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Abstract. Methods and algorithms that work with data on nonlinear manifolds are collectively
summarized under the term ‘Riemannian computing’. In practice, curvature can be a key limiting
factor for the performance of Riemannian computing methods. Yet, curvature can also be a powerful
tool in the theoretical analysis of Riemannian algorithms. In this work, we investigate the sectional
curvature of the Stiefel and Grassmann manifold. On the Grassmannian, tight curvature bounds are
known since the late 1960ies. On the Stiefel manifold under the canonical metric, it was believed
that the sectional curvature does not exceed 5/4. Under the Euclidean metric, the maximum was
conjectured to be at 1. For both manifolds, the sectional curvature is given by the Frobenius norm of
certain structured commutator brackets of skew-symmetric matrices. We provide refined inequalities
for such terms and pay special attention to the maximizers of the curvature bounds. In this way,
we prove for the Stiefel manifold that the global bounds of 5/4 (canonical metric) and 1 (Euclidean
metric) hold indeed. With this addition, a complete account of the curvature bounds in all admissible
dimensions is obtained. We observe that ‘high curvature means low-rank’, more precisely, for the
Stiefel and Grassmann manifolds under the canonical metric, the global curvature maximum is
attained at tangent plane sections that are spanned by rank-two matrices, while the extreme curvature
cases of the Euclidean Stiefel manifold occur for rank-one matrices. Numerical examples are included
for illustration purposes.
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1. Introduction. Methods and algorithms that work with data on nonlinear
manifolds are collectively summarised under the term Riemannian computing. Rie-
mannian computing methods have established themselves as important tools in a
large variety of applications, including computer vision, machine learning, and opti-
mization, see [1, 2, 5, 9, 11, 20, 26, 27] and the anthologies [21, 28]. They also gain
increasing attention in statistics and data science [24] and in numerical methods for
differential equations [6, 7, 14, 17, 34].
A standard technique in designing Riemannian computing methods is to translate
Euclidean algorithms to manifolds. The discrepancy between a linear space and a
non-linear manifold is quantified by the concept of curvature. Therefore, curvature
can also be seen as a decisive factor that separates Riemannian algorithms from their
Euclidean counterparts. On the other hand, curvature estimates allow to compare
Euclidean distances and Riemannian distances for embedded submanifolds [4], which
can be a powerful tool in the theoretical analysis of Riemannian methods.

In this work, we investigate the sectional curvature on the Stiefel and Grassmann
manifolds. Both of these manifolds have been subject to extensive investigations
before. On the Grassmannian, tight curvature bounds are known since the seminal
papers of Wong [31, 32]. The sectional curvature on the Stiefel manifold under a
parametric family of Riemannian metrics introduced in [16] was extensively studied
in [22]. On the Stiefel manifold under the canonical metric, it was believed that
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the sectional curvature does not exceed 5/4, [27, p. 94,95], [22, Section 6, Table
2]. Propositions. 6.1 and 6.2 from the same work report that under the Euclidean
metric, the curvature range contains the interval [−1/2, 1]. Nguyen [22] shows that
these bounds are tight for the Stiefel manifold St(n, p) if p = 2, but a valid proof for
general p ≥ 2 was missing.

For the orthogonal group and, in turn, for the Stiefel and Grassmann manifolds as
its quotient spaces, the sectional curvature is given by the Frobenius norm of certain
structured commutator brackets of skew-symmetric matrices. Sharp estimates are
provided by the matrix inequality of [33] and the special bounds for skew-symmetric
matrices of [12, Lemma 2.5]. We provide refined inequalities for such terms and pay
special attention to the maximizers of the curvature bounds. In this way, we prove
the conjectured global curvature bounds of

0 ≤ Kc ≤
5

4
(canonical metric) and − 1

2
≤ Ke ≤ 1 (Euclidean metric).

We also show that these bounds are sharp on all true Stiefel manifolds St(n, p), where
p ≥ 2, n ≥ p + 2 and provide a discussion of the special cases, where p = 1, p = n,
and p = n− 1.

