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Jamming is an athermal transition between flowing and rigid states in amorphous systems such
as granular matter, colloidal suspensions, complex fluids and cells. The jamming transition seems
to display mixed aspects of a first-order transition, evidenced by a discontinuity in the coordination
number, and a second-order transition, indicated by power-law scalings and diverging lengths. Here
we demonstrate that jamming is a first-order transition with quenched disorder in cyclically sheared
systems with quasistatic deformations. Particle models are simulated in two and three dimensions,
which undergo reversible-irreversible transitions under cyclic shear. The ensemble of configurations,
with partially crystallized and fragile states excluded, is generated in the irreversible phase, where
the system is stationary and particles are diffusive. Detailed scaling analyses are performed on
the distribution of coordination numbers. The fluctuation of the jamming density in finite-sized
systems has important consequences on the finite-size effects of various quantities, resulting in a
square relationship between disconnected and connected susceptibilities, a key signature of first-order
transitions with quenched disorder. This study puts the jamming transition into the category of a
broad class of transitions in disordered systems, including the first-order transition in the random-
field Ising model, brittle yielding of amorphous materials, and melting of ultra-stable glasses.

Introduction.
Jamming in athermal particles is a paradigm of tran-

sitions between fluids and amorphous solids [1–5], with
a deep connection to the glass transition in thermal sys-
tems [6–8]. Recent studies have revealed extremely rich
features in the jamming phenomenon, but the nature of
the jamming transition remains inconclusive.

(i) Mechanical marginality, related diverging length
scales and power-law scalings. At the jamming transi-
tion density (volume fraction) φJ, the isostatic condition
needs to be satisfied for the coordination number Z (av-
erage number of contacts per particle): Z = Ziso = 2d
in frictionless, infinite systems, where d is the dimension-
ality [9, 10]. Isostaticity implies that at φJ the system
is marginally stable, inspiring the search for diverging
length scales. According to the “cutting argument”, the
isostaticity gives rise to a diverging isostatic length scale
at jamming, l∗ ∼ ∆Z−1 ∼ (φ − φJ)

−1/2, below which
mechanical stability of the bulk system is affected by
the cutting boundaries [11–13], where ∆Z = Z − Ziso is
the excess coordination number. The effective medium
theory gives a scattering length scale diverging at φJ,
lc ∼ ∆Z−1/2 ∼ (φ − φJ)

−1/4, below which contin-
uum elasticity breaks down [14–16]. Other related di-
verging length scales include the transverse wavelength,
ξT ∼ (φ − φJ)

−νT with νT ≈ 0.24 [13], and the longitu-
dinal wavelength, ξL ∼ (φ− φJ)

−νL with νL ≈ 0.48 [13].
At jamming, the marginal stability analysis provides

relationships between the exponents θ appearing in
the power-law distribution of weak inter-particle forces
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P (f) ∼ fθ and α in the distribution of small inter-
particle gaps P (h) ∼ h−α: θ = 1/α − 2 for exten-
sive modes [17] and θ = 1 − 2α for localized buckling
modes [18, 19]. Above jamming, the marginal boundary
between unstable and stable phases is defined by a scaling
relation, ∆Z ∼ (φ− φJ)

1/2 [11, 20]. Other scalings have
been established for over-jammed systems near φJ [1–
3, 5, 21, 22]. For example, a relationship between the
shear modulus G and ∆Z can be derived by microscopic
elastic theories, G ∼ ∆Z ∼ (φ− φJ)

1/2 [11, 23, 24].

(ii) Hyperuniformity and associated diverging length
scales. Recent studies reveal the spatial distribution of
the single-particle contact number, Zi, is hyperuniform
at jamming, implying a diverging hyperuniform correla-
tion length, ξH ∼ ∆Z−ν [25, 26]. The value of exponent ν
appears to depend on the way to extract the correlation
length and dimensionality [25].

(iii) Gardner glass phase, landscape marginality and
associated criticality. The marginality at jamming has
been established by an independent approach within the
framework of replica symmetry breaking [8, 27–32]. Un-
jammed hard sphere glasses undergo a Gardner transi-
tion where the free energy landscape becomes fractal and
marginal, and the caging susceptibility diverges [29]. The
entire Gardner phase, including the jamming limit, is
critical. In other words, the caging correlation length
ξG ∼ (φJ − φ)0 remains infinite near jamming. The
mean-field replica theory predicts the values of expo-
nents in the weak force and small gap distributions,
α = 0.41269 and θ = 0.42311, coinciding with the re-
lationship θ = 1/α− 2 given by the mechanical marginal
stability analysis [27, 33, 34]. The theory provides an ad-
ditional scaling relationship between the cage size ∆ and
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the entropic pressure p, ∆ ∼ p−κ with κ = 1.41574. The
exponents appear to be independent of the dimensional-
ity d for d ≥ du [27, 33], where du = 2 is the conjectured
upper critical dimension [35].

