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Abstract: We explore generalized symmetry in the context of nonlinear dynamical grav-

ity. Our basic strategy is to transcribe known results from Yang-Mills theory directly to

gravity via the tetrad formalism, which recasts general relativity as a gauge theory of the

local Lorentz group. By analogy, we deduce that gravity exhibits a one-form symmetry

implemented by an operator Uα labeled by a center element α of the Lorentz group and

associated with a certain area measured in Planck units. The corresponding charged line

operator Wρ is the holonomy in a spin representation ρ, which is the gravitational analog

of a Wilson loop. The topological linking of Uα and Wρ has an elegant physical interpreta-

tion from classical gravitation: the former materializes an exotic chiral cosmic string defect

whose quantized conical deficit angle is measured by the latter. We verify this claim explic-

itly in an AdS-Schwarzschild black hole background. Notably, our conclusions imply that

the standard model exhibits a new symmetry of nature at scales below the lightest neu-

trino mass. More generally, the absence of global symmetries in quantum gravity suggests

that the gravitational one-form symmetry is either gauged or explicitly broken. The latter

mandates the existence of fermions. Finally, we comment on generalizations to magnetic

higher-form or higher-group gravitational symmetries.
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1 Introduction

Symmetry has long been a vital tool for investigating complex physical systems, particularly

at strong coupling. Historically, most efforts in this expansive subject have focused on

conventional symmetries, which act on local operators. The standard model of physics

exhibits numerous exact and approximate symmetries of this type, for example relating to

charge in electromagnetism and chiral symmetry in the strong interactions.

In the past decade, however, the fundamental concept of symmetry has broadened

considerably [1–10]. As described in the seminal work of [11], it is now understood that the

traditional formulation of symmetry is actually the tip of a colossal iceberg. Rather, there

exists a rich patchwork of so-called higher-form symmetries whose distinguishing feature is

that they act intrinsically on extended objects described by nonlocal operators supported

on lines, surfaces, and membranes. Since higher-form symmetries act trivially on local

operators, their physical implications are sometimes quite subtle to diagnose. From this

point of view, the standard symmetries found in most quantum field theory textbooks are

brusquely relegated to the special case of zero-form symmetry.

The growing body of work on generalized symmetries has revealed new perspectives

on a broad spectrum of assorted phenomena in quantum field theory, including phase

transitions [12–17], anomalies [18–29], and symmetry breaking [30–34]. Recent work has

even explored new opportunities for physics beyond the standard model, for example in

the context of flavor physics [35], neutrinos [36], and axions [37–46]. Such efforts are

a welcome development, as they attempt to draw an explicit connection between highly

formal developments in mathematical physics and high-energy physics of actual experi-

mental relevance. That said, the constraints imposed by generalized symmetry on particle

physics models tend to be explicable via more conventional means. This is perhaps not so

surprising—these models are easily embedded within renormalizable theories in which all

is calculable and there are no surprises to be had or which require explanation.

Gravity, on the other hand, is another story. Far less is understood about its putative

ultraviolet completion. Consequently, the only truly theory-agnostic approach is to retreat

to safely low energies, where gravitational dynamics are described universally by an effective

field theory of gravitons on a fixed background, augmented by possible higher-derivative

corrections. For example, see [47, 48] for a review of this perspective. The effective field

theory of gravity is clearly a natural target for understanding generalized symmetry in

a refreshingly different context. There has, however, been relatively little effort in this

vein.1 Some notable exceptions include interesting recent work studying the higher-form

symmetries associated with parity [49] and topology change [50], as well as generalizations

of continuous higher-form symmetries to linearized gravity [51–53].

In this paper, we extend the now well-established insights of higher-form symmetry

1The bulk of work that makes reference to both gravity and generalized symmetries has focused on

the implications of swampland conjectures. In this picture, one posits a quantum field theory that exhibits

certain generalized global symmetries. The conjectured absence of global symmetries in a theory of quantum

gravity then imposes constraints on the theory in order to explicitly break or gauge these symmetries.

Though interesting, this subject is not the topic of the present work.
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in gauge theory to the effective theory of nonlinear gravity in four-dimensional spacetime.

Our key ingredient is the well-known fact that gravity can itself be recast in gauge theoretic

language. As history would have it, this perspective carries dual meanings. On the one

hand, gravity is a theory of diffeomorphisms, nonlinearly realized by a self-interacting,

massless spin two field. Since diffeomorphisms are a redundancy, they are on occasion

referred to as a gauge symmetry, though colloquially and not in the strict technical sense.

On the other hand, it is well-known that gravity can also be described by a bona fide

gauge theory of local Lorentz transformations, which is the so-called Palatini formalism

for the tetrad and spin connection. Formally, these descriptions are equivalent2 since

gauge symmetry is, after all, pure redundancy and no redundancy is more valid than any

other.3 As we will see, tetradic Palatini gravity is perfectly suited to our purposes because

we can work in lockstep analogy with the familiar approach taken in gauge theory. For

concreteness, the bulk of our analysis will be in Euclidean signature, though we will toggle

to Lorentzian signature on and off when needed. Our conclusions for gravity are as follows.

First and foremost, our central claim is that tetradic Palatini gravity exhibits an electric

one-form symmetry described by the center subgroup Z(G) of the Lorentz group G.4 This

one-form symmetry depends crucially on the signature and global structure of G. For

example, in Euclidean signature the center is nontrivial when we consider Z(SO(4)) =

Z2 or Z(Spin(4)) = Z2×Z2, while in Lorentzian signature the center is nontrivial for

Z(SL(2,C)) = Z2. In all cases, these center subgroups have a zero-form symmetry action

as various parities on Lorentz vector and spinor indices.

Second, we show how the one-form symmetry of gravity is implemented by a topological

symmetry operator Uα. This object is constructed explicitly in terms of the local degrees

of freedom as the exponential of a certain area operator for a closed surface measured in

Planck units and labeled by an element of the center α. The symmetry operator Uα acts

on a line operator Wρ known as the spin holonomy, which is simply a Wilson loop for

the spin connection computed in a spin representation ρ along a chosen contour. While

Uα generates a global one-form symmetry, it can be implemented as a field transformation

that is precisely the form of a local Lorentz transformation, but with nontrivial winding

that precludes it from being a genuine local Lorentz transformation. Using this “twisted

local Lorentz transformation”, we show that Wρ transforms by a center-valued phase that

depends only on the topological linking of the surface and curve which define Uα and Wρ,

respectively. We prove the Ward identity for Uα andWρ using both covariant and canonical

2At low energies, general relativity and the tetradic Palatini formalism are equivalent classically and

quantum mechanically since they both reproduce a local effective field theory of a massless spin two particle.

As is well-known, the dynamics of such a theory are uniquely fixed, up to unknown Wilson coefficients.
3Of course, one can always start from the tetradic Palatini formalism and simply integrate out the spin

connection and gauge fix the tetrad algebraically, thus reverting to the usual metric description of gravity.

Doing so should yield the same physics, since these redundancies are unphysical. However, for our analysis

it will be far more illuminating to keep the tetrad and spin connection since we will be especially interested

in the gravitational interactions of fermions and their worldlines, which play an absolutely essential role in

our construction. Said another way, the pure metric formulation is poorly equipped to describe fermions.
4In an abuse of notation, we will hereafter refer to the gauge group G of the tetradic Palatini formalism

as the “Lorentz group” even though we will consider both Euclidean and Lorentzian signatures.
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approaches. Notably, this proof is valid to all orders in perturbation theory, at least within

the context of the effective field theory description of gravity5 where the topology and

dimension of spacetime are preserved.

Thirdly, we show that the interplay of Uα and Wρ has a remarkably simple interpre-

tation in terms of classical gravitation. The symmetry operator Uα creates a defect in

spacetime that is a chiral version of a cosmic string defect, and serves as a certain gravita-

tional analog of the Dirac string. The tension of Uα is quantized so as to induce a π deficit

angle which is directly measured by the spin holonomy Wρ as the center-valued linking

number. We then compute the linking number by evaluating Wρ on various spacetimes,

including an AdS-Schwarzschild background. The topological nature of Uα implies that its

linking with Wρ arises purely from contributions at leading order in the so-called self-force

expansion, where Uα is treated as a nondynamical background. Furthermore, this implies

that higher order self-force corrections are vanishing, so evidently the classical deficit angle

is not quantum corrected at any perturbative order.

Last but not least, we discuss the breaking of the gravitational one-form symmetry. As

expected, explicit breaking requires a local operator in the representation ρ that renders

the spin holonomy Wρ “endable,” thus unspooling its linking with Uα. Physically, this

corresponds to the screening of the spin holonomy by spinning particles. Interestingly, the

spin holonomy in the vector representation is automatically screened in pure gravity by

orbital angular momentum. This mirrors the phenomenon in gauge theory where adjoint

Wilson lines are screened by the gluon field itself. On the other hand, holonomies in the

spinor representation are endable only by local fermionic operators. If no such operators

exist, then the one-form gravitational symmetry is exact. Remarkably, this implies the

emergence of a hidden symmetry of the real world: below the lightest neutrino mass, there

is a gravitational one-form symmetry under which spinor holonomies are charged. More

generally, in a theory in which the gravitational one-form symmetry is not gauged, the

conjectured absence of exact global symmetries in quantum gravity directly implies the

existence of fermions.

2 Gauge Theory

In this section, we present a self-contained review of one-form symmetries in gauge theory.

Other treatments can be found in the literature [54–60]. We start with a covariant analysis

expressed in the language of path integrals, followed by a treatment in terms of canonical

quantization. Because this section is mostly—though not entirely—a recap of known results

from gauge theory, it may be skipped by readers interested only in our new findings, which

pertain to gravity. However, we note that this gauge theory warm up forms a concrete

road map for our parallel analysis of gravity later on.

5As is well-known, quantum corrections are perfectly well-defined even within a low-energy effective

field theory, provided one enforces systematic power counting. In the effective field theory of gravity, most

quantum corrections are ultraviolet sensitive and thus absorbed into incalculable counterterms. However,

there also exist calculable long-distance quantum corrections [47].
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2.1 Covariant Formalism

To begin, let us consider Yang-Mills theory for a gauge group G which is a connected matrix

Lie group. We take spacetime to be a Riemannian four-manifold M of Euclidean signature.

Our discussion will apply irrespective of whether or not the background spacetime is curved,

provided it is nondynamical. As is well-known, this theory admits a first-order formulation

in terms of a one-form gauge connection and an auxiliary two-form field,

Aa = Aa
µdx

µ and Ba =
1

2
Baµν dx

µ∧ dxν , (2.1)

valued in the adjoint and the coadjoint of G, respectively, so a, b, . . . ∈ {1, . . . ,dim(G)}.
The action is the integral over M of the Lagrangian four-form,

L =
1

g2
Ba∧F a − 1

2g2
Ba∧∗Ba where F a = dAa +

1

2
fabcA

b ∧Ac , (2.2)

where g is the gauge coupling. Throughout, color indices are raised and lowered by the

Killing form, while the Hodge dual ∗ with respect to the background metric acts on space-

time indices. Integrating out the auxiliary two-form field enforces Ba = ∗Fa,
6 and plugging

this back in to Eq. (2.2), we obtain (1/2g2)Fa∧∗F a, which is the textbook Lagrangian for

Yang-Mills theory in a fixed background spacetime.

2.1.1 Line and Symmetry Operators

In Yang-Mills theory, the one-form symmetry group is identified with the center of the

gauge group, Z(G). By definition, the one-form symmetry acts on extended objects rather

than local operators. The relevant charged object is the one-dimensional line operator,

Wρ(C) = trρ Pexp

(∮
C
A

)
, (2.3)

which is a path-ordered Wilson loop along a closed contour C. Here ρ denotes the irreducible
representation in which the trace and exponentiation are defined.7

Meanwhile, the one-form symmetry transformation is implemented by a corresponding

symmetry operator,

Uα(S) , (2.4)

which is an instance of the Gukov-Witten operator [61]. This operator is supported on a

two-dimensional surface S and labeled by a center element α∈Z(G). We will present a

concrete formula for Uα(S) in terms of explicit fields later on. But for the moment, let

6Here we emphasize to the reader that despite appearances B does not denote the magnetic field. Rather,

it is the two-form of the “BF ” formulation of Yang-Mills theory, so
∫
B =

∫
∗F and

∫
∗B =

∫
F denote

electric and magnetic fluxes when integrated over a spatial surface, respectively.
7Note that there is no factor of i in the exponential map because we are using an anti-Hermitian

convention for the Lie algebra generators.
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Figure 1. Left: The linking number between a one-dimensional contour C and an exact codimen-

sion two surface S = ∂V is equal to the number of intersections between the coboundary V and C.
Right: The coboundary V defines a homotopy for shrinking the surface S to a point on C.

us abstractly describe the symmetry operator in terms of the defining property that it

generates the following transformation on the line operator,

Wρ(C) 7→ ρ(α)link(C,S)Wρ(C) , (2.5)

where ρ(α) is the representation of the center element α as a complex phase, and we have

defined link(C,S) to be the linking number between the contour C and the surface S.
Crucially, since the linking number is a topological invariant, so too is the operator Uα(S),
in the sense that the surface of its support S can be deformed arbitrarily to yield the same

action on the Wilson loop Wρ(C) provided it does not degenerate with C.
In this paper, we will always assume that the two-dimensional support of the symmetry

operator is not only closed but also exact, so the surface S = ∂V is the boundary of a three-

dimensional volume V. This is required so that the symmetry operator can be contracted

continuously into an infinitesimal two-sphere enclosing the line operator, as depicted in

Fig. 1. Intuitively, this deformation corresponds to the physical measurement of the electric

charge of a body by computing the electric flux flowing through an infinitesimal two-sphere

enclosing it. As a consequence, we see that

link(C,S) = int(C,V) where S = ∂V . (2.6)

so the linking number between S and C is equal to the intersection number between C and

the coboundary V.
In Maxwell theory, it is well-known that the one-form symmetry is implemented by a

shift of the gauge field by a “flat connection”, which is closed wherever it is well-defined and

nonsingular, but crucially not exact. A key fact that we now emphasize is that this can be

realized as a transformation of the fields that takes the form of a gauge transformation for

a multivalued—that is, winding—gauge parameter, which is hence is not globally defined.

For instance, consider the map A 7→ A + dχ. If the zero-form parameter χ exhibits

nontrivial winding, then dχ is not, despite its appearance, an exact form. For example,

we might choose χ = εϕ, where ε is a constant and ϕ is the azimuthal angle in cylindrical

coordinates. Crucially, dϕ = (xdy− ydx)/(x2+ y2) is not exact because its integral around

a closed circular loop,
∫
S1 dϕ = 2π, is nonzero.
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There are two distinct ways to interpret this winding connection. From the math-

ematician’s perspective, dϕ would be described as a closed-but-not-exact one-form de-

fined on the x-y plane with the origin excised, which is R2 \0. However, throughout

this paper we will adopt the equivalent physicist’s picture, which is to instead specify

the exterior derivative of dϕ as a distributional two-form in the entire x-y plane with-

out excising the origin. That is, by demanding that Stokes theorem apply, we deduce

ddϕ = 2πδ(x)δ(y)dx∧ dy.8 In this picture, under the transformation A 7→ A + εdϕ the

field strength shifts by ddχ = 2πεδ(x)δ(y)dx∧ dy, which describes a magnetic flux tube, or

a Dirac string. The total flux 2πε of this Dirac string can be arbitrary and is measured by

the induced phase on the Wilson loops. We emphasize that in this more physical picture,

the Maxwell action is always defined over all of space without the excision of any partic-

ular support. Furthermore, the shift of the field strength F 7→ F + 2πεδ(x)δ(y)dx∧ dy
correctly describes the fact that the one-form symmetry transformation of the gauge field,

A 7→ A+ εdϕ, does not leave the Lagrangian invariant on the locus of the Dirac string.9

An exactly analogous construction applies to Yang-Mills theory, which we now describe.

In particular, in this case the one-form symmetry is realized by

Aa 7→ (Ω−1AΩ)a + (Ω−1dΩ)a and Ba 7→ (Ω−1BΩ)a , (2.7)

where Ω is a zero-form parameter which is valued in the gauge group G and approaches

the identity at infinity.10 Here we also stipulate the crucial additional condition that Ω is

multivalued and exhibits nontrivial winding. In the presence of winding, a global definition

of Ω requires a collection of multiple charts which define it on subregions of spacetime, but

together yield an atlas for all points. For any particular subregion chart, the corresponding

function will necessarily have a branch cut residing on some volume, which we define to be

V. The boundary of V then coincides with S in this subregion, which is to say S = ∂V. So
practically, when we define an explicit function for Ω in a given subregion we can deduce

S directly from the branch cut hypersurface V. For subregions outside of this particular

chart for Ω—which in many cases includes asymptotic infinity—we can say nothing until

we define another chart for Ω in that other patch.

Concretely, we will consider Ω which exhibits a discontinuity across V such that

lim
P±→P

Ω(P+)Ω
−1(P−) = α where α ∈ Z(G) , (2.8)

where P+ and P− are points infinitesimally displaced away from the same point on V, but
in opposite directions. Since Ω is multivalued, dΩ is not exact. The seemingly innocuous

caveat implies that Eq. (2.7) is not a gauge transformation in the traditional sense, despite

8For the more mathematically inclined, this delta function expression can be thought of as a shorthand

for stating a cocycle condition. A deformation retract of the triple overlap turns into the support of the

delta function. See also the discussion in [61].
9For quantized values of ε, the shift of the gauge field by a flat connection is an invariance of the path

integral and thus corresponds to a bona fide gauge transformation. If ε is nonquantized, then the shift of

the gauge field implements the global one-form symmetry.
10The notations Ω−1AΩ and Ω−1BΩ here signify adjoint and coadjoint actions, which is validated by

the fact that we specialize in matrix Lie groups and algebras. See App.A for a comment.

