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Abstract

In this paper, a thermodynamically consistent solution of the interfacial Riemann
problem for the first-order hyperbolic continuum model of Godunov, Peshkov and
Romenski (GPR model) is presented. In the presence of phase transition, interfa-
cial physics are governed by molecular interaction on a microscopic scale, beyond
the scope of the macroscopic continuum model in the bulk phases. The developed
two-phase Riemann solvers tackle this multi-scale problem, by incorporating a
local thermodynamic model to predict the interfacial entropy production. Using
phenomenological relations of non-equilibrium thermodynamics, interfacial mass
and heat fluxes are derived from the entropy production and provide closure at the
phase boundary. We employ the proposed Riemann solvers in an efficient sharp
interface level-set Ghost-Fluid framework to provide coupling conditions at phase
interfaces under phase transition. As a single-phase benchmark, a Rayleigh-Bénard
convection is studied to compare the hyperbolic thermal relaxation formulation of
the GPR model against the hyperbolic-parabolic Euler-Fourier system. The novel
interfacial Riemann solvers are validated against molecular dynamics simulations
of evaporating shock tubes with the Lennard-Jones shifted and truncated potential.
On a macroscopic scale, evaporating shock tubes are computed for the material
n-Dodecane and compared against Euler-Fourier results. Finally, the efficiency
and robustness of the scheme is demonstrated with shock-droplet interaction simu-
lations that involve both phase transfer and surface tension, while featuring severe
interface deformations.
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1. Introduction

The process of phase transition is a defining characteristic of interfacial flows
and at the heart of fundamental environmental processes like the water cycle. In
engineering, the understanding and reliable prediction of multiphase flows with
phase transition is essential e.g. in cooling circuits and combustion chambers of
current aeronautical propulsion systems. Here, phase transition often occurs under
extreme ambient conditions close to the critical point and in the presence of strong
thermodynamic non-equilibrium.

Despite the indisputable relevance of interfacial flows with phase transition,
high-fidelity simulations of such phenomena on a macroscopic scale remain a
formidable challenge for current numerical methods due to the inherent multi-scale
character of the problem. While the fluid in the bulk phases can be described with
continuum models, physical effects at the evaporating phase boundary are governed
by molecular interaction on a microscopic length scale where the continuum
assumption is lost. Further, in near critical conditions or under non-equilibrium,
the fluids are strongly affected by compressible effects, which leads to a tight
coupling between hydrodynamics and thermodynamics.

In literature, interfacial flows are studied with a variety of models depending
on the scale of the problem of interest. Molecular dynamics (MD) simulations
describe multi-phase flows through the interaction of molecules on a microscopic
scale [15, 42, 29]. Thereby, the material properties depend on intermolecular
attractive and repulsive forces governed by a suitable potential. While MD simu-
lations capture fluid behavior and interfacial physics intrinsically, they are restricted
to small-scale problems due to the immense number of molecules.

On a macroscopic continuum scale, two main strategies can be distinguished
to model multi-phase flows: diffuse interface models and sharp interface models.
While diffuse interface methods like the Navier-Stokes-Korteweg equations [4]
and the Baer-Nunziato equations [6, 37] model the phase interface as a smooth
transition layer of finite thickness, the sharp interface approach assumes a discon-
tinuous transition of fluid properties across a sharp interface of zero thickness.
As a consequence, diffuse interface methods have to resolve the interface with
sufficient accuracy to capture the local physical behavior and are thus restricted to
small-scale problems. Therefore, the present paper focuses on a sharp interface
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approach to study interfacial flows on a macroscopic scale, where the local physical
behavior is included in the interfacial jump conditions.

Multi-phase simulations with the sharp interface method rely on two essential
building blocks: an interface tracking algorithm and a consistent coupling of the
bulk phases across the phase interface. Following Sussman et al. [62], we employ
the level-set method to track the evolution of the interface position and geometry.
Coupling of the bulk phases at the phase boundary is implemented via the Ghost-
Fluid idea of Fedkiw et al. [23], which relies on the definition of ghost states at
the interface.

In this work, we follow the concept of Merkle and Rohde [51] to solve an
interfacial Riemann problem to supply the required ghost states. Contrary to the
single-phase case, where a multitude of Riemann solvers are available [65], the
construction of thermodynamically consistent two-phase Riemann solvers in the
presence of phase transition is still the subject of ongoing research.

The main challenge arises due to a breakdown of the continuum assumption
across the phase interface. In the equation of state (EOS), this manifests as an
unphysical spinodal region which is characterized by a non-convex behavior of the
EOS and thus leads to imaginary eigenvalues. As Menikoff and Plohr pointed out
[49], this results in anomalous wave structures and non-uniqueness of the solution
of the Riemann problem. A possible approach to find a unique, admissible solution
is the kinetic relation as proposed by Abeyaratne and Knowles [1], which enforces
the correct amount of entropy production due to phase change.

The solution to the interfacial Riemann problem is further complicated in
the presence of phase transition since the mechanism of heat transfer is essential
to provide the latent heat of vaporization [27]. With heat transfer commonly
modeled by the hyperbolic parabolic Euler-Fourier model, this results in a loss of
self-similarity. In recent works by Hitz et al. [32, 31] and Jöns et al. [33, 35], this
issue was circumvented by solving the Riemann problem first without heat transfer
and then imposing the heat fluxes, obtained from an evaporation model, on the
resulting interfacial fluxes.

We choose a different approach and use the inviscid Godunov-Peshkov-Romenski
(GPR) continuum model [18], which provides a first-order hyperbolic formulation
for compressible, heat-conducting fluids, based on the work of Malyshev and
Romenski [47]. A key advantage of the GPR approach is the treatment of irre-
versible, dissipative effects of heat conduction via algebraic source terms. This
allows for the incorporation of heat transfer effects in the solution of the Riemann
solver. Müller et al. developed an approximate two-phase Riemann solver for
the GPR system in [56, 54]. We refer the reader also to [63], where the authors
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formulate a Riemann solver for two-phase flow in the context of symmetric hyper-
bolic thermodynamically compatible (SHTC) models, to which the GPR model
pertains.

In the present paper, a novel approximate Riemann solver and a second sim-
plified version are formulated for the interfacial Riemann problem under phase
transition. Both solvers rely on a local thermodynamic model by Cipolla et al.
[14] that predicts the interfacial entropy production based on kinetic theory. Using
phenomenological relations from non-equilibrium thermodynamics, the interfa-
cial mass and heat flux are derived from the estimated entropy production. With
these additional conditions for the thermodynamic interfacial fluxes, a closed non-
linear equation system is obtained, which can be solved iteratively towards the
correct entropy solution. Crucially, the local phase transition model controls the
entropy production and the dissipative effects of heat transition and thus allows
for a thermodynamically consistent incorporation of the source terms of the GPR
equation system in the solution process.

The present work combines the novel interface solvers with an efficient semi-
analytical source term integration scheme [11], which allows for accurate and
robust source term treatment in the stiff regime. The resulting scheme is imple-
mented in the hp-adaptive Discontinuous Galerkin (DG) multi-phase code FLEXI
[21, 55, 34, 5, 52] to study interfacial flows with phase transition in multiple space
dimensions.

This paper is structured as follows: In Section 2 we recapitulate the GPR
equation system for an inviscid, heat conducting continuum in the bulk phases and
derive a kinetic relation that defines the entropy production across the interface.
To close the system, expressions for the interfacial mass and heat flux are provided,
based on kinetic theory and phenomenological force flux relations. In Section 3,
the sharp interface framework is outlined briefly and two approximate two-phase
Riemann solvers with phase transfer are formulated. Furthermore, the semi-
analytical source term integration for the relaxation term of the hyperbolic heat
transfer equation is addressed. Finally, in Section 4 we apply the framework to
a selection of numerical test cases starting with a single phase Rayleigh-Bénard
convection to compare the GPR system against the Euler-Fourier equations. The
Riemann solvers are applied for evaporating shock tube computations and validated
against molecular dynamics data and Euler-Fourier computations. Finally, the
robustness and efficiency of the scheme is demonstrated with two-dimensional
shock-droplet interaction simulations, that exhibit severe interface deformations.
The paper closes with a summary and conclusion in Section 5.
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2. Governing Equations

In the present work, we study compressible, two-phase flows with phase tran-
sition. We restrict our investigation to inviscid single-component fluids.The bulk
phases are separated by a phase interface of zero thickness according to the sharp
interface approach. Therefore, the computational domain Ω consists of a liq-
uid subdomain Ω𝑙 and a vapor subdomain Ω𝑣, separated by a phase interface
Γ = Ω𝑣 ∩Ω𝑙 .

2.1. Continuum Model of the Bulk Fluid
As a continuum model for compressible, heat-conducting fluids, we chose the

inviscid GPR equation system as found in [18], where the hyperbolic formulation
of heat transfer developed by Malyshev and Romenski [47] is found in conjunction
with the model of mechanics given in [60]. The system is defined by

𝜕𝜌

𝜕𝑡
+ ∇ · (𝜌𝒖) = 0,

𝜕𝜌𝒖

𝜕𝑡
+ ∇ · (𝜌𝒖 ⊗ 𝒖 + 𝑝I) = 0,

𝜕𝜌𝜒

𝜕𝑡
+ ∇ ·

(
𝜌𝒖𝜒 + 𝛼2 𝒋

)
= − 𝜌

𝜃 (𝜏)𝑇 𝛼
2 𝒋 · 𝒋,

𝜕𝜌 𝒋

𝜕𝑡
+ ∇ · (𝜌 𝒋 ⊗ 𝒖 + 𝑇I) = −𝛼

2𝜌 𝒋

𝜃 (𝜏) ,

(1a)

(1b)

(1c)

(1d)

and satisfies an additional conservation equation for the total energy

𝜕𝜌𝑒

𝜕𝑡
+ ∇ · ((𝜌𝑒 + 𝑝)𝒖 + 𝑞) = 0. (2)

Even though the GPR system is derived for the entropy 𝜒 as an unknown and
energy conservation as a consequence to obtain a thermodynamically compatible
formulation [18], we solve the equation system with the energy instead of the
entropy for practical numerical studies within this work. With the energy as an
unknown, the GPR system can be expressed in matrix-vector notation as