(iv) Criticality in shear rheology. The criticality of the
jamming transition is suggested by scaling analysis of the
rheological data obtained in finite-rate shear simulations
of flowing states near φJ [36–38]. Combing the power-
law divergence of the viscosity, η = (φJ − φ)−β and the
vanishing of yield stress, σY ∼ (φ−φJ)

∆, a critical scaling
function is proposed. A diverging rheological correlation
length can be extracted from velocity correlations [36]
or non-affine displacements [39], ξR ∼ (φJ − φ)−ν , with
ν = 0.6 − 1.1 [36, 37, 39, 40]. The criticality seems to
be at odds with the hyperuniformity discussed in (ii) –
in the thermodynamical limit, the fluctuations diverge in
the former and vanish in the latter.

(v) Discontinuity in the coordination number. The co-
ordination number Z, which is considered as an order
parameter of the jamming transition, jumps discontinu-
ously from Z = 0 below jamming, to Z ≥ Ziso above,
in quasi-static compression or decompression [1, 2]. Ap-
parently, as the signature of a first-order transition, this
discontinuity is inconsistent with the viewpoints of a con-
tinuous transition described above.

It is clear that various diverging length scales have been
suggested throughout the literature. However, none of
the lengths in (i-iv) can explain the finite-size scaling
behavior of the jamming fraction FJ(φ,N) [2, 41–43]:
the data can be reasonably collapsed by a master curve,
FJ(φ,N) = F [(φ−φJ)N

1/2], valid for both compression
and shear jamming in two (2D) and three (3D) dimen-
sions. In this study, we show that this scaling can be
fully explained by a first-order transition scenario of the
jamming transition with quenched disorder. The form
(φ−φJ)N

1/2 originates from the disorder-induced fluctu-
ation of the jamming density itself in finite-sized systems
of N particles, which follows the standard central limit
theorem. Thus this finite-size scaling is independent of
isostaticity, marginality, criticality and hyperuniformity.

Three important differences between previous ap-
proaches (i-v) and ours shall be denoted. First, in (i-
iii), the jamming limit is approached from one side only,
i.e., the over-jammed side (φ > φJ) in (i) and (ii), and
the unjammed side (φ < φJ) in (iii). Here we consider
a well-defined ensemble including both over-jammed and
unjammed states, whose ratio is essential in the scaling
analysis. Note that once an ensemble average is taken,
the (v) discontinuity in Z turns into a smooth function,
and thus a finite-size analysis becomes essential to see
the asymptotic behavior in the thermodynamic limit.

Second, in conventional compression quenching proto-
cols, the generated ensemble depends on the initial con-
ditions [43–45] and the basins of attraction [41, 46, 47].
Here we instead consider an ensemble prepared by cyclic
shear, where the states are sampled by well-controlled dy-
namics similar to that in thermal systems. Recently, the
response of amorphous assemblies of particles to cyclic

shear has attracted great interest, due to the presence of
a nonequilibrium phase transition, called the reversible-
irreversible (RI) transition [48–52]. Interestingly, the
jamming transition lies in the irreversible regime where
particle trajectories are asymptotically diffusive [51, 52].
In this study, we restrict our ensemble within the irre-
versible phase.
Third, in our ensemble, we carefully exclude partially

crystallized and fragile states with Z < Ziso that
are sensitive to mechanical perturbations or protocol
parameters, and regard them as unjammed states with
Z = 0. If such states are included, the discontinuity in Z
diminishes and the jamming transition looks continuous,
similar to the results reported in Ref. [39] obtained by
uniform shear. Thus we expect the impactibility between
the criticality viewpoint in (iv) and our first-order pic-
ture originating from finite-rate effects. For finite-time
scales, the existence of transient states with Z < Ziso

can lead to a continuous jamming transition [36, 37, 39].
However, our results suggest that, after a sufficiently
long time, any configurations with Z < Ziso would
eventually relax to unjammed states with zero energy
and inter-particle contacts.

