(k)
o . The

cost functional J can be also expressed in terms of a weighted Euclidian norm on the diameter
information (cf., Sec. 3.1), then the symmetric positive definite weighting matrix is the diagonal
matrix W(y(k)) = diag(∆(k)) diag(ϵ̇(k)).

In the following we aim at solving (12) being a nonlinear least squares problem of the form

min
p∈Ωp

J(p), J(p) = ∥F(Y(p))∥22, Y = (y(1), . . . ,y(M)) : Ωp → R4
∑

k n(k)
c(13)

with continuously differentiable function F : R4
∑

k n(k)
c → R

∑
k n(k)

o . The differentiability of the cost
function J with respect to the material parameter p follows directly from the differentiability of Y,
cf., (9), and since Ωp is compact the minimum exists.

3.3. Algorithmic procedure. A function evaluation of J in (13) is computationally expensive, since
the solving of M boundary value problems is necessary to determine the discretized fiber states
{y(k)(p), k = 1, ...,M}. Solving a fiber spinning problem is in general sophisticated, as the perfor-
mance of the underlying Newton method crucially depends on a good initialization. That is why we
use a continuation framework for the simulation, cf., Sec. 2.2. However, in the context of parameter
identification, we can dispense the continuation routine and instead make use of the iteration pro-
cedure in the optimization. Having computed the fiber state Y(pl) at material parameter pl, we
can use this result as initial guess for computing Y(pl+1), if ∥pl+1−pl∥2 is small enough. Thus, we
apply a trust-region Gauss-Newton method equipped with a suitable upper bound for the allowed
trust region in order to not exceed this range, [2].

The optimization procedure relies on information for first and second derivatives. The gradient
∇J = 2(DyFDpY)T F and the used approximation of the Hessian∇2J ≈ 2(DyFDpY)T (DyFDpY)
depend on the Jacobian DyF of F and on the Jacobian DpY of Y. Whereas DyF is analytically
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available, this is not the case for DpY. An approximation via finite differences is not suitable because
of the expensive function evaluations of Y. Instead, we use the relation from (9) for the numerical
computation; i.e., S(k)(y(k)(p),p) = 0 for all p ∈ Ωp, k = 1, . . . ,M . Summarizing this relation

for all experimental settings, i.e., S(Y(p),p) = (S(1)(y(1)(p),p), . . . ,S(M)(y(M)(p),p)) = 0, we
obtain DpY by solving the linear system

∂yS(Y(p),p)DpY(p) = −∂pS(Y(p),p)

The system matrix is of diagonal block form, each block ∂yS
(i)(y(i)(p),p) is already assembled when

solving the respective fiber spinning boundary value problem. The righthand-side ∂pS contains the
partial derivatives with respect to p which we compute by means of differentiation with complex
variables.

The performance of the trust region method is significantly better when both parameters (n, κ) =
p are of similar magnitude. This is guaranteed by our introduction of κ as substitute for the
original K, κ = ln(K), cf., (4). In the following, in the absence of more precise information, we use
K◦ = 1 Pa as reference, cf., Remark 2, hence 103 < K < 109 can roughly be expected. This provides
a parameter domain Ωp = [0, 1] × [7, 20] for (n, κ). And, no further scalings become necessary in
the optimization scheme.

4. Application and Results

In the following we demonstrate our simulation-based parameter identification procedure for
the elongational viscosity in high-speed spinning. As test setting we consider fiber spinning of
the polymer PMMA7N in a process, where the nozzle has a length of 10−2 m and a diameter of
10−3 m. The spin-line is approximately 0.5 m long. Measurement sets of the fiber diameter are
given with respect to different stencil velocities, i.e., {0.27, 0.53, 1.06} mm/s, and take-up pressures,
i.e., {1, 2, 3} bar. For details to spinning process, measurements and data set we refer to [1]. For a
complete overview of process and material parameters see Table 2.

4.1. Test setting: Data and solver. The underlying data on the measured diameters refer to nine
experiments with different stencil velocities and take-up pressures. The experiments cover ranges of
high and low strain rates. We observe that the measurements are more susceptible to disturbances
at lower strain rates and near the take-up point due to the used aspirator. As example, Fig. 2 shows
the measured diameters along the spin-line for two spun fibers. The disturbances become more
evident in the converted (dimensionless) counterparts d−2 that can be interpreted as velocity. Our
proposed smoothing strategy (10) provides a continuous diameter profile that captures the behavior
near the nozzle very well and suitably balances the noisy data near the take-up point.