𝜕𝑸

𝜕𝑡
+ ∇𝒙 · 𝑭(𝑸) = 𝑺(𝑸) in Ω × [0, 𝑇], (3)

with the state vector 𝑸, the physical flux vector 𝑭 and the algebraic source term
𝑺, given in terms of the density 𝜌, velocity 𝒖 = (𝑢1, 𝑢2, 𝑢3)𝑇 , total energy per unit
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mass 𝑒, the pressure 𝑝, the temperature 𝑇 and the thermal impulse per unit mass
𝒋 = ( 𝑗1, 𝑗2, 𝑗3)𝑇 . The thermal heat flux 𝒒 is related to the temperature and the
thermal impulse via the constitutive relation

𝒒 = 𝛼2𝑇 𝑗 . (4)

Thereby, the parameter 𝛼 is connected to the propagation speed of the thermo-
acoustic waves 𝑐ℎ by

𝑐ℎ =
𝛼

𝜌

√︂
𝑇

𝑐𝑣
, (5)

with the specific heat capacity at constant volume 𝑐𝑣. A key aspect of the GPR
method is the definition of the specific total energy as a potential 𝑒(𝜌, 𝜒, 𝒖, 𝒋),
which ensures a thermodynamically consistent formulation of the overdetermined
equation system (1) and (2). The energy 𝑒 is obtained as the sum of the internal
energy 𝑢, the kinetic energy 1

2𝒖 · 𝒖 and the mesoscopic non-equilibrium part of
the energy 1

2𝛼
2 𝒋 · 𝒋 associated to thermal non-equilibrium:

𝑒 = 𝜖 + 1
2
𝛼 𝒋 · 𝒋 + 1

2
𝒖 · 𝒖. (6)

For a detailed discussion of the energy potential, the reader is referred to Dumbser
et al. [18]. The equation system (1) is closed with an EOS that relates the pressure
with the density and specific internal energy

𝑝 = 𝑝(𝜌, 𝜖). (7)

Our numerical framework provides algebraic EOS, like the ideal or stiffened gas
EOS, as well as cubic EOS, like the Peng-Robinson EOS. Furthermore, multi-
parameter EOS from the fluid library CoolProp are available and can be accessed
via the efficient tabulation approach of Föll et al. [24].

Finally, the source term 𝑺 contains a scalar function 𝜃 (𝜏) that depends on the
thermal impulse and relaxation time 𝜏. The remaining free parameter 𝜃 (𝜏) can be
defined as

𝜃 (𝜏) = 𝜏𝛼2 𝜌

𝜌0

𝑇0
𝑇
, (8)

with the reference density 𝜌0 and reference 𝑇0, set to to the initial conditions.
Dumbser et at. [18] demonstrated with an asymptotic analysis that this particular
choice of 𝜃 (𝜏) recovers the Fourier law in the stiff limit

𝒒 = 𝛼2𝑇 𝑗 = 𝜏𝛼2𝑇0
𝜌0

∇𝑇 := −𝜆∇𝑇. (9)
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Thus, the relaxation time 𝜏 can be related to the thermal conductivity 𝜆 through

𝜆 = 𝛼2𝜏
𝑇0
𝜌0
, (10)

for vanishing relaxation times 𝜏.
To simplify the evaluation of the eigenvalues of the GPR system, the parameter

𝛼 is assumed to be constant within each phase and determined once at the beginning
of the computation by equation (10). Therefore, the relaxation time 𝜏 needs to be
provided at the start of the computation. While the thermal relaxation time was
set manually tuned to a stiff regime by Dumbser et al. in [18, 19], we follow the
approach of Müller et al. and choose between the kinetic theory-based model of
Jordan [36]

𝜏 =
3
𝑐2
𝑠

𝜆

𝜌𝑐𝑣

𝑇

𝑇0

𝜌0
𝜌
, (11)

and a thermomass theory-based model [10, 38] that predicts a relaxation time

𝜏 =
𝜆

𝜌𝑐𝑣

1
2𝑐𝑝𝑇

, (12)

with 𝑐𝑠 denoting the speed of sound. It is to be emphasized, that the validity of
both models for real materials and a wide temperature range is highly questionable.
However, in the absence of physically sound models for 𝜏 in literature, the given
models allow for a parameter-free closure and provide acceptable results as long
as a relaxation time in the stiff regime is ensured.

2.2. Thermodynamics of Phase Transition
At a sharp phase interface Γ separating two immiscible phases, interfacial

physics are governed by the exchange of mass, momentum and energy. From the
Rankine-Hugoniot conditions, a set of jump conditions can be defined for mass,
momentum, energy and thermal impulse. For the GPR continuum model, they are
obtained in the interface-normal direction as

⟦ ¤𝑚⟧ = 0,
¤𝑚⟦𝑢⟧ + ⟦𝑝⟧ = Δ𝑝𝜎,

¤𝑚⟦𝑒⟧ + ⟦𝑢𝑝⟧ + ⟦𝑞⟧ = 𝑠#Δ𝑝𝜎,

¤𝑚⟦ 𝑗⟧ + ⟦𝑇⟧ = Δ𝑇,

(13a)
(13b)
(13c)
(13d)

7



with the definition of a jump operator ⟦𝑧⟧ = 𝑧𝑣 − 𝑧𝑙 for an arbitrary quantity 𝑧.
Here, the expression 𝑠# = 𝒏 · 𝒔Γ denotes the velocity of the phase boundary in an
interface-normal reference space. To account for surface tension, a pressure jump
Δ𝑝𝜎 is included in the momentum and energy equation with

Δ𝑝𝜎 = 2𝜅𝜎, (14)

according to the Young-Laplace law. In the presence of phase transition, evapora-
tion or condensation respectively drives an interfacial mass flux denoted as ¤𝑚. A
further consequence of phase transition is an interfacial temperature jump Δ𝑇 in
the thermal impulse equation.

In the GPR system, dissipative effects of heat conduction are captured by an
algebraic relaxation source term

𝑆𝜌 𝑗 = −𝛼
2𝜌 𝑗

Θ(𝜏) (15)

in the thermal impulse balance. Consequently, the term 𝑆𝜌 𝑗 reappears in the source
term of the entropy balance equation

𝑆𝜌𝜒 = − 𝜌

Θ(𝜏)𝑇 𝛼
4 𝒋 𝒋 = −𝑆𝜌 𝑗

𝛼2 𝒋

𝑇
, (16)

where it describes the entropy production due to heat conduction. Since the GPR
continuum model can not be expected to predict the entropy production of phase
transition, a local thermodynamic model is employed to obtain the correct entropy
solution. In that sense, the temperature jump Δ𝑇 serves as an additional degree of
freedom in the jump conditions, which allows for an interfacial entropy production.
Unknown a priori, it is determined through a surrogate phase transition model. It
is to remark that the assumption of an interfacial temperature jump in the presence
of phase change is in line with experimental findings e.g. by Gatapova et al. [25]
or Kazemi et al. [38].

To fulfill the second law of thermodynamics, an entropy jump condition can
be derived from the entropy balance (1c) as

¤𝑚⟦𝜒⟧ + ⟦ ¤𝑞
𝑇
⟧ = 𝜒Γ , with 𝜒Γ ≥ 0, (17)

where 𝜒Γ denotes the entropy production rate. This kinetic relation serves as a
link between the jump conditions of the continuum model and a suitable phase
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transition model. Following [54], equation (17) can be expressed in terms of the
Gibbs energy per unit mass 𝑔 and the enthalpy ℎ per unit mass as

¤𝑚⟦−𝑔 + ℎ𝑣
𝑇

⟧ + 𝑞𝑣⟦
1
𝑇
⟧ = 𝜒Γ, (18)

with ℎ𝑣 and 𝑞𝑣 denoting the enthalpy per unit mass and the heat flux evaluated at
the vapor side of the phase boundary. This relation can now be reformulated with
the tools of non-equilibrium thermodynamics [45]. From equation (18) we can
deduce the thermodynamic fluxes ¤𝑚 and 𝑞𝑣 and the thermodynamic forces ⟦−𝑔+ℎ𝑣

𝑇
⟧

and ⟦ 1
𝑇
⟧. Assuming linear dependencies between forces and fluxes according to

Onsager’s theory, phenomenological relations for the thermodynamic fluxes can
be derived as

¤𝑚 = 𝐿𝑚𝑚⟦
−𝑔 + ℎ𝑣
𝑇

⟧ + 𝐿𝑒𝑚⟦
1
𝑇
⟧,

𝑞𝑣 = 𝐿𝑚𝑒⟦
−𝑔 + ℎ𝑣
𝑇

⟧ + 𝐿𝑒𝑒⟦
1
𝑇
⟧,

(19)

(20)

with 𝐿𝑚𝑚,𝐿𝑚𝑒,𝐿𝑒𝑚,𝐿𝑒𝑒 denoting the Onsager coefficients. With the Onsager recip-
rocal relation 𝐿𝑚𝑒 = 𝐿𝑚𝑒, the number of the yet unknown Onsager coefficients can
be reduced to three. The modeling of the non-equilibrium phase transition process
is thus reduced to a closure problem for the three remaining Onsager coefficients.
In this publication we follow the approach of Jöns et al. [33] and apply a model
from kinetic theory derived by Cipolla et al. [14]. Herein, the Onsager coefficients
are reported as

𝐿𝑚𝑚 =
−𝑘2

𝑘1𝑘2 − 𝑘2
3
𝜌𝑣

√︂
2𝑇𝑙
𝑅
,

𝐿𝑚𝑒 = 𝐿𝑒𝑚 =
−𝑘3

𝑘1𝑘2 − 𝑘2
3
𝜌𝑣𝑇𝑙

√︁
2𝑇𝑙 ,

𝐿𝑒𝑒 =
−𝑘1

𝑘1𝑘2 − 𝑘2
3
𝑝𝑠 (𝑇𝑙)𝑇𝑙

√︁
2𝑇𝑙 ,

(21)

(22)

(23)

with the ideal gas constant 𝑅 and the saturation pressure at the liquid temperature
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𝑝𝑠 (𝑇𝑙). The coefficients 𝑘1, 𝑘2 and 𝑘3 are defined as

𝑘1 =
9
8
√
𝜋

(
1
2
+ 16

9𝜋

)
−
√
𝜋

1 − 𝜎𝑐
𝜎𝑐

,

𝑘2 =
1
2
√
𝜋

(
1
2
+ 52

25𝜋

)
,

𝑘3 =
1
4
√
𝜋

(
1
2
+ 8

5𝜋

)
,

(24)

(25)

(26)

with the condensation coefficient 𝜎𝑐. We determine the condensation coefficient
with a model of Nagayama et al. [57] as

𝜎𝑐 =

(
1 − 3

√︂
𝜈𝑙

𝜈𝑣

)
exp

(
−1

2
1

3
√︁
𝜈𝑙/𝜈𝑣 − 1

)
, (27)

with
𝜈𝑙 =

1
𝜌𝑙

− 1
3𝜌𝑐

,

𝜈𝑣 =
1
𝜌𝑣

− 1
3𝜌𝑐

,

(28)

(29)

(30)
and the critical density 𝜌𝑐. We want to emphasize that a different choice for
a microscopic model for the Onsager coefficients or even a different choice for
an evaporation model, like the Hertz Knudsen model [30, 40] that predicts the
thermodynamic fluxes directly is possible within the present framework and does
not affect the construction of the two-phase Riemann solvers.