– 7 –



+P+P

C

SV

′C

SV
−P−P

Figure 2. Infinitesimal opening of the closed contour C at the intersection point C ∩ V.

its appearance. In particular, it does not leave Wilson loops invariant, which is why it

corresponds to a global one-form symmetry. In some of the literature, the transformation

defined in Eq. (2.7) is sometimes referred to as a “large gauge transformation” [62] in anal-

ogy with instanton configurations which support topological winding in a similar fashion.

For the present work we refer to Eq. (2.7) as a “twisted gauge transformation,” on account

of the structural form of Eqs. (2.7) and (2.8).

To understand how Eq. (2.7) is equivalent to Eq. (2.5), consider a Wilson loop for a

contour C that intersects with the coboundary V exactly once, so int(C,V)= 1. From

Eq. (2.6), we see that this also means C links exactly once with S, so link(C,S)= 1. We

then find that the Wilson loop transforms as

Wρ(C) 7→ lim
C′→C

trρ

[
Pexp

(∫
C′
Ω−1AΩ+ Ω−1dΩ

)]
,

= lim
C′→C

trρ

[
Ω−1(P−) Pexp

(∫
C′
A

)
Ω(P+)

]
,

(2.9)

where C′ is nearly identical to C except that it has been infinitesimally “cut open” in the

vicinity of V such that ∂C′ = P+ − P−, as depicted in Fig. 2.11 Cyclically permuting the

terms inside the trace, we find that the Wilson loop transforms as

Wρ(C) 7→ lim
C′→C

trρ

[
αPexp

(∫
C′
A

)]
= ρ(α)Wρ(C) , (2.10)

where ρ(α) enters with a single power because int(C,V)= 1. As a result, we find that

Eq. (2.10) is precisely the desired transformation of theWilson loop for link(C,S)= int(C,V)
= 1. When generalized to arbitrary linking number, the above calculation establishes the

one-form symmetry transformation law for Wilson loops defined in Eq. (2.5).

The astute reader will notice that it was essential that the mismatch in the twisted

gauge transformation is valued in a center element α∈Z(G), to make the symmetry op-

erator topological. Otherwise, the branch cut V cannot be arbitrarily chosen, since Wρ(C)
will transform differently under Ω depending on precisely where C has been cut open to

yield C′. In other words, if α were an arbitrary group element, its placement in the Wilson

loop would matter and thus the corresponding transformation would not be topological.

11App.B contains a detailed accounting of the various signs and orientations associated with the curves

and surfaces shown here.
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Figure 3. The one-form symmetry operator essentially inserts ρ(α) into the trace of the Wilson

loop, where α∈Z(G) is a center element. The location of this insertion can be arbitrary since α

commutes with all elements of G.

Before moving on, let us comment on a likely point of confusion. We have implemented

the one-form symmetry transformation using a twisted gauge transformation Ω that is

multivalued with a discontinuity center-valued in α. However, we saw earlier that the

symmetry operator Uα(S) that implements this transformation should be labeled solely by

the center element α rather than a whole zero-form parameter Ω. Why does the twisted

gauge transformation depend on Ω rather than just its twist α? The resolution to this

puzzle is that the naive Ω dependence in the twisted gauge transformation is spurious.

Since Uα(S) is a topological surface operator, it only links with one-dimensional objects.

The only such gauge invariant objects are Wilson loops, and we have already shown that

the action of the twisted gauge transformation on Wilson loops only depends on the center

element α, and not the details of Ω. Hence, different choices of Ω which have the same

twist valued in α are physically indistinguishable. In other words, symmetry operator is

gauge invariant despite the appearance of a reference structure Ω.

2.1.2 Ward Identity

Next, let us now derive the Ward identity which encodes the interplay between the sym-

metry operator Uα(S) and the line operator Wρ(C). Our goal is to prove that〈
Uα(S)Wρ(C)

〉
= ρ(α)link(C,S)

〈
Wρ(C)

〉
, (2.11)

where the brackets denote the path integral over all fields, so for example〈
Uα(S)Wρ(C)

〉
=

∫
DADB e−S Uα(S)Wρ(C) . (2.12)

Obviously, Eq. (2.11) is simply the transformation law for Wilson loops in Eq. (2.5), ex-

pressed in the language of covariant path integrals.

Earlier, we asserted that the one-form symmetry transformation in Eq. (2.5) is equiv-

alent to the twisted gauge transformation defined in Eq. (2.7). The latter is implemented

– 9 –



by the symmetry operator, which can be written in the explicit form,

Uα(S) = exp

(
2π

g2

∫
S
λaBa

)
where e2πλ = α ∈ Z(G) , (2.13)

where λa is an adjoint-valued zero-form. Our claim is that the Ward identity in Eq. (2.11)

follows mechanically from the definition of the line and symmetry operators in Eqs. (2.3)

and (2.13), and furthermore we can see directly how the one-form symmetry transformation

arises as a twisted gauge transformation. As before, the physical interpretation of Eq. (2.13)

is that it inserts a Dirac string or vortex [63–65] into spacetime. Note that Eq. (2.13) is a

generalization of the center symmetry operator described in [54], which utilized temporal

winding, and is also a special case of the family of symmetry operators constructed in [66].

The definition of Uα(S) in Eq. (2.13) may appear strange since the right-hand side

is not manifestly a function of just the center element α. Rather, it depends on a color

reference λ which has been chosen to exponentiate to α. Even worse, λ seems to specify

an arbitrary vector in color space that naively violates gauge invariance. However, exactly

like we saw for the twisted gauge transformation, the dependence on λ is actually spurious.

The properties of Uα(S) are dictated entirely by its action on Wilson loops, which we will

see depends only on α. Hence, any distinct choices of λ with the same twist α are physically

equivalent.12 We will see this borne out explicitly in the subsequent calculation.

The proof of the Ward identity is as follows. To begin, we apply the twisted gauge

transformation defined in Eq. (2.7), under which the field strength becomes

F a 7→ (Ω−1F Ω)a + (Ω−1ddΩ)a . (2.14)

As noted earlier, ddΩ = 0 everywhere that dΩ is well-defined. However, there are regions of

spacetime where it is ill-defined. Again, this is analogous to dϕ in polar coordinates, which

is closed, not exact, and ill-defined at the origin. Furthermore, it can be illuminating to

consider a distributional interpretation of ddϕ which has nontrivial delta function support

at precisely at the origin, so the integral of it over a disc yields
∫
D2 ddϕ =

∫
S1 dϕ = 2π.

Similarly, for the case of our twisted gauge transformation, ddΩ has localized support

on the surface S so in particular

(Ω−1ddΩ)a = 2πλa δ(S) for any λa such that e2πλ = α ∈ Z(G) . (2.15)

Here δ(S) is the two-form generalization of the Dirac delta distribution that peaks on S
[59, 61], whose defining feature is that∫

M
φ∧ δ(S) =

∫
S
φ , (2.16)

for any two-form φ in M.

12This is similar to what occurs in the case of instantons in gauge theory. These pure gauge configurations

necessarily specify some explicit path in color space, and hence appear naively color breaking. However,

only the topological winding number is the invariant label on these configurations.
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′C

Ωd1−Ω

Figure 4. The twist of the multivalued gauge transformation can be characterized by the “curl”

Ω−1ddΩ of the flat connection Ω−1dΩ, which localizes along S.

The equivalence between Eq. (2.8) and Eq. (2.15) can be understood intuitively from

the visualization given in Fig. 4. The multivaluedness condition in Eq. (2.8) implies that

the “gradient” Ω−1dΩ swirls about S, and in turn, its “curl” Ω−1ddΩ localizes along S as a

delta function, describing a Dirac string. A proof of this equivalence is left to App.B, which

is essentially a colored generalization of our simpler example ddϕ = 2πδ(x)δ(y)dx∧ dy. We

will also provide explicit examples of Ω later on.

With this understanding, we observe that that Eq. (2.13) can be written as

Uα(S) = exp

(
1

g2

∫
M
Ba ∧ 2πλaδ(S)

)
= exp

(
1

g2

∫
M
Ba ∧ (Ω−1ddΩ)a

)
, (2.17)

from which we can now revisit the left-hand side of the Ward identity in Eq. (2.12). The

factor involving the action and the symmetry operator combine to give

e−S Uα(S) = exp

(
− 1

g2

∫
M
Ba ∧ (F −Ω−1ddΩ)a − 1

2
Ba∧∗Ba

)
. (2.18)

The twisted gauge transformation of the field strength in Eq. (2.14) eats up the Ω−1ddΩ

term and absorbs the symmetry operator into the action, so

e−S Uα(S) 7→ e−S . (2.19)
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Combing Eq. (2.5) and Eq. (2.19), we see that the left-hand side of the Ward identity in

Eq. (2.12) transforms to

〈
Uα(S)Wρ(C)

〉
7→

∫
DADB e−Sρ(α)link(C,S)Wρ(C) , (2.20)

which proves the Ward identity in Eq. (2.11).

In summary, Eqs. (2.7) and (2.15) specify a change of field variables that absorbs the

symmetry operator into the action as Eq. (2.19). Note that Eq. (2.19) clearly shows the

action is not invariant under Eq. (2.7), as the Lagrangian four-form in Eq. (2.2) changes on

the support of the surface S. Hence we learn again explicitly that Eq. (2.7) is not a typical

gauge transformation in Yang-Mills theory, which would leave the Lagrangian four-form at

all points in spacetime invariant. Of course, if we excise the region S from spacetime, then

the twisted gauge transformation in Eq. (2.7) becomes a bona fide gauge transformation in

the resulting punctured manifold, as mentioned earlier in our discussion of Maxwell theory.

A few more remarks are in order. Firstly, it should be clear from the above logic that

the twisted gauge transformation in Eq. (2.7) describes the action of the one-form symmetry

operator Uα(S) on arbitrary operators. That is, if the twisted gauge transformation sends

an operator O to OΩ, then there is a corresponding generalized Ward identity,〈
Uα(S)O

〉
=

〈
OΩ

〉
, (2.21)

reiterating the fact that the one-form symmetry operator bridges between different center-

twisted topological sectors of the gauge bundle. In fact, the Ward identity of Wilson loops

in Eq. (2.11) can be regarded as a corollary of Eq. (2.21). Also, although Eq. (2.21) applies

to local operators, it should be understood that any such point-supported operator is

actually invariant under the one-form symmetry because the twisted gauge transformation

can always be locally untwisted by a conventional gauge transformation. Geometrically,

this reflects the fact that a point does not link with a codimension two object.

Secondly, the derivation of the Ward identity turns out to be very simple in the case of

Maxwell theory with an exact contour C. In this case the Wilson loop can be rewritten as a

surface integral of the field strength F , as is familiar from the computation of the Aharonov-

Bohm phase of a particle induced by a magnetic flux. The twisted gauge transformation

of the field strength in Eq. (2.14) then creates a localized flux tube on the support of S
whose integral over the surface yields the desired linking number. This is consistent with

the above proof through a duality in the linking number computation described in App.B.

Thirdly, let us elaborate on the group multiplication rule for the symmetry operator,

Uα1(S)Uα2(S) = Uα1α2(S), which is required axiomatically. Since our symmetry operator

implements a twisted gauge transformation, the composition of two such transformations

automatically yields a third, so we know a priori that the group composition law is valid.

However, establishing this more directly in terms of the expression in Eq. (2.13) is more

subtle. In particular, suppose Uα1(S) and Uα2(S) are realized with the color reference

vectors λ1 and λ2. The product Uα1(S)Uα2(S) naively exponentiates to symmetry operator

with the color reference vector λ1+λ2, which confusingly is not guaranteed to exponentiate
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to a center element in general. However, this puzzle is resolved by realizing that λ1+λ2
would correspond to a twisted gauge transformation with an irrational period. As described

at length in Sec. 2.1.1 and in Fig. 3, the periods of the twisted gauge transformations must

be center-valued in order for the symmetry operator to be topological. Otherwise line

operators will not transform correctly.

In order to properly implement sequential twisted gauge transformations, the repre-

sentative Lie algebra elements for Uα1(S) and Uα2(S) can be chosen as

α1 = e2πΩ2
−1λ1Ω2 and α2 = e2πλ2 . (2.22)

These color references merge into a new one, Ω2
−1λ1Ω2 + λ2, which corresponds to the

desired composite twisted gauge transformation,

Ω = Ω1Ω2 =⇒ Ω−1ddΩ = 2π(Ω2
−1λ1Ω2 + λ2)

a δ(S) . (2.23)

This establishes the group composition law. In summary, the topological nature and gauge

invariance of the symmetry operator together implies that the representative Lie algebra

elements for the center elements in the group composition equation should be chosen in a

specific form such that the composability and closure of center-twisted gauge transforma-

tions are correctly realized.

Last but not least, we realize that the above derivation of the Ward identity implies

a remarkably simple and universal recipe for deducing the symmetry operator directly

from the action itself. In particular, starting from any “BF ”-type Lagrangian of the form

Ba∧F a + f(B), we can define the symmetry operator as the object which is generated

by a twisted gauge transformation. While the one-form symmetry operator is exactly

eliminated by a twisted gauge transformation of the action, the f(B) term will only serve

as a spectator. This observation indeed is the key insight that will allow us to identify an

explicit a one-form symmetry operator for gravity in Sec. 3.

2.1.3 Explicit Examples

As summarized in Eq. (2.21), the one-form symmetry of Yang-Mills theory is implemented

by a twisted gauge transformation Ω that winds nontrivially with a mismatch valued in the

center element α∈Z(G). In this section, we will explicitly construct some examples of Ω

and apply them to various classical backgrounds. The resulting twisted backgrounds will

reveal some illuminating physical interpretations for the one-form symmetry operator itself.

For concreteness, we specialize in gauge group G = SU(N), whose center is Z(G) = ZN .

a. Symmetry Operator as Thin Solenoid

Suppose the spacetime is flat Euclidean space M = R4, equipped with Cartesian coordi-

nates xµ = (x, y, z, t). Consider a twisted gauge transformation,

Ω = exp

(
k

N
cϕ

)
where e2πc = 11 , (2.24)

– 13 –



where ϕ is the azimuthal angle such that tanϕ = y/x, and k is an integer. Here we have

defined c to be an element of the Lie algebra of SU(N) that exponentiates to the identity

via e2πc = 11, so in the fundamental representation we might have [54]

cij = i diag(1, 1, · · · ,−N+1) , (2.25)

where i, j, . . . denote fundamental indices.

To demonstrate the transformation, let us consider a trivial background corresponding

to Aa=0, Ba=0, where all the Wilson loops are trivial as Wρ(C)= dimρ, in particular

Wfund(C)=N for the fundamental representation. However, applying Eqs. (2.7) and (2.14)

on this trivial background with Ω in Eq. (2.24), we obtain a nontrivial background,

Aa = (Ω−1dΩ)a =
k

N
cadϕ =

k

N
ca
xdy− ydx

x2 + y2

F a = (Ω−1ddΩ)a =
k

N
caddϕ =

k

N
2πca δ(x)δ(y)dx∧ dy ,

(2.26)

with Ba = 0 still vanishing. For instance, consider a contour C that loops the z-axis once.

Then the Wilson loop for C, in the fundamental representation, is given by

trfund Pexp

(
k

N
c

∫ 2π

0
dϕ

)
= e2πik/NN , (2.27)

in the twisted background described in Eq. (2.26). This demonstrates how the one-form

symmetry transformation on Wilson loops arise from a twisted gauge transformation.

Interestingly, from the field strength in Eq. (2.26) we see that the resulting twisted

field configuration describes a line of color flux flowing through the z-axis for all times t.

Hence, we conclude that the physical interpretation of Ω is that it spontaneously excites

an infinitely thin, straight and static solenoid from the vacuum. In turn, this implies that

the one-form symmetry operator inserts a colored Dirac string into spacetime. With this

interpretation, the Ward identity in Eq. (2.11) can be understood as the measurement of

the Aharonov-Bohm phase by the Wilson loop in the background of the Dirac string. Each

time the Wilson loop winds about this thin solenoid, we accrue an additional phase factor

of e2πik/N , describing the center twist represented as a complex phase in the fundamental

representation:

(Ω(ϕ=2π)Ω−1(ϕ=0))ij = e2πik/N δij . (2.28)

A few remarks are in order. Firstly, it is worth noting that in Eq. (2.24) we can shift k

by pN for p∈Z, and this realizes various solenoids of different “strengths” but all yielding

the same monodromy. This is an instantiation of a comment made earlier, which is that

different Ω can realize the same α. Note also that a shift by pN can be implemented by a

gauge transformation which is not continuously connected to the identity.

Secondly, since the linking between line and symmetry operators is topological, all

of our results must be insensitive to homeomorphic deformations of their corresponding
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integration surfaces. For this reason it is an amusing check to consider the twisted gauge

transformation for a static but “wiggly” Dirac string,

Ω = exp

(
k

N
cϕ

)
where tanϕ =

y−Y (z)

x−X(z)
, (2.29)

where X(z) and Y (z) describe a static line in space that is not necessarily straight. Here a

simple calculation shows that the discontinuity in the twisted gauge transformation Ω−1ddΩ

is proportional to

δ(x−X(z))δ(y−Y (z)) d(x−X(z))∧ d(y−Y (z)) , (2.30)

which is a Dirac string that is not straight. It is obvious that the Aharonov-Bohm phase

computed by the Ward identity is not modified by these wiggles. Going a step further,

one can also promote the parameterization of the discontinuity to X(z, t) and Y (z, t) cor-

responding to time-dependent wiggles of the Dirac string. This case also accords with the

general formula in Eq. (B.2).