Concerning our model-based simulation framework, we refer to Appendix A for the specification of
the used constitutive laws, closure relations and airflow model. The chosen referential values for the
non-dimensionalization are summarized in Table 3. Whereas, for the boundary conditions, the inlet
information uin, Tin is well known from the experimental settings, we adapt the outlet information

dout from the noisy measurements caused by the aspirator. In particular, we set dout = d
(k)
fit (L). We

note that the overall simulated fiber behavior turns out to be robust to small perturbations of the
boundary conditions for dout, although the identified values of the material parameters may slightly
change.

We realize our parameter identification in MATLAB. We use the core of the MATLAB routine
lsqnonlin which implements a subspace trust region method based on [2] and use the predefined
termination criteria. The occurring boundary value problems are solved by means of a collocation-
continuation scheme, where the MATLAB rountine bvp4c is used for the collocation (Lobatto IIIa),

(cf., Appendix B). The evaluation of the cost function J (12) is performed on regular grids ∆
(k)
o

with n
(k)
o = 20. All simulations are performed on a machine with Intel(R) Core(TM) i7-10510U

CPU @ 1.80GHz and 32 GB Ram using Matlab Version R2021a.

4.2. Identified material parameters and fiber behavior. For the given data set we find the material
parameters popt = (n, κ)opt = (0.8, 11.71) as optimal solution of (12), implyingKopt = 1.22 · 105 Pa.
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Figure 2. Data of measured fiber diameters (top) and converted (velocity-like)
counterparts (bottom) with associated fitted profiles along the spin-line for two
different experimental settings (left and right)

The associated diameter profiles and velocity-like counterparts are visualized in Fig. 3 and Fig. 4 for
several experimental set-ups. The parameters popt provide a Carreau-like model with pronounced
non-Newtonian behavior. The differences to the Newtonian behavior (n = 1) are marginal for small
strain rates, but become clearly visible in the experimental set-ups with higher take-up pressures
which cause significant strain rates. The identified material law captures the smoothed measure-
ments in the settings with higher stencil velocities very well. For lower stencil velocities we observe
an overestimate in the velocity-like profiles. In comparison, the Newtonian simulations overestimate
the velocity-like profiles in all settings; this is accompanied by a general underestimation of the di-
ameter profiles. Summing up, the overall approximation quality of the simulation results obtained
with the optimized Carreau-like material law is obviously better than the one with the Newtonian
material law (n = 1). Our results suggest a non-Newtonian behavior of the considered polymer
PMMA7N which confirms the results of the more heuristic approach proposed in [1].
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Figure 3. Diameter profiles over spin-line in different experimental set-ups for
PMMA7N: measured data and associated fit vs. simulated results with popt as well
as n = 1 (Newtonian)
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popt as well as n = 1 (Newtonian)
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Figure 5. Cost function J for n ∈ [0, 1] and κ ∈ [9, 16]

From a mathematical point of view we note that popt is a global minimizer of the cost function J .
In the considered application, the parameter identification is a two-parametric optimization problem.
The underlying low-dimensional parameter space allows the resolution of J , for a visualization of
the cost function see Fig. 5. For n → 1 or large κ, implying K → ∞, the cost function J reaches
a plateau. This comes from the fact that the Carreau-like material law reduces to a strain rate-

independent Vogel-Fulcher-Tammann law for a Newtonian fluid, i.e., µe(T, ϵ̇; (n, κ))
n→1−−−→ µe,0(T )

as well as µe(T, ϵ̇; (n, κ))
κ→∞−−−−→ µe,0(T ). For n < 1 and κ small enough, the effect of the strain

rate-dependent term in µe becomes visible, yielding smaller values of J . However, if n and κ are
chosen too small, the non-Newtonian effect is too strong and the associated simulated fiber diameters
strongly overestimate the measurements. Thus, the values of the cost function rise again and become
even higher than in the Newtonian plateau. Furthermore, it is possible that the simulations fail:
the boundary value problems are not solvable any more as a consequence of the exploding strain
rates at the fiber end due to the unsuitable parameterization. Figure 5 clearly shows that there is a
parameter range, for which the associated Carreau-like viscosity law outperforms the Vogel-Fulcher-
Tammann one of a Newtonian fluid.

