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COHOMOLOGICAL FLATNESS OVER DISCRETE VALUATION

RINGS: NUMERICAL AND LOGARITHMIC CRITERIA

OFER GABBER AND RÉMI LODH

Abstract. We give sufficient conditions for cohomological flatness (in dimen-
sion 0) over discrete valuation rings, generalising a classical result of Raynaud
in two different ways. The first is an extension of Raynaud’s numerical cri-
terion to higher dimensions. The second is a logarithmic criterion: we show
that a proper, fs log smooth morphism to a log regular discrete valuation ring
is cohomologically flat in dimension 0. We apply this latter result to curves
and torsors under abelian varieties with good reduction, providing necessary
and sufficient conditions for the log smoothness of their regular models over
arbitrary discrete valuation rings.

1. Introduction

As part of his groundbreaking work on algebraic spaces, Michael Artin proved a
theorem that effectively settled the question of the existence of the Picard scheme.
Recall that a morphism of schemes f : X → T is cohomologically flat in dimension
0 if the formation of f∗OX commutes with base change.

Theorem 1 (Artin [1, 2]). Assume f is a proper, finitely presented flat morphism
of schemes. If f is cohomologically flat in dimension 0, then the Picard functor
PicX/T is representable by an algebraic space.

This fundamental result was the crowning achievement of the work of a number
of mathematicians on the Picard functor; see [16] for the history of this problem.
Notably, Grothendieck had studied the problem in detail using the arsenal of new
ideas and techniques he was introducing into algebraic geometry, reporting on his
insights in the Séminaire Bourbaki [8]. In particular, he had identified the condition
of cohomological flatness in dimension 0 as one of central importance to the problem
and suggested that it might be sufficient to ensure the representability of the Picard
functor as a scheme, cf. [8, V, 5.2].

As Artin’s theorem suggests, this turned out to be too optimistic, and Mumford
soon furnished a counterexample [8, VI, §0].1 But the importance of cohomological
flatness was noted by Michel Raynaud, who studied it in relation to questions of
representability of functors related to Pic in the case T is the spectrum of a discrete
valuation ring. The fruits of his efforts were published in [28], which, among other
results, established the following ‘numerical criterion’ for cohomological flatness.

Theorem 2 (Raynaud [28]). Let T be the spectrum of a discrete valuation ring
and let f : X → T be a proper morphism. Assume the following conditions hold:

(a) X is integrally closed in the generic fibre of f
(b) f∗OX = OT

1Mumford’s example seems to have been an important step towards Theorem 1, cf. [5, p. 210]
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2 O. GABBER AND R. LODH

(c) either dimX ≤ 2 or T has residue characteristic 0.

If the gcd of the geometric multiplicities of the components of the special fibre of f
is invertible on T , then f is cohomologically flat in dimension 0.

Raynaud’s theorem raises two immediate questions:

(1) Does the result hold without restriction on dimX?
(2) If the gcd of the multiplicities is divisible by the residue characteristic of
O(T ), is there a condition of local nature that one can substitute for (a) to
guarantee cohomological flatness in dimension 0?

In this paper we answer both of these questions in the affirmative. First of all,
we show that the answer to (1) is a straightforward ‘yes’. More precisely, we show

Theorem 3. Let T be the spectrum of a discrete valuation ring and f : X → T a
proper morphism. Denote by k(t) the residue field of O(T ). Assume the following
conditions hold:

(a) X is integrally closed in the generic fibre of f
(b) H0(X0,OX0

) = k(t), where X0 is the reduction of the special fibre of f .

If the gcd of the (apparent) multiplicities of the components of the special fibre of f
is invertible on T , then f is cohomologically flat in dimension 0.

Even for dimX = 2, this is more general Raynaud’s Theorem. Indeed, in Theo-
rem 3 the restriction on the multiplicities is weaker if k(t) is imperfect. It implies
Raynaud’s theorem, without limitation on the dimension, see Corollary 6.

For question (2), Raynaud’s examples in [28] show that the question is not as
straightforward. There was essentially no progress until very recently, when we
realised that cohomological flatness is a necessary condition for the log smoothness
of regular curves over discrete valuation rings [20] (see also [21]). In fact, as the
examples given in that paper show, log smoothness provides a satisfactory answer
to question (2) for curves.

This recent result for curves begged the question of whether it held in greater
generality, and indeed this is the case. To state the theorem, let T be the spectrum
of a discrete valuation ring and MT a fs log structure on T such that (T,MT ) is
log regular.

Theorem 4. Let flog : (X,MX)→ (T,MT ) be a morphism of fs log schemes whose
underlying morphim of schemes f : X → T is proper. If flog is log smooth, then f
is cohomologically flat in dimension 0.

The proof is surprisingly simple, the idea being to pass to a finite extension of
T where flog acquires reduced fibres (which exists thanks to Tsuji [32]), and then
to descend by taking the quotient under the action of roots of unity.

Theorem 4 answers question (2), in the sense that if we fix a log structure MX ,
then we have a local criterion for cohomological flatness in dimension 0 that applies
to situations where the gcd of the multiplicities of the special fibre may be divisible
by the residue characteristic. This, however, depends on the choice of MX . Nev-
ertheless, in many situations there is a natural choice of MX , and the converse to
Theorem 4 may even be true. Namely, for torsors under abelian varieties with good
reduction, there is a canonical model (X,MX), and we show that this model is log
smooth if and only if the underlying morphism X → T is cohomologically flat in
dimension 0. This generalises a result for genus 1 curves shown in [21] and [20].
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For curves of higher genus, regular normal crossings models have natural log struc-
tures, but the resulting morphism of log schemes might not be log smooth, even
if the underlying scheme is cohomologically flat over T . So we provide necessary
and sufficient conditions for the log smoothness of such models, extending the main
result of [20], notably to the case k(t) is imperfect. This was an early motivation
for Theorem 4.

To finish this introduction, we give a short overview of the paper and its main
results.

We begin §2 by recalling the basic properties of cohomological flatness in dimen-
sion 0, before proving a converse to Artin’s Theorem 1 (Prop. 2).

In §3, we recall the definition of multiplicities, Raynaud’s condition (N), and
show some basic properties. Then we prove Theorem 3 by studying 1-cycles with
rational coefficients and their associated sheaves.

In §4, after some preliminaries we give the proof of Theorem 4, as described
above. The rest of the section is devoted to the study of torsors under abelian
schemes and curves.

In §4.3, we study models of torsors under the generic fibre of an abelian scheme
over T . We show that the Raynaud regular model of such a torsor is log smooth if
and only if it is cohomologically flat in dimension 0 over T , providing a necessary
and sufficient condition for the existence of a proper log smooth model (Cor. 7).

Finally, in §4.4 we give necessary and sufficient conditions for log smoothness
of proper regular curves over T , extending the main theorem of [20] to imperfect
k(t) and allowing horizontal components in the log structure (Thm. 6). To show
this, we establish some properties of regular log smooth T -schemes of arbitrary
dimension (Prop. 4).

Acknowledgements. We warmly thank Luc Illusie for his interest and assistance.

1.1. Conventions. Except in §2, T denotes the spectrum of a discrete valuation
ring, t ∈ T its closed point with residue field k(t), and u ∈ T its generic point with
residue field k(u). We let p denote the characteristic of k(t).

An extension of (spectra of) discrete valuation rings is (the spectrum of) an
injective local homomorphism.

Irreducible components are endowed with the reduced induced subscheme struc-
ture.

We only consider fs log schemes. In particular, fibre products are taken in the
category of fs log schemes. Schemes can be viewed as fs log schemes with the trivial
log structure; in that case we will often simply omit the log structure from notation.
For a log structure M on a scheme X , we write M = M/O∗

X .
For an abelian group A and integer n, we write A[n] ⊂ A for the subset of

elements annhilated by n, and A[tor] = lim
−→n

A[n] for the torsion subgroup of A. If

A is finite we denote its order |A|.