In principle, the most general possible twisted gauge transformation can have a gener-

ator c that varies across spacetime. This variation in color space is perfectly possible and

should also not alter the monodromies as long as it is properly derived form a multivalued

transformation in accordance with Eq. (2.15).

Finally, let us take stock of the physical interpretation of the above calculation. The

linking number between Uα(S) and Wρ(C) is typically interpreted as the center electric

flux Uα(S) measured in the presence of the worldline of a colored particle given by Wρ(C).
Interestingly, here we arrive at a dual, but completely equivalent picture: instead, Wρ(C)
is the Aharonov-Bohm phase computed for a color Dirac string created by Uα(S).

Yet, clearly we have been cavalier about the global topology of S while demonstrating

this example. In particular, because the thin solenoid extends off to infinity, we have not

actually stipulated whether or how S “winds back” to form a closed surface. However,

importantly, S must be closed in order for Uα(S) to be a topological operator. So why

did the example of the solenoid yield the correct picture, despite the fact that the global

structure of S was not specified?

Physically speaking, this setup yielded a sensible result because we effectively zoomed

into a local region of S which links with C and measured the associated Aharanov-Bohm

phase. That is, in the neighborhood of any point on S, the surface appears as an infinite

plane, and Ω is simply described by Eq. (2.24). As long as the Wilson loop does not deviate

substantially from this region, the Aharanov-Bohm phase will be completely ignorant of

how the ends of the flux tube reattach—or possibly even terminate—in some distant region.

This is why we could obtain the correct transformation of the Wilson loop despite ignoring

the global topology of S.
Mathematically speaking, Eq. (2.24) should be understood as an expression for Ω in

a certain patch on spacetime, which notably does not include the point at infinity. The

details of “winding back” for the closure of S are contained in the charts for Ω which cover

those other patches, which we have not defined explicitly. As a result, with the knowledge
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of Ω in a single patch, Wilson loops are explicitly computable only when restricted to

regions in this patch.

b. Symmetry Operator as Time Monodromy

Another interesting example is Yang-Mills theory at finite temperature, described by a

compact product manifold with compactified Euclidean time,

M = M3 × S1 , t ∼ t+ β . (2.31)

In addition to the trivial vacuum, there is an infinite set of gauge equivalence classes for

the background gauge field. For example, consider

Aa = n
2πca

β
dt where n ∈ Z . (2.32)

In this background, Wilson loops winding about the thermal circle are trivial, as e2πnc = 11.
Meanwhile, consider the following twisted gauge transformation:

Ω = exp

(
2πkc

N

t

β

)
. (2.33)

This maps the background considered in Eq. (2.32) to

Aa =

(
n+

k

N

)
2πca

β
dt , (2.34)

so the Wilson loops gain a nontrivial phase factor of e2πik/N per each thermal circle. Hence,

the symmetry operator has induced a monodromy in the time direction.

Note that Eqs. (2.32) and (2.34) can be obtained by identifying the ends of a flat

gauge field configuration in M3 times an interval with a twisted boundary condition. An

implementation of this construction in Lorentzian signature can be found in [54].

An interesting feature of this example which is absent from the previous one is that

the Wilson loops do not generally admit a coboundary. That is, they can be closed but

not exact. However, the construction of the one-form symmetry in terms of a multivalued

gauge transformation still applies.

Again, in the more rigorous sense Eq. (2.33) should be taken as the specification of Ω

in a certain patch, say a ball in M3 times S1. Then the surface support of the symmetry

operator can reside at a time slice along the boundary of a large volume that goes beyond

the ball.

c. Symmetry Operator as Circular Loop

In the examples considered thus far, the symmetry operator exhibited support on a surface

S that has infinitely large extent in some direction, thus always leaving a worry that an

explicit global definition of S as a closed surface is not given. For completeness, we would

like to end with an example that explicitly shows how the surface support S can be finite.

Recall earlier how we constructed a static color Dirac string on the z-axis. The cor-

responding worldsheet extended infinitely in the t-z plane, so S was infinite. Here we will
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temper S onto compact support in two steps. First, we will roll up the string in its spatial

directions, yielding a closed circular loop of finite radius. Consequently, S will be spatially

compact. Second, we will pinch off this loop in time by setting the size of this loop to be

vanishing except for a finite duration, so S will be temporally compact as well.

In the first step of this construction, we consider a completely static system in toroidal

coordinates, which foliate three-dimensional space according to a circular “reference ring”

of radius a in the x-y plane. In particular, the coordinates (τ, σ, ϕ) are defined by

x =
a sinh τ

cosh τ − cosσ
cosϕ , y =

a sinh τ

cosh τ − cosσ
sinϕ , z =

a sinσ

cosh τ − cosσ
, (2.35)

where ϕ is the azimuthal angle in the x-y plane. Surfaces of fixed τ ≥ 0 label concentric two-

tori which enclose the reference ring, while surfaces of fixed −π <σ≤π label two-spheres

which intersect the reference ring. Also, here we choose the branch cut for σ such that the

discontinuity at σ = ±π develops on the disc enclosed by the reference ring.

Crucially, we can think of σ as an angular coordinate that winds like a solenoid about

the reference ring. Thus we can let the twisted gauge transformation parameter be

Ω = exp

(
k

N
cσ

)
, (2.36)

which clearly induces a rephasing for any holonomy that wraps the reference ring. The

branch cut resides on a volume V corresponding to the static disc enclosed by the reference

ring. Its boundary then defines the surface S = ∂V, which is the reference ring itself,

namely a static loop of radius a in the x-y plane. Furthermore, we see that Ω correctly

approaches the identity at spatial infinity, simply because spatial infinity corresponds to

σ = 0 in toroidal coordinates.

In the second step, we allow for the radius of the reference ring to change with time. To

allow for this, we define toroidal coordinates for each time slice in which the reference ring

has a time-varying radius a(t). For example, let us define a(t) to smoothly increase from

and decrease to zero within a time interval t ∈ [t1, t2]. With this temporal modification,

the surface S has finite support in both time and space.

Let us end with a final remark. In general, one typically wants to construct a twisted

gauge transformation parameter Ω for an arbitrarily shaped surface S in an arbitrary

manifold M with or without boundaries. How do we know that such an Ω always exists,

given some choice of S and M? In all of the examples above we started with Ω as an input

and rather determined the surface S as an output.

Interestingly, we find that it is always possible to find an Ω with a given S and M,

on account of a closely analogous question in classical magnetostatics. That is, deducing

Ω from S and M is mathematically identical to deducing the static magnetic field and

potential of an electric current loop. To see why, imagine we are experimentalists who con-

struct a loop of electrical line current J, built to specification according to some arbitrary

contour. On account of Ampère’s law, ∇×H = J, we can then deduce the magnetic field

H, or even just measure it. In regions away from the current, we can then reconstruct

a magnetic scalar potential via H=−∇Ψ. If the manifold M is not closed, then we can
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make its boundary ∂M superconducting to enforce the boundary condition H⊥=0, in

which case Ψ can be set to a constant over ∂M that we fix to zero. In this analogy, the

electric current J, the magnetic field H, and the magnetic potential Ψ each correspond to

the Dirac string defined by Ω−1ddΩ, the twisted gauge connection Ω−1dΩ, and the “log”

of the twisted gauge parameter Ω, respectively .

2.2 Canonical Formalism

The one-form symmetry of gauge theory can also be understood from the complementary

point of view of the Hamiltonian formalism. To this end, we will study Yang-Mills theory on

a spacetime described by a product manifoldM = M3×R equipped with coordinates xµ =

(xi, x4). In particular, we perform a 3+1 decomposition in which xi denotes coordinates

of the spatial three-manifold M3 and x4 = t defines equal-time slices.

2.2.1 Phase Space

The first-order formulation of Yang-Mills theory is defined in Eq. (2.2). Writing out all

indices explicitly, we obtain the Lagrangian,

1

g2

[
1

2
Baµν

(
∂ρA

a
σ + 1

2 f
a
bcA

b
ρA

c
σ

)
ϵµνρσ − 1

4
BaµνB

aµν

]
, (2.37)

where ϵµνρσ denotes the permutation symbol. Carrying out the 3+1 decomposition and

integrating out Bai4, we immediately see that the dynamical coordinates on the phase space

are Aa
i together with their canonical conjugates,

Ei
a =

1

2
Bajk ϵ

ijk . (2.38)

Their canonical commutation relations given by

[Aa
i(x), A

b
j(x

′)] = 0 ,

[Ei
a(x), A

b
j(x

′)] = g2 δij δ
b
a δ

(3)(x−x′) ,

[Ei
a(x), E

j
b(x

′)] = 0 ,

(2.39)

where x, x′ ∈ M3 are points in the spatial manifold. Note that there is no imaginary unit

here since we are in Euclidean signature. The phase space is also equipped with the Gauss

constraint and a Hamiltonian, the details of which are not important for our purposes.

2.2.2 Ward Identity

In the language of the path integral, a one-form symmetry transformation is implemented

through the insertion of a symmetry operator which wraps the line operator. In the operator

formalism, however, this corresponds to a conjugation of the latter by the former. To see

how this works in detail, consider a line operator Wρ(C), where C is restricted to an equal-

time slice, say at t=0. As before, we take the symmetry operator Uα(S) to be supported

on an exact surface S with an associated coboundary V, so S = ∂V.
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Figure 5. Pancaking the symmetry operator on a purely spatial line operator C. The plane

depicts an equal-time slice while time flows upwards. Top: The equal-time slice bisects the volume

V by a surface S0. Middle: The surface S = ∂V splits into surfaces S+ and −S− at the infinitesimal

future and past. Bottom: S+ and S− both project down to the surface S0.

The geometric set-up is depicted in Fig. 5. We assume that the surface S links once

with the purely spatial loop C. Consequently, the coboundary V is intersected by the loop

C and bisected by the spatial slice. Now imagine continuously squashing or pancaking

the coboundary V along the time direction such that its two-dimensional boundary S
infinitesimally hugs the spatial slice. In this limit, S = S+∪(−S−) is the union of two

disjoint discs S+ and −S− at the infinitesimal future and past across t=0. Once V has

completely collapsed into the spatial slice at t=0, both discs S± approach the same surface,

which we denote by S0. From Fig. 5, we see that this S0 will be the intersection between

V and t = 0. As a result, the intersection of C and V in the four-manifold M is equivalent

to intersection of C and S0 in the three-manifold M3 as the slice t=0. Therefore, we have

in general

link(C,S) = int(C,V) = int3(C,S0) , (2.40)

where int3 denotes intersection number in M3.

Now, we can describe how this pancaking procedure boils down the Ward identity to an

equal-time operator equation. Since S = S+∪(−S−), we see that the symmetry operator

factorizes into Uα(S) = Uα(S+)Uα(−S−).
13 In turn, the left-hand side of the Ward iden-

tity in Eq. (2.11) becomes the time-ordered expression Uα(S+)Wρ(C)Uα(−S−), which in

the process of pancaking limits to the equal-time operator product Uα(S0)Wρ(C)Uα
−1(S0).

13Note that here we have allowed nonclosed surfaces for the support of symmetry operators, which might

be a slight abuse of notation.
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Figure 6. Zero-form version of the pancaking procedure, which the reader may be familiar with.

Wrapping an operator with the symmetry operator translates to an equal-time conjugation, where

operator ordering traces back to time ordering.

Using Eq. (2.40), we then find that the Ward identity translates to

Uα(S0)Wρ(C)Uα
−1(S0) = ρ(α)int3(C,S0)Wρ(C) , (2.41)

which is an equal-time operator equation.

Eq. (2.41) is the avatar of the Ward identity in the operator formalism, where all the

relevant geometric objects and operations, including the disc S0 and the closed contour C,
are defined within the three-manifold M3. The key insight here is that time ordering in

the path integral formalism turns into operator ordering in the operator formalism.

Finally, it is straightforward to explicitly evaluate Eq. (2.41). Applying the 3+1 de-

composition and using Eq. (2.38), the Hamiltonian formalism avatar of the symmetry op-

erator, supported on a disc S0⊂M3 in three dimensions, is given as

Uα(S0) = exp

(
π

g2

∫
S0

dxj∧ dxk ϵijkEi
aλ

a

)
where e2πλ = α . (2.42)

To compute Uα(S0)Wρ(C)Uα
−1(S0), let us first deduce how the conjugation acts on the

phase space. While Ei
a(x) is left invariant because [E

i
a(x), E

j
b(x

′)] = 0, the spatial gauge

connection Aa
k(x) has a nonvanishing commutator with the exponent of Eq. (2.42),

π

g2

∫
S0

dx′i∧ dx′j λb(x′) ϵijl [El
b(x

′), Aa
k(x)]

= 2π

∫
dσ1dσ2

∂Xi

∂σ1

∂Xj

∂σ2
λa(X) ϵijk δ

(3)(x−X) ,

(2.43)

where (σ1, σ2) 7→ Xi(σ1, σ2) is a parameterization of the surface S0. According to Eq. (B.2),

this describes the components of the one-form 2πλa δ3(S0), where δ3(S0) is the Dirac delta

one-form of S0 defined in the spatial three-manifold M3. Therefore, we can summarize the

action of the symmetry transformation on the phase space variables as the following:

Uα(S0)A
a
i Uα

−1(S0) = (Aa + 2πλa δ3(S0))i ,

Uα(S0)E
i
a Uα

−1(S0) = Ei
a .

(2.44)

As a result, we find that the Wilson loop transforms as

Uα(S0)Wρ(C)Uα
−1(S0) = ρ(α)int3(C,S0)Wρ(C) , (2.45)

which proves the Hamiltonian counterpart of the Ward identity. We have used the fact

that the three-dimensional intersection number is is int3(C,S0) =
∮
C δ3(S0).

– 20 –



3 Gravity

Armed with an understanding of higher-form symmetry in gauge theory, we are now

equipped to transcribe all of those results to the context of dynamical gravity. As is

well-known, the tetradic Palatini formalism is a description of gravity in terms of a gauge

theory of Lorentz transformations. Using this framework, we can deduce the higher-form

symmetries of gravity by direct analogy. As before, we start with a covariant analysis and

then describe the same physics using the canonical formalism.

3.1 Covariant Formalism

Consider dynamical gravity on a four-dimensional manifold M with Euclidean signature.

As noted earlier, we work within the regime of validity of an effective field theory of gravity

in which the topology and dimensionality of spacetime do not fluctuate.

Our point of departure is the tetradic Palatini formalism, which formulates gravity

as a gauge theory14 of the four-dimensional Lorentz group G and is inherently first-order.

Here we emphasize again that despite our abuse of nomenclature we will consider both

Lorentzian and Euclidean signature. The degrees of freedom are a one-form spin connection

and one-form tetrad field,

ωAB = ωAB
µdx

µ and eA = eAµdx
µ , (3.1)

which transform in the adjoint and fundamental representation of G, so the uppercase

indices are A,B, . . . ∈ {1, 2, 3, 4}.
In terms of these fields, the action for Palatini gravity is given by the integral over M

of the Lagrangian four-form

L =
1

4g2
ϵABCD e

A∧ eB∧RCD − Λ

24g2
ϵABCD e

A∧ eB∧ eC∧ eD , (3.2)

where we have defined the Riemann curvature two-form,

RA
B = dωA

B + ωA
C∧ωC

B , (3.3)

which is simply the field strength for the spin connection. The first term in Eq. (3.2)

encodes the Einstein-Hilbert Lagrangian, where we have repackaged Newton’s constant

into g = (8πGN)
1/2 to draw a closer analogy with gauge theory. The second term in

Eq. (3.2) defines the cosmological constant Λ.

It should be reiterated that both the spin connection and tetrad are taken as inde-

pendent degrees of freedom in the tetradic Palatini formulation. To see how this approach

reproduces conventional general relativity, let us vary the Lagrangian in Eq. (3.2) with

respect to the spin connection and tetrad to obtain their respective equations of motion,

D(eA∧ eB) = 0 and e[B∧RCD] =
Λ

3
eB∧ eC∧ eD , (3.4)

14Here were refer to gauge theory in the restricted sense of a construction based on principal fiber bundles.

While diffeomorphisms are of course a redundancy of description, they do not define a gauge theory in this

restricted sense because diffeomorphisms inherently shift the base points.
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where the square brackets on indices denote antisymmetrization. Here we have defined D

as the covariant exterior derivative with respect to the spin connection.

It is not difficult to show that the first equation of motion in Eq. (3.4) is algebraically

equivalent to vanishing of DeA = deA + ωA
B∧ eB, which is the definition of torsion. This

fixes the dynamics to be identically torsion-free. Any coupling of the spin connection to

an external source generates nonzero torsion precisely only on the support of that source.

Meanwhile, with vanishing torsion the second equation of motion in Eq. (3.4) becomes the

Einstein field equations for the associated metric,

gµν = δAB e
A
µ e

B
ν . (3.5)

As emphasized earlier, we work in an effective field theory description of gravity which de-

scribes gravitons propagating over a fixed background. Hence, throughout our analysis the

metric and tetrad are implicitly expanded as fluctuations about some choice of background

values ḡµν and ēAµ, respectively, though it will usually be simpler to manipulate the full

field variables rather than their fluctuations.15

Using integration by parts, it is easy to rewrite the Lagrangian in Eq. (3.2) so that it

does not contain derivatives of the spin connection. Consequently, the spin connection is an

auxiliary field that can be eliminated at tree-level by plugging in the classical solution for

ωA
B in terms of eA using the torsion-free condition in Eq. (3.4). The resulting Lagrangian,

which depends solely on the tetrad, is precisely the usual Einstein-Hilbert Lagrangian.