An ensemble generated by cyclic athermal
quasi-static shear.
We apply cyclic athermal quasistatic shear (CAQS)

to standard models of soft, frictionless particles in 2D
and 3D (see Models and Shear protocol in Methods).
We present 2D data in the main text and 3D data in
the Extended Data. For the 2D model, previous stud-
ies report a jamming density (J-point density) φJ ≈
0.842 − 0.843 [40, 53]. The phase diagram of RI tran-
sitions near φJ is plotted in Fig. 1a. The RI transition
is characterized by the one-cycle displacement averaged
over particles [51],

δr(t) =
1

N

N∑
i=1

|ri(t+ 1)− ri(t)| , (1)

and the mean-squared displacement (MSD),

⟨∆r2(t)⟩ = 1

N

〈
N∑
i=1

|ri(t)− ri(0)|2
〉
, (2)

where t is the number of cycles playing a similar role as
the time in thermal systems, ri(t) the position of particle
i at time t and zero strain γ = 0, and ⟨x⟩ the average
over Ns samples.
The RI dynamics near φJ are systematically studied in

Ref. [51], according to which δr(t) displays two-step re-
laxation behavior typically appearing in glassy systems.
For τR < t < τL, δr(t) develops a plateau at δrs. In
the interested irreversible phase, δrs > 0, τR ∼ 0 and
τL > tmax with tmax the maximum simulation time,
suggesting that the system reaches a stationary state
(see Fig. 1b). In addition, the MSD in the irreversible
phase shows typical diffusive behavior ⟨∆r2(t)⟩ ∼ t (see



3

Fig. 1c). In contrast, in the reversible phase, δrs = 0,
which means that the system is “absorbed” into an in-
variant state. In practice, one defines δr∞ = δr(tmax)
and distinguish between the reversible and irreversible
phases by comparing the value of δr∞ to a threshold δrth.
In this study, we set tmax = 4000 and δrth = 0.1, giving
the boundary between irreversible (yellow) and reversible
(blue) regions in Fig. 1a.

The above results imply that the configurational space
is effectively explored by the dynamical trajectory of the
system in the irreversible phase, encouraging us to con-
sider a statistical ensemble generated by shear dynamics.
In the main text below, we fix γmax = 0.7, and vary φ
systematically in the window of [0.833, 0.849]. At each
φ, in total tmax ×Ns independent configurations are col-
lected to construct the ensemble. In the Extended Data,
we present additional results obtained for γmax = 1. All
configurations are typically isotropic since they are col-
lected at γ = 0.
Figure 1d shows the time evolution of the coordination

number Z(t) in the irreversible phase, obtained from a
typical simulation near φJ. Rattlers (particles with fewer
than d + 1 contacts) are removed in the computation of
Z. At first glance, one sees the coexistence of jammed
(Z ≈ 2d = 4) and unjammed states (Z = 0), similar to
the coexistence of two ferromagnetic states (positive m
and negative m) in the time evolution of the magneti-
zation m(t) in an Ising model near a first-order phase
transition [54]. However, a more careful examination
reveals four distinct states, which we discuss below.

Four states: unjammed, jammed, partially
crystallized and fragile.

In Fig. 2a, we plot the probability distribution p(Z)
of the states in the considered ensemble, at a fixed
φ = 0.841 in the irreversible phase. The following four
states, represented by peaks in p(Z), can be identified
(see Figs. 2e-h).

(i) Unjammed states. The left-most peak is a delta-
function pU(Z) ∼ δ(Z), corresponding to unjammed
states. All unjammed states have strictly zero contacts,
Z = 0, once rattlers are removed.
(ii) Jammed states. The right-most peak pJ(Z) at

Z ≥ 4 corresponds to jammed states. Their average co-
ordination numbers satisfy minimally the isostatic con-
dition, Z ≥ 2d = 4.

(iii) Partially crystallized states. The delta-peak at
pC(Z) ∼ δ(Z − 24/7) represents the states with a single
unit cell of the hexagonal crystal (see Fig. 2e). Here
24/7 ≈ 3.4286 is the average number of contacts of the
seven particles forming the unit cell. Occasionally, states
with two or three unit crystal cells can be also found but
they are rare.

(iv) Fragile states. We define the states in the broad
peak 3 < Z < 4, excluding the crystalline peak pC(Z) as
the fragile states.

