
Macroscopic auxiliary asymptotic preserving neural
networks for the linear radiative transfer equations

Hongyan Lia, Song Jiangb, Wenjun Sunb, Liwei Xua,∗, Guanyu Zhouc

aSchool of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu
Sichuan 611731, China

bInstitute of Applied Physics and Computational Mathematics, Beijing 100094, China
cInstitute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China,

Chengdu Sichuan 611731, China

Abstract

We develop a Macroscopic Auxiliary Asymptotic-Preserving Neural Network (MA-
APNN) method to solve the time-dependent linear radiative transfer equations (LRTEs),
which have a multi-scale nature and high dimensionality. To achieve this, we utilize
the Physics-Informed Neural Networks (PINNs) framework and design a new adaptive
exponentially weighted Asymptotic-Preserving (AP) loss function, which incorporates
the macroscopic auxiliary equation that is derived from the original transfer equation
directly and explicitly contains the information of the diffusion limit equation. Thus,
as the scale parameter tends to zero, the loss function gradually transitions from the
transport state to the diffusion limit state. In addition, the initial data, boundary condi-
tions, and conservation laws serve as the regularization terms for the loss. We present
several numerical examples to demonstrate the effectiveness of MA-APNNs.

Keywords: Linear radiative transfer equation, macroscopic auxiliary equation,
adaptive exponential weight, asymptotic-preserving neural network

1. Introduction

The kinetic equations describe the motion of particles in a medium, including col-
lision and absorption. These equations are defined in phase space and can involve
multiple spatial and temporal scales, as well as nonlocal operators, making numeri-
cal simulations difficult[1–4]. LRTEs, as a typical kinetic model, find wide-ranging
applications in fields such as astrophysics, weapon physics, inertial/magnetic confine-
ment fusion[5–7], and more. Accurately simulating LRTEs is nontrivial, mainly due to
two challenges. The first challenge is high dimensionality. LRTEs describe the evolu-
tion of the radiation density function of a vast number of photons, which, in the most
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general cases, is a seven-dimensional problem. When uncertainties are factored into
the equations, the dimensionality increases further[8–10]. The second challenge is the
multiscale features caused by different opacities of the background materials. LRTEs
typically involve multiple spatial and/or temporal scales, characterized by the Knudsen
number, which is the dimensionless mean free path. When the Knudsen number is
tiny, LRTEs can be approximated by the diffusion limit equations[1]. To preserve the
propagation properties of photons in different optical regions, the multiscale modeling
approaches are introduced to the numerical simulation[11, 12]. When coupled radia-
tion transport and diffusion models are solved using the same spatial grid, the mesh size
should be roughly equivalent to the mean free path. This requirement can make com-
putations incredibly expensive in optically thick mediums where the Knudsen number
is very small.

Efficient computational methods that can deal with high dimensionality and multi-
scale characteristics are highly desirable. Classical tools such as the Implicit Monte
Carlo (IMC) method [13–17] are capable of handling high dimensionality, but the con-
vergence rate is low, and there are statistical noises. On the other hand, Asymptotic-
Preserving (AP) schemes, which are uniformly stable with respect to the scaling pa-
rameter, are proposed to address the multiscale problem. As the limit of the Knudsen
number approaches zero, the solution of the AP schemes converges to the diffusion
limit case. The AP schemes were initially proposed to solve the neutron transport prob-
lems by Larsen and Keller[18], Larsen[19–21], and then improved by Larsen, Morel
and Miller [22], Larsen and Morel[23], Jin and Levermore[24, 25]. For the unsteady
cases, [26, 27] also constructed the AP schemes by decomposing the distribution into
the equilibrium and disturbance parts. These methods were further developed and ex-
tended to other multiscale kinetic models[3, 28–30].

In recent years, deep learning methods and deep neural networks (DNNs) have
been developed vigorously and achieved some success in solving PDEs [31–35]. Vari-
ous approaches have been proposed, including the Physics-Informed Neural Networks
(PINNs) [36] and the deep Galerkin method (DGM) [37] based on the least-squares
formulation, the deep Ritz method (DRM) [38] utilizing the variational formulation,
and others [39–41]. Compared to traditional mesh-based methods, the DNNs have
an advantage as mesh-free methods in solving problems with complex geometric do-
mains and high dimensions [42, 43]. Furthermore, DNNs use automatic differentiation,
which avoids truncation errors in discretization. However, DNN methods have some
drawbacks, including lack of high accuracy, long training time due to a large num-
ber of network parameters, and the use of stochastic gradient method for optimizing
high-dimensional non-convex functions[44].

The PINNs, Model-Operator-Data Network (MOD-Net), and Physics-Informed
DeepONets (PIDONs) have been applied to solve steady and unsteady linear radiative
transfer models[32, 45–49]. For MOD-Net method, the DNN is used to parameterize
the Greens function and the neural operator is obtained to approximate the solution.
Combining the operator universal approximation theory and PINN’s idea, the PIDON
method can solve a class of PDEs from the learned continuous operators. We find
that the vanilla PINN, PIDON, or MOD-Net approach, has difficulties dealing with
the multiscale characteristics. The loss function of these methods deteriorates as the
scale parameter decreases to zero, which fails to capture asymptotic limits and usually
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tends to learn a simplified model during the training process. To tackle this problem,
the Asymptotic-Preserving Neural Networks (APNNs)[4] and Model-Data APNNs[50]
are designed by using the micro-macro decomposition to solve the time-dependent lin-
ear transport equations and gray radiative transfer equations, respectively. In addition,
[51] develops the APNN method based on the even-odd decomposition for the multi-
scale kinetic equations. The micro-macro and even-odd decomposition techniques have
also been applied to develop the Asymptotic-Preserving Convolutional Deep Operator
Networks (APCONs) for the time-dependent linear radiative transport problem[52].