Therefore, tetradic Palatini gravity is classically equivalent to general relativity, provided

there are no sources that couple directly to the spin connection so that torsion is vanishing.

As noted earlier, quantum equivalence also follows, since the effective field theory of a

massless spin two particle is unique, modulo Wilson coefficients.

Next, we would like to recall the well-known fact that tetradic Palatini gravity can be

expressed in a way that even more directly parallels the first-order formulation of Yang-

Mills theory. This fact will play a crucial role in our identification of the one-form symmetry

later on. In particular, let us define the Plebański two-form [67, 68] by

BAB =
1

2
ϵABCD e

C∧ eD , (3.6)

which is valued in the adjoint of G. Expressed in terms of BAB, the tetradic Palatini

Lagrangian in Eq. (3.2) becomes

L =
1

g2
Ba∧Ra − Λ

6g2
Ba∧ ⋆Ba , (3.7)

15In any sensible effective field theory, the background spacetime is nondegenerate and thus the back-

ground tetrad ēAµ must be nonzero. This means the vacuum breaks diffeomorphism invariance and local

Lorentz symmetry down to the diagonal, which naively hinders our analysis. However, our calculation of

the Ward identity for the symmetry and line operators utilize the full tetrad field eAµ, which transforms co-

variantly, so there is no additional complication. The very same phenomenon occurs in gauge theory, where

expanding about a background gauge field Āa
µ technically breaks Lorentz invariance and color symmetry

down to the diagonal, but of course with no effect on the Ward identities in the theory.
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which is by construction identical in form to the Yang-Mills Lagrangian in Eq. (2.2). Here

the lowercase indices a, b, . . . ∈ {1, 2, 3, 4, 5, 6} transform in the adjoint of G, and ⋆ denotes

the Hodge star in the internal Lorentz space, so when the adjoint indices are all converted

to fundamental indices by the Lorentz algebra generator (ta)
A
B, we have

BAB =
1

2
ϵABCD e

C∧ eD and ⋆BAB = eA∧ eB . (3.8)

We emphasize that ⋆ should be distinguished from ∗ in Eq. (2.2). Also, we clarify that

fundamental indices A,B, · · · are raised and lowered by the Euclidean flat metric δAB.

In terms of the Plebański two-form, the Lagrangian in Eq. (3.7), is clearly of the “BF ”-

type Lagrangian of the form Ba∧F a+f(B) which is familiar from gauge theory. Therefore,

we can immediately identify the line operator and the symmetry operator for the one-form

symmetry of gravity by essentially copying the formulae from our earlier discussion about

Yang-Mills theory.

So what is the one-form symmetry of dynamical gravity? In analog with gauge theory,

it is defined by the center of G, which is the four-dimensional Lorentz group. As usual,

the center depends crucially on the global structure of G, which is not specified by the

Lagrangian in Eq. (3.7). Therefore, it is essential to clarify the global structure of G before

we can continue further.

To begin, let us consider the case of Euclidean signature. Given the well-known Lie

algebra isomorphism so(4) ∼= su(2)⊕ su(2) ∼= spin(4), we can choose G to be either16

Spin(4) ∼= SU(2)×SU(2) or SO(4) ∼= Spin(4)

Z2
or

SO(4)

Z2

∼= Spin(4)

Z2×Z2
, (3.9)

whose center subgroups are given by

Z2×Z2 or Z2 or 11 , (3.10)

respectively. The one-form charges will be valued in these center subgroups. Note that the

zero-form symmetry associated with the center Z2×Z2 of Spin(4) ∼= SU(2)×SU(2) acts as

parity on chiral and antichiral spinor indices, while that of the center Z2 of SO(4) acts as

parity on vector indices.

Meanwhile, in Lorentzian signature, possible candidates for the gauge group are

Spin(3, 1) ∼= SL(2,C) or SO+(3, 1) ∼= Spin(3, 1)

Z2
, (3.11)

where the latter is the orthochronous Lorentz group and the former is its double cover.

The corresponding center subgroups are

Z2 or 11 , (3.12)

16A priori, one can also consider semi-spin groups such as SemiSpin(4) ≃ SU(2)×SO(3), which is a

nonstandard quotient. However, this group does not admit a vector representation so it is not compatible

with the tetrad formalism.
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respectively, which define allowed one-form symmetry of gravity in Lorentzian signature.

Here the zero-form symmetry associated with the former corresponds to net parity on chiral

and antichiral spinor indices, also known as fermion parity.

Any choice of G in Eq. (3.9) is viable. For the sake of generality, however, in the

remainder of our analysis we will be agnostic and take the gauge group to be some general

G with center subgroup Z(G).

3.1.1 Line and Symmetry Operators

We are now equipped to derive explicitly the one-form symmetry of dynamical gravity. As

before, we start with identifying the line operator and its symmetry transformation.

Firstly, let us recall the direct parallel between the spin connection in Eq. (3.7) and

the gauge connection in Eq. (2.2). As such, it is obvious that the natural line operator in

gravity is the spin holonomy,

Wρ(C) = trρ Pexp

(∮
C
ω

)
, (3.13)

where C defines a closed one-dimensional contour and ρ is some spin representation of the

Lorentz group G. Far less clear a priori is the identity of the symmetry operator,

Uα(S) , (3.14)

other than that it should be labeled by a center element α ∈ G and defined on an exact

two-dimensional surface S = ∂V that can topologically link with C.
In perfect analogy with the Wilson loop of gauge theory, we expect that the spin

holonomy should transform as

Wρ(C) 7→ ρ(α)link(C,S)Wρ(C) , (3.15)

under the one-form symmetry of gravity, and this is indeed the case. As before, link(C,S)
is defined to be the linking number between the contour and surface that define the line

and symmetry operators.17

Mirroring Eq. (2.7) in gauge theory, the one-form symmetry of gravity is implemented

as a transformation of the fields by a closed but not exact form. In the gravitational context,

the appropriate map is a local Lorentz transformation that is multivalued. In particular,

we consider the case where S = ∂V and there is a branch cut on the coboundary V whose

discontinuity is center-valued. Physically, this twisted Lorentz transformation boosts local

17As noted previously, we work in an effective field theory of gravity in which the topology and di-

mensionality of spacetime are robust. Furthermore, the linking number is invariant under any invertible

diffeomorphism that is continuously connected to the identity. To see why, consider a putative family of

diffeomorphisms labeled by a parameter τ ∈ [0, 1] such that τ =0 is the identity and τ =1 unlinks the sur-

faces. By continuity, there exists some τ for which the corresponding diffeomorphism results in surfaces

which intersect at a point. In this case the diffeomorphism is not invertible, since it maps two points, one

on each surface, to a single point.
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laboratories in spacetime such that a π rotation of frames is applied after each winding

about S. Specifically, the spin connection and the tetrad will transform as

ωA
B 7→ (Ω−1)AC ω

C
DΩD

B + (Ω−1)AC dΩ
C
B and eA 7→ (Ω−1)AB e

B , (3.16)

from which the transformation of the Plebański two-form is given by

BA
B 7→ (Ω−1)ACB

C
DΩD

B , (3.17)

where Ω is a multivalued zero-form which defines the twisted Lorentz transformation. Like

in the case of gauge theory, dΩ is not exact because Ω carries winding. As before, we also

impose a discontinuity condition across the branch cut, given by

lim
P±→P

Ω(P+)Ω
−1(P−) = α where α ∈ Z(G) and P ⊂V , (3.18)

where P+ and P− are infinitesimally split across V. In turn, it follows that the spin

holonomy that links once with S maps to

Wρ(C) 7→ lim
C′→C

trρ

[
Pexp

(∫
C′
Ω−1ωΩ+ Ω−1dΩ

)]
,

= lim
C′→C

trρ

[
Ω−1(P−) Pexp

(∫
C′
ω

)
Ω(P+)

]
= lim

C′→C
trρ

[
αPexp

(∫
C′
ω

)]
= ρ(α)Wρ(C) ,

(3.19)

which exactly instantiates Eq. (3.15). Thus, we conclude that the twisted local Lorentz

transformation in Eq. (3.16) implements the gravitational one-form symmetry.

As in the gauge theory case, we emphasize here that Ω is not a bona fide gauge

transformation when the center twist α is nontrivial. In particular, drawing an analogy

with Eq. (2.15), we see that the double exterior derivative of Ω is nonzero,

(Ω−1)AC ddΩ
C
B = 2πλAB δ(S) for any λAB such that e2πλ = α ∈ Z(G) , (3.20)

and in fact has nonvanishing support precisely on S.
Before continuing, let us address some possible confusions relating to Lorentz and

diffeomorphism invariance. First of all, just like in Yang-Mills theory, we see here that

the twisted Lorentz transformation depends on the whole function Ω rather than just α.

Naively, this dependence is Lorentz-violating, since Ω defines a trajectory in the space of

Lorentz transformations. However, just as before, we can see that this dependence is spu-

rious since different choices for Ω which exhibit the same twist α still act indistinguishably

on the spin holonomy, and are thus physically equivalent.

Secondly, in the presence of dynamical gravitation there is a further caveat regarding

the diffeomorphism invariance of the line operator Wρ(C) and symmetry operator Uα(S).
Although these objects do not carry dangling indices, they do depend on a particular choice

of a contour C and surface S, which define collections of points in spacetime in the very

– 25 –



same way that a local operator O(x) defines a single point. However, any local or quasi-

local object such as a point, curve, or surface in spacetime is famously not diffeomorphism

invariant, simply because “x” itself is not diffeomorphism invariant. Note that this an-

noyance is also implicitly present in any discussion of gauge theory Wilson loops in the

presence of gravity, which is central to discussions of swampland conjectures. To address

this, one typically appeals to the restoration of diffeomorphism invariance by “gravitation-

ally dressing” [69, 70] the operator in question. A closely related tactic is to define all

positions “relationally” in terms of some asymptotic reference, either at spatial infinity or

the beginning of time.

However, diffeomorphism invariance is restored here in the very same way as Lorentz

invariance. Since the linking number is itself diffeomorphism invariant, it means that op-

erators related to each other by a diffeomorphism are themselves are physically equivalent.

3.1.2 Ward Identity

Next, let us compute the Ward identity associated with the gravitational one-form symme-

try. Taking inspiration from Eq. (2.13) in the case of gauge theory, we define the one-form

symmetry operator of gravity to be

Uα(S) = exp

(
π

g2

∫
S
λABBAB

)
where e2πλ = α ∈ Z(G) , (3.21)

where λ is a zero-form function which is chosen so that at all points in spacetime it exponen-

tiates to a center element of the Lorentz group. Again, this formula should be understood

as a realization of the symmetry operator Uα(S) with a representative Lie algebra element

λ for α, as all choices of λ with the same twist α act the same on the spin holonomy and

are thus physically equivalent.

Intriguingly, this surface operator Uα(S) literally computes a certain area-like quan-

tity associated with S! In particular, by reverting to tetrad variables and reintroducing

Newton’s constant, we find that the symmetry operator is

Uα(S) = exp

(
1

4GN

∫
S

1

2
⋆λAB (eA∧ eB)

)
, (3.22)

where ⋆λAB = 1
2 ϵABCDλ

CD is the Hodge dual of λAB. Here we recognize eA∧ eB as the

infinitesimal area element in the orthonormal frame, so the exponent computes the area

smeared with a reference ⋆λAB, measured in Planck units. Note that 1/2 is the canonical

normalization factor for contracting antisymmetric tensors.

Additionally, it is curious that the exponent in Eq. (3.22), or equivalently in Eq. (3.59),

is tantalizingly similar to the area operator in loop quantum gravity which leads to the

quantization of tetrahedral volume [71, 72]. The only crucial difference is that here the

area is “dotted” with a Lorentz generator λAB that exponentiates to the center, so in

a sense it serves as a discrete and topological reincarnation of the area operator in loop

quantum gravity. On the other hand, Uα(S) is also reminiscent of the Bekenstein-Hawking

entropy formula [73, 74]. Of course, these could easily be accidents of dimensional analysis
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on account of the 1/GN normalization in the exponent. But in any case, it would be

fascinating to see if any of these superficial similarities carry deeper significance.

Meanwhile, a virtue of the algebra isomorphism so(4) ∼= su(2)⊕ su(2) is that we always

can split the six generators of the Lorentz group G into three chiral and three antichiral

SU(2) generators. Assigning dotted and undotted spinor indices to each sector, we see

that the spin connection decomposes into self-dual and anti-self-dual components, ωα̇β̇ and

ωαβ, while the tetrad is eα̇α. Similarly, the Plebański two-form Ba decomposes into Bα̇β̇ =

ϵαβ (e
α̇α∧ eβ̇β) and Bαβ = −ϵ̃α̇β̇ (eα̇α∧ eβ̇β). See App.A for more details. Meanwhile, since

the two su(2) sectors commute, any element of the Lorentz algebra that exponentiates to

a center element can be split into self-dual and anti-self-dual generators that separately

exponentiate to center elements. Given these facts, we see that the symmetry operator

decomposes into more primordial building blocks, which are chiral symmetry operators,

Ũ(S) = exp

(
− 1

4GN

∫
S
λ̃β̇ α̇ e

α̇α∧ eαβ̇
)

where (e2πλ̃)α̇β̇ = −δα̇β̇ ,

U(S) = exp

(
− 1

4GN

∫
S
λα

β eβα̇∧ eα̇α
)

where (e2πλ)α
β = −δαβ .

(3.23)

Here λ̃α̇β̇ and λα
β belong to the self-dual and anti-self-dual Lie algebras.

For the case of Euclidean signature with G = Spin(4), the chiral operators Ũ(S) and
U(S) are precisely the one-form symmetry operators corresponding to each factor of the

center subgroup Z(G) = Z2 × Z2. Note that, as zero-form symmetries, each factor of the

center acts as parity in the numbers of dotted and undotted spinor indices, respectively. In

Lorentzian signature, however, the one-form symmetry is only nontrivial if G = SL(2,C),
in which case the center subgroup is Z(G) = Z2. As a zero-form symmetry this acts as

net parity on spinor indices. In this case, only the real combination of the chiral operators,

Ũ(S)U(S), corresponds to the one-form symmetry operator.

Now let us finally present a derivation of the Ward identity associated with the one-

form symmetry of gravity,〈
Uα(S)Wρ(C)

〉
= ρ(α)link(C,S)

〈
Wρ(C)

〉
. (3.24)

Since the tetradic Palatini framework is a first-order formalism, the left-hand side is given

by a path integral over all configurations of both the spin connection and the tetrad,〈
Uα(S)Wρ(C)

〉
=

∫
DωDe e−S Uα(S)Wρ(C) . (3.25)

As before, the symmetry operator Uα(S) merges with e−S to give

e−S Uα(S) = exp

(
− 1

4g2

∫
M
ϵABCD e

A∧ eB ∧ (R− Ω−1ddΩ)CD + . . .

)
, (3.26)

in analogy with Eq. (2.18), and where the ellipses denote the cosmological constant term.

Meanwhile, we see that the twisted Lorentz transformation in Eq. (3.16) implies

RA
B 7→ (Ω−1)ACR

C
DΩD

B + (Ω−1)AC ddΩ
C
B , (3.27)
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which is gravitational analog of Eq. (2.14). Applying this to Eq. (3.26), we find

e−S Uα(S) 7→ e−S . (3.28)

Together with the transformation of the line operator in Eq. (3.15), Eq. (3.28) sends the

left-hand side of the Ward identity in Eq. (3.25) to〈
Uα(S)Wρ(C)

〉
7→

∫
DωDe e−Sρ(α)link(C,S)Wρ(C) , (3.29)

which is precisely its right-hand side. This proves the Ward identity encoding the topolog-

ical linking of the spin holonomy in Eq. (3.13) with the symmetry operator in Eq. (3.21).

Just like in the case of gauge theory, the one-form symmetry of gravity acts as a twisted

Lorentz transformation on any choice of operator. Thus, if an operator transforms under

the twisted Lorentz transformation as O 7→ OΩ, then the corresponding Ward identity is〈
Uα(S)O

〉
=

〈
OΩ

〉
in parallel with Eq. (2.21).

Before continuing, let us highlight an important point: the one-form symmetry of

gravity is independent of our choice of formalism. In particular, while our derivations

have made elaborate use of tetradic Palatini gravity, our final conclusions remain valid

independent of this choice. For example, integrating out the spin connection yields a pure

tetrad theory, but this still exhibits the one-form symmetry.

On the other hand, it is natural to ask about gravity in the pure metric formulation,

where there is no tetrad, spin connection, or local Lorentz symmetry to speak of. In

this case one formulates the dynamics only in terms of the metric, which is manifestly

invariant under the twisted Lorentz transformation defined in Eq. (3.16), since gµν 7→ gµν .

Has the one-form symmetry disappeared? For the spinor holonomy, the answer is yes,

but for the simple reason that we cannot even write it down since there is no tetrad field

to characterize the gravitational interactions of fermions. This would be analogous to

studying Yang-Mills theory with the stipulation that we can only ever use adjoint indices,

thus precluding the existence of the very fundamental Wilson loops which are charged

under the one-form symmetry. On the other hand, the vector holonomy and its one-

form symmetry properties should presumably have a pure metric description since spin

structure should not be necessary. Note that there has been some interesting recent work

constructing continuous one-form symmetries of linearized gravity using the metric alone

[51–53]. It would be very illuminating to see explicitly how those symmetries relate to the

ones derived in this paper.

3.1.3 Chiral Cosmic String

Just as in gauge theory, the one-form symmetry operator in gravity can be interpreted as

an insertion of a defect in spacetime. It is then natural to ask, what is the nature of this

singular object? Indeed, how would a relativist interpret such a defect?

To answer this question let us consider empty space, as described by a flat metric.