The fractions, FU, FJ, FC and FF, of the above four
states (i-iv), are obtained by integrating corresponding
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FIG. 1. Cyclic athermal quasi-static shear simula-
tions. (a) Reversible (δr∞ < 0.1, blue region) and irre-
versible (δr∞ > 0.1, yellow region) phases (N = 1000). The
solid line represents φ∞

J = 0.8432, and the dashed line repre-
sents γmax = 0.7 used to generate the ensemble in the main
text. (b) One-cycle displacement δr(t) and (d) average coor-
dination number Z(t) for a typical sample. (c) The MSD data
show diffusive behavior ⟨∆r2(t)⟩ ∼ t (line). Data in (b-c) are
obtained at a fixed φ = 0.841.

peaks in p(Z). In Fig. 2b, the fractions are plotted as
functions of φ, showing that FJ(φ) increases from zero
to one across φJ. This behavior is quantitatively simi-
lar to FJ(φ) obtained in previous rapid quench simula-
tions, where finite-size analyses have been carried out to
precisely determine the asymptotic jamming transition
density φ∞

J in the thermodynamic limit N → ∞ [2, 40].
We will perform such finite-size analyses later, after dis-
cussing the nature of fragile states.

In Fig. 2c, we report various fractions as functions of
t at φ = 0.841. The fractions are independent of t, con-
firming that the system is stationary. We further divide
FC(t) into two parts, FC(t) = F 1

C(t)+F>
C (t), where F 1

C(t)
and F>

C (t) are respectively the fractions of partially crys-
tallized states with one and more than one crystal unit
cells. Both F 1

C(t) and F>
C (t) are independent of t, indi-

cating that the growth of seed crystals is not observed.
Because FC is generally several orders of magnitude lower
than the fractions of other types, partially crystallized
states will be ignored in the following analyses.

In Fig. 2d, we plot the maximum coordination num-
bers, Z∗

J and Z∗
U, of jammed and fragile peaks. Around

φJ, there is a small gap δZgap ≈ 0.2 between Z∗
J (upper

branch) and Z∗
U (lower branch). The results are very

similar to those obtained by quasistatic uniform shear in
Ref. [39] (see Fig. 4 therein). In Ref. [39], it is suggested
that δZgap vanishes in the thermodynamic limit, and
thus the jamming transition is continuous. However, as
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FIG. 2. Four states. (a) Semi-log plot of the probability distribution p(Z). The four peaks of unjammed (U), partially
crystallized (C), fragile (F) and jammed (J) states, are indicated. The inset shows a linear plot of p(Z) without the unjammed
peak. Fractions are plotted as a function of φ in (b), and of t in (c). In (c), each data point is obtained for a small window
[t − δt, t + δt] with δt = 250. (d) Peak coordination numbers Z∗

J of jammed states (upper branch, open symbols) and Z∗
F of

fragile states (lower branch, filled symbols) as functions of φ, for N = 256 (diamonds), 512 (triangles), 1000 (squares), and 2000
(circles). In (e-h), we show typical configurations of (e) partially crystallized, (f) fragile percolating in one direction, (g) fragile
percolating in both directions, and (h) jammed states. Contact forces are represented by bonds, whose width is proportional
to the magnitude of force. The red and blue disks are non-rattler and rattler particles respectively. We set φ = 0.841 for (a)
and (c), N = 256 for (b) and (c), and N = 1000 for (e-h).

we show below, the fragile states are generated due to
incomplete energy minimization and are mechanically
unstable. Once such fragile states are excluded, the lower
branch only contains unjammed states with Z∗

U = 0,
which is separated by a large gap δZgap ≈ 4 from the
upper branch Z∗

J ≥ 4.

Instability of fragile states.

Previously, the fragile states were obtained by uniform
shear at non-zero strains γ > 0 below φJ in experi-
ments [55] and simulations [56]. It was proposed that
fragile and jammed states differ in the percolation of
the strong force network: in fragile states the percola-
tion occurs anisotropically in one direction only, while in
jammed states it occurs isotropically in both directions.
In this study, all states are collected during cyclic shear
at γ = 0, without systematically introducing anisotropy.
Indeed, the fragile states with 3 < Z < 4 can have per-
colated force networks of non-rattlers in one or two di-
rections (see Fig. 2f and g). Thus in our case, anisotropy
cannot effectively distinguish fragile from jammed states.

We demonstrate that the essential difference between
fragile and jammed states is their mechanical stability. In
fragile states, the potential energy per particle is negligi-
bly low (see Stopping criterion for energy minimization
in Methods), ei < eth = 10−20 (see Fig. 3a), but the
fraction of non-rattler particles is non-zero. These non-
rattlers experience forces, which can form a transient,

percolated network. Such networks are highly heteroge-
neous (see Fig. 2f and g), compared to those in jammed
states (see Fig. 2h). More importantly, the force networks
in fragile states are unstable, revealed by the non-zero net
force per particle, f i > fth = 10−14 (see Fig. 3b). Thus
fragile states are not strictly equilibrated; they turn into
unjammed states by sufficiently long relaxation (accurate
energy minimization) or mechanical perturbations.