In doing so, we observe that ‘high curvature means low-rank’. To be precise,
we prove that for the orthogonal group and the Stiefel and Grassmann manifolds
under the canonical metric, the global curvature maximum is attained at tangent
plane sections that are spanned by the same low-rank tangent matrices.1 From the
perspective of the orthogonal group, these are rank-four matrices, while they are rank-
two matrices from the Stiefel or Grassmann view point. Under the Euclidean metric,
the extreme curvature cases occur for rank-one matrices. Numerical experiments
confirm that the curvature drops with increasing rank.

Organisation of the paper. Section 2 provides the required curvature formulas for
matrix Lie groups and their quotient spaces. (For the reader’s convenience, some
essentials of Lie group theory is gathered in Appendix C.1.) Readers not interested
in the matrix manifold applications but only in the matrix norm inequalities may
directly skip to Section 3. In this section, we also give a full account of the sharp Stiefel
curvature bounds in all possible dimensions. Numerical experiments are discussed in
Section 4. Section 5 concludes the paper.

Notational specifics. For n ∈ N, the (n × n)-identity matrix is denoted by In ∈
Rn×n, or simply I, if the dimension is clear. The (n × n) special orthogonal group,
i.e., the set of all square orthogonal matrices with determinant 1 is denoted by

SO(n) = {Q ∈ Rn×n|QTQ = QQT = In}.

The orthogonal group O(n) is SO(n) joint with their ‘det = −1’-siblings. The sets
of symmetric and skew-symmetric (n × n)-matrices are sym(n) = {A ∈ Rn×n|AT =
A} and skew(n) = {A ∈ Rn×n|AT = −A}, respectively. Overloading this nota-
tion, sym(A) = 1

2 (A + AT ), skew(A) = 1
2 (A − AT ) denote the symmetric and skew-

symmetric parts of a matrix A. The Stiefel manifold is

St(n, p) = {U ∈ Rn×p | UTU = Ip}.

1Because Stiefel and Grassmann are quotient spaces of the orthogonal group SO(n), in this case,
Stiefel and Grassmann tangent vectors can be considered as special (namely, horizontal) SO(n)-
tangent vectors.
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The Grassmann manifold is

Gr(n, p) = {[U ] | U ∈ St(n, p)},where [U ] = {UR | R ∈ SO(p)}.

A word of caution: The standard Euclidean inner product on Rn×p is

⟨X,Y ⟩F = tr(XTY ).

The subscript is to emphazise the correspondence with the Frobenius norm ∥X∥F =√
⟨X,X⟩F . To comply with standard conventions in the matrix manifolds and Rie-

mannian computing literature, the Riemannian metric on SO(n) will not be the
Euclidean one, but the Euclidean one with a multiplicative factor of 1

2 , i.e.,

(1) ⟨X,Y ⟩Q =
1

2
tr(XTY ) =

1

2
⟨X,Y ⟩F , X, Y ∈ TQSO(n).

This factor is inherited by the Riemannian metrics of the Grassmann and the Stiefel
manifold, when considered as quotients of SO(n). It also makes the curvature results
in this work compatible with those stated, e.g., in the seminal papers [31, 32]. To
distinguish the Riemannian and the Euclidean metric, for the former, the location is
always given as a subscript ⟨·, ·⟩Q.

Let M be a quotient of SO(n) under a Lie group action. (We will only consider
M = St(n, p) or M = Gr(n, p).) For a tangent vector X ∈ TISO(n) = so(n) =
skew(n), Xm denotes the projection onto the horizontal space associated with M.
When a distinction is necessary, we will also write XmM to emphasize, which quotient
manifold is considered. Likewise, Xh and XhM denote the projection onto the vertical
space associated with M.

2. Curvature of Lie groups and quotients of Lie groups. This section
recaps the basic curvature formulas for Lie groups and quotients of Lie groups. This
is classic textbook material. Our main references are [10], [15] and [23], to which we
refer for the details. Readers not familiar with Lie groups or quotients of Lie groups
may want to read Appendix C first.