2. Cohomological flatness

Let T be a locally noetherian scheme and f : X → T be a proper and flat
morphism. Following Raynaud [28, 1.4], we will say that f is cohomologically flat
if f is cohomologically flat in dimension 0.2

2Warning: this conflicts with the terminology of [9, III2, 7.8.1]!
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We gather some basic properties of cohomological flatness.

Proposition 1. (i) f is cohomologically flat if and only if there is a faithfully
flat morphism S → T such that f ×T S is cohomologically flat.

(ii) If f has geometrically reduced fibres, then f is cohomologically flat.
(iii) If T is reduced, then f is cohomologically flat if and only if dimk(t) H

0(Xt,OXt
)

is a locally constant function on T .
(iv) If T is the spectrum of a discrete valuation ring, then f is cohomologically

flat if and only if H1(X,OX) is a torsion-free O(T )-module.
(v) If g : T → S a finite locally free morphism and f is cohomologically flat,

then so is g ◦ f .

Proof. (i) follows from [9, III2, 7.7.11], (ii) from [9, III2, 7.8.6], (iii) from [9, III2,
7.8.4], and (iv) follows easily from (iii).

For (v), note that cohomological flatness implies that f∗OX is a vector bundle
on T (cf. [9, III2, §7]). Hence g∗f∗OX is a vector bundle on S. Now it follows from
the general (derived) base change formula ([4, Exp. IV, 3.1.0]) that formation of
g∗f∗OX commutes with base change, since f∗OX does. �

2.1. Converse to Artin’s theorem. We show that Artin’s Theorem 1 admits a
converse, providing a criterion for cohomological flatness (cf. [5, 8.3, Rmk. 2] for
the case T reduced).

Proposition 2. If PicX/T is representable by an algebraic space, then f is coho-
mologically flat.

Proof. By [9, III2, 7.7.10 and 7.8.4], it suffices to show that the canonical map
H0(X,OX) → H0(Xk,OXk

) is surjective when T = Spec(A) is the spectrum of
an artinian local ring with residue field k. Moreover, by Proposition 1 (i), we may
assume A to be strictly henselian.

Define

C := cok(H0(X,O∗
X)→ H0(Xk,O

∗
Xk

))

Lemma 1. If C = 0, then H0(X,OX)→ H0(Xk,OXk
) is surjective.

Proof. Exercise (use Nakayama’s lemma and the fact k is infinite). �

So it suffices to show C = 0. Consider the fibre product A ×k A. It is an
A-algebra via the diagonal map.

Lemma 2. The canonical map OX⊗A(A×kA)→ OX×OXk
OX is an isomorphism.

Proof. Indeed, since f is flat, the functor OX⊗A (−) is exact, hence commutes with
finite limits. �

Write P = PicX/T .

Lemma 3. ker(P (A×k A) ⇒ P (A)) ∼= P (A)⊕ C

Proof. Write B := A ×k A. The two projections B ⇒ A induce canonical maps
O∗

XB
⇒ O∗

X . Using Lemma 2, one computes the kernel to be the image of the
diagonal map O∗

X → O
∗
XB

, and the cokernel to be O∗
Xk

. So, if U := ker(O∗
X →

O∗
Xk

), we have a split exact sequence

1→ O∗
X → O

∗
XB
→ U → 1
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hence

P (B) ∼= P (A)⊕H1(X,U)

We also have an exact sequence

1→ U → O∗
X → O

∗
Xk
→ 1

which gives C = ker(H1(X,U) → P (A)). Hence ker(P (B) ⇒ P (A))/P (A) ∼=
C. �

To complete the proof of Proposition 2, note that since P is representable we
have P (A×kA) = P (A)×P (k)P (A) ([8, II]). Thus, ker(P (A×kA) ⇒ P (A)) = P (A)
and the lemma implies C = 0. �

3. Numerical criterion

Let T be as in §1.1 and f : X → T be a morphism of noetherian schemes.

3.1. Multiplicities. Assume f is of finite type and let η ∈ Xt be a maximal point.
The (apparent) multiplicity dη of η in Xt is, by definition, the length of the artinian
local ring OXt,η.

Let t̄ := Spec(k(t)) be the spectrum of an algebraic closure of k(t) and η̄ ∈ Xt×t t̄
a point lying over η. The geometric multiplicity δη of η in Xt is defined δη := dη̄
[5, §9.1, Def. 3].

The (apparent) multiplicity df (resp. geometric multiplicity δf ) of Xt is the gcd
of the integers dη (resp. δη) as η ranges over the finite set of maximal points of Xt.

Lemma 4. (i) δη is independent of the choice of algebraic closure of k(t).
(ii) (δf , p) = 1 if and only if there is an irreducible component of Xt whose

apparent multiplicity is prime to p and whose reduction is geometrically
reduced.

(iii) If f is flat and X is regular at a maximal point η ∈ Xt, then dη is equal to
the valuation at η of a uniformiser of O(T ).

(iv) Assume f is flat and X is regular at the maximal points of its special fibre.
If g : T → S is a finite flat morphism of spectra of discrete valuation rings,
then dg◦f = edf and δg◦f = eδf , where e is the ramification index of g.

(v) Let h : X ′ → X be a proper birational morphism of T -schemes which are
regular at the maximal points of their special fibres. Then δf◦h|δf .

(vi) If S → T is a morphism of spectra of discrete valuation rings such that
St is the spectrum of a separable extension of k(t), then df = df×TS and
δf = δf×TS.

Proof. (i) follows from [9, IV2, 4.7.8], (ii) from [9, IV2, 4.7.10], and (iii) is a straigh-
forward check.

For (iv), let s ∈ S denote the closed point. Note that Xt → Xs is a closed
immersion which is a homeomorphism. If η ∈ Xt is a maximal point and ζ ∈ Xs

its image, then OX,η = OX,ζ . Computing valuations and using (iii) one sees that
dζ = edη, where e is the ramification index of T → S. Since Xt and Xs have the
same reduction, by [9, IV2, 4.7.3.1] we have δζ/dζ = δη/dη. Thus, δζ = eδη, hence
δg◦f = eδf and the claim follows.

Finally, (v) holds because every maximal point of Xt lifts uniquely to a maximal
point of X ′

t by the valuative criterion for properness, and (vi) follows from the
definitions. �
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3.2. Raynaud’s condition (N). Raynaud stated Theorem 2 under a condition
he called (N). Recall that this condition states:

(N) Xt is S1 and X is regular at the maximal points of Xt

For instance, this holds if X is normal.
The next result, due to Kollár, provides a useful characterisation of condition

(N). For its statement, let u ∈ T be the generic point and j : Xu → X be the
canonical map. We say that X integrally closed in Xu if X is integrally closed in
j∗OXu

(in the sense of [9, II, 6.3]).

Proposition 3 ([17]). The following are equivalent

(i) f is flat and satisfies (N)
(ii) X is integrally closed in Xu

(iii) Xt ⊂ X is a normal pair (cf. [17]).

Proof. Condition (ii) means that X is the relative normalization of the pair Xt ⊂ X
in the sense of [17, Def. 1], which is equivalent to (iii) by definition (cf. [17, Def.
2]). The equivalence of (i) and (iii) follows easily from [17, Cor. 7]. �

We gather some facts about (N) in the next couple of lemmata.

Lemma 5. Assume f : X → T is a morphism of finite type. Let S → T be a
morphism of spectra of discrete valuation rings such that St is the spectrum of a
separable extension of k(t). Then f satisfies (N) if and only if f ×T S does.

Proof. See [28, 6.1.7]. �

Lemma 6. Assume f is proper, flat, and satisfies (N). Let X
f ′

→ T ′ → T be the
Stein factorisation of f . Then

(i) T ′ is the spectrum of a one-dimensional semilocal normal ring
(ii) f ′ is proper and flat
(iii) for each closed point t′ ∈ T ′, f ′ ×T ′ Spec(OT ′,t′) satisfies (N)
(iv) f is cohomologically flat if and only if f ′ is.