To demonstrate the instability of fragile states, two
tests are carried out. First, we perform a compression-
decompression perturbation, φ → φ + δφ → φ, where
δφ = 10−8, and the energy is minimized after each
step. All fragile states (3 < Z < 4) become unjammed
(Z = 0) after this perturbation, while jammed states re-
main. In Fig. 3c, we plot the distribution p′(Z) after
the compression-decompression perturbation. Indepen-
dently, without any perturbation we simply regard all
fragile states (3 < Z < 4) as unjammed (Z = 0) and
recalculate the distribution p̃(Z). Figure 3c shows that
the two distributions p′(Z) and p̃(Z) perfectly coincide.

In the second test, we repeat CAQS simulations by
systematically varying the threshold fth in the criterion
of the energy minimization algorithm. The fraction FF

of fragile states grows and FU of unjammed states de-
cays with increasing fth (Fig. 3d), suggesting that many
unjammed states become fragile under a looser force-
balance condition f i < fth with a larger fth. In contrast,
the constant FJ shows that the definition of jammed
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states is insensitive to the algorithm parameter. Note
that in granular experiments [55, 57], the friction may
play the role of fth, i.e., the net inter-particle force could
be balanced by the frictional force between particles and
the supporting plate. According to this assumption,
the probability of observing fragile states in experiments
would depend on the particle-plate friction that can be
changed by replacing the materials. It provides a pro-
tocol to examine our scenario of fragile states in future
experimental studies.

Because fragile states are unstable, from now on we
count them as unjammed states. More specifically, we
replace the original distribution p(Z) with the modified
distribution p̃(Z). For simplicity, we omit the tilde and
denote p̃(Z) by p(Z) below.
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FIG. 3. Stability tests. Average single-particle (a) potential
energy ei and (b) net force f i as functions of Z. Lines in (a)
and (b) are guides to the eye. (c) Comparison between p′(Z)
obtained after the compression-decompression perturbation
and p̃(Z) with fragile states counted as unjammed states, for
N = 1000 at φ = 0.844. (d) Fractions of four states as func-
tions of fth. Data are obtained for N = 256 systems, except
for (c).

Scaling analysis of p(Z) near the jamming tran-
sition.

The new distribution p(Z) contains two peaks of
unjammed and jammed states, whose fractions satisfy
FU(φ) + FJ(φ) = 1 at any φ. In Figs 4a and b, we
plot p(Z) for a few different φ and N , showing that p(Z)
is always double-peaked across the jamming transition,
which is typical behavior of a first-order rather than a
second-order transition.

To analyze the scaling behavior of p(Z), we consider
a general first-order form of first-order phase transi-

tions [54, 58],

p(Z) = (1− FJ)δ(Z) + FJ pJ [(Z − Z∗
J )N

η] , (3)

where δ(Z) and pJ(Z) correspond to the unjammed and
jammed peaks respectively. The asymptotic jamming
density φ∞

J = 0.8432 for N → ∞ is determined by
the intersection of FJ(φ) curves with different N (see
Fig. 4c), close to the J-point density φJ ≈ 0.842− 0.843
reported in previous studies [2, 40]. The difference be-
tween φ∞

J = 0.8432 by γmax = 0.7 and φ∞
J = 0.8435 by

γmax = 1 (see Extended Data Fig. E1) is too small to con-
clude any systematic dependence on γmax. In Ref. [52],
an unjamming pocket is reported in the phase diagram
for γmax < 0.17, while for larger γmax, φJ is independent
of γmax, consistent with our observations. These results
also suggest that the jamming density obtained by cyclic
shear is the lowest jamming density on the J-line of all
possible jammed states [6, 44, 59].

As shown in Fig. 2d, Z∗
J is independent of N near φJ,

and weakly depends on φ. In the following scaling anal-
ysis, Z∗

J is approximated by a constant value Z∗
J ≈ 4.1

at φ∞
J = 0.8432. To keep the expressions concise, we

ignore the corrections to the scaling functions from the
φ-dependence of Z∗

J .

We assume the fraction of jammed states FJ having
the following scaling form, FJ(φ,N) = F

[
(φ− φ∞

J )Nλ
]
.

The value of the exponent λ is important for under-
standing the nature of the transition. If the system
were thermal, the fraction would be determined by the

Boltzmann distribution, FJ ∼ exp
(

Nδf
kBT

)
, where δf is

the single-particle free energy difference between two
phases [54, 58]. Because the free energy is non-singular
around a first-order phase transition, it can be expanded,
giving δf ∼ (T−Tc) to the lowest order. Thus, if the jam-
ming transition were a standard first-order phase transi-
tion, then FJ(φ,N) = FJ [(φ− φ∞

J )N ], i.e., λ = 1 (note
that φ in the granular system is analogous to the tem-
perature T in thermal systems). However, our numerical
data can not be collapsed using λ = 1; in contrast, they
can be perfectly collapsed using λ = 1/2 (see Fig. 4d).