With respect to the approach in [1], our results are qualitatively comparable, but of course not
quantitatively. This is due to the fact that in [1] no numerical simulations of a non-Newtonian
material were performed. Moreover, for density and specific heat capacity, information from a
constant model was considered. The determined parameters n = 0.22 and K = 9.4 · 105 Pa are
significantly lower in n and higher in K than ours, implying κ = 13.75. Be that as it may, this
parameter combination does not provide a bad approximation, as can be seen from Fig. 5.

4.3. Solver performance. Any evaluation of the cost function requires the solution of multiple
boundary value problems. Therefore, a detailed resolution of the cost function (as in Fig. 5) is
computationally expensive – and impractical in the general case of underlying higher-dimensional
parameter spaces. The proposed gradient-based optimization procedure requires only the compu-
tation of a few function values to identify the material parameters. It is therefore also applicable to
other higher-dimensional parameter identification problems.

The performance of the optimization scheme strongly depends on balanced parameters of similar
magnitude and on a suitable initial guess / starting point pinit. With respect to the Carreau-like
model, the balance of the material parameters is achieved here by considering κ = ln(K) instead of
K. Starting in the neighborhood of the minimizer, the trust region method quickly converges to it
within a few iterations, see Table 1. Each iteration requires the evaluation of cost function as well as



SIMULATION-BASED HIGH-SPEED ELONGATIONAL RHEOMETER FOR CARREAU-TYPE MATERIALS 13

Table 1. Performance of optimization scheme for different initial guess pinit ∈ Ωp

Initial pinit = (n, κ)init Identified popt = (n, κ)opt Iteration count CPU [s]
0.5 9.21 0.7996 11.7105 8 229
0.7 9.21 0.7996 11.7108 4 64
0.9 9.21 0.7994 11.7142 12 86
0.3 11.51 0.7997 11.7092 9 178
0.5 11.51 0.7996 11.7106 10 120
0.7 11.51 0.7995 11.7120 10 79
0.9 11.51 0.7994 11.7141 9 75
0.3 13.82 0.7993 11.7150 12 100
0.5 13.82 0.7997 11.7116 12 94
0.7 13.82 0.7994 11.7140 9 82
0.9 13.82 0.7995 11.7121 10 87

first and second derivatives, cf., Sec. 3.3, and takes a CPU time of about 9 seconds. Note that a speed
up could be achieved by parallelization, as the underlying M boundary value problems are solved
sequentially here. However, in case of an unsuitable initial guess, the optimization method might
fail. We avoid trial-and-error-strategies and instead propose a heuristic to determine an appropriate
pinit. Without knowledge about the exact profile of the cost function, the consideration of some
limits allows for an efficient heuristic procedure. The Newtonian limit (n = 1 or K = exp(κ)→∞)
can be excluded as starting point as there are zero directional derivatives with respect to κ in case
of n = 1 as well as almost zero directional derivatives with respect to κ and n in case of large
κ, causing a stagnation of the optimization scheme. However, as the Carreau-like viscosity model
simplifies to the Vogel-Fulcher-Tammann one for a Newtonian fluid as n → 1 and K → ∞, it is
promising to reverse the transition and look for a starting point by slowly adding the non-Newtonian
effects. Hence, we fix n to a moderate value, n = ninit < 1, and use the Newtonian results for a
large κ as reference. Then, we successively decrease κ by a factor 1 and evaluate the cost function,
until we observe significant changes in J . The resulting parameter tuple is then used a initial guess
for the trust region method. The additional computational effort is rather low. The boundary
values problems occurring in the cost function evaluations are almost identical and thus efficiently
solvable, if the Newtonian results are used for initialization. The start point heuristic is depicted

Algorithm 1: Starting point heuristic

input : J : objective function
ninit: initialization of n, ninit < 1
κl, κu: lower and upper bound for κ

output: starting point pinit = (n, κ)

κ← κu ;

J1 ← J(1, κ) ;

J2 ← J(ninit, κ) ;

relDif ←
∣∣∣∣J1 − J2

J1

∣∣∣∣ ;
while (relDif < 1

10) and (κ > κl) do
κ← κ− 1;

J2 ← J(ninit, κ) ;

relDif ←
∣∣∣∣J1 − J2

J1

∣∣∣∣ ;
end

pinit ← (ninit, κ) ;
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in Algorithm 1. We use here ninit = 0.5 and κ ∈ [κl, κb] = [7, 20]. Note, while the optimization
scheme is directly applicable to other, also higher-dimensional, parameter identification problems,
the proposed start point heuristic is problem-tailored and must be adapted if the material law or
its parameterization is changed.