Proof. For (i), see [28, 6.1.8] (and use that f is flat). Note that it implies (ii).
For (iii), first note that since f is flat and Xt is S1, the inequality depthOX,x ≥
min{2, dimOX,x} is satisfied for all x ∈ Xt. Since f ′ is flat, it follows that its
special fibre is S1. Moreover, X is clearly regular at the maximal points of the
special fibre of f ′ (since this holds for f), so (iii) follows. Finally, (iv) follows from
Proposition 1 (iv). �

3.3. 1-cycles. From now on we assume f is flat and satisfies (N).
Let X1, ..., Xc denote the irreducible components of Xt and, for 1 ≤ i ≤ c,

ηi ∈ Xi the generic point. Then OX,ηi
is regular of dimension 1; let vi the discrete

valuation of OX,ηi
, with the usual convention vi(0) = +∞. Let j : Xu → X be the

inclusion of the generic fibre of f . Note that vi extends to a function on j∗OXu
.

Let N∞ = N ∪ {+∞} and Z∞ = Z ∪ {+∞}, with the obvious additive monoid
structures. Define a map of (Zariski) sheaves

divX : j∗OXu
→ ⊕1≤i≤cηi,∗Z∞

s 7→
c∑

i=1

vi(s)[Xi]
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where [Xi] = 1 ∈ ηi,∗Z.

Lemma 7. OX(U) = {s ∈ j∗OXu
(U) : divU (s) ≥ 0}

Proof. LetM be the presheafM(U) = {s ∈ j∗OXu
(U) : divU (s) ≥ 0}. Then

M = (j∗OXu
)×(⊕iηi,∗Z∞) (⊕iηi,∗N∞)

so M is a sheaf and clearly OX ⊂ M. We prove that this inclusion is an isomor-
phism by induction on dimX , the case dimX = 1 being straightforward. So assume
the result for noetherian flat T -schemes of dimension less than dimX satisfying (N).

The claim is local at x ∈ Xt so we may assume X = Spec(OX,x) and dimOX,x >
1. Let U = X \ {x}. Then dimU < dimX , so by induction the result holds for U .
By (N) and flatness over T , we have depthOX,x ≥ 2, hence OX(U) = OX(X). Since
U contains all of the maximal points of Xt and Uu = Xu, we haveM(U) =M(X)
and the claim follows. �

A 1-cycle supported on Xt is, by definition, a global section of the sheaf⊕1≤i≤cηi,∗Z.
The class group of such cycles is defined

C(X) := cok

(
H0(Xu,O

∗
Xu

)
divX→ H0(X,⊕1≤i≤cηi,∗Z)

)

Define
d′f := |C(X)[tor]|

where C(X)[tor] ⊂ C(X) is the torsion subgroup.

Lemma 8. In addition to our standing hypotheses, assume f is proper and f∗OX =
OT .

(i) d′f = df is the (apparent) multiplicity of Xt (§3.1).

(ii) Assume X is locally factorial. If g : Y → T is another locally factorial,
proper and flat T -scheme such that g∗OY = OT and Yu ≃ Xu, then df = dg.

Proof. Note that H0(Xu,O∗
Xu

) = k(u)∗, hence C(X) = (⊕1≤i≤cZ)/〈divX(π)〉. So

C(X)[tor] is a cyclic group; let D =
∑c

i=1 ai[Xi] be a generator. Consider the exact
sequence

0→ Z
·D
→ H0(X,⊕1≤i≤cηi,∗Z)→ B → 0

Taking the tensor product with Z/p for a prime p we obtain an exact sequence

0→ B[p]→ Z/p→ ⊕1≤i≤cZ/p

Since D is a generator of C(X)[tor], we see that B[p] = 0 if p | d′f . Thus, B[tor]

is annihilated by an integer prime to d′f , hence B[tor] is a cyclic group of order m

with (m, d′f ) = 1. Now a diagram chase shows that B[tor] ∼= 〈divX(π)〉/〈d′fD〉, so

m divX(π) = nd′fD =
∑

i nd
′
fai[Xi] for some integer n. By Lemma 4 (iii), we see

that d′f divides all of the multiplicities of Xt, so d′f | df . Conversely, by Lemma

4 (iii), we can write divX(π) = df (
∑

i bi[Xi]) for some bi ∈ N, so C(X) has an
element of order df . Thus, df | d′f and this proves (i).

For (ii), first recall ([10, §1]) that, by local factoriality, the map divX induces an
isomorphism

j∗O
∗
Xu

/O∗
X
∼= ⊕1≤i≤cηi,∗Z

In particular, the right hand side is functorial in (locally factorial) X (without any
further assumptions on X). Now, since X is normal and g proper, there is an open
subset U ⊂ X with codimX(X \U) ≥ 2 and a unique morphism U → Y extending
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the isomorphism on the generic fibres. Note that H0(U,OU ) = H0(X,OX) = O(T )
and C(U) = C(X).

Let Y1, ..., Yd be the irreducible components of Yt and ξi ∈ Yi the generic points.
By the above, the morphism U → Y yields a commutative diagram with exact rows

0 H0(Yu,O
∗
Yu
)/H0(Y,O∗

Y ) H0(Y,⊕1≤i≤dξi,∗Z) C(Y ) 0

0 H0(Xu,O
∗
Xu

)/H0(U,O∗
U ) H0(U,⊕1≤i≤cηi,∗Z) C(U) 0

thus ker(C(Y ) → C(U) = C(X)) is torsion free. So, C(Y )[tor] ⊂ C(X)[tor] and
d′g | d

′
f . Inverting the roles of X and Y shows d′f | d

′
g, hence d′f = d′g and (ii) follows

from (i). �

Let D be a 1-cycle supported on Xt. Define a presheaf O(D) by

O(D)(U) = {s ∈ j∗OXu
(U) : divU (s) +D|U ≥ 0}

This definition also makes sense for 1-cycles with rational coefficients (briefly, ra-
tional 1-cycles). Moreover, by Lemma 7, we have O(0) = OX .

Lemma 9. Let D and E be rational 1-cycles supported on Xt.

(i) O(D) is a coherent sheaf of OX-modules.
(ii) O(D) = O(⌊D⌋), where ⌊·⌋ denotes the floor function, applied component-

wise to D.
(iii) If E ≤ D, then O(E) ⊂ O(D). In particular, if E ≤ 0, then O(E) ⊂ OX .
(iv) There is a canonical map

O(D) ⊗OX
O(E)→ O(D + E)

(v) If r ∈ j∗OXu
(X)∗ and D = divX(r), then O(−D) = rOX .

Proof. One proves that O(D) is a sheaf as in the proof of Lemma 7. Clearly, it is an
OX -module. To check that it is coherent is local so we may assume X = Spec(A)
is affine. Let a ∈ A, B = A[z]/(az − 1), U = Spec(B), M = O(D)(X).

We first show that O(D) is quasi-coherent. It suffices to show that the canonical
map M ⊗A B → O(D)(U) is an isomorphism (cf. [9, I, 1.4.1]). Note that the map
is injective, since j∗OXu

is quasi-coherent and contains O(D). For the surjectivity,
we need to show that for any b ∈ O(D)(U) there is N ≥ 0 such that aNb is the
image an element of M . By the quasi-coherence of j∗OXu

, aNb is the image of
s ∈ j∗OXu

(X) for N ≫ 0. Write D =
∑

ni[Xi]. If vi(a) = 0, then ηi ∈ U and
vi(b) ≥ −ni. If vi(a) > 0, then for N ≫ 0 we have vi(a

Nb) = Nvi(a)+vi(b) ≥ −ni.
Thus, vi(s) ≥ −ni for all 1 ≤ i ≤ c, so divX(s) ≥ −D and s ∈M , as required.

For coherence, let π ∈ O(T ) be a uniformiser and choose N ≥ 0 such that
divX(πN ) ≥ D. Then πNO(D) ⊂ OX (by Lemma 7), so, since O(D) is π-torsion
free and X is noetherian, (i) follows (cf. [9, I, 1.5.1]). The remaining statements
are left as exercises. �

3.4. Proof of Theorem 3. We begin with some general considerations. Assume
f is flat, of finite type, and satisfies (N). Let π ∈ O(T ) be a uniformiser.