To understand the origin of λ = 1/2 scaling, recall
that the athermal jamming transition is not driven by
the free energy difference between the two phases. Be-
low we explain the scaling by the scenario of a first-order
transition with quenched disorder. For a finite N , due
to the presence of disorder in the packing structure, the
jamming density φN

J should fluctuate around the asymp-
totic value φ∞

J . Let us assume a simple Gaussian form

of the distribution, ρ(φN
J ) ∼ exp

[
− (δφ̂J+u)2

2σ2
φ

]
, where

δφ̂J = (φN
J −φ∞

J )N1/2 follows the standard central limit
theorem. Note that ρ(φN

J ) has been explicitly measured
in the compression protocol [2, 53]: the width of ρ(φN

J )
scales as w ∼ N−0.55 in both 2D and 3D, supporting
our assumption. The above assumption also predicts,
φ∞
J − φN

J ∼ N−1/2, independent of dimensionality. The
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(b) p(Z) at φ = 0.843 for a few different N . For better visualization, we do not show the unjammed delta-peak at Z = 0. (c)
The fraction of jammed states FJ as a function of φ for a few different N . The intersection of curves gives φ∞

J = 0.8432. (d)

The data points of FJ with different N collapse as a function of (φ−φ∞
J )N1/2. The solid line represents fitting to Eq. (4), with

two fitting parameters u = 0.041 and σφ = 0.043. The average coordination number ⟨Z⟩ is plotted as a function of φ in (e)

and of (φ− φ∞
J )N1/2 in (f). The solid line in (f) represents ⟨Z⟩ = FJZ

∗
J using u = 0.041, σφ = 0.043 and Z∗

J = 4.1. Symbols
in (b-f) have the same meanings.

jammed states are defined by φ > φN
J , and thus

FJ(φ,N) =

∫ φ

0

ρ(φN
J ) dφN

J ≈ 1

2
+

1

2
erf

[
δφ̂+ u√

2σφ

]
, (4)

where δφ̂ = (φ−φ∞
J )N1/2. Equation (4) agrees well with

the data in Fig. 4d.
Once the scaling behavior of FJ(φ,N) is obtained, it

is easy to derive scaling forms of susceptibilities. In
the random field Ising model (RFIM) [60, 61], two sus-
ceptibilities have been introduced: a connected suscep-
tibility χcon associated to thermal fluctuations, and a
disconnected susceptibility χdis associated to fluctuations
caused by disorder. The two susceptibilities are related
by χdis = χ2

con around the critical point and first-order
transitions in RFIM. We similarly define two susceptibil-
ities in the jamming transition. The disconnected sus-
ceptibility is defined as χdis ≡ Nσ2

Z = N⟨(Z − ⟨Z⟩)2⟩,
where σ2

Z is the variance of p(Z) and ⟨. . .⟩ is the average
over all states. From Eq. (3), we obtain,

χdis(φ,N)

N
≈ (Z∗

J )
2[1− FJ(φ,N)]FJ(φ,N), (5)

where FJ(φ,N) is given by Eq. (4). Equation (5) suggests
a scaling form χdis(φ,N)/N = Xdis

[
(φ− φ∞

J )N1/2
]
, in

agreement with the data in Fig. 5a.
The alternative connected susceptibility is defined as

χcon = d⟨Z⟩/dφ. From Eq. (3), one finds that ⟨Z⟩ ≈
FJZ

∗
J and thus ⟨Z⟩ has the same scaling form as FJ, i.e.,

⟨Z⟩(φ,N) = Z[(φ− φ∞
J )N1/2], consistent with the data

in Fig. 4e and f. Using χcon = Z∗
J
dFJ

dφ and Eq. (4), we

derive,

χcon(φ,N)

N1/2
≈ Z∗

J

σφ

√
2π

exp

−(δφ̂+ u√
2σφ

)2
 , (6)

which is verified by the simulation data in Fig. 5b.
Now we can look at the relationship between χdis and