2.3. Level-set Interface Tracking
The interface tracking algorithm is an essential building block of a sharp

interface framework. We deduce the interface position and geometry following
Sussman et al. [62] from a level-set function Φ that is advected with the velocity
𝒔Γ = (𝑠1, 𝑠2, 𝑠3) according to

𝜕Φ

𝜕𝑡
+ 𝒔Γ · ∇𝒙Φ = 0. (31)

The velocity 𝒔Γ is determined by solving a two-phase Riemann problem at the
phase interface and subsequently extrapolated to the volume by solving a Hamilton-
Jacobi type equation, according to Peng et al. [58]. The signed distance property
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of the level-set function is maintained with the level-set reinitialization procedure
of Sussman et al. [62]. Geometric properties like the local normal vector 𝒏 and
curvature 𝜅 of the phase interface can obtained in terms of derivatives of the level-
set field. For a detailed description of the interface tracking algorithm, the reader
is referred to [20, 34].

3. Numerical Method

The sharp interface framework used in this work requires three major building
blocks: the bulk fluid solver, the level-set interface tracking algorithm and a
Ghost-Fluid coupling at the interface via a two-phase Riemann solver. In this
Section, we provide a brief overview of the bulk fluid solver and the interface
tracking algorithm. For a thorough description of these operators, the reader is
referred to [20, 54, 67]. Since the bulk flow is modeled with the GPR equation
system, additional care is required when treating the stiff thermal relaxation source
term. In the present framework, we implemented the semi-analytical source term
integration, recently introduced in [11]. The main focus of this Section is dedicated
to the construction of two novel approximate interfacial Riemann solvers for the
GPR equation system.

3.1. The Bulk Fluid Solver
The GPR equation system (1), governing the bulk flow, is discretized in space

with the high-order discontinuous Galerkin spectral element method (DGSEM)[41,
43]. Hereby the computational domain Ω ⊂ R3 is divided in 𝐾 ∈ N non-
overlapping hexaedral elements Ω𝑒. Within each element, the solution is rep-
resented by a Lagrange polynomial of degree 𝑁 , defined on Gauss-Legendre
interpolation nodes. This results in a piecewise polynomial solution represen-
tation in the computational domain Ω. Adjacent elements are coupled at their
faces by classical single-phase approximate Riemann solvers like the HLLC solver
[66]. Even though the DGSEM scheme provides efficient and high-order accurate
results in smooth flow regions, it suffers from Gibbs oscillations in the presence of
shocks, phase interfaces or severe under-resolution. Here, a robust Finite Volume
(FV) scheme is applied on an h-refined sub-cell grid of 𝑁𝑑

𝐹𝑉
FV sub-cells per

DG element to provide reliable shock capturing and precise interface localization.
This involves a conservative transformation of the element-local solution between
a polynomial and a piecewise constant solution representation. The accuracy of
the FV method is enhanced by a second-order TVD reconstruction scheme.
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In this work, we use the hp-adaptive extension for the DGSEM by Mossier et
al. [53, 52] that allows for a p-adaptive discretization with variable element-local
degree 𝑁 and a variable FV sub-cell resolution 𝑁𝐹𝑉 . The adaptive scheme allows
for high local accuracy at the phase interface while maintaining a coarser resolution
in most regions of the computational domain. Both p-adaptivity and FV sub-cell
shock capturing are controlled by an indicator, which infers the smoothness and
an error estimate from the analysis of the modal spectrum of the element local
solution polynomials [48, 53]. The resulting scheme is advanced in time with an
explicit fourth-order low-storage Runge-Kutta (RK) method [39].

3.2. The Level-Set Ghost-Fluid Method
The level-set Ghost-Fluid method relies on the sign of the level-set function

to distinguish the bulk phases and infers the interface position from the zero
iso-contour of the level-set field. In the present framework, the level-set transport
equation (31) is discretized with a path-conservative DGSEM [9, 17] operator with
FV sub-cell limiting [34]. Analogously to Section 3.1, the solution is therefore
represented either by piece-wise DG polynomials or a piecewise constant FV
discretization on an h-refined sub-cell grid. In smooth regions, the DGSEM
operator is applied for its high-order accuracy and efficiency. If changes in the
topology of the phase interface occur, e.g. during the merging of droplets, the
level-set may exhibit discontinuities and the robust FV sub-cell scheme is applied.
In the present work, we employ an hp-adaptive extension [52], that allows for
variable polynomial degrees 𝑁 and variable FV sub-cell resolutions 𝑁𝐹𝑉 within
each element. The level-set transport equation is advanced in time with an explicit
RK scheme, analogously to the bulk fluid operator. The remaining building blocks
for the level-set method, the velocity extrapolation and level-set reinitialization are
implemented by solving Hamilton-Jacobi-type equations with a fifth-order WENO
scheme [58, 20]. To reduce computational costs, the interface tracking is restricted
to a narrow band of two to three elements around the interface [3].

With the interface tracking established, the remaining step is the coupling of
the bulk fluid phases. The present scheme employs the Ghost-Fluid method of
Fedkiw et al. [23]. It relies on the definition of ghost states at the phase interface
to provide boundary conditions and achieve a sound coupling between the bulk
phases. Following Merkle et al. [51], we solve an interfacial Riemann problem and
assign the intermediate Riemann states as ghost states. The interfacial Riemann
problem further provides the local advection velocity of the phase boundary.
Solution strategies for the two-Phase Riemann problem are covered in depth in
Section 3.4.
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When a cell changes its phase during the convection of the phase boundary, the
cell needs to be initialized with a physically sound state. In the present Ghost-Fluid
scheme, cells that underwent a phase change are populated with the intermediate
states of the corresponding interfacial Riemann problem. For an analysis of the
effect of this non-conservative procedure, the reader is referred to the publication
of Jöns et al. [33].

3.3. Semi-Analytical Source Term Integration
Solving the GPR equation system (1) for inviscid, heat-conducting fluids re-

quires the discretization of possibly stiff algebraic source terms in the thermal
impulse equations. Therefore, a simple explicit source term integration is imprac-
ticable due to a prohibitive time step limitation in the stiff relaxation regime. A
common strategy to solve an inhomogeneous partial differential equation (PDE)
is the splitting approach. This involves the solution of the homogeneous PDE
in the first step and a subsequent correction for the contribution of the source
term by solving an ordinary differential equation (ODE). In the present case, this
requires advancing the PDE (3) from a time level 𝑡𝑛 towards 𝑡𝑛+1 by first solving
the homogeneous system

𝜕𝑸

𝜕𝑡
+ ∇𝒙 · 𝑭(𝑸) = 0 in Ω × [𝑡𝑛, 𝑡𝑛+1] with 𝑸(𝒙, 𝑡𝑛) = 𝑸𝑛. (32)

The solution of the homogeneous system at 𝑡𝑛+1 is denoted 𝑸∗. According to the
splitting approach, the solution at 𝑸𝑛+1 is then obtained by solving the ODE

𝜕𝑸

𝜕𝑡
= 𝑆(𝑸) in Ω × [𝑡𝑛, 𝑡𝑛+1] , with 𝑸(𝒙, 𝑡𝑛) = 𝑸∗. (33)

However, in recent studies [7, 11] it was demonstrated that a simple splitting
approach fails to recover the non-trivial equilibrium of the thermal relaxation
formulation in the stiff relaxation limit. The authors therefore highlighted the
requirement of an asymptotic preserving scheme, that ensures convergence towards
the Euler-Fourier system in the stiff regime. They therefore suggested solving a
modified ODE for the thermal impulse vector 𝑱 = 𝜌 𝒋, that accounts for the discrete
update of the left-hand side of equation (3)

𝜕𝑱

𝜕𝑡
= 𝑷∗ + 𝑆(𝑱) in Ω × [𝑡𝑛, 𝑡𝑛+1] with 𝑱(𝒙, 𝑡𝑛) = 𝑱∗, (34)

with the additional term 𝑷∗ = (𝑱 ∗ −𝑱𝑛)/Δ𝑡. The modified ODE is shown to
recover the Fourier law in the stiff limit and is thus called an asymptotic preserving
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scheme. Following [11], an exact solution to the ODE (34) can be found as

𝑱𝑛+1 = (𝑱𝑛 − 𝜏𝐻𝑷∗) exp(−Δ𝑡/𝜏𝐻) + 𝜏𝐻𝑷∗ , with 𝜏𝐻 =
Θ(𝜏)
𝛼2 =

𝜌𝜆

𝑇𝛼2 , (35)

allowing for a computationally efficient evaluation. This semi-analytical scheme is
used throughout the present paper for its robustness in the stiff relaxation limit and
its low computational cost. It is applied for the bulk discretization in combination
with a fourth-order Runge-Kutta method, where the semi-analytical solver simply
replaces each Euler step found in the standard RK scheme. Thus, the ODE (34) is
solved between subsequent RK time stages instead of the time interval 𝑡 ∈ [𝑡𝑛, 𝑡𝑛+1].