Consider the 1-cycle D = divX(π) =
∑

i ni[Xi]. If N denotes a sufficiently large
integer divisible by all ni, then O(−D/N) is the radical of O(−D), i.e., the ideal
sheaf of X0 := (Xk)red. We will assume this holds.
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We have a filtration

O(−D) = O(−ND/N) ⊂ O(−(N − 1)D/N) ⊂ · · ·

· · · ⊂ O(−2D/N) ⊂ O(−D/N) ⊂ O

For an integer 0 < a < N , define a map of sheaves of sets

ϕN :
O(−aD/N)

O(−(a+ 1)D/N)
→

O(−aD)

O(−(Na+ 1)D/N)

s 7→ sN

This map is well defined (exercise).

Lemma 10. ϕN maps nonzero sections to nonzero sections.

Proof. The claim is local. Suppose ϕN (s) = 0 for s ∈ O(−aD/N). Then sN ∈
O(−(Na+ 1)D/N), so divX(s) ≥ (Na+ 1)D/N2. Hence for all 1 ≤ i ≤ c we have
vi(s) ≥ (Na+ 1)ni/N

2. Since N is divisible by ni, we have
⌈
(Na+ 1)ni

N2

⌉
=

⌈
⌈(Na+ 1)/N⌉

(N/ni)

⌉
=

⌈
⌈a+ 1/N⌉

(N/ni)

⌉
=

⌈
a+ 1

(N/ni)

⌉

(for the first equality, cf. [7, §3.2, (3.10)]). Hence ⌈(Na+1)ni/N
2⌉ = ⌈(a+1)ni/N⌉,

and since vi(s) ∈ Z∞ we get vi(s) ≥ (a + 1)ni/N . Thus, divX(s) ≥ (a + 1)D/N
and s ∈ O(−(a+ 1)D/N). �

To simplify the notation, for 0 < a < N let

Fa := O(−aD/N)/O(−(a+ 1)D/N)

Ga := O(−aD)/O(−(Na+ 1)D/N)

We are going to analyse the global sections of Fa using the map ϕN .

Lemma 11. Ga ∼= O(−aD)|X0

Proof. The canonical map O(−D/N)⊗OX
O(−aD)→ O(−(Na+1)D/N) (Lemma

9 (iv)) gives an exact sequence

0→ J → O(−aD)|X0
→ Ga → 0

We have ⌈
(Na+ 1)ni

N

⌉
=

⌈
ani +

ni

N

⌉
= ani +

⌈
ni

N

⌉
= ani + 1

It follows that Jηi
= 0 for all 1 ≤ i ≤ c. If J 6= 0, then J has an associated point

which is not a maximal point. But X0 is reduced, hence O(−aD)|X0

∼= OX0
is S1,

which precludes this. Thus, J = 0. �

From now on we assume H0(X0,OX0
) is a field.

Corollary 1. Assume 0 6= s ∈ H0(X,Fa). Then

(i) ϕN (s) ∈ Ga(X) vanishes nowhere on Xt

(ii) s ∈ Fa(X) vanishes nowhere on Xt.

Proof. By Lemma 11 we have H0(X0,Ga) ∼= H0(X0,OX0
). Since the latter is a

field by assumption, (i) follows from Lemma 10.
For (ii), one shows that if s ∈ IFa for some ideal I ⊂ OX , then ϕN (s) ∈ IGa

(exercise). In particular, ϕN (s) vanishes on the support of OX/I. By (i), the
support of OX/I does not meet Xt, hence (ii). �
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Corollary 2. If H0(X,Fa) 6= 0, then O(−aD/N) is a line bundle on X satisfying
O(−aD/N)⊗N ∼= O(−aD).

Proof. We first work locally on Xt. Let 0 6= s ∈ H0(X,Fa) and choose a local lift
s̃ ∈ O(−aD/N) of s. Then s̃N ∈ O(−aD) = πaOX , so s̃N = πag for some g ∈ OX .
Since s̃N vanishes nowhere on Xt (Corollary 1 (i)), up to localising we may assume
g ∈ O∗

X ; in particular, s̃ is not a zerodivisor on X (as this holds for π). So, for
any f ∈ O(−aD/N), we have f/s̃ = f s̃N−1g−1π−a ∈ j∗OXu

, hence f/s̃ ∈ OX by
Lemma 7. Thus, O(−aD/N) ⊂ OX is the freeOX -submodule generated by s̃, hence
the canonical map O(−aD/N)⊗N → O(−aD) (Lemma 9 (iv)) is an isomorphism
at the points of Xt. Since it is clearly an isomorphism over Xu, this implies the
claim. �

Corollary 3. If H0(X,Fa) 6= 0, then O(−aD/N)|X0
≃ OX0

.

Proof. As in the proof of Lemma 11, we have an exact sequence

0→ J → O(−aD/N)|X0
→ Fa → 0

On the other hand,

(3.1)

⌈
(a+ 1)ni

N

⌉
=

⌈
ani

N
+

ni

N

⌉
≤

⌈
ani

N

⌉
+

⌈
ni

N

⌉
=

⌈
ani

N

⌉
+ 1

If equality does not hold in (3.1), then ⌈(a+1)ni/N⌉ = ⌈ani/N⌉, hence (Fa)ηi
= 0.

But, by Corollary 1, Fa has a global section vanishing nowhere on X0, hence

0 6= Fa ⊗OX
k(ηi) = (Fa)ηi

⊗OX,ηi
k(ηi)

a contradiction. Thus, equality holds in (3.1) and it follows that Jηi
= 0 for all

1 ≤ i ≤ c. From Corollary 2 we deduce J = 0, hence O(−aD/N)|X0
= Fa. Now

let 0 6= s ∈ H0(X,Fa) and consider the exact sequence

OX0

s
→ Fa → C → 0

Since s has no zeros (Corollary 1 (ii)) and Fa is a line bundle, the fibres of C are
zero, hence C = 0 by Nakayama’s lemma. �

Recall that we have written D = divX(π) =
∑

i ni[Xi]; then, by Lemma 4 (iii),
gcd(n1, ..., nc) = df is the (apparent) multiplicity of Xt.

Corollary 4. Assume T is strictly henselian, f is proper, and f∗OX = OT . If
p ∤ df and H0(X,Fa) 6= 0, then O(−aD/N) ≃ OX .

Proof. By Corollary 2, O(−aD/N) is a line bundle of finite order, say e. Then

H0(X,O(−aD/N)⊗e) ⊂ H0(X,OX) = O(T )

so O(−aD/N)⊗e = πnOX for some positive integer n. But πOX = O(−D) ⊂
O(−aD/N), so n | e.

For each 1 ≤ i ≤ c, let ai = vi(s), where s ∈ O(−aD/N)ηi
is a generator. Then

E :=
∑

i ai[Xi] is a 1-cycle satisfying e
nE = D. Clearly, O(−E) = O(−aD/N),

hence O(−aD/N) has order dividing e/n. Thus, n = 1 and it follows that e|df .
In particular, e is prime to p. Since T is strictly henselian and f proper, we have
H1(X,µe) = Pic(X)[e] and similarly for X0. By the proper base change theorem, it
follows that Pic(X)[e] = Pic(X0)[e] (cf. [3, Exp. XII, 5.5]). Now the claim follows
from Corollary 3. �
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Corollary 5. Assume T is strictly henselian, f is proper, and f∗OX = OT . If
p ∤ df , then H0(X,Fa) = 0.

Proof. If not, then O(−aD/N) is a trivial line bundle and H0(X,O(−aD/N)) ⊂
H0(X,OX) = O(T ), so O(−aD/N) = πOX (because O(−D) ⊂ O(−aD/N)). In
particular, the inclusions O(−D) ⊂ O(−(a+ 1)D/N) ⊂ O(−aD/N) are equalities
and Fa = 0. �

Proof of Theorem 3. Note that Xt is connected since H0(X0,OX0
) is. So, by

Lemma 6, H0(X,OX) is a finite normal O(T )-algebra with connected special fi-
bre. Hence it must be local, whence a discrete valuation ring. Then, by Lemma 4
(iv) and Lemma 6, we may assume f∗OX = OT . By Proposition 1 (i), Lemma 4
(vi), and Lemma 5 we may also assume T is strictly henselian.