χcon. Expanding Eqs. (5) and (6) around the maxima,

where x ≡ δφ̂+u√
2σφ

= 0, we obtain, up to the quadratic

order,

χdis

χ2
con

≈ πσ2
φ

2

1 + (2− 4

π

)(
δφ̂+ u√

2σφ

)2
 . (7)
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FIG. 5. Susceptibilities. We plot (a) the disconnected susceptibility χdis rescaled by N , (b) the connected susceptibility χcon

rescaled by N1/2, and (c) the ratio between χdis and χ2
con, as functions of (φ − φ∞

J )N1/2. The solid black lines in (a-c) are
Eqs. (5), (6) and (7) respectively. The dashed red line in (c) is the constant term in Eq. (7), i.e., χdis/χ

2
con = πσ2

φ/2. To draw
these lines, we use u = 0.036 and σφ = 0.043 obtained from the fitting in Fig. 4d, and Z∗

J = 4.1 determined at φ∞
J = 0.8432 in

Fig. 2d. No fitting is performed here. Symbols in (a-c) have the same meanings as indicated in the legend of (a). In (d) and
(e), the susceptibilities of jammed states χJ are plotted as functions of N for a few different φ, and are fitted to Eq. (8). The
open squares in (d) are χJ data obtained in a small pressure window 0.0009 < P < 0.0011, corresponding to φ ≈ 0.843. The
fitting parameter µ is plotted in (f) as a function of φ, where the error bar represents the fitting error.

To the lowest order, Eq. (7) gives a scaling, χdis ∼ χ2
con,

which is a key signature of the presence of quenched
disorder. This square relationship appears generally at
first-order transitions in disordered systems, such as the
first-order phase transition in the RFIM [61], the brit-
tle yielding of amorphous solids [62] and the melting of
ultrastable hard-sphere glasses [63]. Comparing to the
simulation data, Eq. (7) works well around the extreme
point (see Fig. 5c).

It seems that the non-Gaussian effect in the distribu-
tion ρ(φN

J ), which is neglected in the present analysis,
is amplified in the data of χdis/χ

2
con, resulting in slight

asymmetry. Extended Data Figs. E1-E4 show that the
scaling functions Eqs. (4)-(7) work in 3D, and for a dif-
ferent max strain γmax = 1 in 2D.

Finally let us discuss the finite-size effects of the
jammed peak pJ(Z) in Eq. (3). For standard first-order
phase transitions, η = 1/2 [54, 58]. Thus in that scenario
the susceptibility of the jamming peak would scale as,
χJ ≡ Nσ2

J = N⟨(Z − Z∗
J )

2⟩J ∼ N0, where σ2
J is the vari-

ance of pJ(Z) and ⟨. . .⟩J represents the average restricted
to the jammed states only. However, our χJ data disagree

with this scaling (see Figs. 5d-f). At different φ, χJ can
be fitted to a pow-law form,

χJ ∼ N−µ/d, (8)

where µ = d(2η − 1) is a fitting parameter. At large
or small φ away from φ∞

J (see Fig. 5f), the exponent is
close to zero (µ ≈ −0.2), suggesting that the local coordi-
nation numbers Zi are uniformly distributed. The devia-
tion from the uncorrelated behavior (µ = 0) is significant
around φ∞

J , where µ ≈ −0.8 reaches the minimum.
The result of µ shall be interpreted with care. In gen-

eral, (i) µ = 0 corresponds to uniformity of Zi, (ii) µ > 0
to hyperuniformity with a vanishing χJ in the thermo-
dynamic limit, and (iii) µ < 0 to hyperfluctuations with
a diverging χJ in the thermodynamic limit that typically
appears at the critical point in a second-order phase
transition. However, the negative µ in Fig. 5f is not
due to the criticality of the jamming transition. Here
it is essential to consider the volume fluctuations. The
negative µ is obtained from a φ-controlled setup in our
CAQS simulations. If we instead select configurations
around a constant pressure P , then the fluctuations
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become significantly smaller, and µ ≈ 0 (Fig. 5d). This
observation is consistent with a previous study [64],
suggesting that the large fluctuation of Z near φ∞

J in
the φ-controlled protocol might be originated from the
fluctuation of φN

J . In fact, careful measurement gives
µ ≃ 1 in a P -controlled protocol at jamming, confirming
hyperuniformity [25, 26]. We emphasize that the
finite-size effects of the jammed peak pJ(Z) contribute
negligibly to the scaling of F (φ,N), χdis(φ,N) and
χcon(φ,N). In other words, the first-order nature of the
jamming transition is independent of how Zi is spatially
distributed in jammed packings.