Note that such a semi-analytical approach, while specifically designed for the
relaxation systems, namely heat impulse and strain relaxation found in the GPR
model, is based on a rather general principle and its early origins trace back to the
solution of Baer-Nunziato relaxation sources [12], meaning the coupled system of
mechanical friction, pressure relaxation, and compaction dynamics.

In particular, it aims solely at being an accurate and efficient integrator and does
not take advantage of the symmetric hyperbolic thermodynamically compatible
(SHTC) structure of the governing equations. See e.g. [2, 8] for recent numerical
schemes specifically designed to mimic the SHTC structure at the discrete level,
in a general GPR context and [64] in multiphase flows.

3.4. Approximate Two-Phase Riemann Solvers
At a sharp phase interface Γ, separating a liquid and vapor bulk phase, a two-

phase Riemann problem can be defined. Using the rotational invariance of system
(1), we consider the initial value problem

𝑸(𝒙, 𝑡 = 0) =
{
𝑸𝑙 for 𝑥 ≤ 𝑥0 (liq),
𝑸𝑣 for 𝑥 > 𝑥0 (vap),

(36)

with a liquid state 𝑸𝑙 on the left and a vapor state 𝑸𝑣 on the right in a reference
space, normal to the phase interface Γ. A key challenge when solving the two-phase
Riemann problem with phase transition is the dissipative nature of heat conduction
that causes a loss of self-similarity in the solution. Previous publications saw a
variety of strategies to circumvent this issue. In [26, 61] the isothermal Euler
equations were considered, thus assuming an instantaneous heat transfer. Hitz
et al. [32, 31] and Jöns et al. [33] formulated interfacial Riemann solvers for
the Euler-Fourier system that neglect heat conduction across all waves except
the phase boundary, where a constant heat flux from a local phase transition
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model is imposed. In a recent study of Müller et al. [56], an approximate two-
phase Riemann solver was proposed for the GPR system. It is formulated for
the homogeneous part of the PDE (1), thus neglecting the dissipative effects of
heat transfer. While their approach employs a phase transition model to predict
the interfacial mass flux, it failed to enforce an interfacial heat flux and thus the
interfacial entropy production.

The goal of this paper is the formulation of a thermodynamically consistent
interfacial Riemann solver for the GPR system, that finds an entropy solution in
agreement with a local phase transition model. In the following, the construction of
two approximate Riemann solvers denoted as 𝐻𝐿𝐿𝑃𝑚𝑞 and 𝐻𝐿𝐿𝑃𝑚 is motivated.

Consider the wave pattern associated with the exact solution of the homoge-
neous GPR equation system in figure 1a. It consists of four shock or rarefaction-like
waves that are related to the eigenvalues of the system. The material interface at the
phase boundary is represented by an additional non-classical, undercompressive
shock wave. As discussed by Menikoff and Plohr [49], it is not associated with
an eigenvalue of the system in the presence of phase transition. This is explained
by the non-convex spinodal region that separates the phases and causes a local
breakdown of hyperbolicity due to imaginary eigenvalues. As outlined in Section
2.2, we evaluate a kinetic relation [1] to control the entropy production at the
phase interface to unitize the undercompressive shock. The interfacial entropy
production in turn is predicted by a phase transition model. While exact two-phase
Riemann solvers with phase transition were previously reported for the Euler-
Fourier system [31, 33], the authors found approximate solution strategies to be of
comparable accuracy, while being significantly more robust and computationally
efficient. Therefore, we focus on the construction of an approximate two-phase
Riemann solver for the GPR system, that assumes a simplified HLLC-like wave
pattern, as depicted in figure 1b. The reduced wave fan consists of two outer
classical waves and a central undercompressive wave, which represents the phase
boundary. By solving the approximate two-phase Riemann problem, the inner
states 𝑸∗

𝑙 and 𝑸∗
𝑣 and the interface velocity 𝑠# are determined.

3.4.1. The HLLP𝑚𝑞 Two-Phase Riemann Solver
The HLLP𝑚𝑞 solver consists of two main building blocks: a non-linear equation

system 𝚪𝑠 for the intermediate states, defined by jump conditions across the three
waves and a thermodynamic closure relation 𝚪𝑚, based on a local phase transition
model. The equation system 𝚪𝑠 is constructed from the interfacial jump conditions
(13) and Rankine-Hugoniot conditions for the two outer waves. It relates the inner
states 𝑸∗

𝑙 and 𝑸∗
𝑣 and the velocity of the phase boundary 𝑠# to the initial states 𝑸𝑙
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𝑙

𝑠𝑙 𝑠+
𝑙 𝑠# 𝑠𝑣𝑠+𝑣

(a) Exact GPR Riemann problem

x

t

𝑸𝑣𝑸𝑙

𝑸∗
𝑣𝑸∗

𝑙

𝑠𝑙 𝑠# 𝑠𝑣

(b) Approximate GPR Riemann problem

Figure 1: Exact and approximate wave pattern for a GPR two-phase Riemann problem with phase
transition. The non-classical wave of the phase interface, associated with the velocity of the phase
boundary 𝑠#, is highlighted in pink. The remaining waves are shock or rarefaction waves.

and 𝑸𝑣: (
𝑸∗
𝑙 ,𝑸

∗
𝑣 , 𝑠

#
)𝑇

:= 𝚪𝑠
(
𝑸𝑙 ,𝑸𝑣, ¤𝑚∗, 𝑞∗𝑣

)
. (37)

When phase transition is considered, estimates for the interfacial mass ¤𝑚∗ and
heat flux 𝑞∗𝑣 have to be supplied through a closure relation to find a unique and
thermodynamically consistent entropy solution. Throughout this work, we use the
evaporation model of Cipolla et al. [14] as outlined in Section 2.2. Given the inner
states 𝑸∗

𝑙 and 𝑸∗
𝑣 , the phase transition model 𝚪𝑚 provides estimates for ¤𝑚∗ and 𝑞∗𝑣

based on the phenomenological force flux relations (20):(
¤𝑚∗, 𝑞∗𝑣

)𝑇 := 𝚪𝑚
(
𝑸∗
𝑙 ,𝑸

∗
𝑣 , 𝑠

#
)
. (38)

In conjunction, the integral jump relations 𝚪𝑠 and the thermodynamic closure
relation 𝚪𝑚 form a closed non-linear system of equations. Starting with an initial
guess ( ¤𝑚∗, 𝑞∗𝑣)𝑇 = (0, 0)𝑇 , the system can be solved iteratively in ( ¤𝑚∗, 𝑞∗𝑣)𝑇 with a
Newton algorithm:(

𝜒Γ, ¤𝑚∗, 𝑞∗𝑣

)𝑇
− 𝚪𝑚

(
𝚪𝑠

(
𝑸𝑙 ,𝑸𝑣, ¤𝑚∗, 𝑞∗𝑣

) ) !
= 0. (39)

In the following, we derive the non-linear equation system 𝚪𝑠 for the GPR model.
First, the wave speeds of the outer waves 𝑠𝑙 and 𝑠𝑣 are approximated by two-phase
adapted HLL estimates of Davis et al. [16] as

𝑠𝑙 = 𝑢𝑙 − 𝑐𝑠,𝑙 ,
𝑠𝑣 = 𝑢𝑣 + 𝑐𝑠,𝑣,

(40)
(41)
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with 𝑐𝑠,𝑙 and 𝑎𝑠,𝑣 denoting the sound speed in the liquid and vapor respectively.
Next, Ranine-Hugoniot conditions are defined for the two outer waves 𝑠𝑙 and 𝑠𝑣

⟦ ¤𝑚⟧𝑙,𝑣 = 0,
¤𝑚⟦𝑢⟧𝑙,𝑣 + ⟦𝑝⟧𝑙,𝑣 = 0,

¤𝑚⟦𝑒⟧𝑙,𝑣 + ⟦𝑢𝑝⟧𝑙,𝑣 + ⟦𝑞⟧𝑙,𝑣 = 0,
¤𝑚⟦ 𝑗⟧𝑙,𝑣 + ⟦𝑇⟧𝑙,𝑣 = 0,

(42a)
(42b)
(42c)
(42d)

with the notation ⟦𝑧⟧𝑙 = 𝑧∗𝑙 −𝑧𝑙 and ⟦𝑧⟧𝑣 = 𝑧∗𝑣−𝑧𝑣. Given the jump relations across
the phase boundary (42), previously defined in 2.2, a set of balance equations for
the mass

¤𝑚𝑙 = 𝜌𝑙 (𝑢𝑙 − 𝑠𝑙) = 𝜌∗𝑙 (𝑢
∗
𝑙 − 𝑠𝑙),

𝜌∗𝑙 (𝑢
∗
𝑙 − 𝑠

#) = 𝜌∗𝑣 (𝑢∗𝑣 − 𝑠#),
¤𝑚𝑣 = 𝜌𝑣 (𝑢𝑣 − 𝑠𝑣) = 𝜌∗𝑣 (𝑢∗𝑣 − 𝑠𝑣),

(43)
(44)
(45)

and impulse
¤𝑚𝑙𝑢𝑙 + 𝑝𝑙 = ¤𝑚𝑙𝑢∗𝑙 + 𝑝

∗
𝑙 ,

¤𝑚∗𝑢∗𝑣 + 𝑝∗𝑣 = ¤𝑚∗𝑢∗𝑙 + 𝑝
∗
𝑙 + Δ𝑝𝜎,

¤𝑚𝑣𝑢𝑣 + 𝑝𝑣 = ¤𝑚𝑣𝑢∗𝑣 + 𝑝∗𝑣

(46)
(47)
(48)

can be defined across the three waves. In total, we obtain six equations for the
density, velocity and pressure 𝜌∗

𝑙
, 𝜌∗𝑣 , 𝑢

∗
𝑙
, 𝑢∗𝑣 , 𝑝

∗
𝑙
, 𝑝∗𝑣 of the inner state vectors 𝑸∗

𝑙

and 𝑸∗
𝑣 . Further, the unknown velocity of the phase boundary 𝑠# can be related to

the interfacial mass flux estimate ¤𝑚∗ by

¤𝑚∗ = 𝜌∗𝑙 (𝑢
∗
𝑙 − 𝑠

#) = 𝜌∗𝑣 (𝑢∗𝑣 − 𝑠#). (49)

The resulting linear equation system is called the mechanical system and can be
solved algebraically.