In this case, by Corollary 5, we have

H1(X,O(−(a+ 1)D/N)) ⊂ H1(X,O(−aD/N))

for all 0 < a < N . Since O(−D/N) is the ideal sheaf of X0 and H0(X,OX0
) =

k(t), we also have H1(X,O(−D/N)) ⊂ H1(X,OX). We deduce that the map
H1(X,O(−D))→ H1(X,OX) is injective, hence H0(X,OX)⊗O(T )k(t) ∼= H0(Xt,OXt

).
Since X is flat over T , it follows from Proposition 1 (iv) that f is cohomologically
flat. �

Now we drop the assumption on H0(X0,OX0
). From Theorem 3 we deduce a

higher dimensional generalisation of Raynaud’s theorem.

Corollary 6. Let f : X → T be a proper and flat morphism satisfying (N). If the
special fibre of f is connected and p ∤ δf , then f is cohomologically flat.

Proof. Since Xt is connected by assumption, arguing as in the proof of Theorem 3
we reduce to the case f∗OX = OT and T strictly henselian.

Now, since p ∤ δf , Xt has a component which is geometrically reduced by Lemma
4 (ii). In particular, X0 has a nonempty open subscheme which is smooth over t,
hence has a point in the separably closed field k(t). Since Xt is connected, it follows
that H0(X0,OX0

) = k(t) and we can apply Theorem 3. �

Remark 1. For f projective and Cohen–Macaulay, one can also prove Corollary 6
by induction on the dimension, the base case being Raynaud’s Theorem 2, with a
suitably chosen hyperplane section for the induction step.

Remark 2. The first named author can generalise Theorem 3 to formal schemes
over (not necessarily discrete) valuation rings.

4. Logarithmic criterion

Throughout this section, flog : (X,MX) → (T,MT ) is a morphism of fs log
schemes whose underlying morphism of scheme f : X → T is flat and of finite type,
and (T,MT ) is log regular.

We begin with some preliminaries that will be of use later on in the section.

Definition 1. Let S be a scheme. A normal crossings scheme over S is a morphism
of locally finite presentation D → S such that, locally for the étale topology, D is
the scheme-theoretic union of closed subschemes D1, ..., Dr and there is an integer
d such that, for all J ⊂ {1, ..., r}, DJ := ∩j∈JDj is a smooth S-scheme of relative
dimension d+ 1− |J |.
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Lemma 12. Let S → T be an extension of spectra of discrete valuation rings such
that St is the spectrum of a field. If X is a regular, proper and flat T -scheme and
X0 := (Xt)red is a normal crossings scheme over t, then X ×T S is regular and
X0 ×T S ⊂ X ×T S is a normal crossings divisor.

Proof. We claim that X ×T S is regular at the points of its special fibre. This is
local for the étale topology on X and so we may assume X0 = ∪ri=1Xi with Xi → t
smooth. Then Xi ×T S is smooth over St, hence regular, and since X is regular
and S → T is flat, the closed immersions Xi ×T S → X ×T S are regular ([9, IV4,
19.1.5]). So X ×T S is regular along Xi ×T S for 1 ≤ i ≤ r ([9, IV4, 19.1.1]), hence
the claim. Now, since the regular locus of a S-scheme of finite type is open ([9, IV2,
6.12.6]) and X ×T S → S is proper, it follows that X ×T S is regular. We leave the
other claim to the reader. �

Lemma 13. Let k(t) ⊂ k(s) be a field extension. There is strict morphism of log
regular schemes (S,MS) → (T,MT ) with S the spectrum of a discrete valuation
ring and k(s) ∼= O(S)⊗O(T ) k(t), such that

(i) flog ×(T,MT ) (S,MS) is log smooth if and only if flog is
(ii) if f is proper, f is cohomologically flat if and only if f ×T S is.

Moreover, O(S) may be taken to be henselian or complete.

Proof. Let π ∈ O(T ) be a uniformiser. By [9, 0III, 10.3.1], there exists a noetherian
local ring O(S) containing O(T ) such that k(s) ∼= O(S)/πO(S). It follows from
[30, I, Prop. 2] that O(S) is a discrete valuation ring of uniformiser π. Endowed
with the inverse image log structure of T , S := Spec(O(S)) is log regular (cf. [25,
2.6]). Since S → T is faithfully flat, (i) follows from [12] and (ii) from Proposition
1 (i). �

4.1. Proof of Theorem 4. In addition to the above hypotheses, assume f is
proper. By Lemma 13 we may assume k(t) algebraically closed.

Lemma 14. It suffices to prove Theorem 4 for MT the canonical log structure.

Proof. If not, then MT is the trivial log structure and the geometric fibres of the
morphism flog are log regular ([14, 8.3]), hence reduced. So, by Proposition 1 (ii),
f is cohomologically flat. �

Assume k(t) is algebraically closed, MT the canonical log structure, and flog log
smooth. Fix a uniformiser π of O(T ), hence a chart

N→MT : 1 7→ π

and a morphism T → Spec(Z[N]). For a positive integer n, the homomorphism N→
N given by multiplication by n induces a morphism of schemes n : Spec(Z[N]) →
Spec(Z[N]). The base change of T → Spec(Z[N]) by n

T ′ := T ×Spec(Z[N]),n Spec(Z[N])

is the spectrum of the discrete valuation ring O(T )[z]/(zn − π). The standard log
structure of the right-hand factor induces the canonical log structure MT ′ on T ′.
There is a natural µn-action on the fs log scheme (T ′,MT ′): see [11, §3].

Consider the fs log scheme

(X ′,MX′) := (X,MX)×(T,MT ) (T
′,MT ′)
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By base change, the action of µn extends to (X ′,MX′). Moreover, f ′
log : (X ′,MX′)→

(T ′,MT ′) is log smooth, hence X ′ is normal and Cohen–Macaulay ([32, II.4.7]), and
flat over T .

Lemma 15. X ∼= X ′/µn, where the latter denotes the geometric quotient ([23, Def.
0.6]).

Proof. Note that X ′ has a covering by µn-stable affine open subsets, namely, the
inverse images of affine open subsets of X under the finite map X ′ → X . Thus, the
geometric quotient X ′/µn exists by [6, Exp. V, 4.1], and (X ′/µn)u = Xu (since
T ′
u → u is a µn-torsor). So the canonical map X ′/µn → X is a finite and birational,

hence is an isomorphism since X is normal. �

By [13, 4.4 (ii)], f ′
log is integral since MT ′ = N. From [32, II.3.4], we deduce that

f ′
log : (X ′,MX′) → (T ′,MT ′) is a saturated morphism for n sufficiently divisible.

Fix n such that this holds. Then, by [32, II.4.2], f ′ has reduced, hence geometrically
reduced special fibre. By [9, IV3, 12.2.1], f ′ : X ′ → T ′ has geometrically reduced
fibres. So, by Proposition 1 (ii), f ′ is cohomologically flat.

Since f ′ is cohomologically flat, so is the composition h : X ′ f ′

→ T ′ → T (Prop.
1 (v)), hence the natural map

(4.1) (h∗OX′)⊗OT
k(t)→ h∗OX′×T t

is an isomorphism.

Lemma 16. The canonical maps

(f∗OX)⊗OT
k(t)→ (h∗OX′)µn ⊗OT

k(t)→ (h∗OX′×T t)
µn ← f∗OX×T t

are isomorphisms.

Proof. This follows from Lemma 15, (4.1), and the exactness of the µn-action, cf.
[6, Exp. I, §§4–6]. �

From Lemma 16 we get that the canonical map

(f∗OX)⊗OT
k(t)→ f∗OX×T t

is an isomorphism. By Proposition 1 (iv), this implies that f is cohomologically
flat, which completes the proof of Theorem 4.