In this work, we devise a novel loss function incorporating the macroscopic auxil-
iary equation, which is capable of capturing the diffusion limit behavior as the scale pa-
rameter approaches zero. We derive the macroscopic auxiliary equation for the LRTEs
by repeatedly substituting the original equation into itself and integrating it with respect
to the angle direction. This was inspired by the idea of deriving the diffusion limit sys-
tem for the radiative heat transport equation as described in [53]. The macroscopic
auxiliary equation we derived holds true for smooth solutions and can be considered
a perturbation of the diffusion limit equation when the scale parameter is small. In
addition, we introduce an exponential weight that depends on the scale parameter. This
weight is used to combine the original equation’s loss with that of the macroscopic
auxiliary equation, to achieve the AP property. We also consider the mass conservation
constraints of the radiation intensity under periodic boundaries, as well as the bound-
ary and initial hard constraints under inflow and periodic boundaries. To evaluate the
effectiveness of the proposed Macroscopic Auxiliary APNN (MA-APNN) method, we
simulate low and high-dimensional linear transport equations under transport and diffu-
sion regimes. We investigate various scenarios, such as initial layer problems, constant
or variable scattering problems, uncertainty quantification problems, and more. Com-
pared to PINNs[36], MA-APNNs have great advantages in solving diffusion dominat-
ing problems. Different from the APNNs in [4, 51] where the macro-micro or even-odd
decomposition is used, it does not need the decomposition of radiation intensity in MA-
APNNs, so the network’s construction is simple, and in turn cause the training time is
reduced greatly with the comparable prediction accuracy as APNNs[4] under diffusion
case.

The rest of this paper is organized as follows. In Section 2, we introduce the time-
dependent linear radiative transfer model and its corresponding diffusion limit equa-
tion. In Section 3, we present the motivation of the MA-APNN method and define the
new AP loss function. Numerous numerical experiments, including both multiscale
and high dimensional uncertainty problems, are carried out in Section 4 to validate the
efficiency of MA-APNNs. A conclusion remark is given in Section 5.

2. Linear radiative transfer equations

The linear radiative transfer equations describe the radiation photons transport and
the energy exchange with the background materials. We denote by f (t,r,Ω) the ra-
diation intensity of photons located at the space point r = (x,y,z) ∈ D in time t ∈ τ

and propagating in direction in Ω = (ξ ,η ,µ) ∈ S2, where D is a bounded domain in
R3 and S2 is the unit sphere. The scaled form of the LRTEs with initial and boundary
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conditions is stated as follows.

ε
2 ∂ f

∂ t
+ εΩ ·∇r f = σ

(
1

4π

∫
S2

f dΩ− f
)
− ε

2
α f + ε

2G in τ ×D×S2, (2.1a)

B f = fb on τ ×∂D×S2, (2.1b)

f (0,r,Ω) = f0(r,Ω) in D×S2, (2.1c)

where σ(r) is the scattering coefficient, α(r) the absorption coefficient, G(r) the inter-
nal source, and ε > 0 the Knudsen number. The average of f (t,r,Ω) on S2 is called the
incident radiation ρ(t,r), saying

ρ := ⟨ f ⟩= 1
4π

∫
S2

f dΩ.

Integrating (2.1a) with respect to Ω, we obtain

ε
2 ∂ρ

∂ t
+ ε⟨Ω ·∇r f ⟩=−ε

2
αρ + ε

2G in τ ×D. (2.2)

Furthermore, integrating (2.2) with respect to r and applying the integration by parts,
we get the mass conservation equation:

ε
2 d

dt

∫
D

ρdr+ ε
1

4π

∫
∂D

∫
S2

Ω ·nr f dΩdr =−ε
2
α

∫
D

ρdr+ ε
2
∫

D
Gdr, (2.3)

where nr represents the unit outer normal to ∂D at position r. In the following, we
state the boundary condition (2.1b) in detail, and introduce the 1D and 2D models, the
uncertainty quantification model, and the diffusion limit equation.

2.1. The boundary conditions
We separate the boundary Γ = τ × ∂D× S2 into the inflow and outflow parts as

follows:

Γ− := {(t,r,Ω) ∈ Γ : Ω ·nr < 0} , Γ+ := {(t,r,Ω) ∈ Γ : Ω ·nr > 0} .

In this work, we consider two types of boundary conditions for LRTEs.

(1) The inflow boundary condition

f (t,r,Ω) = fB(t,r,Ω) (t,r,Ω) ∈ Γ−, (2.4)

where fB(t,r,Ω) is a given function.
(2) If D is symmetric, we can enforce the periodic boundary condition [30]

f (t,r,Ω) = f (t,S (r),Ω) (t,r,Ω) ∈ Γ, (2.5)

where S : ∂D → ∂D is a one-to-one symmetry mapping satisfying nr = −nS (r).
At this time, we see from (2.3) that

d
dt

∫
D

ρdr+
∫

D
αρdr−

∫
D

Gdr = 0. (2.6)
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2.2. The 1D and 2D linear models

In one-dimensional case, i.e., (r,Ω) = (x,µ) ∈ (xL,xR)× (−1,1), the LRTEs be-
comes

ε
2
∂t f + εµ∂x f = σ

(
1
2

∫ 1

−1
f dµ − f

)
− ε

2
α f + ε

2G, (2.7)

with the isotropic inflow boundary condition

f (t,xL,µ > 0) = fL(t,µ), f (t,xR,µ < 0) = fR(t,µ), (2.8)

or the periodic boundary condition

f (t,xL,µ) = f (t,xR,µ), (2.9)

and the initial condition
f (0,x,µ) = f0(x,µ). (2.10)

In two-dimensional case, i.e., (r,Ω) = ((x,y),(µ,ξ )) ∈ D×S1, (2.1a) is replaced by

ε
2
∂t f + εΩ ·∇r f = σ

(
1

2π

∫
S1

f dv− f
)
− ε

2
α f + ε

2G. (2.11)

where D ⊂ R2 and S1 = {(ξ ,η) : ξ 2 +η2 = 1}.