To find expressions for the remaining conservative quantities (𝜌𝑒)∗
𝑙
, (𝜌𝑒)∗𝑣 and

(𝜌 𝑗)∗
𝑙
, (𝜌 𝑗)∗𝑣 , we consider the jump relations for the energy

¤𝑚𝑙𝑒𝑙 + 𝑢𝑙 𝑝𝑙 + 𝑞𝑙 = ¤𝑚𝑙𝑒∗𝑙 + 𝑢
∗
𝑙 𝑝

∗
𝑙 + 𝑞

∗
𝑙 ,

¤𝑚𝑣𝑒∗𝑣 + 𝑢∗𝑣 𝑝∗𝑣 + 𝑞∗𝑣 = ¤𝑚𝑙𝑒∗𝑙 + 𝑢
∗
𝑙 𝑝

∗
𝑙 + 𝑞

∗
𝑙 + 𝑠

#Δ𝑝𝜎,

¤𝑚𝑣𝑒𝑣 + 𝑢𝑣𝑝𝑣 + 𝑞𝑣 = ¤𝑚𝑣𝑒∗𝑣 + 𝑢∗𝑣 𝑝∗𝑣 + 𝑞∗𝑣 ,

(50)
(51)
(52)
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and the thermal impulse

¤𝑚𝑙 𝑗𝑙 + 𝑇𝑙 = ¤𝑚𝑙 𝑗∗𝑙 + 𝑇
∗
𝑙 ,

¤𝑚𝑣 𝑗∗𝑣 + 𝑇∗
𝑣 = ¤𝑚𝑙 𝑗∗𝑙 + 𝑇

∗
𝑙 + Δ𝑇,

¤𝑚𝑣 𝑗𝑣 + 𝑇𝑣 = ¤𝑚𝑣 𝑗∗𝑣 + 𝑇∗
𝑣 .

(53)
(54)
(55)

With constitutive relations, linking the heat flux to the temperature and thermal
impulse

𝑞∗𝑙 = 𝛼
2𝑇∗
𝑙 𝑗

∗
𝑙 ,

𝑞∗𝑣 = 𝛼
2𝑇∗
𝑣 𝑗

∗
𝑣 ,

(56)
(57)

we obtain a total of eight equations, that we call the thermodynamic system. In the
present work, we solve the thermodynamic system in two steps. First, we use the
jump condition (53)-(55) for the energy together with an estimate for the heat flux
𝑞∗𝑣 from the phase transition model 𝚪𝑚 to compute the unknown energies 𝑒∗

𝑙
and

𝑒∗𝑣 and the heat flux 𝑞∗
𝑙
. The resulting linear equation system can be easily solved

algebraically. To determine the remaining quantities 𝑗∗
𝑙
, 𝑗∗𝑣 , 𝑇∗

𝑙
and 𝑇∗

𝑙
, we insert

equations (56) and (57) in (53) and (55):

¤𝑚𝑙 𝑗𝑙 + 𝑇𝑙 = ¤𝑚𝑙
𝑞∗
𝑙

𝛼2𝑇∗
𝑙

+ 𝑇∗
𝑙 ,

¤𝑚𝑣 𝑗𝑙 + 𝑇𝑣 = ¤𝑚𝑣
𝑞∗
𝑙

𝛼2𝑇∗
𝑙

+ 𝑇∗
𝑣 .

(58)

(59)

This produced two quadratic equations in 𝑇∗
𝑙

and 𝑇∗
𝑣 that can be solved as follows:

𝑇∗
𝑙1,2

=
1
2

(
¤𝑚𝑙 𝑗𝑙 + 𝑇𝑙 ±

√︄
( ¤𝑚𝑙 𝑗𝑙 + 𝑇𝑙)2 − 4

¤𝑚𝑙𝑞∗𝑙
𝛼2𝑇∗

𝑙

)
,

𝑇∗
𝑣1,2 =

1
2

(
¤𝑚𝑣 𝑗𝑣 + 𝑇𝑣 ±

√︄
( ¤𝑚𝑣 𝑗𝑣 + 𝑇𝑣)2 − 4

¤𝑚𝑣𝑞∗𝑣
𝛼2𝑇∗

𝑣

)
.

(60)

(61)

Even though the quadratic equations yield two possible solutions, we found from
numerical experiments, that only 𝑇∗

𝑙1
and 𝑇∗

𝑣1 are physically meaningful solutions.
An inherent issue of the quadratic equation system is the possibility of a neg-

ative discriminant during the iterative solution procedure when given inaccurate
initial guesses for ¤𝑚∗ and ¤𝑞∗. Such behavior was encountered when computing
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Γ
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= Γ
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ṁ∗ − ṁ∗
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]
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yes

no

yes

Start iteration

Iteration finished

Figure 2: Flowchart, illustrating the iterative solution procedure of the HLLP𝑚𝑞 Riemann solver.

more complex multi-dimensional setups involving severe phase interface deforma-
tions, surface tension and strong thermodynamic non-equilibrium. In the HLLP𝑚𝑞
Riemann solver, we circumvent this issue with a fallback to an EOS evaluation
for the temperatures, in case the discriminant exhibits a negative sign. The non-
equilibrium contribution 1

2𝛼 𝑗
2 to the total energy (6) is neglected during the EOS

evaluation, since 𝑗∗
𝑙

and 𝑗∗𝑣 are still unknown. We want to emphasize, that this
fallback is only encountered during the initial iteration steps and not allowed in
the final step. With the temperatures 𝑇∗

𝑙
and 𝑇∗

𝑣 known, we can finally obtain the
thermal impulses from equations (53) and (55). The main steps during the iterative
solution process of the HLLP𝑚𝑞 solver are visualized in figure 2. The iterative
solution procedure is illustrated in figure 2.
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Notice, that equation (54) was not used in the solution procedure so far. To
explain this curious decision, we want to recapitulate the effects of the relaxation
source terms in the GPR model. In the balance equation for the thermal impulse
(1d), the thermal relaxation source term controls the dissipation and therefore the
entropy production due to heat conduction. Since the HLLP𝑚𝑞 two-phase Riemann
solver is formulated for the homogeneous GPR system, it would appear that we
enforced a negligible entropy production across the interface. However, even if
the thermal relaxation source terms had been included, the GPR model could not
be expected to predict the correct entropy production in the presence of phase
transition due to the breakdown of the continuum assumption across the phase
boundary.

By incorporating a temperature jump Δ𝑇 in the jump relation (13d), we allow
the phase transition model to impose an interfacial entropy production. In that
sense the additional degree of freedom Δ𝑇 in the thermal impulse jump relation
acknowledges the existence of an unknown thermal relaxation source term, that is
determined through the local thermodynamic model. The proposed strategy thus
allows a consistent coupling between the GPR model and a local thermodynamic
phase transition model, that guides the iterative solution procedure to the correct
entropy solution.

3.4.2. The HLLP𝑚 Two-Phase Riemann Solver
While the proposed HLLP𝑚𝑞 interface Riemann solver combines the GPR

model consistently with a thermodynamic closure relation, the iteration in the
two variables poses a possible source for instabilities and increased computational
costs. This motivates, the construction of a further simplified two-phase Riemann
solver, called HLLP𝑚, which requires only an iteration in the mass flux ¤𝑚∗. Since
the linear mechanical system is evaluated independent of the heat flux 𝑞∗𝑣 , the differ-
ences between the HLLP𝑚𝑞 and HLLP𝑚 solvers are restricted to the construction
of the thermodynamic system.

The iteration in 𝑞∗𝑣 is necessary since the jump relations for the energy across
the three waves provide only three equations for the four unknown energies and
heat fluxes 𝑒∗

𝑙
, 𝑒∗𝑣 , 𝑞∗𝑙 and 𝑞∗𝑣 . A possible simplification to obtain closure without a

prediction of 𝑞∗𝑣 is to neglect the heat fluxes in the energy jump conditions across
the outer waves. Equations (50) and (52) thus reduce to

¤𝑚𝑙𝑒𝑙 + 𝑢𝑙 𝑝𝑙 = ¤𝑚𝑙𝑒∗𝑙 + 𝑢
∗
𝑙 𝑝

∗
𝑙 ,

¤𝑚𝑣𝑒𝑣 + 𝑢𝑣𝑝𝑣 = ¤𝑚𝑣𝑒∗𝑣 + 𝑢∗𝑣 𝑝∗𝑣 .
(62)
(63)
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Figure 3: Flowchart, illustrating the iterative solution procedures of the HLLP𝑚 Riemann solver.

Consequently, they can be solved for the unknown energies 𝑒∗
𝑙

and 𝑒∗𝑣 independently
of the phase transition model. Subsequently, the temperatures 𝑇∗

𝑙
and 𝑇∗

𝑣 are
determined by the EOS, while the non-equilibrium contributions 1

2𝛼 𝑗
2 to the

total energy (6) are neglected. Finally, with the temperatures known, the thermal
impulses 𝑗∗

𝑙
and 𝑗∗𝑣 are computed with equations (53) and (55). As depicted

in figure 3, the simplified thermodynamic system allows to solve the two-phase
Riemann problem with an iteration over the mass flux ¤𝑚∗ only.

To account for the heat flux 𝑞∗𝑣 , predicted by the evaporation model, a correction
step is performed after the iteration in ¤𝑚∗ has converged. Using the states 𝑸∗

𝑙 and
𝑸∗
𝑣 from the final iteration and the matching heat flux prediction 𝑞∗𝑣 from the

evaporation model, the heat flux 𝑞∗
𝑙

is computed via equation (51):

𝑞∗𝑙 = ¤𝑚𝑣𝑒∗𝑣 + 𝑢∗𝑣 𝑝∗𝑣 + 𝑞∗𝑣 − ( ¤𝑚𝑙𝑒∗𝑙 + 𝑢
∗
𝑙 𝑝

∗
𝑙 + 𝑠

#Δ𝑝𝜎). (64)

When the heat fluxes 𝑞∗𝑣 and 𝑞∗
𝑙

are available, the energies 𝑒∗
𝑙
, 𝑒∗𝑣 can finally be
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computed with (50) and (52), without neglecting the heat conduction across the
outer waves, as done in (62) and (63). This correction step for the energies is crucial
to achieve a solution, that is in agreement with the predicted thermodynamic flux
𝑞∗𝑣 of the evaporation model. The final solution procedure for the HLLP𝑚𝑞 solver
is outlined in figure 3.