Remark 3. It is also possible to deduce Theorem 4 from Theorem 3 (or, more pre-
cisely, Corollary 6). One first reduces to the case f∗OX

∼= OT , k(t) is algebraically
closed, and X is regular. Then, by considering the torsion in MX/f∗MT , one shows
that, for suitable n, X ′ → T ′ satisfies the hypothesis of Corollary 6 and the quotient
map q : X ′ → X is a µn-torsor. So X ′/T is cohomologically flat and, since OX is
a direct summand of q∗OX′ , one deduces the cohomological flatness of f .

4.2. An example. Let MT be the canonical log structure. To illustrate the proof
of Theorem 4, we give an example of a log smooth morphism to (T,MT ) with
nonreduced fibres, which acquires smooth fibres after base change (T ′,MT ′) →
(T,MT ), where (T ′,MT ′) is as in §4.1. Let n be the degree of T ′ → T and let
A → T be an abelian scheme containing (µn)T as a subgroup. For example, this
holds if O(T ) is complete, k(t) is algebraically closed, and At is ordinary (cf. [15,
p. 150]). Then one can show that the fppf quotient of A ×T T ′ by the diagonal
action of µn is representable by a regular projective T -scheme X which is naturally
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log smooth over (T,MT ). Moreover, the multiplicity of Xt is n, hence Xt is not
reduced.

4.3. Application: torsors under abelian varieties with good reduction.
Let A → T be an fppf commutative group scheme and Y a u-scheme which is a
torsor under Au.

Definition 2. An A-model of Y is a pair (X,µ), where X is an fppf T -scheme
with an A-action µ : A×T X → X, such that

(a) the fibre of (X,µ) over u is isomorphic to Y with its Au-action
(b) the morphism µ× prX : A×T X → X ×T X is surjective.

Lemma 17. Let (X,µ) be an A-model of an Au-torsor Y .

(i) The surjective morphism µ× prX : A×T X → X ×T X is quasi-finite.
(ii) If t̄ → T is a geometric point with algebraically closed residue field, then

Xt̄ is homeomorphic to a quotient of At̄ by a finite subgroup.

Write X0 := (Xt)red.

(iii) If A→ T is smooth, then the fppf quotient of X0 by At is representable by
a finite field extension of t and the quotient map X0 → X0/At is smooth.

Let A0 ⊂ At be the connected component of the identity.

(iv) If A → T is proper and smooth, then so is X0 → Spec(H0(X0,OX0
)); in

fact, its geometric fibers are abelian varieties isogenous to A0.

Proof. (Cf. [19, 8.1] for the case A is an abelian scheme) Since µ×prX is surjective,
the fibres of X → T are separated by [6, Exp. VIB, 5.3] and [6, Exp. VIA, 2.6.1
(i)]. We claim that for any point x ∈ X the induced morphism A×T x→ X ×T x
has finite fibres. Let G ⊂ A ×T x be the stabiliser of the point x ∈ X ×T x; it is
a closed subgroup scheme of A ×T x ([6, Exp. VIB, 6.2.4 (a)]). By [6, Exp. V,
10.1.2], we have an induced monomorphism (A×T x)/G →֒ X×T x, which must be
a homeomorphism (cf. [6, Exp. VIA, proof of 2.5.4]). Since X → T is fppf and all
of the irreducible components of its fibres have the same dimension ([6, Exp. VIA,
2.5.4 (i)]), it follows that dimX ×T x = dimY . Similarly, dimA ×T x = dimAu,
hence dimX ×T x = dimA×T x. Thus, dimG = 0 by [6, Exp. VIA, 2.5.4], proving
(i) and (ii).

Now assume A→ T is smooth; then At acts on X0. Consider the stabiliser F of
the diagonal ∆ ⊂ X0 ×t X0, i.e., F := (A ×T X0) ×µ×prX0

∆. It is a closed group

scheme of AX0
. Since X0 is reduced, F is flat over a dense open subscheme of X0,

which must be all of X0 because the action of At on X0 is transitive (consider the
diagonal action of At on F and ∆). Thus, by [6, Exp. V, 10.4.1] the fppf quotient
AX0

/F is representable by a group scheme, which is smooth over X0 (cf. [6, Exp.
VIA, 3.3.2]). Moreover, AX0

/F →֒ X0×tX0 is a monomorphism, so the transitivity
of the At-action on X0 implies that the fppf quotient X0/At is representable by the
quotient of X0 by the groupoid AX0

/F (cf. [6, Exp. V, 10.4.2]). In particular, the
quotient map X0 → X0/At is smooth. By transitivity of the At-action, X0/At is a
point, hence it is a finite field extension of t since it is reduced and fppf, proving (iii).
Similarly, the fppf quotient X0/A

0 is representable by a finite reduced t-scheme and
the geometric fibres of the quotient map X0 → X0/A

0 are finite quotients of A0.
So, if A0 is an abelian variety, then H0(X0/A

0,O) ∼= H0(X0,O), which implies
(iv). �
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From now on we assume A is an abelian scheme over T . In this case, by a
result of Raynaud, there exists a regular, projective A-model X of Y , which, up
to isomorphism, is the unique proper regular A-model (cf. [27, (c) p. 82], [18]).
We endow X with the canonical fs log structure MX given by X0 ⊂ X , where
X0 = (Xt)red. By Lemma 17 (iv), (X,MX) is log regular. Denote flog : (X,MX)→
(T,MT ) the resulting morphism.

Theorem 5. The following are equivalent:

(i) flog : (X,MX)→ (T,MT ) is log smooth
(ii) f : X → T is cohomologically flat and MT is the canonical log structure.

Moreover, X0 is smooth over t in this case and its conormal sheaf in X is a line
bundle of order equal to the multiplicity of Xt.

Proof. By Theorem 4 we may assume f is cohomologically flat. Note that O(T ) =
H0(X,OX) (since X is normal).

Let I = OX(−X0) be ideal sheaf of X0 in X ; it is a line bundle of order dividing
the multiplicity d := df of Xt. For n ∈ N, let Xn ⊂ X be the closed subscheme of
ideal sheaf In+1. Then Xt = Xd−1 and we have exact sequences

0→ In/In+1 → OXn
→ OXn−1

→ 0

where In/In+1 ∼= (I/I2)⊗n is a line bundle on X0.
Since f is cohomologically flat, we have k(t) = Γ(OXd−1

) →֒ Γ(OX0
), hence

Γ(Id−1/Id) = 0. It follows from [22, II, §8, (vii) p. 76] that H1(X0, I
d−1/Id) = 0

(cf. Lemma 17 (iv)), so we obtain an isomorphism k(t) = Γ(OXd−1
) ∼= Γ(OXd−2

).

Continuing this way we get Γ(In/In+1) = 0 for n < d and Γ(OX0
) = k(t). Thus,

(I/I2)⊗n is not a trivial line bundle for n < d, so I/I2 has order at least d,
hence equal to d. Moreover, since Γ(OX0

) = k(t), X0 is smooth and geometrically
connected over t by Lemma 17. In particular, X0 is a normal crossings scheme
(Def. 1) over t. It follows from Lemma 12 and Lemma 13 that we may assume k(t)
algebraically closed and T complete.

Now, if (i) holds and MT is the trivial log structure, then by log smoothness we
have X(T ) 6= ∅, hence X ≃ A by uniqueness of the Raynaud model. In particular,
f is smooth and we leave it to the reader to check that MT cannot be trivial by
definition of MX . This proves (i) ⇒ (ii).

For the converse, if p ∤ d, then flog is log smooth by [20, Prop. 1 (d)] (cf. Prop.
4 (v) below). So assume p | d. Let ν1 = Gm/p. Given a uniformiser π ∈ O(T ),
locally on X we may write π = vxd with v ∈ O∗

X and x ∈ I a local generator. One
checks without difficulty that v extends to a global section of H0(X, ν1), hence
defines a global section α ∈ H0(X0, ν

1).
The exact sequence of (Zariski) sheaves on X0

0→ Gm,X0

p
→ Gm,X0

→ ν1X0
→ 0

provides an isomorphism H0(X0, ν
1) ∼= Pic(X0)[p]. It is straightforward to check

that this maps α to the class of d
p (I/I

2), thus α 6= 0.