2.3. The uncertainty quantification (UQ) model

In practice, we are interested in the LRTEs that contains uncertainty in the collision
cross section, source, initial or boundary data[10]. The uncertainty is characterized by
the random variable z = (z1,z2, ...,zm) ∈ Rm with the probability density ω(z). In
our numerical simulation, we consider the spatial 1D LRTEs with the random input z,
where the radiation intensity f (t,x,µ,z) satisfies the equation

ε
2
∂t f + εµ∂x f = σ(z)

(
1
2

∫ 1

−1
f dµ − f

)
− ε

2
α(z) f + ε

2G(z), (2.12)

and the initial and inflow boundary conditions

f (0,x,µ,z) = f0(x,µ,z), (2.13a)
f (t,xL,µ,z) = fL(t,µ,z) (µ > 0), (2.13b)
f (t,xR,µ,z) = fR(t,µ,z) (µ < 0). (2.13c)

2.4. The diffusion limit equation

As the Knudsen number ε → 0, the radiation intensity f (t,r,Ω) converges to the
average density ρ = ⟨ f ⟩ and satisfies the asymptotic diffusion limit equation[26], i.e.,

f = ρ, (2.14a)

∂tρ −⟨Ω2⟩∇r

(
1
σ

∇rρ

)
+αρ −G = 0, (2.14b)
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where

⟨Ω2⟩ :=
1

4π

∫
S2

µ
2dΩ =

1
3

1
4π

∫
S2

µ
2 +ξ

2 +η
2dΩ =

1
3

1
4π

∫
S2

1dΩ =
1
3
.

In 1D case, ⟨Ω2⟩ := 1
2
∫ 1
−1 µ2dµ = 1/3, while in 2D case, ⟨Ω2⟩ := 1

2π

∫
S1 ξ 2dΩ = 1/2.

An asymptotic-preserving scheme for (2.1) should be uniformly stable with respect to
ε and lead to an accurate approximation to the diffusion limit equation (2.14b) when ε

approaches zero.

3. Macroscopic auxiliary asymptotic preserving neural networks

We first introduce the notations for DNNs. Given an input x=(t,r,Ω)∈ τ×D×S2,
the output of the L-layer feedforward neural network fθ is defined recursively as

f [0]
θ
(x) = x,

f [l]
θ
(x) = σ

h ◦
(

W [l−1] f [l−1]
θ

(x)+b[l−1]
)
, l ≤ l ≤ L−1,

fθ (x) = f [L]
θ
(x) = σ

o ◦
(

W [L−1] f [L−1]
θ

(x)+b[L−1]
)
,

(3.1)

where W [l] ∈ Rml+1×ml and b[l] ∈ Rml+1 represent weight matrix and bias vector, re-
spectively, σh is the nonlinear activation function of the hidden layers, and σo is a
specially designed activation function of the output layer. The common choices of σh

are the sigmoid function, the hyperbolic tangent function, the ReLU function, and so
on. The notation “◦” means entry-wise composition. For simplicity, we denote the set
of parameters by θ and represent the network by a list, i.e., [m0,m1, ...,mL], where m0
and mL are the dimensions of the input and the output.

Solving PDE using DNNs involves three critical steps. Firstly, we parameterize
the solution of PDE with a deep neural network. Secondly, we design the popula-
tion/empirical loss function associated with the PDE, which evaluates the error be-
tween the approximate and exact solutions. Finally, we select appropriate optimization
algorithms to minimize the loss function.

According to [4], for the multiscale problem, it is crucial to build a loss function
that preserves the asymptotic property. In the following, we first briefly explain why the
vanilla PINNs fail to resolve the multiscale LRTEs. Then, we present a formal deriva-
tion of the macroscopic auxiliary equation. After that, we build a loss function incorpo-
rating the macroscopic auxiliary equation and demonstrate the asymptotic-preserving
property.

3.1. The vanilla PINNs fail to resolve the multiscale LRTEs
Let us consider the LRTEs with periodic boundary condition (2.5), which satisfies

the mass conservation law (2.6). To parametrize the nonnegative radiation intensity
f (t,r,Ω), we use the neural network f nn

θ
(t,r,Ω) with the nonnegative activation func-

tion σo(x) = e−x at the output layer, and adopt the least square of the residual of
LRTEs as the loss function:

Lε
PINNs = Lε

PINNs,g +Lε
PINNs,b +Lε

PINNs,i +Lε
PINNs,c,
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where

Lε
PINNs,g = λg

∥∥ε
2
∂t f nn

θ + εΩ ·∇r f nn
θ −σ (⟨ f nn

θ ⟩− f nn
θ )+ ε

2
α f nn

θ − ε
2G

∥∥2
L2(τ×D×S2)

,

Lε
PINNs,b = λb ∥B f nn

θ − fb∥2
L2(τ×∂D×S2) ,

Lε
PINNs,i = λi ∥ f nn

θ (0)− f0∥2
L2(D×S2) ,

Lε
PINNs,c = λc

∥∥∥ε∂t

∫
D
⟨ f nn

θ ⟩dr+
∫

∂D
⟨Ω ·nr f nn

θ ⟩dr+ ε

∫
D

α ⟨ f nn
θ ⟩dr− ε

∫
D

Gdr
∥∥∥2

L2(τ)
.

Here, λg,λi,λb and λc are the weight parameter to be tuned. Note that Lε
PINNs,c is

the residual of the mass conservation constraint. If the periodic boundary condition is
imposed, then, by (2.6),

Lε
PINNs,c = λc

∥∥∥∂t

∫
D
⟨ f nn

θ ⟩dr+
∫

D
α ⟨ f nn

θ ⟩dr−
∫

D
Gdr

∥∥∥2

L2(τ)
.

When ε is not too small, one can expect to obtain the approximate solution by mini-
mizing the above loss function Lε

PINNs. However, as ε → 0, we find that

Lε
PINNs,g → λg ∥−σ (⟨ f nn

θ ⟩− f nn
θ )∥2

L2(τ×D×S2) ,

which is nothing but the residual of the following equation

σ(⟨ f ⟩− f ) = σ(ρ − f ) = 0.