4. Numerical Results

In this Section, we apply the proposed numerical method to a range of represen-
tative test cases. First, the thermal relaxation formulation of the GPR continuum
model is compared against the Euler-Fourier system. Therefore, a one-dimensional
heat conduction problem and the well-known Rayleigh-Bénard convection are
studied. Next, the novel HLLP𝑚𝑞 and HLLP𝑚 Riemann solvers are validated
with evaporating shock tube computations against MD reference data and solu-
tions obtained with the Euler-Fourier approach. The investigation focuses on a
qualitative analysis, convergence studies and a comparison of the computational
costs. Finally, we apply the method to shock-droplet interactions that involve phase
transition, surface tension and complex deformations of the phase interface.

4.1. One-Dimensional Heat Conduction
In this paragraph, we investigate a one-dimensional heat conductivity domi-

nated singe-phase flow to validate the thermal relaxation model of the GPR system
against the Euler-Fourier model. We consider a computational domain Ω = [0, 1]
that contains a resting perfect gas with a constant temperature 𝑇 = 2.0 and pres-
sure 𝑝 = 2.5 at the initial time 𝑡 = 0.0. Heat capacities at constant volume and
pressure are chosen as 𝑐𝑣 = 0.718 and 𝑐𝑝 = 1.005 respectively and the relaxation
time 𝜏 of the GPR model is defined according to (11). The setup is visualized
in figure 4 with periodic boundary conditions in y-direction and heat fluxes 𝑞+
and 𝑞− imposed at the lower and upper boundaries in x-direction. With the heat
transmission coefficient 𝛼 = 100𝜆, the heat fluxes are defined as

𝑞+ = 𝜌𝛼(𝑇 − 𝑇+
𝐵 ),

𝑞− = 𝜌𝛼(𝑇 − 𝑇−
𝐵 ),

and depend on the density and temperature at the wall. The left wall is heated to a
temperature𝑇+

𝐵
= 3 and the right wall is cooled to a temperature𝑇−

𝐵
= 1. Wherever

not indicated, standard SI units can be assumed. The domain Ω is discretized with
[256] × [1] DG elements of degree 𝑁 = 2. We perform three computations
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𝑞+ 𝑞−
𝑇+
𝐵
= 3 𝑇−

𝐵
= 1

𝑥

Figure 4: Computational setup for the one-
dimensional heat conduction test case. Heat
fluxes are imposed on the left and right
boundaries.

with different heat conductivities 𝜆 = 1 ·
10−3, 𝜆 = 1 · 10−4 and 𝜆 = 1 · 10−5 until the
final computation times 𝑡 = 200, 𝑡 = 4000
and 𝑡 = 40000 respectively. Figure 5 de-
picts the temperature profiles in x-direction
at different time instances, computed with
the GPR model and the Euler-Fourier sys-
tem as a reference solution. A near-perfect
agreement of both solutions can be ob-
served for the considered range of thermal
conductivities.
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Figure 5: Temperature profile of the one-dimensional heat conduction test case at different time
instances. The heat conductivity is increased from left to right and the GPR model is compared
against a Euler-Fourier reference solution.

4.2. Rayleigh-Bénard Convection
The Rayleigh-Bénard convection is a well-known benchmark, based on the

interaction of heat conductivity and gravitational forces. In this paragraph, it is
used as a two-dimensional test case to assess the computational performance of the
present GPR implementation. As an initial setup, we consider a two-dimensional
domain Ω = [0, 1] × [0, 1] that contains a resting perfect gas with a constant
temperature 𝑇 = 2.0. A gravitational force with gravitation constant 𝑔 = 1.0
is imposed in negative y-direction. For the compressible fluid, this results in a
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non-linear hydrostatic pressure profile

𝑝(𝑦) = 𝑝0 exp
(
𝑔𝑦

𝑇0𝑘

)
, with 𝑇0 = 2.0, 𝑝0 = 2.5, 𝑘 =

𝑐𝑝

𝑐𝑣
, (65)

with 𝑇0 = 2.0, 𝑝0 = 2.5, 𝑅 =
𝑐𝑝
𝑐𝑣

and 𝑐𝑣 = 0.718 and 𝑐𝑝 = 1.005. Periodic
boundary conditions are imposed in x-direction, while heat fluxes 𝑞+ and 𝑞− are
prescribed at the lower and upper boundaries in y-direction. The heat fluxes are
defined similarly to Section 4.1 with the addition of a sine-shaped perturbation in
x-direction

𝑞+ = 𝜌ℎ(𝑇 − 𝑇+
𝐵 ) (1 + 0.1cos(8𝜋𝑥)),

𝑞− = 𝜌ℎ(𝑇 − 𝑇−
𝐵 ) (1 + 0.1cos(8𝜋𝑥)),

and the transmission coefficient ℎ = 100𝜆. We consider three different thermal
conductivities 𝜆 = 1 · 10−3, 𝜆 = 1 · 10−4 and 𝜆 = 1 · 10−5 and chose the thermal re-
laxation time 𝜏 according to equation (11). Since we study the inviscid GPR model
in the present work, viscosity is neglected. The final setup is depicted in figure 6

𝑞+

𝑞− 𝑇−
𝐵
= 1

𝑇+
𝐵
= 3

𝑔 = 1

𝑥

𝑦

Figure 6: Computational setup for the
Rayleigh-Bénard convection test case.

and discretized with 256 × 256 DG ele-
ments of degree 𝑁 = 3 in a time interval
𝑡 ∈ [0, 40]. We compare the results ob-
tained with the GPR continuum model with
Euler-Fourier computations. Since we ne-
glect physical viscosity, the gravitational
forces are solely damped by numerical vis-
cosity. Therefore, the characteristic con-
vection process of the Rayleigh-Bénard in-
stability develops, as visualized in figure
7. For a quantitative comparison between
the GPR and Euler-Fourier model, temper-
ature profiles in y-direction are averaged
along the x-axis at the final computation time 𝑡 = 40.0. The resulting temperature
statistics are visualized in figure 8 and show a good agreement.

To quantify the computational efficiency of both schemes, we compare the
wall time and the total number of time steps in table 1. For the lower heat
conductivities 𝜆 = 1 · 10−4 and 𝜆 = 1 · 10−5, the number of time steps is nearly
identical for both methods. A different trend is observed for the highest thermal
conductivity 𝜆 = 1 · 10−3. Here, the Euler-Fourier computation requires about
three times more time steps than the GPR computation. This behavior is a result
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Figure 7: Temperature (left), velocity (center) and thermal impulse (left) field of a Rayleigh-Bénard
convection at 𝑡 = 40.0 with 𝜆 = 1 · 10−5, computed with the GPR continuum model.

𝜆 Time steps Wall time [CPU h]
GPR 1 · 10−3 1.76 · 105 743.8

Euler-Fourier 5.13 · 105 1910.6
GPR 1 · 10−4 1.69 · 105 623.0

Euler-Fourier 1.69 · 105 468.5
GPR 1 · 10−5 1.58 · 105 618.8

Euler-Fourier 1.56 · 105 432.7

Table 1: Comparison of the number of times steps and the wall time for the Rayleigh-Bénard
convection benchmark with the GPR model and the Euler-Fourier system.

of the parabolic time step constraint of the Euler-Fourier model, which is linked
to the thermal diffusivity 𝑑𝛼 = 𝜆

𝜌𝑐𝑝
. Since the hyperbolic GPR model avoids this

constraint, it outperforms the Euler-Fourier model in the presence of high thermal
conductivities. In contrast, when the time step is restricted by the convective
process, the GPR model requires about 30% more wall time due to the additional
variables for the thermal impulse.

4.3. Evaporating LJTS Shock-Tube
To validate the HLLP𝑚𝑞 and HLLP𝑚 two-phase Riemann solvers, we study an

evaporating shock tube setup, introduced by Hitz et al. [31]. It is defined as a
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Figure 8: Temperature profiles in y-direction, averaged over the x-direction for different thermal
conductivities 𝜆. The GPR computation is compared against a reference solution, obtained with
the Euler-Fourier system.

Riemann problem for the LJTS fluid with piece-wise constant initial conditions

𝑸(𝒙, 0) =
{
(𝜌, 𝑢, 𝑇)𝑇 = (0.6635, 0.0, 0.9)𝑇 , for 𝑥 < 0 (liq),
(𝜌, 𝑢, 𝑇)𝑇 = (0.013844, 0.0, 0.8)𝑇 , for 𝑥 > 0 (vap),

within a computational domain Ω = [−200, 1000]. The left state is in a satu-
rated liquid state, while the right state consists of superheated vapor. The initial
conditions are provided in non-dimensionalized form with the reference length
𝜎ref = 1Å, the reference energy 𝜖ref

𝑘𝐵
= 1𝐾 , the reference mass 𝑚ref = 1𝑢 and the

reference time 𝑡ref = 𝜎ref
√︁
𝑚ref/𝜖ref following Merker et al. [50]. We apply the

EOS of Heier et al. [28] for the LJTS fluid and model the heat conductivities
in the liquid and vapor with the models of Lautenschläger and Hasse [44] and
Lemmon and Jacobsen [46], respectively. The thermal relaxation time 𝜏 is defined
by equation (12) according to a thermomass theory model. We discretize the
computational domain with 𝑁elems = 300 DG elements of degree 𝑁 = 3. In the
presence of shocks or the phase boundary, the FV sub-cell scheme with a sub-cell
resolution of 𝑁𝐹𝑉 = 4 is applied. The setup is computed until a final time 𝑡 = 600.

In figure 9, we compare the solutions of the introduced HLLP𝑚𝑞 and HLLP𝑚
Riemann solvers to Euler-Fourier computations by Jöns et al. [33] and a molecular
dynamics simulation of Hitz et al. [31]. An excellent agreement between the
solutions of the HLLP𝑚𝑞 and HLLP𝑚 Riemann solvers can be observed. Further,
the GPR computations match the solution of the Euler-Fourier system almost
perfectly.
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Figure 9: Density, velocity and temperature of the evaporating LJTS shock tube at time 𝑡 = 600.
The HLLP𝑚𝑞 and HLLP𝑚 Riemann solvers are compared against the Euler-Fourier solution of
Jöns et al. [33] and a reference solution from molecular dynamic data of Hitz et al. [31].