Conclusion.
In this study, we understand the nature of jamming

transition through an ensemble approach analogous to
the statistical mechanics in equilibrium systems [22, 65].
Within such a framework, the order of the jamming
transition is independent of the complex properties of
jammed packings, including isostaticity, marginality
and hyperuniformity (see (i-iii) in Introduction). As
a first-order jamming transition, the finite-size scaling
exponents measured in this study are naturally universal
in 2D and 3D, without the need to introduce the upper
critical dimension du = 2 [66], a concept relevant to
continuous transitions only. It is of particular interest to
reconcile the first-order transition established here under
quasi-static shearing and the second-order transition
observed in previous finite-rate rheology (see (iv) in
Introduction). The jamming transition appears to
be a rare example with the simultaneous existence of
first-order and second-order transitions between liquid
and solid states. Conventionally, the two kinds of
transitions only coexist in gas-liquid systems, but not in
liquid-crystalline solid systems.

Methods.
Models. We study models of frictionless, bidisperse

particles in two and three dimensions. The number ratio
between large and small particles is 1:1, and the diameter
ratio is 1.4:1. The potential energy between two particles
is:

U(rij) =
ϵ

2

(
1− rij

σij

)2

Θ

(
1− rij

σij

)
, (9)

where ϵ = 1 is the energy unit, rij the distance between

particles i and j, σij =
σi+σj

2 the mean diameter, and
Θ(x) the Heaviside step function. We set unit particle
mass, and the diameter of small particles as unit length.

Shear protocol. Particles are randomly distributed
at an initial volume fraction φ0 = 0.02. The system is
then rapidly quench compressed to the target φ. The
CAQS is performed under the Lees-Edwards bound-
ary conditions, with a fixed φ. We use a strain step
δγ = 0.1 to generate the phase diagram in Fig. 1a,
and δγ = 0.01 for other results. At each step, particle
positions are shifted according to xi → xi + δγyi, and
then the system’s energy is minimized using the FIRE
algorithm [67]. During a cycle, the strain is varied as
γ = 0 → γmax → 0. We set γmax = 0.7 in the main
text and γmax = 1 in the Extended Data for the 2D
model, and γmax = 0.5 for the 3D model (Extended
Data). The number of cycles is represented by t with
unit oscillation period (t = 1). In 2D, the maximum
number of cycles is tmax = 250 for 0.839 ≤ φ ≤ 0.849
and tmax = 4000 for 0.833 ≤ φ < 0.839, while in 3D,
tmax = 144 for 2000, and tmax = 50 for N = 512 and
1000. We generate Ns = 4000 − 12000 independent
samples at each φ. At each φ, in total tmax × Ns con-
figurations are collected to compute statistical quantities.

Stopping criterion for energy minimization. We termi-
nate the energy minimization when the potential energy

per particle ei = 1
N

∑N
i=1 ei falls below a threshold eth

or the average single-particle net force f i = 1
N

∑N
i=1 fi

falls below fth, whichever is satisfied earlier. We set
eth = 10−20 and fth = 10−14 unless otherwise specified.
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FIG. E2. Susceptibilities in two dimensions for γmax = 1. (a) The disconnected susceptibility χdis rescaled by N , (b) the

connected susceptibility χcon rescaled by N1/2, and (c) the ratio between χdis and χ2
con are plotted as functions of (φ−φ∞

J )N1/2.
The solid black lines in (a-c) are Eqs. (5), (6) and (7) respectively. The dashed red line in (c) is the constant term in Eq. (7),
i.e., χdis/χ

2
con = πσ2

φ/2. To draw these lines, we use u = 0.051 and σφ = 0.043 obtained from the fitting in Fig. E1b. Symbols
in (a-c) have the same meanings as indicated in the legend of (a).
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FIG. E3. Distribution of the coordination number in three dimensions. (a) Fraction of jammed states FJ as a function
of φ for a few different N . The intersection of curves gives φ∞

J = 0.648. (b) The data points of FJ with different N collapse as

a function of (φ − φ∞
j )N1/2. The solid line represents the fitting according to Eq. (4), with two fitting parameters u = 0.077

and σφ = 0.051.
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FIG. E4. Susceptibilities in three dimensions. (a) The disconnected susceptibility χdis rescaled by N , (b) the connected

susceptibility χcon rescaled by N1/2, and (c) the ratio between χdis and χ2
con are plotted as functions of (φ − φ∞

J )N1/2. The
solid black lines in (a-c) are Eqs. (5), (6) and (7) respectively. The dashed red line in (c) is the constant term in Eq. (7), i.e.,
χdis/χ

2
con = πσ2

φ/2. To draw these lines, we use u = 0.077 and σφ = 0.051 obtained from the fitting in Fig. E3b. Symbols in
(a-c) have the same meanings as indicated in the legend of (a).
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