Next, we apply the twisted Lorentz transformation in Eq. (3.16), which induces a curvature

singularity, RA
B = (Ω−1ddΩ)AB = 2πλAB δ(S), localized on the surface S. To give a
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physical interpretation to this twisted geometry, we can straightforwardly reverse engineer

the matter source that would directly generate this singularity. To do this we insert RA
B =

2πλAB δ(S) directly into the left-hand side of the Einstein field equations,

− 1

g2
⋆RAB∧ eB =

1

3!
|e|Tµ

A ϵµνρσ dx
ν∧ dxρ∧ dxσ , (3.30)

where |e| denotes the determinant of eAµ. From the resulting quantity, we then deduce the

stress-energy tensor Tµ
A that would be required to generate the corresponding curvature

singularity:

Tµ
κ = − 1

8GN

1

|e| ⋆λκν δ(S)ρσ ϵ
µνρσ ,

= − 1

4GN
⋆λκν

∫
dσ1dσ2 δ

(4)(x−X)

(
∂Xµ

∂σ1

∂Xν

∂σ2
− ∂Xν

∂σ1

∂Xµ

∂σ2

)
,

(3.31)

where in the last line we have parameterized the surface S by the function Xµ(σ1, σ2) in

terms of worldsheet coordinates (σ1, σ2) and used a formula given in Eq. (B.2). Also, we

have freely traded off local Lorentz indices with spacetime indices through the tetrad or its

inverse in these final expressions, while Tµ
A in Eq. (3.30) acts as a source for the tetrad eAµ

in the first-order formulation defined in Eq. (3.7). The stress-energy tensor in Eq. (3.31) is

localized along a membrane S and describes a defect reminiscent of a cosmic string, though

it is not literally identical to the Nambu-Goto string.

Interestingly, we can also see that the algebraic Bianchi identity, RAB∧ eB = 0, actually

fails for this defect configuration, indicating the existence of magnetic stress-energy [75].

That is, plugging RA
B = 2πλAB δ(S) into the left-hand side of algebraic Bianchi, we obtain

a nonzero expression,

− 1

g2
RAB∧ eB =

1

3!
|e|T ⋆µ

A ϵµνρσ dx
ν∧ dxρ∧ dxσ , (3.32)

which defines the dual stress-energy tensor T ⋆µ
A. Note that the above equation is mani-

festly Hodge dual to the Einstein field equations in Eq. (3.30). The fact that the right-hand

side of Eq. (3.32) is nonzero is analogous to the failure of the Bianchi identity in Maxwell

theory in the presence of a magnetic monopole. For our string geometry, the components

of this dual stress-energy tensor are given by

T ⋆µ
κ = − 1

8GN

1

|e| λκν δ(S)ρσ ϵ
µνρσ , (3.33)

describing a line distribution of NUT charge. In the meantime, recall that the Lorentz gen-

erator λ that exponentiates to a nontrivial center element has to be either self-dual or anti-

self-dual. This implies that the electric and magnetic stress-energy tensors in Eqs. (3.31)

and (3.33) are related either as Tµ
κ = T ⋆µ

κ or Tµ
κ = −T ⋆µ

κ, so this string is composed of

either self-dual or anti-self-dual matter. Therefore, we conclude that the geometry gener-

ated by an insertion of the symmetry operator represents a “chiral cosmic string,” where

self-dual or anti-self-dual stress-energy localizes on a two-dimensional surface S.
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Meanwhile, there is another well-known class of line singularities in relativity: the

Misner string [75–80], which is famously the line singularity of the Taub-NUT solution

[76, 78, 81, 82]. Does the chiral cosmic string carry a Misner string component? The answer

turns out to be no. First of all, the Misner string describes a stack of gravitomagnetic

dipoles [78, 79], and as such it can terminate on a set of gravitomagnetic monopoles, also

known as Taub-NUT black holes. However, the magnetic stress-energy found in Eq. (3.33)

rather describes a line density of distributed gravitomagnetic monopole whose magnitude

is equal to the electric stress-energy in Eq. (3.31). Secondly, the Misner string could also be

characterized as a localized source of torsion, as it induces a time monodromy [76, 80, 83].

However, it is easy to see that torsion transforms linearly even under twisted local Lorentz

transformations, so if torsion was zero in the initial background it stays identically zero

after the insertion of the symmetry operator as well. Concretely, one can establish that

our string geometry has vanishing torsion by plugging in the transformed tetrad and spin

connection in Eq. (3.16) into DeA = deA + ωA
B∧ eB, which also confirms that the failure

of algebraic Bianchi is solely due to the multivaluedness of the tetrad, since ddeA ̸= 0. The

absence of torsion is also clear if one recalls the fact that torsion is induced by local source

for the spin connection in the tetradic Palatini formalism, while the symmetry operator only

couples to the tetrad.18 For these reasons, we conclude that the singular string geometry

generated by the symmetry operator is of a cosmic kind, with no Misner string component.

3.1.4 Linking and Conical Deficit Angle

We have established that the symmetry operator creates a chiral cosmic string singularity

that carries both electric and magnetic gravitational charge. What is the meaning of the

linking of this string with the spin holonomy? Remarkably, this too has a simple physical

interpretation in terms of classical gravitation. To understand why, let us revisit the path

integral computation of the Ward identity,〈
Uα(S)Wρ(C)

〉
=

∫
DωDe e−SUα(S)Wρ(C) , (3.34)

but evaluated from using perturbation theory about flat space. The only dynamical degrees

of freedom are the tetrad and spin connection, which encode fluctuations of the physical

graviton. As we will see, from this viewpoint the linking number is computed by an infinite

set of perturbative diagrams whose structure offers some nice physical insights.

To apply perturbation theory, we must interpret Uα(S) and Wρ(C) as external sources
for the graviton field. From Eq. (3.13) we see that the spin holonomy Wρ(C) couples the

graviton to the contour C with a dimensionless coupling strength. That is expected because

the holonomy describes the coupling of gravity to spin. Meanwhile, Eq. (3.21) implies that

the symmetry operator Uα(S) couples the graviton to the surface S with a coupling 1/g2.

Last but not least, from Eq. (3.7), we see that in a normalization where the graviton field

is dimensionless, graviton vertices scale as 1/g2 and graviton propagators scale as g2.

18For this reason, the fact that the stress-energy tensor in Eq. (3.31) is not symmetric cannot be attributed

to nonzero torsion. It rather traces back to the nonvanishing magnetic stress-energy [75].
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Quantum corrected U : ∼ O(g−2)

Classical holonomy from U : ∼ O(g0)

Quantum holonomy from U : ∼ O(g2)

Quantum corrected W : ∼ O(g4)

Uα Wρ

Figure 7. A schematic depiction of Feynman diagrams contributing to the Ward identity at

various perturbative orders in the gravitational coupling g. The wavy lines denote gravitons, while

the loops of solid lines on the left and right depict the symmetry operator Uα and line operator Wρ,

respectively. The first and fourth rows describe quantum corrections to Uα and Wρ separately. The

second row is a contribution to the classical holonomy measured by Wρ, treating Uα as a source for

the background spacetime. The third row is the one-loop quantum correction to this quantity in

that background. Since the linking number is dimensionless and topological, it arises purely from

the classical holonomy.

To classify the various contributions in perturbation theory, let us first consider a tree-

level n-point correlator of gravitons. This object has n−2 vertices and 2n−3 propagators,

so it scales as g2(n−1). Loop-level contributions will be higher order in g2, so they are

subleading. Next, we take this n-point correlator and attach its external legs to the sources

Uα(S) and Wρ(C).
The leading diagrams arise when n external gravitons are connected to Uα(S), yielding

n factors of 1/g2. This contribution scales as 1/g2 and corresponds to the renormalization

of Uα(S) coming from graviton loops. Since these contributions do not link with Wρ(C),
they are unrelated to the topological linking number. These diagrams are depicted in the

first row of Fig. 7.

Meanwhile, the next-to-leading contributions come from diagrams in which n−1 exter-

nal gravitons are connected to Uα(S), with the last external graviton connected to Wρ(C)
as an insertion of the spin connection. The corresponding diagram scales as a dimensionless

constant, since all powers in g2 exactly cancel. This contribution, resumming up all dia-
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grams for all n, is precisely the tree-level one-point function of spin connection computed

at all orders in g2 in the presence of the source Uα(S), otherwise known as the classical

spin connection in the corresponding classical gravity problem. This relationship was un-

derstood in the seminal work of Ref. [84], which showed how to perturbatively construct

the Schwarzschild metric from an analogous set of diagrams.19 In any case, we can then

compute the next-to-leading contribution to the linking number by inserting this one-point

function of the spin connection directly into Wρ(C). See the second row of Fig. 7 for a

depiction of these contributions.20 Note that on account of the exponential in Wρ(C), it is
inserted an infinite number of times. In perturbation theory, such a calculation would be

prohibitively hard. But crucially, this procedure is literally exactly equivalent to a calcu-

lation of the classical spin holonomy Wρ(C) evaluated with the spin connection set to its

background value sourced by Uα(S).
As is well-known, this classical spin holonomy can be viewed as a geometric phase

accounting for the precession of a spinning particle as it circumscribes the contour C.
Hence, the classical spin holonomy Wρ(C) precisely measures a certain conical deficit angle

induced by Uα(S). Since Wρ(C) rephases by a center element, this conical deficit angle

is quantized, and should be viewed intuitively as a π phase shift. The examples in the

subsequent section will verify this.

Of course, there are next-to-next-to-leading contributions and beyond that are ever

higher order in g2. Some of these are just the renormalization ofWρ(C), which are depicted

in the fourth row of Fig. 7. The remaining contributions are shown in the third row of

Fig. 7, and correspond to quantum loop corrections to the spin holonomy. However, we

can argue a priori that the topological winding number should not receive quantum correc-

tions. This follows from dimensional analysis and topology. Since all quantum corrections

enter with additional factors of g2, the corresponding contributions to the dimensionless

linking number must involve some other dimensionful parameter. The only other scales

available are the relative distances and sizes associated with C and S. However, these

scales cannot appear, since our results are invariant under topology-preserving deforma-

tions. Consequently, all quantum corrections must be power divergent and can be absorbed

into counterterms at all orders in perturbation theory. Said another way, the conical deficit

angle induced by Uα(S) should not be renormalized.

3.1.5 Explicit Examples

To summarize, we have shown that the gravitational one-form symmetry operator imple-

ments a twisted Lorentz transformation, which is in turn equivalent to the insertion of

19Recently, this connection between perturbative diagrams and classical dynamics has been used to

simplify certain contributions to black hole scattering in a recently proposed effective field theory for

extreme mass ratio inspirals [85].
20Technically, the Feynman diagram contribution in the second row of Fig. 7 vanishes since the trace in

the spin holonomy acts on a single factor of the antisymmetric spin connection, yielding zero. However,

there are diagrams with multiple insertions of the one-point function of the spin connection into the spin

holonomy which enter at the same order in perturbation theory, and they contribute nontrivially to the

linking number.
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a chiral cosmic string defect. The symmetry operator can be treated as a matter source

which nonlinearly generates the classical one-point function of spin connection, which is

then input into the line operator to yield the classical holonomy. Hence, the classical holon-

omy precisely reproduces the Ward identity for the line and symmetry operators. Let us

demonstrate how this works in some simple examples.

a. Symmetry Operator as Chiral Cosmic String in Flat Space

To begin, let us consider an initial background spacetime given by flat Euclidean space

M = R4, equipped with Cartesian coordinates xµ=(x, y, z, t) and the trivial tetrad δAµ =

diag(1, 1, 1, 1). In this background the classical spin connection coefficients are zero and so

the classical holonomy is trivial.

Next, let us induce a twist on this trivial configuration in a way that parallels the

example from Yang-Mills theory described in Eq. (2.24). For concreteness, we assume that

the Lorentz group is G = SO(4), so the center one-form symmetry is Z(G) = Z2, under

which vector holonomies are charged. Next, we define a twisted Lorentz transformation

that generates a string singularity along the surface at x= y=0, so

Ω = exp

(
k

2
cϕ

)
where e2πc = 11 , (3.35)

where k is an integer and ϕ is the azimuthal angle such that tanϕ = y/x. For example,

the Lorentz reference vector can be chosen to be

cAB =


0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0

 , (3.36)

which is shown in the vector representation of the Lorentz group. Then, according to

Eqs. (3.16) and (3.27), the spin connection and curvature transform to

ωA
B = (Ω−1dΩ)AB =

k

2
cAB dϕ =

k

2
cAB

xdy− ydx

x2 + y2

RA
B = (Ω−1ddΩ)AB =

k

2
cAB ddϕ =

k

2
2πcAB δ(x)δ(y)dx∧ dy ,

(3.37)

where the latter exhibits the chiral cosmic string defect whose worldsheet is in the x-y plane.

We emphasize here that the orientation of the Lorentz transformation cAB is completely

independent of the direction that the string actually spans in spacetime. In Eq. (3.36), we

have arbitrarily chosen cAB to act on the x-t and y-z planes. This is an essentially random

choice—this construction exists for any cAB that exponentiates properly to the identity, as

stipulated in Eq. (3.36). As we saw earlier, while this naively chooses a Lorentz violating

reference vector, it is spurious because the reference drops out of the Ward identity for the

symmetry operator. Lastly, note that the intrinsic chirality of this construction is evident

if we write these expressions in spinor notation, where cAB splits into c̃α̇β̇ = −i(σ1)α̇β̇ and

cα
β = 0. Hence, this defect interacts with antichiral fermions, but not chiral fermions. It

is for this reason that we refer to the string itself as chiral.
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Plugging in the background spin connection above into the holonomy, we obtain

trvec Pexp

(
k

2
c

∫ 2π

0
dϕ

)
= 4(−1)k , (3.38)

where the trace and exponentiation are performed in the vector representation. From the

factor of (−1)k, we immediately see that this holonomy flips sign depending on the parity

of k, which defines the number of windings.

It is not difficult to understand that this sign factor from the Wilson loop describes a

conical deficit angle quantized in the units of π. Suppose a Lorentz vector vA is initialized

to a value vA0 at a point on ϕ=0 and then parallel-transported around the string. The

spin connection enters into the equation for parallel transport, v̇A = −ωA
Bρ v

B ẋρ, whose

solution is vA = (Ω−1)AB v
B
0 . That is, the parallel transport of this vector is precisely

implemented by a twisted Lorentz transformation. As a result, during a round trip the

vector experiences a succession of smooth rotations that accumulates to a net rotation of

eπkc = ±11, corresponding to a deficit angle of kπ.21 This exactly describes how a coni-

cal deficit angle is measured in classical gravitation. For even k the holonomy is trivial,

while for odd k the vector experiences a net π rotation. Note that this rotation is always

orientation-preserving, since we consider the proper Lorentz group throughout. Conse-

quently, our results are consistent with [49], which elegantly argues for the impossibility of

orientation-changing defects. Furthermore, we see that the chiral cosmic string differs from

the traditional cosmic string, because the angle deficit is accumulated around an arbitrary

axis cAB which is totally unrelated to the actual orientation of the string in spacetime.

One can repeat this exercise for the case of spinor holonomy, which requires a Lorentz

group G = Spin(4), whose center one-form symmetry is Z(G) = Z2 × Z2. Like before,

we apply a twisted Lorentz transformation of the form of Eq. (3.35), except in the spinor

representation. In this case, as noted earlier Eq. (3.36) translates to

cα
β = 0 and c̃α̇β̇ = −i(σ1)α̇β̇ . (3.39)

It is then easy to compute the holonomies in the chiral and antichiral spinor representations,

trsp Pexp

(
k

2
c

∫ 2π

0
dϕ

)
= 2

trs̃p Pexp

(
k

2
c̃

∫ 2π

0
dϕ

)
= 2(−1)k ,

(3.40)

so the antichiral spin holonomy is rephased by (−1)k, while the chiral spin holonomy is

invariant. Thus the chiral cosmic string detects the parity of antichiral spinor indices.

Like before, these spin holonomies can be deduced from the parallel transport of fermions

around a loop, described by ψ̇α = −ωα
β
ρψβ ẋ

ρ and
˙̃
ψα̇ = ω̃α̇

β̇ρ ψ̃
β̇ ẋρ.

21One might ask whether the same result trivially follows from solving v̇µ = −Γµ
νρ v

ν ẋρ, which describes

the parallel transport of a vector in terms of spacetime indices. The answer is no, since this equation

computes the holonomy of the Christoffel symbol, which is a functional of the metric rather than the spin

connection. So as an operator in the first-order formalism, the Christoffel holonomy is simply not equal

to the spin holonomy defined in Eq. (3.13). There is no contradiction here: to implement the symme-

try transformation of the Christoffel holonomy, one should determine the analog of the twisted Lorentz

transformation for spacetime indices, which may be possible in a metric-affine formulation of gravity.
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b. Symmetry Operator as Cosmic String in Black Hole Geometry

As a more general example, we next consider the one-form symmetry operator in curved

spacetime. Conveniently, we can exploit well-known expressions from classical gravity in

order to compute at all orders in perturbation theory in the gravitational constant.

Our starting point is an AdS-Schwarzschild background in Boyer-Lindquist coordinates

xµ = (r, θ, ϕ, t). The line element is given by

ds2 =
1

f(r)2
dr2 + r2dθ2 + r2 sin2 θdϕ2 + f(r)2dt2 , (3.41)

where we have denoted

f(r) =

√
1− 2GNM

r
+
r2

l2
, (3.42)

where M is the mass of the black hole and l is the AdS radius.