When compared against the molecular dynamics data, the HLLP𝑚𝑞 and HLLP𝑚
solvers show a good qualitative agreement. Deviations are most prominent at the
phase boundary, where the GPR computations slightly overpredict the temperature.
A possible cause for the discrepancy could be an underprediction of the evaporation
by the thermodynamic closure model. Deviations between the GPR results and
the MD data away from the interface can be explained by the fact that in this work
we neglected viscous effects.
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Figure 10: Comparison of the temperature and thermal impulse distribution at 𝑡 = 600 computed
with a semi-analytical and explicit source term integration scheme.
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Figure 11: Mesh convergence study with the HLLP𝑚𝑞 two-phase Riemann solver for an evaporating
LJTS shock tube.

Next, the semi-analytical source term integration scheme of Section 3.3 is
validated. Therefore, the shock tube computation is repeated with an explicit
source term integration scheme. Due to the high thermal diffusivity 𝑑𝛼 = 𝜆

𝜌𝑐𝑝

of the LJTS fluid, the thermal relaxation time obtained with equation (12) leads
to a mildly stiff behavior of the source and an explicit reference computation is
affordable. Both methods are compared in figure 10 and demonstrate a near-perfect
agreement in the temperature and thermal impulse profiles.

Further, a mesh convergence study is performed for the evaporating shock tube
in figure 11. Therefore, the computation is repeated for a range of mesh resolutions
𝑁elems ∈ [75, 150, 300, 600]. With an increased resolution, a noticeable decrease
in the vapor temperatures and velocities is observable. Beyond a resolution of
𝑁elems = 300, a further increase in the element number has only a very minor
effect on the solution.

Finally, the computational efficiency of the GPR method is assessed in com-
parison to the Euler-Fourier methodology. Since the LJTS fluid exhibits a high
thermal conductivity 𝜆 and consequently high thermal diffusivity 𝑑𝛼, the Euler-
Fourier scheme suffers from a parabolic time step restriction. As indicated in table
2, this results in significantly larger computation times due to an increased number
of time steps when compared to the GPR model.

In summary, the introduced HLLP𝑚𝑞 and HLLP𝑚 Riemann solvers provide
results in good agreement with MD reference data. A comparison to a sharp
interface study with the Euler-Fourier method revealed a significant performance
advantage of the GPR method due to a lack of a parabolic time step constraint.

28



Further, a mesh convergence study achieves convergence at a reasonable resolution.
Finally, a perfect agreement between the semi-analytical source term integration
and an explicit reference solution was demonstrated.

Time steps Wall time [CPU h]
GPR HLLP𝑚𝑞 3.76 · 103 29.7
Euler-Fourier 3.50 · 104 197.9

Table 2: Comparison of the number of times steps and the wall time for the evaporating LJTS
shock tube with the GPR model and the Euler-Fourier system.

4.4. Evaporating n-Dodecane Shock-Tube
In the previous paragraph, we investigated an evaporating shock tube for an

artificial model fluid, derived from the LJTS potential. This facilitated a valida-
tion against molecular dynamics simulations to establish the proposed interfacial
Riemann solvers. With this Section, we extend the study to a shock tube problem
for the material n-Dodecane. A Riemann problem is derived from an evaporating
n-Dodecane shock-droplet setup, reported by Jöns et al. [33], with piecewise
constant initial liquid and vapor states

𝑸(𝒙, 0) =
{
(𝜌, 𝑢, 𝑝)𝑇 = (539.94[𝐾𝑔

𝑚3 ], 0.0[𝑚𝑠 ], 0.13[MPa])𝑇 , for 𝑥 < 0 (liq),
(𝜌, 𝑢, 𝑝)𝑇 = (4.3830[𝐾𝑔

𝑚3 ], 0.0[𝑚𝑠 ], 0.10[MPa])𝑇 , for 𝑥 > 0 (vap),

separated by a phase boundary at 𝑥 = 0. N-dodecane is modeled with the Peng-
Robinson EOS, based on the material parameter listed in table 3. The thermal
conductivity is determined with the model of Chung et al. [13]. We chose the
thermal relaxation time 𝜏 according to equation (11).

𝜌𝑐 [𝐾𝑔𝑚3 ] 𝑝𝑐 [MPa] 𝑇𝑐 [𝐾] 𝑀 [ 𝐾𝑔
𝑚𝑜𝑙

] 𝜔[−]
226.55 18.17 658.1 0.1703 0.576

Table 3: Material parameter of the Peng-Robinson EOS for n-Dodecane

The setup considers a domain Ω = [0, 0.001]m that is discretized with 600
DG elements of degree 𝑁 = 3. At shocks and the interface, a local refinement is
applied based on an FV sub-cell scheme with a resolution of 𝑁𝐹𝑉 = 4 sub-cells
per DG element. The setup is advanced until a final computation time 𝑡 = 2 ·10−6s
with the novel HLLP𝑚𝑞 and HLLP𝑚 interface solvers.
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Figure 12: Density, velocity and temperature profile of an evaporating shock tube computation
with the material n-Dodecane at 𝑡 = 2 · 10−6s. Sharp interface computations with the HLLP𝑚𝑞 and
HLLP𝑚 solvers are compared against an Euler-Fourier solution.

Figure 12 provides the density, velocity and temperature profiles at the final
time 𝑡 = 2 · 10−6s. Results, obtained with the GPR model are compared against
an Euler-Fourier reference solution, computed with the framework of Jöns et al.
[33]. While an excellent agreement can be observed between the novel HLLP𝑚𝑞
and HLLP𝑚 two-phase Riemann solvers, the Euler-Fourier solution predicts a
significantly lower velocity in the vapor and a sharper temperature jump at the
interface. The wider temperature profile indicates a more dissipative behavior of
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Figure 13: Convergence study with the HLLP𝑚𝑞 solver for the thermal impulse 𝑗 .
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Figure 14: Mesh convergence study with the HLLP𝑚𝑞 two-phase Riemann solver for an evaporating
n-Dodecane shock tube.

the GPR model, compared to the Euler-Fourier system.
This observation can be explained by the thermal impulse distribution, vi-

sualized in figure 13. Due to low significantly lower thermal conductivity of
n-Dodecane compared to the LJTS fluid, steep gradients in the temperature cause
a delta-pulse-like distribution of the thermal impulse. Capturing these sharp so-
lution features is demanding for a discretization scheme and incurs a particularly
high resolution requirement. This argument is further supported by a mesh con-
vergence study in figure 14. Similar observations were reported by Peshkov et al
in [59] with regard to the simulation of viscous flows in the GPR framework.

While mesh convergence is not reached for the GPR model at 𝑁elems = 2400,
the investigation suggests that the solution approaches the Euler-Fourier reference
with increasing mesh resolution. This trend is particularly pronounced in the
velocity of the freshly evaporated vapor. Furthermore, the temperature dip at the
phase boundary appears sharper with increasing mesh resolutions.

Next, we analyze the accuracy of the semi-analytical integration scheme for
the thermal relaxation source term. Again, a reference solution is computed
with an explicit source term integration scheme. Due to the prohibitive time
step restriction of the explicit scheme, the comparison is performed for a coarse
resolution of 𝑁elems = 150 elements and evaluated at 𝑡 = 7 · 10−8s. Figure 15
depicts the temperature and thermal impulse profiles for both simulations. Both
schemes produce near identical results with a slightly damped thermal impulse
profile obtained with the semi-analytical scheme.
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Figure 15: Comparison of the temperature profile and thermal impulse distribution for the semi-
analytical and explicit integration of the thermal relaxation source term.

Finally, the computational costs of the GPR computation and the Euler-Fourier
reference are evaluated in table 4. For the given thermal conductivity of n-
Dodecane, the time step is dominated by the convection process and the parabolic
time step constraint of the Euler-Fourier system has no effect. Thus both schemes
require roughly the same number of times steps. The increased wall time of
the GPR implementation is the result of the additional variables for the thermal
impulse and the source term integration.

Time steps Wall time [CPU h]
GPR HLLP𝑚𝑞 2.89 · 103 49.5
Euler-Fourier 2.80 · 103 16.0

Table 4: Comparison of the number of times steps and the wall time for the evaporating n-Dodecane
shock tube with the GPR model and the Euler-Fourier system.

In conclusion, the low thermal conductivity of n-Dodecane compared to the
LJTS fluid results in low thermal diffusivity. As a consequence, the solution
exhibits sharp temperature gradients, that cause delta-pulse-like solution features
in the thermal impulse. Therefore, a particularly high-resolution requirement is
observed for GPR computations. Since the Euler-Fourier system does not suffer
from a parabolic time step restriction in this case, it proves to be the more efficient
method for the given setup.
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4.5. Shock-Droplet Interaction
Finally, we consider a two-dimensional shock-droplet interaction with phase

transition for n-Dodecane. The test case involves surface tension and severe
phase boundary deformations and is chosen in order to demonstrate the robustness
and efficiency of the proposed two-phase Riemann solver for complex two-phase
simulations. We adopt a setup, proposed by Fechter et al. [22] and recently
studied by Jöns et al. [33] as a test case for their Euler-Fourier two-phase Riemann
solver. The computational domain Ω = [−2.5, 7.5]mm × [−5.0, 5.0]mm contains
a planar incident shock at 𝑥 = −1.5mm and an initially resting droplet of radius
𝑟 = 1.mm at 𝑥 = 0.mm under evaporating conditions. The surface tension is set
to 𝜎𝑐 = 0.009N m−1 resulting in a Weber number of 𝑊𝑒 = 25549. The setup
is illustrated in figure 16a and initial conditions are provided in table 5. As an
extension to the setup of Fechter et al. [22], we consider a second test case with a
vapor-filled cavity of radius 𝑟 = 0.5mm inside the droplet, sketched in figure 16b.