On the other hand, since X0 is smooth, the map dlog : ν1X0
→ Ω1

X0/t
is injective,

hence we obtain a nonzero global 1-form dlog(α) on X0. Now, a global 1-form on
an abelian variety vanishes nowhere (cf. [22, (iii) p. 42]), so the same is true for
dlog(α) (cf. Lemma 17 (iv)). Finally, by [20, Prop. 1 (c)], Ω1

X0/t
is a locally direct

summand in ω1
X |X0

(where ω1 denotes the sheaf of logarithmic 1-forms), and hence
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the image of dlog(α) in the latter is a nowhere vanishing section. But this image
is none other than the image of dlog(π), and applying [20, Prop. 1 (d)] we deduce
the log smoothness of flog. �

We deduce the following higher-dimensional generalisation of a result for genus
1 curves of [21] and [20] (with no restriction on k(t)).

Corollary 7. Assume MT is the canonical log structure. Let A→ T be an abelian
scheme and Y an Au-torsor. The following are equivalent:

(i) Y can be extended to a proper, log smooth morphism over (T,MT )
(ii) Y can be extended to a surjective, log smooth morphism over (T,MT )
(iii) the proper regular A-model of Y is cohomologically flat over T .

Proof. (i)⇒ (ii) trivially and (iii)⇒ (i) by Theorem 5, so it remains to show (ii)⇒
(iii). Then it suffices to show that flog : (X,MX)→ (T,MT ) is log smooth, where
X is the proper regular A-model of Y and MX its canonical log structure.

Let glog : (Z,MZ) → (T,MT ) be a surjective log smooth morphism extending
Y → u. Let ζ ∈ Zt be a maximal point; since (Z,MZ) is log regular, OZ,ζ is

a discrete valuation ring. By [25, 2.6], we have (MZ)ζ = N and, since MT is
canonical, glog is Kummer in an open neighbourhood V of ζ. Since X/T is proper,
up to further localizing at ζ, we may assume there is a morphism V → X which is
an open immersion on generic fibres over T . By [25, 2.6], this morphism naturally
extends to a morphism of log schemes.

The fibre product (X,MX)×(T,MT ) (V,MZ |V ) is log smooth over the log regular
scheme (X,MX), hence is itself log regular. In particular, its underlying scheme is
normal. On the other hand, base-changing the morphism µ× prX by (V,MZ |V )→
(X,MX), we get a morphism

A×T (V,MZ |V )→ (X,MX)×(T,MT ) (V,MZ |V )

On underlying schemes, this is a finite morphism of normal flat T -schemes which
is an isomorphism on generic fibres, hence it must be an isomorphism. Now it
follows easily from [25, 2.6] that it is an isomorphism of log schemes. In particular,
flog ×(T,MT ) (V,MZ |V ) is log smooth, hence, by log flat descent [12], so is flog. �

4.4. Application: curves. We can improve the main result of [20] by removing
the perfectness assumption on k(t) and allowing the log structure to contain some
horizontal components (cf. [29, 31]).

Theorem 6. Assume X is regular of dimension 2, the generic fibre of flog is log
smooth, and MT is the canonical log structure. Let g : U →֒ X be the largest open
subset on which MX is trivial. If f is proper, then flog is log smooth if and only if

(i) MX = g∗O∗
U ∩OX

(ii) (X \ U) ⊂ X is a normal crossings divisor
(iii) Hi

ét(Uū,Ql) is tamely ramified for i ≤ 1 (where ū→ u is a geometric point)
(iv) f is cohomologically flat
(v) X0 := (Xt)red is normal crossings scheme over t (Def. 1), such that any

component of Xt of multiplicity divisible by p has no self-intersection and
no two such components intersect.
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The next result is similar to [20, Prop. 1], but without restriction on k(t).3

Proposition 4. Assume X is regular, the generic fibre of flog is log smooth, and
MT is the canonical log structure. Let j : Xu → X be the inclusion of the generic
fibre of f and define a log structure NX := j∗O∗

Xu
∩OX .

(i) (X,MX) is log regular if and only if
(1) MX = g∗O∗

U ∩ OX , where g : U →֒ X is the largest open subset on
which MX is trivial

(2) X \ U ⊂ X is a normal crossings divisor.

Moreover, if (X,MX) is log regular at a geometric point x→ Xt, then

(ii) MX,x ≃ Nr, and preimages x1, ..., xr ∈ OX,x of a basis of MX,x form part
of a regular system of parameters

(iii) there is a canonical map NX,x → MX,x; in particular, a uniformiser π ∈
O(T ) can be written π = v

∏r
i=1 x

ai

i with v ∈ O∗
X,x and ai ∈ N (possibly

zero).

Furthermore, with the notation of (ii)–(iii), we have

(iv) if NX,x 6= MX,x, then ai = 0 for some 1 ≤ i ≤ r
(v) if p ∤ ai for some 1 ≤ i ≤ r and k(t) ⊂ k(x) is separable, then flog is log

smooth at x
(vi) if flog is log smooth and p | ai for all 1 ≤ i ≤ r, then r < dimOX,x

(vii) if flog is log smooth, then locally at x there is a smooth morphism

X → Spec(OT [y, x1, ..., xr]/(π − y

r∏

i=1

xai

i ))

(viii) if flog is log smooth, then X0 is a normal crossings scheme over t.

Proof. (i) is local at a geometric point x→ X . First assume (X,MX) is log regular.
Then MX = g∗O∗

U ∩OX by [25, 2.6]. By [14, Prop. 3.2] there is a sharp fs monoid
P of rank r ≤ d := dimOX,x inducing the log structure MX , a regular local ring R
of dimension at most 1, and elements xr+1, ..., xd forming part of a regular system

of parameters such that ÔX,x = R[[P ]][[xr+1, ..., xd]]/(θ), where θ has constant
term equal to char(k(x)). Using the regularity of X , one easily shows there are
x1, ..., xr ∈ P such that P = ⊕r

i=1Nxi and x1, ..., xd form a regular sequence of
parameters (cf. [25, 5.2] or [20, proof of Prop. 1]). Then

∏r
i=1 xi defines a normal

crossings divisor whose support is equal to X \U . This implies the necessity of the
conditions.

For the sufficiency, let x1, ..., xd ∈ OX,x be a regular system of parameters such
that

∏r
i=1 xi defines the normal crossings divisor X \ U . The elements x1, ..., xr ∈

g∗O∗
U ∩OX = MX correspond to the irreducible components of X \U and we have

g∗O∗
U/O

∗
X = ⊕r

i=1Zxi. Thus, the monoid ⊕r
i=1Nxi induces MX at x, and (X,MX)

is log regular at x by definition, proving (i) as well as (ii).
Since MT is the canonical log structure, we have U ⊂ Xu, hence NX ⊂MX (by

(i)), proving the first assertion of (iii); the second follows immediately. Note that
the prime divisors of π are the xi for which ai > 0, so if NX,x 6= MX,x then ai = 0
for some 1 ≤ i ≤ r, hence (iv).

3We point out an inaccuracy in [20]: the first statement of part (e) of [20, Prop. 1] is (rather
trivially) false but holds if one assumes f to be log smooth (which is what was needed in that
paper)—see part (vi) of Proposition 4.
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For (v), taking an aith root of v we have π = (v1/aixi)
ai
∏

1≤j≤r,j 6=i x
aj

j from

which we can easily construct a log smooth chart as in [13, 3.5]. The details are
left to the reader.

For the proof of (vi)–(viii), assume flog is log smooth and X connected of di-
mension d = dimOX,x. Consider the two cases

(a) p | ai for all 1 ≤ i ≤ r
(b) p ∤ ai for some 1 ≤ i ≤ r.

In case (b), we may assume v1/ai ∈ OX , hence, up to relabeling we may assume
v = 1 in this case.