5. Conclusion

This work presents a simulation-based procedure for the identification of material parameters
in fiber spinning processes. The study acts as a proof of concept. Presupposing a Carreau-type
material law, the elongational viscosity of PMMA is determined in a high-speed setup on top of fiber
diameter measurements. The gradient-based optimization shows to be robust and efficient. The pre-
sented framework is straightforward applicable to generalized Newtonian fluids with parametrically
described material law.

Appendix A. Model Closure

The appendix provides the used models for the aerodynamic forces fair and the heat transfer
coefficient α, as well as the models for the density ρ and the specific heat capacity cp of the considered
material. Moreover, Table 2 and Table 3 give an overview of the process and physical parameters
as well as the reference values used in the non-dimensionalization.

To distinguish between the dimensional and non-dimensional quantities, we proceed like in the
beginning of Sec. 2.1, where the dimensionless counterpart to the dimensional quantity x is denoted
by x̃. The aerodynamic forces fair are described by the air drag model F from [8]. The dimensional
formulation for a general flow situation reads

fair(τ ,vrel, ν∗, ρ∗, d) =
ρ⋆ν

2
∗

d
F(τ ,

d

ν∗
vrel)

with (normalized) fiber tangent τ , relative velocity between air and fiber vrel = v∗ − v and fiber
diameter d. The aerodynamic quantities are marked with ⋆, i.e., air density ρ∗ and kinematic
viscosity ν∗. The dimensionless air drag function F is modeled in terms of the tangential and
normal components of the relative velocity, i.e.,

F(τ ,v) = vnr
δ
n(vn)n+ vτr

δ
τ (vn)τ ,

with vτ = v · τ , vn = v · n and n = v − vττ/∥v − vττ∥. The resistance coefficients rδn and rδτ are
regularized with respect to the slenderness ratio δ. The non-dimensional formulation

f̃air(τ , ṽrel, ν̃∗, ρ̃∗, d̃) =
A∗

Re2∗

ρ̃⋆ν̃
2
∗

d̃
F(τ ,Re∗

d̃

ν̃∗
ṽrel), A∗ =

ρ∗,◦d◦u
2
◦

f◦
, Re∗ =

d◦u◦

ν∗,◦

relies on the characteristic air-associated Reynolds number Re⋆ and the air drag number A⋆ with
f◦ = Q◦/(L◦u◦).

The heat transfer coefficient α depends additionally on the specific heat capacity cp,⋆ and the
heat conductivity λ⋆ of the air. It is modeled in terms of the Nusselt function N , cf., [14, 12].
The non-dimensional variant relies on the characteristic air-associated Reynolds number Re⋆, the
characteristic Nusselt number Nu⋆ and the Prandtl number Pr⋆,

α(τ ,vrel, ν∗, ρ∗, cp,∗, λ∗, d) =
λ∗

d
N (

d

ν∗
vrel · τ ,

d

ν∗
∥vrel∥2,

cp,∗ρ⋆ν∗
λ∗

),

α̃(τ , ṽrel, ν̃∗, ρ̃∗, c̃p,∗, λ̃∗, d̃) =
1

Nu∗

λ̃∗

d̃
N (Re∗

d̃

ν̃∗
ṽrel · τ ,Re∗

d̃

ν̃∗
∥ṽrel∥2,Pr∗

c̃p,∗ρ̃⋆ν̃∗

λ̃∗
),

Nu∗ =
α◦d◦
λ∗,◦

, Pr∗ =
cp,⋆,◦ρ⋆,◦ν⋆.◦

λ∗,◦

In the spinning process under consideration, the air is at rest (v⋆ = 0) and the fiber is straight, so
vrel = −uτ . Hence, the air drag model simplifies to a scalar-valued function with Stokes resistance
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Table 2. Process and physical parameters

Description Symbol Value Unit
Fiber length L 0.51 m
Temperature at nozzle Tin 513.15 K
Density coefficient aϱ -0.964 kg/(m3K)
Density coefficient bϱ 1572.33 kg/(m3)
Specific heat capacity coefficient acp 3.2 J/(kgK2)
Specific heat capacity coefficient bcp 648.22 J/(kgK)
VFT parameter µc 3.7074 · 10−4 Pa·s
VFT parameter B 3649 K
VFT parameter TV FT 273.15 K
Air mass density ρ∗ 1 kg/m3