The goal of this analysis is to compute the classical spin holonomy in the presence or

absence of the symmetry operator in order to verify the validity of the Ward identity of

the one-form symmetry. To be concrete, let us consider the spin holonomy for a circular

loop C in the plane defined by θ = π/2 and with constant radius r = r0:

Wvec(C) = trvec Pexp

(∫ 2π

0
ωϕ(r0, π/2, ϕ, 0)dϕ

)
. (3.43)

The Ward identity for the gravitational one-form symmetry implies that this spin holonomy

should change its value depending on whether or not we insert the symmetry operator.

Firstly, consider a pure AdS-Schwarzschild background in the absence of the symmetry

operator. Here the spin connection relevant to the holonomy in Eq. (3.43) is

ωA
Bϕ(r, π/2, ϕ, t) =


0 0 f(r) 0

0 0 0 0

−f(r) 0 0 0

0 0 0 0

 . (3.44)

This is independent of ϕ, so the path ordering can be dropped. Straightforward calculation

shows that the Wilson loop in the vector representation is given by (see also [86, 87])

W(C) = 2 + 2 cos(2πf(r0)) . (3.45)

In fact, the calculation can be done “symbolically” by observing that the spin connection

component in Eq. (3.44) splits into self-dual and anti-self-dual parts as

ωA
Bϕ(r, π/2, ϕ, t) =

(c++ c−)
A
B

2
f(r) , (3.46)

where we have defined

(c+)
A
B =


0 0 1 0

0 0 0 −1

−1 0 0 0

0 1 0 0

 and (c−)
A
B =


0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0

 . (3.47)

– 35 –



0),1r(

), φ0r(

), φ0r(γ

0r=r

Figure 8. A spaceship is in circular orbit about a black hole adjacent to a chiral cosmic string. On

board, a spinning top experiences an additional π rotation of its spin per round trip, as compared

to without the string.

The calculation is simplified once one observes that these Lorentz generators commute.

Next, we compute the same spin holonomy but with the insertion of a symmetry

operator Uα(S). As depicted in Fig. 8, we take S to define the worldsheet of a chiral

cosmic string spanning the azimuthal direction. Without loss of generality, let us take the

string to intersect the plane θ = π/2 at (r, ϕ) = (r1, 0). The associated twisted Lorentz

transformation is, for example,

Ω = exp

(
c

2
γ(r, ϕ)

)
where e2πc = 11 , (3.48)

which is simply an instance of Eq. (3.35) with k = 1 winding. Here γ(r, ϕ) describes the

“apparent” azimuthal angle measured from the string at (r, ϕ) = (r1, 0), so concretely,

tan γ(r, ϕ) =
r sinϕ

r cosϕ− r1
. (3.49)

In principle, we can choose any generator for c to demonstrate the transformation of the

Wilson loop. For an explicit check, let us work out a simple case in which the mul-

tivalued transformation parameter Ω commutes with the spin connection component in

Eq. (3.44). Namely, we take the Lorentz generator in Eq. (3.48) to be the self-dual genera-

tor in Eq. (3.47), so cAB = (c+)
A
B. By explicit calculation we find that the spin connection
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transforms according to

ωA
Bϕ(r, π/2, ϕ, t) =

(c++ c−)
A
B

2
f(r) 7→ (c++ c−)

A
B

2
f(r) +

(c+)
A
B

2

∂γ

∂ϕ
(r, ϕ) , (3.50)

where we have used that (c+)
A
B commutes with (c−)

A
B. By construction the path ordering

of this transformed spin connection is trivial and can be dropped. Finally, we find that the

transformed spin holonomy is

Wvec(C) 7→ tr exp

(
c++ c−

2
2πf(r0) +

c+
2

2πn

)
,

= 2 cosnπ + 2 cos
(
2πf(r0)+nπ

)
,

=
(
2+2 cos(2πf(r0))

)
· (−1)n ,

=Wvec(C) · (−1)n ,

(3.51)

where n is linking number measuring the number of times C winds about S:

n =
1

2π

∫ 2π

0

∂γ

∂ϕ
(r, ϕ)dϕ =

{
1 if r1 < r0 ,

0 if r1 > r0 .
(3.52)

Note how each term in Eq. (3.45) gets “twisted” to each term in Eq. (3.51), by the addition

of nπ inside the argument of cosines. In conclusion, we find that the twisted local Lorentz

transformation, which corresponds to an insertion of the operator Uα(S), flips the sign of

the spin holonomy when the contour C and the surface S are linked. This verifies the Ward

identity for the one-form symmetry in a curved background.

More generally, it is possible to choose the twisted Lorentz transformation such that

the twisted spin connection does not commute with itself at different points. In this case

the path ordering in the spin holonomy is much more difficult to compute directly and

so we resort to numerical methods. For example, let us consider an arbitrary self-dual

generator parametrized by a unit three-vector (n1, n2, n3):

cAB =


0 n3 −n2 n1

−n3 0 n1 n2
n2 −n1 0 n3
−n1 −n2 −n3 0

 = n1 (t
+
1 )

A
B + n2 (t

+
2 )

A
B + n3 (t

+
3 )

A
B . (3.53)

In this case the twisted spin connection is given by
0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0

 f(r)

2
−


(
n2n1s

2 − n3sc
)
(t+1 )

A
B

+
(

1
2 − (1−n2

2)s2
)
(t+2 )

A
B

+
(
n2n3s

2 + n1sc
)
(t+3 )

A
B

 f(r) +
cAB

2

∂γ

∂ϕ
(r, ϕ) , (3.54)

where s = sin(γ(r, ϕ)/2), c = cos(γ(r, ϕ)/2). By evaluating the path-ordered exponential

numerically, we can verify explicitly the final line of Eq. (3.51) for this more general case.
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In the above examples we have always assumed that the holonomy contour and the

chiral cosmic string are separated from the black hole horizon. Since the divergence of the

line element in (3.41) at the horizon is a coordinate singularity, the loop and the string

can actually be placed across or inside the horizon. It would be amusing to compute the

holonomy in these more exotic configurations using coordinate systems in which the metric

is regular on the horizon.

3.2 Canonical Formalism

Last but not least, let us now analyze the one-form symmetry of gravity from the point of

view of the Hamiltonian formalism. The relevant framework is the nonchiral or real version

of the Ashtekar [88] formulation, as studied in [89–92].

3.2.1 Phase Space

In Eq. (3.7) we described the Lagrangian for tetradic Palatini gravity, expressed in terms of

the Plebański two-form field. With all indices written out explicitly, this Lagrangian reads

1

g2

[
1

2
Baµν

(
∂ρω

a
σ + 1

2 f
a
bcω

b
ρω

c
σ

)
ϵµνρσ − Λ

6
Baµν⋆B

a
ρσ ϵ

µνρσ

]
. (3.55)

Carrying out the 3+1 decomposition, we immediately find that the dynamical degrees of

freedom coordinatizing the phase space are ωa
i together with their canonical conjugates,

Ei
a =

1

2
Bajk ϵ

ijk . (3.56)

Upon quantization, the canonical commutation relations are then

[ωa
i(x), ω

b
j(x

′)] = 0 ,

[Ei
a(x), ω

b
j(x

′)] = g2 δij δ
b
a δ

(3)(x−x′) ,

[Ei
a(x), E

j
b(x

′)] = 0 ,

(3.57)

where x, x′ ∈ M3 are points in the spatial manifold. As expected, Eqs. (3.56) and (3.57)

exactly mirror Eqs. (2.38) and (2.39) from gauge theory, which is indeed the entire point

of the Ashtekar formulation [88, 93].

We restrict our focus to these canonical commutation relations, as they are the only

crucial element for proving the one-form symmetry in Hamiltonian framework as we learned

in Sec. 2.2. It is known that integrating out the nondynamical degrees of freedom eventually

leads to a well-posed constrained Hamiltonian system equipped with several constraints

[89–92], such as the Gauss constraints for local Lorentz transformations as well as the

Hamiltonian and diffeomorphism constraints familiar from the ADM [94] analysis.22

22In particular, one can start from the Plebański Lagrangian [67], where the Plebański two-form in

Eq. (3.6) is taken as a fundamental degree of freedom rather than a composite field constructed from the

tetrad. In this case, the 3+1 decomposition naturally gives the phase space (ωa
i, E

i
a), where the variable

Ei
a is not composite.
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3.2.2 Ward Identity

Following the logic of gauge theory, we now show how the one-form symmetry of gravity is

implemented in the Hamiltonian formulation. Like before, we consider Wρ(C) oriented in

a spatial slice at t=0 and linked with Uα(S). Again, we pancake S onto the spatial slice

so that it becomes the disjoint union of two discs, defined by S = S+∪(−S−). Here S+

and −S− are two halves of a squashed sphere which straddle the spatial slice, as depicted

in Fig. 5. These discs are eventually projected down to a surface S0 in the time slice t=0.

The symmetry operator factorizes into Uα(S) = Uα(S+)Uα(−S−), so the symmetry

transformation becomes the equal-time operator equation,

Uα(S0)Wρ(C)Uα
−1(S0) = ρ(α)int3(C,S0)Wρ(C) , (3.58)

where S0 and C all belong to the spatial three-dimensional manifoldM3. Here Uα(S0) is the

avatar of the symmetry operator in the Hamiltonian framework, taking a two-dimensional

surface S0 with boundary as its support. Applying the 3+1 decomposition described in

the previous section, the symmetry operator becomes

Uα(S0) = exp

(
π

g2

∫
S0

dxj∧ dxk ϵijkEi
aλ

a

)
where e2πλ = α , (3.59)

which exhibits the expected dependence on Ei
a as the variable conjugate to the spin con-

nection ωa
i. Using the canonical commutation relations in Eq. (3.57), the left-hand side of

Eq. (3.58) can be evaluated as

Uα(S0)Wρ(C)Uα
−1(S0) = trρ Pexp

(∮
C
ω + 2πλ δ3(S0)

)
= ρ(α)int3(C,S0)Wρ(C) , (3.60)

thus establishing the Hamiltonian version of the Ward identity, introduced in Eq. (2.41)

and reproduced in Eq. (3.58). Note the near isomorphism between Eqs. (3.59) and (3.60)

for gravity and Eqs. (2.42) and (2.45) for gauge theory. Indeed, this parallel between Yang-

Mills and gravity has been the central insight in our construction of the gravitational

one-form symmetry. It also strongly aligns with the broader philosophy of the Ashtekar

formulation, which is that Yang-Mills and gravity are formulated in essentially the same

phase space.

We have taken as our starting point the definition of the spin holonomy in Eq. (3.13)

and the symmetry operator in Eq. (3.21) and shown how these form the ingredients of a

gravitational one-form symmetry. However, it is amusing that the reverse logic is actually

possible. Starting from the spin holonomy, we can actually deduce the symmetry operator

from first principles, as the line and charge operators are necessarily integrals of conjugate

phase space variables. Specifically, this is required in order for their commutation rela-

tions to yield delta functions that eventually integrate to become field-independent linking

numbers. Since Ei
a is conjugate to the spin connection ωa

i, we see that Eq. (3.59) and

its covariant counterpart were actually inevitable. Namely, this provides an alternative

argument for the definition of the symmetry operator in Eq. (3.21).
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Figure 9. Spinor holonomy is screened by fermions. Vector holonomy is screened by orbital

angular momentum.

3.3 Symmetry Breaking

As is well-known, global higher-form symmetries can be broken, either explicitly or sponta-

neously. In analogy with Yang-Mills theory, the one-form symmetry of gravity is explicitly

broken in the presence of matter fields that transform nontrivially under the Lorentz group.

For example, if the theory includes a local operator in the spin representation ρ, then it

is possible to define a Lorentz invariant line holonomy Wρ(C) for a contour C that is not

closed, but rather terminates on this local operator. The spin holonomy is then “endable,”

so it can be unlinked topologically from the symmetry operator Uα(S), and the one-form

symmetry is explicitly broken. The physical interpretation of this phenomenon is that the

spin holonomy is screened by spinning particles.

Interestingly, this implies that the gravitational one-form symmetry is explicitly broken

by particles with spin. For example, if the Lorentz group is G = Spin(4), then a holonomy

in the spinor representation can only end on a local operator Oα with a free spinor index.

Hence, the corresponding holonomy is endable if there exist fermions in the spectrum.

The case of G = SO(4) is more subtle, however. A holonomy in the vector representation

of the Lorentz group must end on an operator with a free Lorentz vector index, which

can be any operator carrying orbital angular momentum dotted with a tetrad such as

eAµ∇µO.23 Consequently, the vector holonomy is analogous to the adjoint Wilson loop

of gauge theory, which is automatically screened by dynamical gluons. See Fig. 9 for a

depiction of this phenomenon.

The above logic has implications for the standard model of physics. Since fermions

exist, we know that the Lorentz group is SL(2,C), which implies that there is a Z2 one-

form gravitational symmetry under which spinor holonomies are charged. Presuming the

lightest neutrino is not massless, this one-form symmetry is unbroken below that scale.

This implies a new, albeit subtle, exact symmetry in the known laws of physics.

Notably, the explicit breaking of higher-form symmetry is strongly suggested by the

23A more subtle question arises in formulations of gravity with differences in field content. For example,

in Plebański theory [67], the associated two-form field B is a fundamental degree of freedom. The tetrad

is sculpted from B through a constraint [89, 92], while the metric can be expressed in terms of B in closed

form [68, 95]. Consequently, there is no field in the pure gravity sector that carries a single vector index,

so it is unclear whether the vector spin holonomy is endable in this case.
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so-called swampland conjectures. In particular, there is strong evidence that all global

symmetries are necessarily broken at some scale in a consistent theory of quantum gravity

[96–99]. A well-known avatar of this is the weak gravity conjecture [100, 101], which states

that a U(1) gauge theory must exhibit a state whose charge exceeds its mass in Planck

units. The weak gravity conjecture quantitatively forbids the strict global symmetry limit

of vanishing charge in a U(1) gauge theory.

The swampland conjectures imply that any higher-form symmetry should be either

gauged or explicitly broken. In the case of gauge theory coupled to gravity, the latter

scenario requires the existence of a tower of charged states, as described by the so-called

completeness conjectures [102]. Applying the same logic to dynamical gravity, we expect

that something similar applies to the gravitational one-form symmetry. One option is that

this symmetry is gauged, for example as would occur if the Lorentz group is Spin(4)/Z2×Z2.

Alternatively, if the Lorentz group is Spin(4), then the one-form symmetry is not gauged

and must be explicitly broken, thus implying the existence of fermions in the spectrum.

Finally, let us speculate briefly on the possibility of phases in gravity. Taking inspira-

tion from gauge theory, it is natural to wonder whether the expectation value of the spin

holonomy is an order parameter for symmetry breaking. In the case of gauge theory, it is

well-known that an area versus perimeter law scaling of the Wilson loop expectation value

is a diagnostic of whether or not a theory is confining. However, the analogous construction

in gravity is far murkier. In particular, as we noted earlier, the diffeomorphism invariance

of dynamical gravity suggests that the contour of the spin holonomy—and any contour,

actually—must be defined relationally with respect to some invariant boundary data. So

to be an order parameter, the spin holonomy must presumably be computed for a contour

that circumscribes the boundary.

Even ignoring these subtleties, the fact that the effective field theory description of

gravity is intrinsically weakly coupled suggests that confinement is not in play. More gener-

ally it is very unclear whether a low-energy effective theory of gravity on a fixed background

could even access different phases, or what that would even mean. One speculation is that

this might have something to do with degenerate configurations of the metric and their

corresponding domain walls [103–106]. Another possibility is that a putative gravitational

phase diagram might delineate various choices of compactification or of asymptotic behav-

ior of the metric. Indeed, it is easy to see that the spin holonomy is highly sensitive to the

cosmological constant. For these reasons, it would be interesting to explicitly compute the

expectation value of the spin holonomy in various examples. A number of existing works

have calculated the spin holonomy in various contexts [86, 87, 107–111].

4 Future Directions

In this paper, we have initiated an exploration of generalized symmetry in the context of

dynamical gravity. Taking our cues from the one-form symmetries of Yang-Mills theory, we

have considered gravity in the tetradic Palatini formalism, which is a gauge theory of the

local Lorentz group. We have argued that the gravitational one-form symmetry is defined
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by the center of the Lorentz group. The object which is charged under this symmetry is

the spin holonomy Wρ(C). The one-form symmetry transformation is implemented by an

operator Uα(S), which has dual interpretations, both as a twisted Lorentz transformation

but also as a chiral cosmic string defect carrying both electric and magnetic gravitational

charge. The topological linking of the line and symmetry operators corresponds to the

measurement of a quantized conical deficit angle by the spin holonomy. In the standard

model, this implies the existence of a new symmetry below the mass of the lightest neutrino.

The present work leaves numerous avenues for future exploration, which we now describe.

First and foremost are a number of very simple extensions of this work which should be

relatively straightforward. These include the question of generalization to higher spacetime

dimension, which offers a richer spectrum of one-form symmetry groups. For example,

the center group is maximally Z(Spin(4)) = Z2×Z2 in four dimensions, but this grows

to Z(Spin(6)) = Z4 in six dimensions. Another concrete direction is the inclusion of

gravitational higher-curvature corrections. These contributions will clearly preserve the

one-form symmetry, whose corresponding symmetry operator will be equal to the surface

integral of the canonical conjugate of the curvature in the effective field theory.

Secondly, while the present work has focused on gravitational one-form symmetry of

electric type, it is natural to ask whether one can derive an analogous magnetic construc-

tion. For gauge theories, the electric and magnetic symmetry operators are straightfor-

wardly related by the spacetime Hodge duality on the field strength [56], which is com-

puted with respect to a background volume form. For gravity, the analogous procedure

necessarily introduces metric dependence, since the Levi-Civita permutation symbol is a

density. This additional metric dependence implies that the putative magnetic symmetry

operator is no longer the proper integral of a form. It is unclear whether this technical

obstruction is insurmountable or merely peculiar. Meanwhile, recent work on cobordism

classes in quantum gravity [50] appears to construct certain magnetic gravitational defects.