For a T -scheme S with log structure, write ω1
S for the logarithmic differentials

over T with the trivial log structure. If S is a log scheme over (T,MT ), then write
ω1
S/T for the relative log differentials over (T,MT ), and similarly for morphisms of

log schemes. Since flog is smooth, by [13, 3.12] we have an exact sequence

0→ f∗ω1
T → ω1

X → ω1
X/T → 0

with ω1
X/T a vector bundle of rank d− 1. Pulling back to Xt, we deduce an exact

sequence
0→ f∗ω1

t → ω1
Xt
→ ω1

Xt/t
→ 0

Since ω1
T = k(t) dlog(π), it follows that ω1

Xt
is locally free of rank d with dlog(π)

forming part of a basis.
Consider the closed subscheme Y ⊂ X of ideal I = (x1, ..., xr). There is an

OY -linear residue map ρ : ω1
X |Y → O

r
Y mapping dlog(x1), ... dlog(xr) to a basis

of the target, whose kernel contains the usual differentials Ω1
X/T |Y ([20, Prop. 1],

cf. [26, IV, 2.3.5]). So dlog(x1), ... dlog(xr) form part of a basis of ω1
X |Y . In

case (a) we have dlog(π) ≡ dlog(v) mod p, hence ρ(dlog(π)) = 0. It follows that
dv, dlog(x1), ..., dlog(xr) form part of a basis of ω1

X |Y in this case.
Endowing Y with the inverse image log structure of X , by [26, IV, 2.3.2] we have

an exact sequence of log differentials

I/I2 → ω1
X |Y → ω1

Y → 0

and clearly the left hand map is zero. Hence ω1
Y
∼= ω1

X |Y .
Let y be an indeterminate in case (a) (resp. y = 1 in case (b)). Define a log

scheme (U,MU ) by

U = Spec(O(T )[y±1, x1, ..., xr]/(π − y

r∏

i=1

xai

i ))

and MU the natural log structure induced by ⊕r
i=1Nxi. Let V ⊂ U be the closed

subscheme of ideal (x1, ..., xr). The natural morphism X → U mapping y to v
induces strict morphisms of log schemes (X,MX) → (U,MU ) and (Y,MX |Y ) →
(V,MU |V ). Denoting the underlying morphism h : Y → V , we have a right-exact
sequence

(4.2) 0→ h∗Ω1
V/t → Ω1

Y/t → Ω1
Y/V → 0

Since ω1
V
∼= ω1

U |V , ω1
V is a free OV -module generated by dy, dlog(x1), ..., dlog(xr).

It follows that ω1
Y/V
∼= Ω1

Y/V is locally free of rank d−(r+1) in case (a) (resp. d−r

in case (b)). Since dv vanishes nowhere in case (a) (resp. V = t in case (b)) and Y
is regular, hence reduced, the sequence (4.2) must also be left exact. Hence, Ω1

Y/t

is locally free of rank d− r. Since dimY = d− r, by [9, IV4, 17.15.5] Y is smooth
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over t. It now follows from (4.2) that h is smooth. Applying [9, 0IV, 15.1.21], we
see that X → U is flat along Y , hence smooth, proving (vii) as well as (vi). Finally,
(viii) follows from (vii). �

For the proof of Theorem 6 we will need a couple of lemmata.

Lemma 18. Assume the generic fibre of flog is log smooth and f is proper and
satisfies (N). Let X → T ′ → T be the Stein factorisation of f . If ū → T is a
geometric point lying over u and H0

ét(Xū,Z/n) is tamely ramified for some integer
n > 1 prime to p, then T ′ → T is a tamely ramified covering. In particular, this
holds if flog is log smooth.

Proof. By assumption, the geometric generic fibre of flog is log regular, hence re-
duced. This implies that T ′

u is the spectrum of a product of separable extensions
of k(u) ([9, IV2, 4.6.1]).

We have H0
ét(T

′
ū,Z/n) = H0

ét(Xū,Z/n), and T ′ is normal (Lemma 6). Now apply
the next lemma to deduce the first statement. For the second statement, note that
X is normal in this case and, by Nakayama’s theorem [24], the tame ramification
condition holds. �

Lemma 19. Let k(u) ⊂ K be a finite separable extension and S = Spec(K). If
H0

ét(S ×u ū,Z/n) is tamely ramified for some n > 1 prime to p, then k(u) ⊂ K is
a tamely ramified extension. The same holds for Zl or Ql coefficients, where l 6= p
is prime.

Proof. Let I ⊂ Gal(k(ū)/k(u)) be the inertia group and P ⊂ I the wild inertia
group. Then H0

ét(Sū,Z/n)
P = (Z/n)e, where e is the number of connected com-

ponents of Sū/P = Spec(K ⊗k(u) k(ū)
P ). If P acts trivially on H0

ét(Sū,Z/n), then

any connected component of Sū/P is geometrically connected over k(ū)P so must
be isomorphic to Spec(k(ū)P ), hence K ⊂ k(ū)P . This proves the first statement
and the second can be reduced to this one. �

Proof of Theorem 6. We first note that the conditions are necessary: (i) follows
from [25, 2.6], (ii) from Proposition 4, (iii) from Nakayama’s theorem [24], (iv)
from Theorem 4, and (v) follows from (ii) and Proposition 4.

To show the sufficiency, first note that since Xu is log smooth over u it is ge-
ometrically normal, hence smooth. In fact, locally for the étale topology its log
structure can be given by the monoid N and an étale map k(u)[N] → OXu

. This
implies that the log structure of Xu is given by a finite set of closed points whose
residue fields are separable extensions of k(u). Moreover, (iii) implies that these
extensions are tamely ramified: indeed, we have an exact sequence

H1
ét(Uū,Ql)→ H0

ét((X \ U)ū,Ql)(−1)→ H2
ét(Xū,Ql)

and H2
ét(Xū,Ql) = ⊕Ql(−1) is unramified, so, since the wild inertia group is pro-

p (cf. [30, IV]), H0
ét((X \ U)ū,Ql) is tamely ramified and the claim follows from

Lemma 19.
Let NX be as in the statement of Proposition 4. If x → Xt is a geometric

point, then NX,x 6= 0. If M
gp

X,x 6= N
gp

X,x, then we must have MX,x
∼= N2 and, by

Proposition 4 (iv), there is are x1, x2 ∈ MX,x mapping to a basis of MX,x such
that π = vxa

2 for some v ∈ O∗
X,x. The closed subscheme of T ′ ⊂ X(x) of equation

x1 = 0 is regular, flat over T , and T ′
u is a point of Xu \ U , hence T ′ → T is tamely
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ramified by the above. In particular, this implies that k(x) is a separable extension
of k(t). Since x1, x2 generate the maximal ideal of OX,x, the image of x2 in OT ′ is
a uniformiser, hence p ∤ a. By Proposition 4 (v), flog is log smooth at this point.

Now suppose x→ Xt is a geometric point such that M
gp

X,x = N
gp

X,x. In this case
we have (g∗O∗

U )x = (j∗O∗
Xu

)x, hence MX,x = NX,x by (i). We reduce this case
to the case k(t) is algebraically closed as follows. First of all, we may assume T
to be strictly henselian. Moreover, by Lemma 18 and Lemma 6 we may assume
f∗OX = OT , hence the fibres of f are geometrically connected. Let S be the
spectrum of a henselian discrete valuation ring with algebraically closed residue
field as in by Lemma 13 and let v̄ → Su be a geometric point lying above ū.
Then, X0 ×T S ⊂ X ×T S is a normal crossings divisor and XS is regular by
Lemma 12. Moreover, the action of the wild inertia subgroup of π1(Su, v̄) on
Hi

ét(Uv̄,Ql) ∼= Hi
ét(Uū,Ql) factors through that of the wild inertia subgroup of

π1(u, ū), hence (iii) holds for XS . Applying [20, Thm. 1], we deduce that the
induced morphism (XS , NXS

) → (S,MS) is log smooth. Hence flog ×T S is log
smooth above x and so is flog by Lemma 13. �
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