Apparently, it is not the desired diffusion limit equation (2.14b).
If we add the residual of the diffusion limit equation

Lε
PINNs,d = λd

∥∥∥∥∂t ⟨ f nn
θ ⟩−

〈
Ω

2〉
∇r

(
1
σ

∇r ⟨ f nn
θ ⟩

)
+α ⟨ f nn

θ ⟩−G
∥∥∥∥2

L2(τ×D)

,

to the total loss directly, saying

Lε
PINNs = Lε

PINNs,g +Lε
PINNs,b +Lε

PINNs,i +Lε
PINNs,c +Lε

PINNs,d ,

then we will recover the diffusion limit system as ε → 0. But, unfortunately, it fails to
solve the problem with large or medium ε , even if we tune the weight parameters λg
and λd depending on ε .

3.2. The macroscopic auxiliary asymptotic-preserving neural networks (MA-APNNs)

The above argument reveals that the vanilla PINNs are unsuitable for dealing with
the multiscale feature. In this subsection, we will devise a new asymptotic-preserving
loss function to tackle this problem. As a preliminary, we derive a macroscopic aux-
iliary equation from (2.1a). Then we demonstrate that the proposed loss function in-
corporating the macroscopic auxiliary equation is applicable to solve the LTREs for
arbitrary ε and the solution converges to the diffusion limit as ε → 0.
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3.2.1. The macroscopic auxiliary equation
From (2.1a), we see that

f = ⟨ f ⟩− ε2

σ
∂t f − ε

σ
Ω ·∇r f − ε2

σ
α f +

ε2

σ
G. (3.2)

Replacing the f in ε2

σ
∂t f and ε

σ
Ω ·∇r f by the right-hand side of (3.2), and arranging

the result by the order of ε , we get

f = ⟨ f ⟩− ε
1
σ

Ω ·∇r ⟨ f ⟩− ε
2
(

1
σ

∂t ⟨ f ⟩− 1
σ

Ω ·∇r(
1
σ

Ω ·∇r f )+
1
σ

α f − 1
σ

G
)

+ ε
3
(

1
σ

∂t(
1
σ

Ω ·∇r f )+
1
σ

Ω ·∇r
( 1

σ
∂t f +

1
σ

α f − 1
σ

G
))

+ ε
4
(

1
σ

∂t
( 1

σ
∂t f +

1
σ

α f − 1
σ

G)

)
.

Let us pay attention to the second term with order ε2, namely, ε2

σ
Ω ·∇r(

1
σ

Ω ·∇r f ). We
substitute the right side of (3.2) for the f in this term, arrange the new equation by the
order of ε and obtain

f =⟨ f ⟩− ε

σ
Ω ·∇r⟨ f ⟩− ε2

σ

(
∂t⟨ f ⟩−Ω ·∇r(

1
σ

Ω ·∇r⟨ f ⟩)+α f −G
)

+ ε
3A ( f ,G)+ ε

4B( f ,G),

(3.3)

where

A ( f ,G) =
1
σ

∂t
( 1

σ
Ω ·∇r f

)
+

1
σ

Ω ·∇r

(
1
σ

(
∂t f +α f −G−Ω ·∇r(

1
σ

Ω ·∇r f )
))

,

B( f ,G) =
1

σ2 ∂t
(
∂t f +α f −G

)
− 1

σ
Ω ·∇r

(
1
σ

Ω ·∇r

( 1
σ

(
∂t f +α f −G

)))
.

Integrating (3.3) with respect to Ω, in view of ρ(t,r) = ⟨ f ⟩ and ⟨ρ⟩= ρ , we arrive

∂tρ −⟨Ω2⟩∇r

(
1
σ

∇rρ

)
+αρ −G− ε⟨σA ( f ,G)⟩− ε

2⟨σB( f ,G)⟩= 0, (3.4)

where ⟨Ω2⟩ := ⟨µ2⟩ and we have used

⟨µ⟩= ⟨ξ ⟩= ⟨η⟩= 0 (i.e., ⟨Ω⟩= 0),

⟨µ2⟩= ⟨ξ 2⟩= ⟨η2⟩, ⟨µξ ⟩= ⟨µη⟩= ⟨ξ η⟩= 0.

We call (3.4) the macroscopic auxiliary equation, which holds true if the solution of
(2.1a) is smooth enough such that the high-order differentials in (3.4) make sense.
When ε is tiny, we can regard (3.4) as the diffusion limit equation (2.14b) with the per-
turbation ε⟨σA ( f ,G)⟩+ ε2⟨σB( f ,G)⟩. When ε → 0, a formal calculation indicates
that (2.1a) and (3.4) approaches the expected diffusion limit system:

σ (ρ − f ) = 0, ∂tρ −
〈
Ω

2〉
∇r

(
1
σ

∇rρ

)
+αρ −G = 0.
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A rigorous validation of the convergence is out of the scope of this work. Our motiva-
tion is to apply the macroscopic auxiliary equation to design an asymptotic-preserving
loss function.

3.3. The exponentially weighted MA-APNNs loss function

We use a deep neural network f nn
θ
(t,r,Ω) to parameterize the radiation intensity

f (t,r,Ω). In particular, we choose the activation function σo(x) = e−x at the output
layer to guarantee the nonnegativity. Now we design a new APNN loss Lε

MA-APNNs.

Lε
MA-APNNs = Lε

MA-APNNs,g +Lε
MA-APNNs,i +Lε

MA-APNNs,b +Lε
PINNs,c, (3.5)

where the residual of the mass conservation law, i.e., Lε
PINNs,c, is the same to that of

Section 3.1. The differences to the vanilla PINNs are shown as follows.
We add boundary and initial value constraints of the incident radiation ⟨ f ⟩ = ρ to

Lε
PINNs,b and Lε

PINNs,i, respectively.