Ω𝑣𝑠 Ω𝑣

Ω𝑙

𝑥

𝑦

(a) Setup 1

Ω𝑣𝑠 Ω𝑣

Ω𝑣𝑐

Ω𝑙

𝑥

𝑦

(b) Setup 2

Figure 16: Initial setup for a 2D shock-droplet interaction. Setup 1 considers an initially resting
n-Dodecane droplet. Setup 2 is an extension of setup 1 with the droplet containing a vapor-filled
cavity.

𝜌[kg m−3] 𝑢1 [m s−1] 𝑝 [MPa]
Vapor (pre-shock) Ω𝑣 4.383 0.0 0.10

Vapor (post-shock) Ω𝑣𝑠 9.696 108.87 0.227
Vapor (cavity) Ω𝑣𝑐 4.383 0.0 0.10

Liquid Ω𝑙 539.94 0.0 0.13

Table 5: Initial conditions of the evaporating n-Dodecane shock-droplet interaction.
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The computational domain Ω is discretized by 240 × 120 DG elements with
a polynomial degree in a range of 𝑁 = [2, 4] and a FV sub-cell resolution of
𝑁𝐹𝑉 = 9. The sharp phase interface is always discretized by FV sub-cells,
leading to an effective resolution of 432 DOFs per bubble diameter. Due to
the symmetric setup, we only compute half of the domain Ω and impose symmetry
boundary conditions along the x-axis. For the remaining boundaries, we impose
non-reflecting boundary conditions at the right and top and an inflow boundary
condition at the left. The numerical flux is computed by an HLLC Riemann
solver in the bulk and by the HLLP𝑚𝑞 Riemann solver at the phase interface. We
advance the setup until a final time 𝑡 = 120𝜇s. The computation is performed on
1024 processor units and load imbalances caused by the adaptive discretization,
the interface tracking and the two-phase Riemann solver are balanced with the
dynamic load balancing (DLB) scheme, introduced in [5, 52].

Figure 17 provides numerical schlieren images and the temperature fields of
the shock-droplet interaction at times 𝑡 = 10𝜇s, 𝑡 = 30𝜇s, 𝑡 = 60𝜇s and 𝑡 = 100𝜇s.
Results are in good qualitative agreement with the reported computations of Jöns
et al. [33]. At 𝑡 = 10𝜇s, the incident shock wave passed through most of the
droplet and has been reflected at the droplet surface. Inside the droplet, the
transmitted wave is reflected at the back and a weak retransmitted wave behind the
droplet is observable. Due to the initial pressure difference between the droplet
and the surrounding vapor, a circular shock wave has formed around the droplet
and interacts with the incident shock. At the droplet surface, still unaffected by the
incident shock, a lower temperature in the vapor is visible due to the latent heat of
the evaporating droplet.

At the front of the droplet, a slight increase in the droplet temperature is visible.
We follow the explanation of Jöns et al. and Fechter et al. [22, 33] and assume
that this phenomenon is caused by the condensation of hot vapor impinging on
the cool droplet surface. At 𝑡 = 30𝜇s, the onset of instabilities at the droplet
surface due to the high Weber number becomes apparent. They develop into
filaments at 𝑡 = 60𝜇s and grow until they almost detach from the main liquid body
at 𝑡 = 100𝜇s. During later stages of the simulation, condensation at the front of
the droplet becomes stronger, indicated by a heating of the surface. In the back of
the droplet, freshly evaporated and cooled vapor detaches and mixes with vortical
structures in the wake of the droplet. Since the GPR continuum model is used
for the bulk fluid, heat conduction is modeled through the thermal impulse. As
visualized in figure 18a, the absolute value of the thermal impulse is an excellent
choice for the visualization of temperature gradients in the fluid. Finally, insight
into the adaptive discretization and DLB is provided by figure 18b. The lower
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(a) 𝑡 = 10𝜇s (b) 𝑡 = 30𝜇s

(c) 𝑡 = 60𝜇s (d) 𝑡 = 100𝜇s
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3.0 3.9 4.8 5.7

Schlieren

Figure 17: Numerical schlieren images analyzed temperature fields of an n-Dodecane shock-droplet
interaction with phase transition using the HLLP𝑚𝑞 two-phase Riemann solver.

half of the plot indicates regions where FV sub-cell limiting and p-refinement is
applied. Shocks and the phase interface are detected and treated with the refined
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Figure 18: The left plot shows the absolute thermal impulse |𝜌 𝒋 | at time 𝑡 = 100𝜇s. The bottom
half of the right figure shows the hp-adaptive hybrid DG/FV discretization. The top half depicts
the current partition of the domain and indicates the number of elements per processor.

FV sub-cell grid. At vortical structures in the wake of the droplet, a higher
polynomial degree is applied to reduce numerical dissipation. The upper half of
figure 18b highlights the partition of the computational domain due to DLB. With
processor units receiving between 1 and 64 elements, a substantial load imbalance
between elements can be constituted. Elements discretized by the FV sub-cell
scheme or the DG scheme with an increased polynomial degree have the highest
cost.

As a final test case, we consider the extended setup with a vapor-filled cavity
inside the droplet. At 𝑡 = 10𝜇s a very similar result is observed. However, the
transmitted incident shock wave is now reflected at the surface of the cavity inside
the droplet. Here, a temperature drop can be observed due to the evaporation of
the liquid droplet into the vapor of the cavity. Between 𝑡 = 10𝜇s and 𝑡 = 40𝜇s,
the bubble undergoes a significant deformation caused by the formation of a high-
speed liquid jet along the 𝑦 = 0 axis. This liquid jet leads to a bubble collapse
at 𝑡 = 45𝜇s, with shock waves of the collapse reflected at the back of the droplet.
The high pressure in the primary cavity and in the secondary cavities, formed after
the collapse, causes condensation. This leads to a slight increase in the liquid
temperature at the surface of the primary and secondary cavities during and after
the collapse.

In summary, the two-dimensional shock-droplet interactions demonstrate the
applicability of the proposed HLLP𝑚𝑞 Riemann solver to complex two-phase
simulations with phase transition in the presence of surface tension and significant
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(a) 𝑡 = 10𝜇s (b) 𝑡 = 40𝜇s

(c) 𝑡 = 45𝜇s (d) 𝑡 = 60𝜇s
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Figure 19: Interaction of an incident shock wave with an evaporating n-Dodecane droplet that
contains a vapor-filled cavity. Numerical results, obtained with the HLLP𝑚𝑞 two-phase Riemann
solver show a collapse of the cavity.

interface deformations.

37



5. Conclusion

In this paper, we presented a sharp interface approach for the simulation of
compressible two-phase flows with phase transition. It employs the first-order
hyperbolic continuum model of Godunov, Peshkov and Romenski to describe
compressible, inviscid heat-conducting fluid flow in the bulk phases. The main
contribution of this work is the construction of two novel interfacial Riemann
solvers that provide a thermodynamically consistent coupling at the phase bound-
ary in the presence of phase transition. The developed Riemann solvers address
two key challenges related to the modeling of phase transition in the sharp inter-
face context: a loss of self-similarity due to irreversible effects at the interface
like entropy production and heat conduction and avoiding the breakdown of the
continuum assumption across the phase boundary. Using the hyperbolic GPR
model, irreversible effects are treated as relaxation processes and confined to a
source term. To obtain a unique and thermodynamically consistent entropy so-
lution, we employ a local phase transition model to determine the source term
and thus predict the entropy production and heat dissipation associated with phase
transition.

The novel interfacial solvers are constructed from integral jump relations across
a simplified wave fan, analogously to the established HLLC methodology. The
equation system is closed by a kinetic relation that employs an entropy estimate
from a kinetic theory-based phase transition model. With phenomenological
force flux relations of Onsager theory, the entropy production is related to the
interfacial mass and heat flux. The resulting non-linear equation system can be
solved iteratively. We propose two approximate solvers for the two-phase Riemann
problem denoted HLLP𝑚𝑞 and HLLP𝑚. While the HLLP𝑚𝑞 solver relies on an
iterative solution in both the mass and heat flux, the simplified HLLP𝑚 solver
requires only an iteration in the mass flux. In addition, we discussed the treatment
of the thermal relaxation source term of the GPR model. We implemented a
recently developed semi-analytical scheme [11] that allows to reproduce the Fourier
law in the stiff relaxation limit.

To validate the presented method, we investigated a range of representative test
cases. First, we compared the inviscid, heat-conducting GPR model against Euler-
Fourier computations for heat-driven single-phase flows. An excellent agreement
between both methods is observed while the GPR model demonstrates a superior
computational efficiency in the presence of large heat conductivities due to the lack
of a parabolic time step constraint. The two-phase Riemann solvers are validated
against molecular dynamics data for an evaporating shock tube simulation with
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the Lennard-Jones shifted and truncated potential. Both the HLLP𝑚𝑞 and HLLP𝑚
solvers yield near-identical results and match the molecular dynamics reference
data well. Further, a close agreement with an analog Euler-Fourier computation is
reported. Due to the high thermal conductivity of the LJTS-fluid, the GPR model
is computationally advantageous, since it is not restricted by a parabolic time step
constraint. As an additional test case, we studied an evaporating n-Dodecane
shock tube. While the HLLP𝑚𝑞 and HLLP𝑚 solver produce again near-identical
solutions, the GPR results deviated significantly from the Euler-Fourier reference.
The authors contribute this to a lack of resolution, required for the thermal impulse
in case of low thermal conductivities. This assumption is supported by mesh
convergence studies, suggesting a slow convergence against the Euler-Fourier
result.

Finally, we applied the framework to two-dimensional shock-droplet interac-
tions with phase transition. The setups feature surface tension, severe interface
deformations and topological changes of the phase boundary. To meet the high
local resolution requirement at the interface, the developed phase transition kernel
was combined with the hp-adaptive discretization scheme, introduced in [53, 52].
A robust performance of the proposed interface Riemann solvers was demon-
strated for complex simulations and a good qualitative agreement with similar
shock-droplet investigations with the Euler-Fourier method [33] was achieved.

In the future, we extend the presented framework towards multi-component
flows. This allows for validation against experiments with an evaporating liquid
in an inert gaseous atmosphere. Therefore, the bulk phases need to accommodate
species transport and diffusion, while the phase transition models need to be
extended to the presence of a multi-component mixture.
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