Air specific heat capacity coefficient cp,∗ 1000 J/(kgK)
Air kinematic viscosity ν∗ 2 · 10−5 m2/s
Air heat conductivity λ∗ 0.031 W/(mK)

Table 3. Reference values for non-dimensionalization

Description Symbol Value Unit
Mass flow Q◦ 3.08 · 10−5 kg/s
Length scale L◦ 0.51 m
Velocity u◦ 0.0283 m/s
Temperature T◦ 513.15 K
Mass density ρ◦ 1.077 · 103 kg/m3

Specific heat capacity coefficient cp,◦ 2.2903 · 103 J/(kgK)
Dynamic viscosity µ◦ 1.4865 · 103 Pa·s
Laminar heat transfer coefficient α◦ 12.762 W/(m2K)
Air mass density ρ∗,◦ 1 kg/m3

Air specific heat capacity coefficient cp,∗,◦ 1000 J/(kgK)
Air kinematic viscosity ν∗,◦ 2 · 10−5 m2/s
Air heat conductivity λ∗,◦ 0.031 W/(mK)

coefficient rδτ,S , i.e.,

fair(u, d, s) = −uµ∗(s) r
δ
τ,S , rδτ,S =

2π

ln( 4δ )
+

π/2

ln2( 4δ )

We use here δ = 10−3. The heat transfer coefficient becomes

α(u, d, s) =
λ∗(s)

d
N (− du

ν∗(s)
,

du

ν∗(s)
,
cp,∗ρ⋆ν∗

λ∗
(s))

Moreover, mass density, specific heat capacity, kinematic viscosity and heat conductivity of the air
are taken here as constant. The exact values can be found in Table 2.

The material laws for the mass density ρ and the specific heat capacity cp of the polymer are
assumed to be linearly dependent on the fiber temperature T [K], i.e.,

g(T ) = agT + bg, g ∈ {ρ, cp}.
The model parameters ag and bg, specified in Table 2, are obtained through experimental measure-
ments and a corresponding linear least squares fit.

Appendix B. Numerical Solution of Boundary Value Problems

For numerically solving the fiber boundary value problem the collocation method is embedded into
a continuation procedure. The introduced continuation parameter c ∈ [0, 1] regulates the influence
of the physical effects in the state equations and boundary conditions, cf., (6). Proceeding from the
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Algorithm 2: Adapter – continuation with step size strategy

input : f : parameterized right hand side of ODE
g: parametrized boundary conditions
y0: solution for c0 = 0
∆c0: initial step size
µ: shrinking factor
ν1: shrinking factor
ν2: enlarging factor

output: solution y∗ of BVP given by f and g

c0 ← 0 ; j ← 0 ;

∆c0 ← ∆c0;

while cj < 1 do
ỹ1 ← solve BVP for cj +∆cj and initial guess yj ;

ŷ1 ← solve BVP for cj +∆cj/2 and initial guess yj ;

ŷ2 ← solve BVP for cj +∆cj and initial guess ŷ1;

if Newton method diverges then

∆cj ← ∆cj
µ ;

continue
end

y∗ ← ỹ2;

if computation of ỹ2 and ỹ3 need more evaluations of f than computation of ỹ1 then
∆cj ← ν1∆cj ;

else
∆cj ← ν2∆cj ;

end

cj+1 ← min(1, cj +∆cj);

yj+1 ← ỹ3 ;

j ← j + 1;

end

solution of a simple auxiliary problem for c0 = 0, we follow a continuation path cj = cj−1 +∆cj−1,
j = 1, ..., n, and solve a sequence of problems to finally obtain the solution for our original fiber
spinning problem at cn = 1. The core idea of the step size strategy is to compare the effort
required to solve the boundary value problem for a whole step ∆c with the effort required to solve
two boundary value problems for the halved step ∆c/2. The computational effort is measured in
evaluations of the right hand side. For details see Algorithm 2.

As initial step size we choose ∆c0 = 0.1. Furthermore we choose the enlarging factor ν1 = 3
2 and

the shrinking factor ν2 = 2
3 .

If a sufficiently good initial guess is available, the direct solution of the BVP with bvp4c is
much faster than the solution through Adapter, since in Adapter there have to be solved way more
boundary value problems which finally raises computational time. This is also the reason for the
outliers with respect to computational time in Table 1. For parameter p = (0.3, 11.51) the initial
guess is not sufficiently good, so bvp4c is not able to determine a solution, and therefore Adapter
is used, resulting in higher computational demand.
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