Lε
MA-APNNs,b = λb

(
∥B f nn

θ − fb∥2
L2(τ×∂D×S2)+∥B⟨ f nn

θ ⟩−⟨ fb⟩∥2
L2(τ×∂D)

)
,

Lε
MA-APNNs,i = λi

(
∥ f nn

θ (0)− f0∥2
L2(D×S2)+∥⟨ f nn

θ (0)⟩−⟨ f0⟩∥2
L2(D)

)
.

Most importantly, we replace the residual of the governing equation LPINNs,g by

Lε
MA-APNNs,g =

∥∥∥λ
1
2

ν ,β

(
ε

2
∂t f nn

θ + εΩ ·∇r f nn
θ −σ (⟨ f nn

θ ⟩− f nn
θ )+ ε

2
α f nn

θ − ε
2G

)∥∥∥2

L2(τ×D×S2)

+
∥∥∥(1−λν ,β )

1
2

(
∂t ⟨ f nn

θ ⟩−
〈
Ω

2〉
∇r

( 1
σ

∇r ⟨ f nn
θ ⟩

)
+α ⟨ f nn

θ ⟩−G

− ε ⟨A ( f nn
θ ,G)⟩− ε

2 ⟨B( f nn
θ ,G)⟩

)∥∥∥2

L2(τ×D)
,

where λν ,β (r) := e−ν(r)β1 +β2 with ν(r) = σ(r)
ε2 +α(r). Here, β = (β1,β2)> 0 is the

tunable parameter satisfying 1−maxr λν ,β (r)> 0.
It is easy to verify that the loss Lε

MA-APNNs,g asymptotically converges to the loss
of the diffusion limit equations. In fact, since σ(r) > 0, as ε → 0, we observe that
λν ,β (r)→ β2 and

Lε
MA-APNNs,g → β2 ∥−σ (⟨ f nn

θ ⟩− f nn
θ )∥2

L2(τ×D×S2)

+(1−β2)

∥∥∥∥∂t ⟨ f nn
θ ⟩−

〈
Ω

2〉
∇r

(
1
σ

∇r ⟨ f nn
θ ⟩

)
+α ⟨ f nn

θ ⟩−G
∥∥∥∥2

L2(τ×D)

,

which is the residual of the governing equation of the desired diffusion limit system
(2.14). Since the smooth solution f satisfies the macroscopic auxiliary equation (3.4),
the loss (3.5) has the consistency, that is, Lε

MA-APNNs| f nn
θ
= f = 0. Therefore, the loss

function Lε
MA-APNNs possesses the AP property and is applicable to the cases under the

transport, medium, and diffusion regimes. We put a schematic plot of our method in
Figure 3.1.
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Fig. 3.1. Schematic of MA-APNNs for solving the linear radiative transfer equation with initial
and boundary data.

3.4. The MA-APNN empirical loss function

In practice, we apply the quadrature rules to compute the integrals of the loss func-
tion Lε

MA-APNNs.

3.4.1. Angular integration approximation
We utilize the Gauss-Legendre quadrature rule to approximate the angular integra-

tion ⟨ f ⟩:

⟨ f ⟩= 1
4π

∫
S2

f (t,r,Ω)dΩ ≈ 1
4π

Ns

∑
m=1

f (Ωm)ωm.

The Gauss-Legendre quadrature points {Ωm}Ns
m=1 ⊂ S2 will be used as the training

points as well, and {ωm}Ns
m=1 are the associated weights.

3.4.2. Empirical loss functions, sample points, and labeled data

Here we sample the training points ℘f =
{
x f

j = (t f
j ,r

f
j ,Ω

f
j ), j = 1,2, ...N f

}
as a

low-discrepancy Sobol sequence in the computational domain, and choose the Quasi-
Monte Carlo method for numerical integration [54]. The empirical loss function of the
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governing equation is stated as follows

Lε,nn
MA-APNNs,g =

1
Nint

Nint

∑
j=1

∣∣∣λν ,β (r
int
j )

(
ε

2
∂t f nn

θ (t int
j ,rint

j ,Ωint
j )+ εΩ ·∇r f nn

θ (t int
j ,rint

j ,Ωint
j )

−σ

(
⟨ f nn

θ ⟩(t int
j ,rint

j )− f nn
θ (t int

j ,rint
j ,Ωint

j )
)
+ ε

2
α f nn

θ (t int
j ,rint

j ,Ωint
j )− ε

2G
)∣∣∣2

+
1

Nint

Nint

∑
j=1

∣∣∣(1−λν ,β (r
int
j )

)(
∂t⟨ f nn

θ ⟩(t int
j ,rint

j )−⟨Ω2⟩∇r

(
1
σ

∇r⟨ f nn
θ ⟩(t int

j ,rint
j )

)
+α⟨ f nn

θ ⟩(t int
j ,rint

j )−G− ε⟨σA ( f nn
θ ,G)⟩(t int

j ,rint
j )− ε

2⟨σB( f nn
θ ,G)⟩(t int

j ,rint
j )

)∣∣∣2
where {(t int

j ,rint
j ,Ωint

j )}Nint
j=1 are interior Sobol sequence points. Similarly, the empirical

loss functions for the boundary condition, the initial value, and conservation law are
given by:

Lε,nn
MA-APNNs,b = λb

1
Nsb

Nsb

∑
j=1

(∣∣∣B f nn
θ (tsb

j ,r
sb
j ,Ω

sb
j )− fb(tsb

j ,r
sb
j ,Ω

sb
j )
∣∣∣2

+
∣∣∣B⟨ f nn

θ ⟩(tsb
j ,r

sb
j )−⟨ fb⟩(tsb

j ,r
sb
j )

∣∣∣2),
Lε,nn

MA-APNNs,i = λi
1

Ntb

Ntb

∑
j=1

(∣∣∣ f nn
θ (0,rtb

j ,Ω
tb
j )− f0(rtb

j ,Ω
tb
j )
∣∣∣2 + ∣∣∣⟨ f nn

θ ⟩(0,rtb
j )−⟨ f0⟩(rtb

j )
∣∣∣2) ,

Lε,nn
PINNs,c = λc

1
Nc

Nc

∑
j=1

∣∣ε∂t⟨ f nn
θ ⟩(tc

j ,r
c
j)+ ⟨Ω ·nr f nn

θ ⟩(tc
j ,r

c
j)+ εα⟨ f nn

θ ⟩(tc
j ,r

c
j)− εG

∣∣2 ,
where {(tsb

j ,r
sb
j ,Ω

sb
j )}

Nsb
j=1 are Sobol sequence points on boundary, {(0,rtb

j ,Ω
tb
j )}

Ntb
j=1 the

Sobol sequence points at t = 0, and {(tc
j ,r

c
j)}

Nc
j=1 the Sobol sequence points on τ ×D.