Perhaps a direct link can be drawn between those results and the approach taken here.

A third topic of future study is higher-group symmetry, which describes a certain non-

abelian structure built from the fusion of multiple higher-form symmetries [112–115]. A

well-studied example of this is axion-Yang-Mills theory, which exhibits a two-form symme-

try for the axion, together with the one-form symmetry of the gauge theory [39]. These

symmetries fuse to yield a two-group structure, which in fact bounds the scale of axion

strings from below by the lightest particle in the fundamental of color. Acquainted with

this remarkable fact, it would be interesting to investigate if gravity can also exhibit a

higher-group symmetry. It seems quite likely that a similar two-group symmetry will ap-

pear in gravity coupled to an axion, in which case we should expect that the axion string

scale is bounded by the mass of the lightest fermion.

Fourthly, while our approach of treating gravity as a “BF ”-type theory yields a simple

route to the one-form symmetry, there is the question of how this framework is explicitly

realized in other physically equivalent formulations of gravity [116] in the literature. For

example, it is known that in the presence of a nonzero cosmological constant one can

integrate out the tetrad altogether, yielding a theory of gravity described purely in terms
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twisted diffeo−−−−−−−−−−→

“Empty Space” “Cosmic String”

Figure 10. A diffeomorphism with a multivalued Jacobian creates a cosmic string from empty

space, analogous to disinclinations in lattice systems.

of the spin connection [117, 118]. It would be interesting to understand the emergence of

the gravitational one-form symmetry in this “pure connection” formalism given that all of

our results were derived in the presence of a cosmological constant. Another open question

is the fate of the one-form symmetry in gravitational formulations with subtly different

field content, as referred to in a footnote in Sec. 3.3.

A fifth area of study concerns the question of what topological symmetry can teach

us about classical gravitation. As a theory of spacetime geometry, gravity boasts a rich

array of classical vacuum solutions, each showcasing distinctive singularity structures that

are themselves a focal point of study [119]. In particular, it could be very illuminating

to initiate a systematic analysis and classification of gravitational singularities from the

perspective of topological operators and their algebra. For example, even in the absence

of spin holonomy, the the one-form symmetry operator can link with “holes” in spacetime.

It would be interesting to study whether there is physical information encoded in such a

linking, for example regarding the singularity of a black hole. Moreover, it is conceivable

that known spacetime singularities in the literature have an alternative interpretation as

symmetry operators, like we discovered for the chiral cosmic string.

Last but not least, it would be interesting to see if the theoretical framework developed

in this paper can be applied to lattice systems such as crystals with impurities [120–122].

Indeed, as described in [123–125], the physics of lattice systems has a formulation that is

strikingly reminiscent of gravity. In this picture, lattice disinclinations are analogous to

cosmic strings, as depicted in Fig. 10. Furthermore, the analog of “translation holonomy”

is manifested by the Burgers vector, which measures the net drift in the “lattice frame” per

round trip about a defect. Hence, as depicted in Fig. 11, we observe that lattice dislocations

are analogous to the Misner string—a Dirac string of time monodromy flux endable on

Taub-NUT charges [75–80, 83]. These two types of lattice defects are described in terms of

multivalued coordinate transformations [123–125], which are the diffeomorphism analogs

of the twisted gauge transformations that played such a crucial role in our construction
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twisted diffeo−−−−−−−−−−→
x y

“Empty Space” “Misner String”

Figure 11. A multivalued diffeomorphism creates a Misner string from empty space, whose time

monodromy is analogous to the Burgers vector of screw dislocations in lattice systems.

of a gravitational one-form symmetry. It would be interesting if this convergence between

gravity and lattice systems could cross-pollinate new insights across these fields.
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A Notations and Conventions

Our results rely on numerous notational conventions and terminologies. For completeness,

let us briefly summarize our nomenclature here.

a. Manifold and Index Conventions

Throughout our paper, the symbol M denotes the full four-dimensional manifold of space-

time. Within it resides zero-, one-, two-, and three-dimensional submanifolds, which we

denote by P, C, S, and V, respectively. We often define S to be exact, so it is the boundary

of a corresponding coboundary manifold V such that S = ∂V. On the other hand, we take

C to be closed, so it has no boundary and thus ∂C = 0. In the Hamiltonian formalism,
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we perform a 3+1 decomposition which generates quantities associated with a spatial

three-dimensional submanifold M3, like the three-dimensional intersection number int3.

Spacetime indices are µ, ν, ρ, σ, . . . ∈ {1, 2, 3, 4}, while spatial indices are i, j, k, l, . . . ∈
{1, 2, 3}. Adjoint indices of the Lorentz group are a, b, c, d, . . . ∈ {1, 2, 3, 4, 5, 6} while

vector indices are A,B,C,D, · · · ∈ {1, 2, 3, 4}. Undotted and dotted spinor indices are

α, β, γ, δ, . . . ∈ {0, 1} and α̇, β̇, γ̇, δ̇, . . . ∈ {0, 1}, respectively.
All epsilon tensors ϵµνρσ and ϵµνρσ are pure permutation symbols valued in {+1,−1, 0},

sans dressing by metric-dependent determinant factors, so their indices are never partially

raised or lowered. In particular, we employ the sign and normalization conventions,

ϵ1234 = +1 , dxµ∧ dxν∧ dxρ∧ dxσ = ϵµνρσ d4x , ϵµνρσ ϵ
µνρσ = +4! . (A.1)

On the other hand, ϵABCD and ϵABCD have Lorentz vector indices which are raised and

lowered by the flat Euclidean metric δAB = diag(+1,+1,+1,+1).

b. Lorentz Algebra Conventions

Let us now summarize our conventions for the Lorentz Lie algebra. First of all, we employ

an anti-Hermitian convention for Lie algebra generators ta so that [ta, tb] = f cab tc without

the imaginary unit. The adjoint and coadjoint actions on Lie algebra elements and their

duals act as (ta)
i
jX

a 7→ (Ω−1)ik (ta)
k
lΩ

l
jX

a and Ya (t
a)ij 7→ Ya (Ω

−1)ik (t
a)klΩ

l
j , respec-

tively, so that YaX
a ∝ Ya (t

atb)
i
iX

b is invariant. In the main text, we have simply denoted

these as Xa 7→ (Ω−1XΩ)a and Ya 7→ (Ω−1Y Ω)a.

The generators of the Lorentz Lie algebra so(4) are six anti-symmetric matrices (ta)
AB =

(ta)
[AB], while those of the dual Lie algebra so(4)∗ are (ta)AB = (ta)[AB]. These are nor-

malized according to

δab =
1
2 (t

a)AB (tb)
AB and (ta)

AB (ta)CD = 2δ[AC δ
B]

D . (A.2)

Accordingly, raised and lowered adjoint indices are related to fundamental indices by

XAB = (ta)
ABXa , Xa = 1

2 (t
a)ABX

AB ,

YAB = Ya (t
a)AB , Ya = 1

2 YAB (ta)
AB .

(A.3)

Note that the pairing between so(4) and so(4)∗ is given by

YaX
a = 1

2 YABX
AB . (A.4)

Finally, the structure constants are

(ta)
AB fabcX

b
1X

c
2 = XAC

1 δCDX
DB
2 −XAC

2 δCDX
DB
1 , (A.5)

when expressed in the adjoint and fundamental representations.

Interestingly, two metrics can be endowed to the Lie algebra so(4). Firstly, we have

the usual positive-definite Killing form that universally exists in any dimensions:

δab =
1
2 δAC δBD (ta)

AB (tb)
CD , δab = 1

2 (t
a)AB (tb)CD δ

AC δBD , δac δcb = δab . (A.6)
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Indices are raised and lowered with this metric, which is consistent with the usual practice

of raising and lowering fundamental indices with the flat Euclidean metric.

On the other hand, there is also a metric specific to four dimensions:

⋆ab =
1
4 ϵABCD (ta)

AB (tb)
CD , ⋆ab = 1

4 (t
a)AB (tb)CD ϵ

ABCD , ⋆ac⋆cb = δab . (A.7)

Evidently, this implements the Hodge dual. For instance,

(⋆abX
b)(ta)AB = 1

2 ϵABCDX
CD = ⋆XAB ,

(ta)
AB (⋆abYb) =

1
2 ϵ

ABCDYCD = ⋆Y AB .
(A.8)

Note that this metric naturally appears in the Palatini Lagrangian in Eq. (3.7).24 It has

(3, 3) split signature, which connects to the decomposition so(4) ∼= su(2)⊕ su(2). Note also

the identities

⋆adδdc ⋆
ceδeb = δab , fabc ⋆

be⋆cf = fabc δ
beδcf , (A.9)

which hold because the Hodge star squares to the identity in Euclidean signature.

Next, we discuss the spinor representations. In accordance with the isomorphism

so(4) ∼= su(2)⊕ su(2), the six Lorentz generators split into two sets of su(2) generators,

which are symmetric 2× 2 matrices normalized according to

δab = (t̃a)α̇β̇ (t̃b)
α̇β̇ + (ta)αβ (tb)

αβ ,

(t̃a)
α̇β̇ (t̃a)γ̇δ̇ = δ(α̇γ̇ δ

β̇)
δ̇ , (ta)

αβ (ta)γδ = δγ
(α δδ

β) .
(A.10)

In accordance with the above, adjoint indices are unpacked to spinor indices as

X̃ α̇β̇ = (t̃a)
α̇β̇Xa , Xa = (t̃a)α̇β̇ X̃

α̇β̇ , Ỹα̇β̇ = Ya (t̃
a)α̇β̇ , Ya = Ỹα̇β̇ (t̃a)

α̇β̇ ,

Xαβ = (ta)
αβXa , Xa = (ta)αβX

αβ , Yαβ = Ya (t
a)αβ , Ya = Yαβ (ta)

αβ .
(A.11)

For example, it follows that

Xa = (t̃a)α̇β̇ X̃
α̇β̇ + (ta)αβX

αβ , YaX
a = Ỹα̇β̇ X̃

α̇β̇ + YαβX
αβ . (A.12)

Also, the structure constants are given as

(ta)
α̇β̇ fabcX

b
1X

c
2 = (X̃1)

α̇γ̇ ϵ̃γ̇δ̇ (X̃2)
δ̇β̇ − (X̃2)

α̇γ̇ ϵ̃γ̇δ̇ (X̃1)
δ̇β̇ ,

(ta)
αβ fabcX

b
1X

c
2 = (X1)

αβ ϵβδ (X2)
δγ − (X2)

αβ ϵβδ (X1)
δγ .

(A.13)

The dotted generators describe self-dual (right-handed) rotations while the undotted gen-

erators describe anti-self-dual (left-handed) rotations:

⋆ab (t̃
b)α̇β̇ = +ϵ̃α̇γ̇ ϵ̃β̇δ̇ (t̃a)

γ̇δ̇ , ⋆ab (t
b)αβ = −ϵαγ ϵβδ (ta)γδ . (A.14)

24In fact, Plebański gravity without the Immirzi constant can be described solely in terms of this split-

signature Killing form.
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In fact, self-dual and anti-self-dual projectors arise as

(t̃a)α̇β̇ (t̃
b)γ̇δ̇ ϵ̃

α̇γ̇ ϵ̃β̇δ̇ = 1
2 (δ

ab + ⋆ab) , (ta)αβ (t
b)γδ ϵ

αγ ϵβδ = 1
2 (δ

ab − ⋆ab) . (A.15)

Having stated our conventions abstractly, let us be slightly more concrete and note that

the self-dual and anti-self-dual generators are

(t̃AB)α̇β̇ = 1
2 (ϵ̃ σ̃

[AσB])α̇β̇ , (tAB)αβ = 1
2 (σ

[Aσ̃B]ϵ)αβ , (A.16)

where an explicit representation of the Euclidean sigma matrices is given as

vA (σA)αα̇ =

(
iv4 + v3 v1 − iv2
v1 + iv2 iv4 − v3

)
, vA (σ̃A)α̇α =

(
iv4 − v3 −v1 + iv2
−v1 − iv2 iv4 + v3

)
, (A.17)

with the convention ϵ̃01 = ϵ01 = ϵ̃10 = ϵ10 = +1 for the epsilon tensors.

Finally, we end with a demonstration of index conversions in the context of tetradic

Palatini gravity. Let the spinor indices be raised and lowered as

ψα = ϵαβψβ , ψα = ϵαβψ
β , ψ̃α̇ = ϵ̃α̇β̇ψ̃β̇ , ψ̃α̇ = ϵ̃α̇β̇ ψ̃

β̇ . (A.18)

The spin connection splits into self-dual and anti-self-dual parts as

ωa = (t̃a)α̇β̇ ω̃
α̇β̇ + (ta)αβω

αβ . (A.19)

The self-dual and anti-self-dual parts of the field strength are given by

R̃α̇
β̇ = dω̃α̇

β̇ − ω̃α̇
γ̇∧ ω̃γ̇

β̇ , Rα
β = dωα

β + ωα
γ∧ωγ

β . (A.20)

Meanwhile, it is convenient to convert the vector index of the tetrad to spinor indices with

a customary factor of −1/2, which originates from the −2 of (σ̃A)
α̇α (σA)ββ̇ = −2δβ

α δα̇β̇:

eα̇α = −1

2
(σ̃A)

α̇α eA . (A.21)

Then the spinor components of the Plebański two-form defined in Eq. (3.6) are given by

B̃α̇β̇ = ϵαβ e
α̇α∧ eβ̇β , Bαβ = −ϵ̃α̇β̇ eα̇α∧ eβ̇β . (A.22)

In turn, the Lagrangian four-form in Eq. (3.7) boils down to

− 1

g2

(
eα̇α∧ eαβ̇∧ R̃β̇

α̇ + eβα̇∧ eα̇α∧Rα
β
)
+

Λ

3g2
eαα̇∧ eα̇β∧ eββ̇∧ eβ̇α . (A.23)

The above expressions are consistent with the chiral symmetry operators in Eq. (3.23).

B Geometry of Linking

In this appendix, we expand on the technical details of the Dirac delta form and topological

numbers in general spacetime dimension. Here we will indicate the dimensionality of each

manifold with a subscript. All manifolds will be assumed to be orientable.
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Figure 12. Linking between two submanifolds in d dimensions.

a. Definitions

Consider a p-dimensional submanifold Np in a d-dimensional manifold Md. We define a

differential form analog of Dirac’s delta distribution as∫
Np

α(p) =

∫
Md

α(p)∧ δ(Np) , (B.1)

where α(p) is an arbitrary smooth p-form in Md. Evidently, δ(Np) is a differential (d− p)-

form distribution that peaks on the submanifold Np while vanishing elsewhere.

More explicitly, suppose Np is parameterized by coordinates σ1, σ2, · · · , σp as xµ =

Xµ(σ), where xµ denote coordinates of Md. Then δ(Np) is given by

1

(d− p)!

[ ∫
dpσ δ(d)(x−X(σ))

∂Xλ1

∂σ1
· · · ∂X

λp

∂σp

]
ϵλ1···λpµ1···µd−p

dxµ1∧ · · · ∧ dxµd−p , (B.2)

where δ(d)(x−X(σ)) is the ordinary Dirac delta function. This is higher-form generaliza-

tion of Dirac delta function will be referred to as a “Dirac delta form.” The ordinary Dirac

delta corresponds to p = 0. It is also interesting to note that δ(Nd) for a top-dimensional

submanifold Nd is its characteristic function, e.g., δ(Md) = 1.

In terms of Dirac delta forms, the intersection number between two orientable sub-

manifolds Np and Nd−p in Md can be defined in a coordinate-free fashion:

int(Np,Nd−p) =

∫
Md

δ(Np)∧ δ(Nd−p) . (B.3)

Note that the integrand δ(Np)∧ δ(Nd−p) is a top form that localizes at the intersection

points. In fact, it could be argued that δ(Np)∧ δ(Nd−p) = δ(Np ∩Nd−p). It is instructive

to check if Eq. (B.3) defines the intersection number in an expected way with specific values
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of p and d, such as p = 0, or d = 3. Also, it is easy to see that

int(Np,Nd−p) = (−1)p(d−p) int(Nd−p,Np) . (B.4)

Given Eq. (B.3), we can easily define the linking number between two closed orientable

submanifolds Cp and Cd−p−1 provided that one of them is exact. Without loss of generality,

suppose Cp = ∂Np+1. Then we define

link∗(∂Np+1, Cd−p−1) = int(Np+1, Cd−p−1) =

∫
Cd−p−1

δ(Np+1) , (B.5)

which counts how many times Cd−p penetrates the coboundary Np+1 as depicted in Fig. 12.

Note that the above definition necessarily puts the two arguments of link∗ in an unequal

footing: the first argument must be exact. However, as practiced in the main text, it can

be convenient to use a more handy notation for the linking number such that the exact

argument can be placed in any slot. With hindsight, we define such a notation “link” to

satisfy the following relations:

link(∂Nd−p, Cp) = link∗(∂Nd−p, Cp) ,
link(Cd−p−1, Cp) = (−1)dp+1 link(Cp, Cd−p−1) .

(B.6)

The first equation states that link and link∗ give the same number when the first argument

is exact. The second equation allows the arguments of link to be freely rearranged, given the

implicit assumption that one of the arguments is exact. The factor (−1)dp+1 is necessitated

from consistency with Eq. (B.9). Note also that the following holds:

link(Cd−p−1, ∂Np+1) = (−1)d−p int(Cd−p−1,Np+1) . (B.7)

b. Identities

Using either the coordinate-free/axiomatic definition of the Dirac delta form in Eq. (B.1)

or the explicit definition in Eq. (B.2), one can derive various identities of Dirac delta forms

and also intersection and linking numbers. Some simple ones are

dδ(Np) = (−1)p δ(∂Np) , (B.8)

link(∂Np+1, ∂Nd−p) = (−1)dp+1 link(∂Nd−p, ∂Np+1) . (B.9)

The first identity encodes Stokes theorem, while the second identity describes a duality in

the linking number computation.