We define the total empirical loss function for MA-APNNs:

Lε,nn
MA-APNNs = Lε,nn

MA-APNNs,g +Lε,nn
MA-APNNs,b +Lε,nn

MA-APNNs,i +Lε,nn
PINNs,c. (3.6)

Now, we are in the position to find the solution of the minimization problem

θ
∗ = argmin

θ

(
Lε,nn

MA-APNNs

)
. (3.7)

In the simulation, we adopt appropriate optimization algorithms (e.g. Adam, LBFGS)
to minimize the non-convex loss function Lε,nn

MA-APNNs.

4. Numerical Experiments

We present several examples to compare the performance of PINNs, APNNs based
on micro-macro decomposition[4] and MA-APNNs for solving multiscale LRTEs. The
result confirms that the MA-APNNs have an advantage in solving diffusive scaling
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problems. In the numerical simulations, we adopt the Adam algorithm with an initial
learning rate 0.001 in the optimization process of the loss function and use tanhx as the
activation function of all hidden layers. Unless stated otherwise, the reference solution
f Ref is obtained by the UGKS[29]. We calculate L2-norm relative errors of ρ = ⟨ f ⟩:

L2
error(ρ) =

∥⟨ f nn⟩−⟨ f Ref⟩∥L2(τ×D)

∥⟨ f Ref⟩∥L2(τ×D)

.

4.1. One-dimensional problems
4.1.1. Kinetic regime with isotropic boundary condition

Consider the 1D LRTEs in the kinetic regime with ε = 1. We set D = (0,1), τ =
(0,4), σ = 1, α = G = 0, and enforce the isotropic inflow boundary condition (2.8)
and the initial condition (2.1c) with

fL(t,µ > 0) = 0, fR(t,µ < 0) = 1, f0(x,µ) = 0.

We take the network structure f nn
θ

= [3,40,40,40,40,1] with the hyperparameters β1 =
10−3, β2 = 10−4, λb = λi = 1, λc = 0. The number of the batch training samples is
(Nint,Nsb,Ntb) = (2000,400× 2,400). According to the content introduced in [4], we
set APNNs here as gnn

θ1
= [3,40,40,40,40,1], ρnn

θ2
= [2,40,40,40,40,1]. The reference

solution and the prediction obtained by PINNs, APNNs and MA-APNNs are plotted
in Figure 4.1. The L2 errors and training time of PINNs, APNNs and MA-APNNs
are displayed in Table 4.1. All three methods are well applicable to the LRTEs in the
kinetic regime.

Fig. 4.1. Kinetic regime with ε = 1. The density ρ at times t = 0.15,0.4,1.0,1.6,4.0. (Left) Ref
v.s. PINNs. (Middle) Ref v.s. APNNs. (Right) Ref v.s. MA-APNNs.

Table 4.1. Kinetic regime with ε = 1. The errors and training time of PINNs, APNNs and MA-APNNs.

L2
error(ρ) t = 0.15 t = 0.4 t = 1.0 t = 1.6 t = 4.0 Training time

PINNs 3.48e-02 2.86e-02 1.41e-02 1.20e-02 1.01e-02 31min

APNNs 6.19e-02 3.89e-02 2.66e-02 2.49e-02 1.47e-02 1h 18min

MA-APNNs 6.51e-02 2.86e-02 1.22e-02 8.60e-03 5.06e-03 2h 15min
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4.1.2. Initial layer problem with periodic boundary condition
We adopt the same settings of the previous example, except that we set the temporal

domain τ = (0,1), replace the inflow boundary condition by the periodic boundary
condition (2.9), and set the initial value

f0(x,µ) =
1+ cos(4πx)√

2π
e−

µ2
2 .

The solution of this 1D LRTEs is known to have an initial layer neat t = 0. We utilize
MA-APNNs with soft and hard constraints of the periodic boundary condition and
APNNs with boundary hard constraints to solve this problem.

We set (Nint,Nsb,Ntb) = (2000,500×2,1000), and (β1,β2) = (10−3,10−5). Under
the soft constraints of the boundary condition, we choose f nn

θ
= [3,40,40,40,40,1],

(λb,λc,λi) = (1,1,1000). Under the hard constraints, we add a custom layer be-
tween the input and the first hidden layer in MA-APNNs and APNNs to transform
x to (sin2πx,cos2πx)[55, 56] such that the periodic boundary condition is satisfied for
f nn
θ

in MA-APNNs and gnn
θ1

, ρnn
θ2

in APNNs[4]. We take f nn
θ
/gnn

θ1
= [4,40,40,40,40,1],

ρnn
θ2

= [3,40,40,40,40,1] and (λb,λc,λi) = (0,1,1000). The numerical solutions of
APNNs and MA-APNNs are plotted in Figure 4.2, together with the reference solu-
tion. The L2 errors and training time are shown in Table 4.2. We observe that the
MA-APNNs with hard constraints of the boundary condition perform slightly better
than the soft constraints. APNNs and MA-APNNs with hard constraints both perform
well under this case.

Fig. 4.2. Initial layer with ε = 1. The density ρ at times t = 0.0,0.1. (Left) Ref v.s. MA-APNNs
with boundary soft constraint. (Middle) Ref v.s. MA-APNNs with boundary hard constraint.
(Right) Ref v.s. APNNs with boundary hard constraint.

Table 4.2. Initial layer with ε = 1. The errors and training time of MA-APNNs with boundary soft and hard
constraint and APNNs with boundary hard constraint.

L2
error(ρ) t = 0.0 t = 0.1 Training time

MA-APNNs with soft constraint 6.38e-03 2.55e-02 3h 10min

MA-APNNs with hard constraint 2.31e-03 7.31e-03 3h 13min

APNNs with hard constraint 2.89e-03 6.28e-03 1h 29min
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4.1.3. Diffusion regime with a constant scattering frequency
Consider the 1D LRTEs under the following settings:

D = (0,1), τ = (0,2), fL(t,µ > 0) = 1, fR(t,µ < 0) = 0,

f0(x,µ) = 0, σ = 1, α = 0, G = 0, ε = 10−8.

Since the Knudsen number ε is extremely small (in diffusion scale), the solution is
close to the diffusion limit of (2.14). We choose f nn

θ
= [3,40,40,40,40,1] in PINNs and

MA-APNNs, gnn
θ1
= [3,40,40,40,40,1],ρnn

θ2
= [2,40,40,40,40,1] in APNNs[4] and set

(Nint,Nsb,Ntb) = (1000,200× 2,200) and (β1,β2,λb,λi,λc) = (10−5,10−16,10,1,0).
The prediction of PINNs, APNNs and MA-APNNs are presented in Figure 4.3. The
L2 errors and training time are listed in Table 4.3. The experimental result indicates
that the vanilla PINNs fail to approximate the diffusion scale problem, and APNNs do
badly near initial times while the proposed MA-APNN method is well applicable to
the case with very tiny ε .

Fig. 4.3. Diffusion regime with ε = 10−8. The density ρ at times t = 0.01,0.05,0.15,2.00.
(Left) Ref v.s. PINNs. (Middle) Ref v.s. APNNs. (Right) Ref v.s. MA-APNNs.

Table 4.3. Diffusion regime with ε = 10−8. The errors and training time of PINNs, APNNs and MA-
APNNs.

L2
error(ρ) t = 0.01 t = 0.05 t = 0.15 t = 2.00 Training time

PINNs 9.75e-01 9.71e-01 9.65e-01 8.96e-01 17min 34s

APNNs 3.81e-01 8.18e-02 2.37e-02 8.95e-03 2h 45min

MA-APNNs 3.16e-02 5.79e-03 5.30e-03 1.35e-02 1h 24min

4.1.4. Diffusion regime with a variable scattering frequency
Use the same settings as the previous example except that we set the scattering

frequency σ = 1+ (10x)2 and the Knudsen number ε = 10−4. In numerical simu-
lation, the network structures are the same as in 4.1.3 and we take (Nint,Nsb,Ntb) =
(1000,200×2,400), (β1,β2,λb,λi,λc) = (10−5,10−16,1,1,0). We see that the predic-
tion of APNNs and MA-APNNs coincide with the reference solutions (see Figure 4.4
(middle and right)) while PINNs fail the test (see Figure 4.4 (left)). The L2 errors
and training time are shown in Table 4.4. MA-APNNs have less training time with
comparable prediction accuracy to APNNs[4].
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Fig. 4.4. Diffusion regime with ε = 10−4. The density ρ at times t = 0.2,0.4,0.6,0.8,1.0. (Left)
Ref v.s. PINNs. (Middle) Ref v.s. APNNs. (Right) Ref v.s. MA-APNNs.

Table 4.4. Diffusion regime with ε = 10−4. The errors and training time of PINNs, APNNs and MA-
APNNs.

L2
error(ρ) t = 0.2 t = 0.4 t = 0.6 t = 0.8 t = 1.0 Training time

PINNs 9.65e-01 9.66e-01 9.66e-01 9.65e-01 9.64e-01 28min 36s

APNNs 1.46e-02 1.01e-02 9.18e-03 9.40e-03 8.06e-03 4h 26min

MA-APNNs 1.28e-02 9.42e-03 8.25e-03 9.49e-03 9.76e-03 2h 25min

4.1.5. Intermediate regime with a variable scattering frequency and source term
We replace the values of the source term and Knudsen number of the previous ex-

ample by G = 1 and ε = 10−2, respectively. We adopt the same settings of the network
structure and hyperparameters except for β2 = 10−12. We apply PINNs, APNNs and
MA-APNNs to solve this problem. Specially, we set the activation functions of these
networks’ output layers as unit functions. The numerical results are shown in Figure 4.5
and Table 4.5. Together with the above examples, we are convinced that APNNs and
MA-APNNs are able to resolve the multiscale characteristics of the 1D LRTEs, while
the vanilla PINNs can only treat the case ε = O(1).

Fig. 4.5. Intermediate regime with ε = 10−2. The density ρ at times t = 0.2,0.4. (Left) Ref v.s.
PINNs. (Middle) Ref v.s. APNNs. (Right) Ref v.s. MA-APNNs.

4.2. Two-dimensional problems
We apply the MA-APNNs to solve the 2D LRTEs under the following settings

D = (0,1)2, τ = (0,1), σ = 1, α = 0, G = 1.
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Table 4.5. Intermediate regime with ε = 10−2. The errors and training time of PINNs, APNNs and MA-
APNNs.

L2
error(ρ) t = 0.2 t = 0.4 Training time

PINNs 9.98e-01 9.99e-01 30min 9s

APNNs 2.87e-02 3.24e-02 4h 37min

MA-APNNs 2.70e-02 3.44e-02 2h 25min

The homogeneous initial and inflow boundary conditions are imposed, i.e., f0 = 0 and
fB|Γ− = 0.

4.2.1. Kinetic regime (ε = 1)
We set f̃ nn

θ
= [5,40,40,40,40,1] and the boundary and initial conditions are en-

forced as hard constraints, that is,

f nn
θ = t(x+Relu(−ξ )2)(1− x+Relu(ξ )2)(y+Relu(−η)2)(1− y+Relu(η)2) f̃ nn

θ .