A few more identities are found in the context of Hamiltonian formalism. Suppose the

spacetime is a product manifold Md = Xd−1×R with coordinates xµ = (xi, t), where the

last25 coordinate xµ=d= t labels hypersurfaces foliating Md. Then we consider subman-

ifolds Kp and Yd−p−1 of Xd−1 that can possibly intersect, with the former being closed:

∂Kp = 0. The corresponding relevant objects in spacetime are Cp and Nd−p, defined as the

following. First, we consider an embedding of the closed submanifold Kp in Md:

Cp = Kp×{t0} . (B.10)

25This matches the convention chosen in Eq. (B.1) where the Dirac delta form is appended from the right.
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Second, we consider a timelike (d− p)-dimensional submanifold Nd−p of Md defined as the

following, where I = [t−, t+] is an interval in R such that t− < t0 < t+:

(−1)d−pNd−p = Yd−p−1×I . (B.11)

The customary orientation of Nd−p by a sign factor (−1)d−p stipulates that its boundary

is given in the form

∂Nd−p =
(
−Yd−p−1×{t+}

)
∪
(
Yd−p−1×{t−}

)
∪ Γ , (B.12)

for a timelike submanifold Γ in Md. Specifically, the consistency between Eqs. (B.11) and

(B.12) can be established by considering the Stokes theorem relating Nd−p and ∂Nd−p,

where a factor of (−1)d−p−1 arising from rearranging the order of the time differential dt

combines with the minus sign in Eq. (B.12) to give (−1)d−p.

With these definitions, it eventually follows that

(−1)d−p link(∂Nd−p, Cp) = int(Yd−p−1×I, Cp) = (−1)p intd−1(Yd−p−1,Kp) , (B.13)

where intd−1(Yd−p−1,Kp) is the intersection number between Yd−p−1 and Kp in Xd−1:

intd−1(Yd−p−1,Kp) =

∫
Xd−1

δd−1(Yd−p−1)∧ δd−1(Kp) . (B.14)

To derive Eq. (B.13), one may work in component terms with Eq. (B.2). One will find that

the factor of (−1)p arises from an index rearrangement,

ϵi1···id−p−1dj1···jp = (−1)p ϵi1···id−p−1j1···jpd = (−1)p ϵi1···id−p−1j1···jp , (B.15)

where we work with the convention such that ϵ12···d = +1.

c. Example: Abelian p-Form Symmetry in d Dimensions

Having derived various sign factors, we can describe a universal sign convention for higher-

form symmetries of general rank p in Euclidean signature spacetimes of general d dimen-

sions. Let us take an abelian BF theory as a prototypical model,26 whose action reads

S =

∫
Md

B(d−p−1)∧F (p+1) + f(B(d−p−1)) , (B.16)

where F (p+1) = dA(p). Here the superscripts denote the ranks, while f(B(d−p−1)) is a

d-form functional of B(d−p−1).

First, let us describe the p-form symmetry in the covariant formalism. For simplicity,

consider the Wilson loop for an exact support:

Wq(∂Np+1) = exp

(
q

∫
Np+1

F (p+1)

)
. (B.17)

26For example, it is an amusing check to consider the case of d=1, p=0 with a Lagrangian one-form

P dX−H(P )dt, which describes a point particle. In particular, it readily follows that operators Uϵ([t1, t2]) =

e−ϵP (t2)eϵP (t1) and Q(t) = P (t) implement translations of X, so for example e−ϵPXeϵP = X + ϵ.
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We want this to be transformed as

Wq(∂Np+1) 7→ exp
(
qε int(Cd−p−1,Np+1)

)
Wq(∂Np+1) , (B.18)

when the symmetry operator is inserted along an exact submanifold Cd−p−1 = ∂Nd−p.

Clearly, this can be undone by a field redefinition that shifts the field strength as F (p+1) 7→
F (p+1) − ε δ(Cd−p−1),

27 which, in turn, transforms the action in Eq. (B.16) as

−S 7→ −S + ε

∫
Md

B(d−p−1)∧ δ(Cd−p−1) , (B.19)

from which the symmetry operator is identified:

Uε(Cd−p−1) = exp

(
ε

∫
Cd−p−1

B(d−p−1)

)
. (B.20)

Namely, the symmetry operator is derived as the term that is generated from the action

term in the path integral after a field transformation that pushes the symmetry charge back

into the defect operator. Crucially, the BF structure leverages between the both sides of

the Ward identity, which reads〈
Uε(Cd−p−1)Wq(∂Np+1)

〉
= exp

(
qε int(Cd−p−1,Np+1)

) 〈
Wq(∂Np+1)

〉
. (B.21)

Finally, denoting Cp = ∂Np+1, we can state the Ward identity in terms of a linking number:〈
Uε(Cd−p−1)Wq(Cp)

〉
= exp

(
(−1)d−p qε link(Cd−p−1, Cp)

) 〈
Wq(Cp)

〉
, (B.22)

which follows through using Eq. (B.7) (or Eqs. (B.4), (B.5), and (B.9) with link∗).

Note that the Ward identities in the main text are reproduced when one takes d=4

and p=1 and makes the following identifications:

Cp ↔ C , Cd−p−1 ↔ S , Nd−p ↔ V . (B.23)

Next, we can also double check from the angle of Hamiltonian formalism. Eq. (B.12)

as a convetion for pancaking the coboundary Nd−p of the symmetry operator down to a

submanifold Yd−p−1 in Xd−1 stipulates that the Ward identity in Eq. (B.22) boils down to

a conjugation of the defect operator as

e−εQ(Yd−p−1)Wq(Kp) e
εQ(Yd−p−1) = exp

(
(−1)p qε intd−1(Yd−p−1,Kp)

)
Wq(Cp) , (B.24)

provided that the charge operator is defined as

Q(Yd−p−1) =

∫
Yd−p−1

B(d−p−1) (B.25)

27Concretely, from Eq. (B.8) it can be realized as A(p) 7→ A(p)−(−1)d−p ϵ δ(Nd−p), B
(d−p−1) 7→ B(d−p−1).
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Figure 13. The center periodicity condition on the multivalued group parameter Ω, in terms of

the discontinuity limP±→P (Ω(P+)Ω
−1(P−)) = α across a branch cut V.

as an object that lives in the d− 1 dimensions. Note that the identity in Eq. (B.13) has

been used to deduce Eq. (B.24) from Eq. (B.22). It is straightforward to verify Eq. (B.24)

from the canonical commutation relations:

[Ai1···ip , Bk1···kd−p−1
] ϵk1···kd−p−1j1···jp = (d− p− 1)!p!(−1)p δj1 [i1 · · · δjp ip] ,

=⇒ [Ai1···ip , Q(Yd−p−1)] = (−1)p (δd−1(Yd−p−1))i1···ip ,
(B.26)

where the factor (−1)p precisely arises from the same index rearrangement as in Eq. (B.15),

provided the conventions ϵ12···d = +1 and t = xd.

The above discussion corresponds to the calculation carried out in Secs. 2.2.2 and 3.2.2,

so one can check consistency by taking d=4 and p=1. Yet, note that the spatial surface

“S0” there corresponds to Yd−p−1 here with a flip of orientation:

Kp ↔ C , Yd−p−1 ↔ −S0 . (B.27)

This single flip is because the main text attempts to avoid any possible distractions from

convention-dependent minus signs.

d. Proof of Equivalence between Eqs. (2.8) and (2.15)

Before ending, we should show that Eqs. (2.8) and (2.15), used in the main text, are

equivalent statements. In d-dimensional spacetime, the claim reads

lim
P±→P

Ω(P+)Ω
−1(P−) = α ∈ Z(G)

⇐⇒ ∃λa s.t. (Ω−1ddΩ)a = λa δ(∂Vd−1) and e2πλ = α(−1)d ,
(B.28)

where P+ and P− are points infinitesimally deviating from a point on Vd−1 from above and

below. The notion of above and below is well-defined, as Vd−1 is oriented and codimension

one. As shown below, the identities stated in Eqs. (B.4) and (B.9) play a role in the proof.

First of all, the fact that Ω as a multivalued function is everywhere smooth off the

surface ∂Vd−1 implies that ddΩ localizes on ∂Vd−1 and vice versa, which is in turn equivalent

to the existence of an algebra-valued zero-form λa such that (Ω−1ddΩ)a = 2πλa δ(∂Vd−1).

Thus, it remains to verify that the center periodicity condition on Ω is equivalent to

e2πλ = α(−1)d . It suffices to work with an exact one-dimensional loop C1 = ∂N2 in the
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vicinity of ∂Vd−1. Suppose int(Vd−1, ∂N2) = −1. Then the periodicity condition implies

lim
C′
1→C1

Pexp

(∮
C′
1

Ω−1dΩ

)
= lim

C′
1→C1

Ω−1(P−)Ω(P+) = α , (B.29)

where C′
1 is the infinitesimal opening of C1 described before. Meanwhile, the left-hand side

can be computed as a surface-ordered integral, thanks to the nonabelian Stokes theorem:

Pexp

(∮
∂N2

Ω−1dΩ

)
= Pexp

(∫
N2

Ω−1ddΩ

)
= exp

(∫
Md

Ω−1ddΩ∧ δ(N2)

)
. (B.30)

Note that the last equality has dropped the surface ordering because the integrand localizes

at a single point. Plugging in (Ω−1ddΩ)a = 2πλa δ(∂V), the right-hand side boils down

to exp(2πλ int(∂Vd−1,N2)), which equals exp((−1)d2πλ) given int(Vd−1, ∂N2) = −1 by

Eqs. (B.4) and (B.9). Therefore, demanding that the outcomes of Eqs. (B.29) and (B.30)

are the same, we find α = exp((−1)d2πλ), i.e., e2πλ = α(−1)d . Lastly, recalling the fact

that α∈Z(G), it can be seen that supposing generic curves with arbitrary linking numbers

does not impose a further condition on λa. This concludes the proof.

To make it certain that all the signs have worked properly, it is instructive to double

check by considering the abelian version of the statement:

lim
P±→P

χ(P+)−χ(P−) = (−1)d2πλ ⇐⇒ ddχ = 2πλ δ(∂Vd−1) . (B.31)

Here λ is a constant. The periodicity condition in the left-hand side is equivalent to

dχ+ (−1)d2πλ δ(Vd−1) = df , (B.32)

for some single-valued zero-form f ; i.e., dχ is “gauge equivalent” to (−1)d−12πλ δ(Vd−1).

Thus it follows that ddχ = (−1)d−12πλ dδ(Vd−1), which equals 2πλ δ(∂Vd−1) by Eq. (B.8).

Note that the points P+ and P− in Fig. 2 are correctly deviating from above and

below as stated in Eq. (B.28) (− link(C,S) = link(S, C) = int(V, C) = −1), but the three-

dimensional visualization seemingly appears the opposite due to the relative orientation

with the hidden fourth dimension.
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[67] J. F. Plebański, “On the separation of Einsteinian substructures,” J. Math. Phys. 18 (1977)

2511–2520.

[68] R. Capovilla, T. Jacobson, J. Dell, and L. J. Mason, “Self-dual 2-forms and gravity,” Class.

Quant. Grav. 8 (1991) 41–57.

[69] W. Donnelly and S. B. Giddings, “Observables, gravitational dressing, and obstructions to

locality and subsystems,” Phys. Rev. D 94 no. 10, (2016) 104038, arXiv:1607.01025

[hep-th].

[70] S. B. Giddings and J. Perkins, “Perturbative quantum evolution of the gravitational state

and dressing in general backgrounds,” arXiv:2209.06836 [hep-th].

[71] C. Rovelli and L. Smolin, “Discreteness of area and volume in quantum gravity,” Nucl. Phys.

B 442 (1995) 593–622, arXiv:gr-qc/9411005. [Erratum: Nucl.Phys.B 456, 753–754 (1995)].

[72] A. Ashtekar and J. Lewandowski, “Quantum theory of geometry. 1: Area operators,” Class.

Quant. Grav. 14 (1997) A55–A82, arXiv:gr-qc/9602046.

[73] J. D. Bekenstein, “Black holes and entropy,” Phys. Rev. D 7 (1973) 2333–2346.

[74] S. W. Hawking, “Particle Creation by Black Holes,” Commun. Math. Phys. 43 (1975)

199–220. [Erratum: Commun.Math.Phys. 46, 206 (1976)].

[75] Y. Cho, “Magnetic theory of gravitation,” in Primordial Nucleosynthesis and Evolution of

Early Universe, pp. 203–211. Springer, 1991.

[76] C. W. Misner, “The flatter regions of Newman, Unti and Tamburino’s generalized

Schwarzschild space,” J. Math. Phys. 4 (1963) 924–938.

[77] C. W. Misner, “Taub-NUT space as a counterexample to almost anything,” University of

Maryland, Technical Report no. 529, (1965) .

[78] W. B. Bonnor, “A new interpretation of the NUT metric in general relativity,” Math. Proc.

Cambridge Phil. Soc. 66 no. 1, (1969) 145–151.

[79] A. Sackfield, “Physical interpretation of NUT metric,” in Mathematical Proceedings of the

Cambridge Philosophical Society, vol. 70, pp. 89–94, Cambridge University Press. 1971.

[80] J. S. Dowker and J. A. Roche, “The Gravitational analogues of magnetic monopoles,” Proc.

Phys. Soc. 92 (1967) 1–8.

[81] A. H. Taub, “Empty space-times admitting a three parameter group of motions,” Annals

Math. 53 (1951) 472–490.

– 57 –

http://arxiv.org/abs/hep-th/0612073
http://dx.doi.org/10.1016/S0370-2693(03)00199-0
http://arxiv.org/abs/hep-th/0212264
http://dx.doi.org/10.1016/S0550-3213(99)00727-0
http://arxiv.org/abs/hep-th/9907139
http://dx.doi.org/10.1016/0550-3213(78)90153-0
http://dx.doi.org/10.1016/0550-3213(78)90153-0
http://dx.doi.org/10.1007/JHEP11(2022)154
http://arxiv.org/abs/2202.05866
http://dx.doi.org/10.1063/1.523215
http://dx.doi.org/10.1063/1.523215
http://dx.doi.org/10.1088/0264-9381/8/1/009
http://dx.doi.org/10.1088/0264-9381/8/1/009
http://dx.doi.org/10.1103/PhysRevD.94.104038
http://arxiv.org/abs/1607.01025
http://arxiv.org/abs/1607.01025
http://arxiv.org/abs/2209.06836
http://dx.doi.org/10.1016/0550-3213(95)00150-Q
http://dx.doi.org/10.1016/0550-3213(95)00150-Q
http://arxiv.org/abs/gr-qc/9411005
http://dx.doi.org/10.1088/0264-9381/14/1A/006
http://dx.doi.org/10.1088/0264-9381/14/1A/006
http://arxiv.org/abs/gr-qc/9602046
http://dx.doi.org/10.1103/PhysRevD.7.2333
http://dx.doi.org/10.1007/BF02345020
http://dx.doi.org/10.1007/BF02345020
http://dx.doi.org/10.1063/1.1704019
http://dx.doi.org/10.1017/s0305004100044807
http://dx.doi.org/10.1017/s0305004100044807
http://dx.doi.org/10.1088/0370-1328/92/1/302
http://dx.doi.org/10.1088/0370-1328/92/1/302
http://dx.doi.org/10.2307/1969567
http://dx.doi.org/10.2307/1969567


[82] E. Newman, L. Tamburino, and T. Unti, “Empty space generalization of the Schwarzschild

metric,” J. Math. Phys. 4 (1963) 915.

[83] L. Alfonsi, C. D. White, and S. Wikeley, “Topology and Wilson lines: global aspects of the

double copy,” JHEP 07 (2020) 091, arXiv:2004.07181 [hep-th].

[84] M. J. Duff, “Quantum Tree Graphs and the Schwarzschild Solution,” Phys. Rev. D 7 (1973)

2317–2326.

[85] C. Cheung, J. Parra-Martinez, I. Z. Rothstein, N. Shah, and J. Wilson-Gerow, “Effective

Field Theory for Extreme Mass Ratios,” arXiv:2308.14832 [hep-th].

[86] G. Modanese, “Wilson loops in four-dimensional quantum gravity,” Phys. Rev. D 49 (1994)

6534–6542, arXiv:hep-th/9307148.

[87] J. Fredsted, “Comment on Wilson loops in four-dimensional quantum gravity,” Phys. Rev.

D 64 (2001) 088501.

[88] A. Ashtekar, “New Variables for Classical and Quantum Gravity,” Phys. Rev. Lett. 57

(1986) 2244–2247.

[89] E. Buffenoir, M. Henneaux, K. Noui, and P. Roche, “Hamiltonian analysis of Plebanski

theory,” Class. Quant. Grav. 21 (2004) 5203–5220, arXiv:gr-qc/0404041.

[90] S. Alexandrov and K. Krasnov, “Hamiltonian Analysis of non-chiral Plebanski Theory and

its Generalizations,” Class. Quant. Grav. 26 (2009) 055005, arXiv:0809.4763 [gr-qc].

[91] M. Celada and M. Montesinos, “Lorentz-covariant Hamiltonian analysis of BF gravity with

the Immirzi parameter,” Class. Quant. Grav. 29 (2012) 205010, arXiv:1209.0396 [gr-qc].
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