And we take Nint = 2000 and (β1,β2,λb,λi,λc) = (10−6,10−7,0,0,0). The reference
solution and the prediction obtained by MA-APNNs are plotted in Figure 4.6. The L2

relative errors at times t = 0.4,1.0 are 2.91e−02 and 2.84e−02, respectively.

(a) ρRef, t = 0.4 (b) ρnn
θ

, t = 0.4 (c) |ρRef −ρnn
θ
|, t = 0.4

(d) ρRef, t = 1.0 (e) ρnn
θ

, t = 1.0 (f) |ρRef −ρnn
θ
|, t = 1.0

Fig. 4.6. The 2D LRTEs in the kinetic regime (ε = 1).

4.2.2. Diffusion regime (ε = 10−8)

We use the same network structure and parameters as the previous example except
that β1 = 10−5,β2 = 10−16. The reference solution is obtained by the finite difference
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discretization of the diffusion limit equation. We show the reference solution and the
prediction of MA-APNNs in Figure 4.7. The L2 relative errors at times t = 0.1,0.8 are
3.98e−02 and 4.79e−02, respectively.

The above two examples show the ability of MA-APNNs to solve the 2D LRTEs
in both the kinetic and diffusion regimes.

(a) ρRef, t = 0.1 (b) ρnn
θ

, t = 0.1 (c) |ρRef −ρnn
θ
|, t = 0.1

(d) ρRef, t = 0.8 (e) ρnn
θ

, t = 0.8 (f) |ρRef −ρnn
θ
|, t = 0.8

Fig. 4.7. The 2D LRTEs in the diffusion regime (ε = 10−8).

4.3. Uncertainty quantification (UQ) problems
Let {zi}d

i=1 be the random variables with identical independent uniform distribution
in [−1,1], i.e., zi ∼ U([−1,1]). We apply the MA-APNNs to solve the uncertainty
quantification problem (2.12) in the spatial, temporal and angular domain D×τ ×S2 =
(0,1)× (0,1)× [−1,1], with α = 0, and the zero initial conditions,

f (0,x,µ,z) = 0.

The model is a spatial 1D LRTEs with the high-dimensional random input z∼U([−1,1]d).
The simulation is conducted for two cases with various scattering coefficients σ(z).

Problem I. We consider the case in the kinetic regime (ε = 1) with the cosine
scattering coefficient:

σ(z) = 1+0.1
10

∑
i=1

cos(πzi), (d = 10).

The source term is set as

G =
x(1− x)

22

(
µ +11+

10

∑
i=1

zi

)
+

µt(1−2x)
22ε

(
µ +11+

10

∑
i=1

zi

)
+

1
ε2 σ(z)tx(1− x)µ.
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We impose the boundary conditions

f (t,0,µ,z) = f (t,1,µ,z) = 0, µ ∈ [−1,1].

The exact solution is given by

f (t,x,µ,z) =
tx(1− x)

22

(
µ +11+

10

∑
i=1

zi

)
, ρ(t,x,z) =

tx(1− x)
22

(
11+

10

∑
i=1

zi

)
.

Note that the expectation of ρ with respect to the random variable z is

E(ρ) =
1
2

tx(1− x).

We take f̃ nn
θ

= [13,40,40,40,40,1], and the boundaries and initial conditions are en-
forced by hard constraints, i.e., f nn

θ
= tx(1−x) f̃ nn

θ
. And we set Nint = 5000, λb = λi =

λc = 0,β1 = 10−5,β2 = 10−7. We carry out 104 times simulations for (z1,z2, ...,z10)
and compute the expectation of ρ at t = 0.2,0.4,0.6. The results are plotted in Fig-
ure 4.8, which agrees well with the exact E(ρ). Table 4.6 shows the L2 errors of
E(ρ).

Fig. 4.8. The expectation E(ρ) at t = 0.2,0.4,0.6.

Table 4.6. High dimensional transport regime. The errors of MA-APNNs.

L2
error t = 0.2 t = 0.4 t = 0.6

MA-APNNs 4.49e-02 3.63e-02 2.12e-02

Problem II. We consider the case in the diffusion regime (ε = 10−5) with the sine
scattering function[51]:

σ(z) = 1+0.1
20

∏
i=1

sin(πzi), (d = 20).

We impose the inflow boundary conditions and the zero source term,

f (t,0,µ > 0,z) = 1, f (t,1,µ < 0,z) = 0, G = 0.
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We choose f nn
θ

= [23,40,40,40,40,1], (Nint,Nsb,Ntb) = (2048,768× 2,1536) and set
(β1,β2,λb,λi,λc) = (10−5,10−16,1,1,0) in our simulation. We evaluate the expecta-
tion of ρ at times t = 0.05,0.1. The results are shown in Figure 4.9, which is very
similar to the solutions obtained by [51]. The above two examples indicate the appli-
cability of MA-APNNs to the 1D LRTEs with high-dimensional random input in both
kinetic and diffusion regimes.

Fig. 4.9. Plot of the density ρ by taking expectation for z at t = 0.05, 0.1. MA-APNNs with
ε = 10−5.

5. Conclusion

In this work, we derive the macroscopic auxiliary equation of the linear radia-
tive transfer equations (LRTEs) and propose the macroscopic auxiliary asymptotic-
preserving neural networks (MA-APNNs) to tackle the multiscale characteristics and
high dimensionality in the numerical computation of LRTEs. To validate the advan-
tages of MA-APNNs compared with the vanilla PINNs and APNNs in [4], we con-
duct the simulation of the 1D LRTEs in kinetic, diffusive, and intermediate regimes.
We also present the numerical examples of the 2D LRTEs and 1D LRTEs with high-
dimensional random variables, in both kinetic and diffusive regimes, showing the ap-
plicability of MA-APNNs to deal with the multiscale nature and high dimensionality.
Our future study will focus on developing MA-APNNs to solve the Vlasov-Poisson-
Fokker-Planck system in the high-field regime.
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