2.1. Lie group curvature formulae. Let G be a Lie group with Lie alge-
bra g = TIG (the tangent space at I) and a bi-invariant metric. Let X,Y ∈ g be
linearly independent tangent vectors. The sectional curvature associated with the
two-dimensional subplane spanned by {X,Y } ⊂ g is

K(X,Y ) =
1

4

∥[X,Y ]∥2I
∥X∥2I∥Y ∥2I − ⟨X,Y ⟩I

,

where [X,Y ] = XY − Y X. It depends only on the subplane, in this context often
referred to as ‘the section’, not on the spanning vectors X,Y . For convenience, we will
only consider X,Y ∈ g forming an orthonormal basis (ONB), i.e., ∥X∥I = 1 = ∥Y ∥I ,
⟨X,Y ⟩I = 0, so that the sectional curvature is computed as

(2) K(X,Y ) =
1

4
∥[X,Y ]∥2I ,

see [10, Prop. 21.19, p. 636].
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Remark 1. For G = SO(n), we use the metric of (1). Hence, when translated to
the Frobenius norm, one has

KSO(X,Y ) =
1

2
∥[X,Y ]∥2F , for ∥X∥F = 1 = ∥Y ∥F , ⟨X,Y ⟩F = 0.

In order to obtain curvature expressions for Lie group quotients, we need to introduce
a few more terms. The adjoint map Ad : G → GL(G) assigns to each group element
A ∈ G the linear map AdA : B 7→ ABA−1. Note that AdA(I) = I. The differential
of AdA at I is the map AdA := d(AdA)I : TIG = g → g = TAdA(I)G. For a matrix
Lie group, AdA(X) = AXA−1.

The homogeneous G-space G/H is reductive, if the Lie algebra g (the tangent
space at the identity) can be split into

g = h⊕m,

where h is the Lie algebra of H (the tangent space at the identity) and m ⊂ g is a
complementary subspace such that AdQ(m) ⊆ m for all Q ∈ H. Note that while the
setting above is more general, in the cases that we eventually consider in this work, m
will always be the orthogonal complement of h with respect to a suitable metric. For
a tangent vector X ∈ g, the projections onto h and m are denoted by Xh and Xm,
respectively.

The quotient space G/H is called naturally reductive, if
(i) it is reductive with some decomposition g = h⊕m,
(ii) it has a G-invariant metric,
(iii) ⟨[X,Z]m, Y ⟩I = ⟨X, [Z, Y ]m⟩I for all X,Y, Z ∈ m.
Item (ii) means that the maps τG : G/H → G/H, [A] 7→ G · [A] associated with the
action G × G/H → H, (G, [A]) 7→ G · [A] are isometries. The precise condition is

⟨d(τG)[A](X), d(τG)[A](Y )⟩τG([A]) = ⟨X,Y ⟩[A] ∀X,Y ∈ T[A]G/H, [A] ∈ G/H,

[10, Def. 23.5]. On the level of matrix representatives (and after identifying T[A]G/H
with the horizontal space HA), this boils down to the condition

⟨GX̄,GȲ ⟩GA = ⟨X̄, Ȳ ⟩A for all X̄, Ȳ ∈ HA, A ∈ G,

where X̄, Ȳ ∈ HA are horizontal lifts of X,Y ∈ T[A]G/H.

Theorem 2 ([10], Prop. 23.29). Let G be a connected Lie group such that the Lie
algebra g admits an Ad(G)-invariant inner product ⟨·, ·⟩I . Let G/H be a homogeneous
space as above and let m = h⊥ with respect to ⟨·, ·⟩I . Then

1. The space G/H is reductive with respect to the decomposition g = h⊕m.
2. Under the G-invariant metric induced by the inner product, the homogeneous

space G/H is naturally reductive.
3. For an ONB spanned by X,Y ∈ T[I]G/H ∼= m, X⊥Y , ∥X∥I = ∥Y ∥I = 1, the

sectional curvature associated with the tangent plane spanned by X,Y is

(3) K(X,Y ) =
1

4
∥[X,Y ]m∥2I + ∥[X,Y ]h∥2I .

Transport to arbitrary locations. Since the tangent space at an arbitrary location
A ∈ G is given by the translates of the tangent space at the identity (see (36)), a
tangent vector X̃ ∈ TAG at an arbitrary location A ∈ G is of the form X̃ = AX with
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X ∈ g. For an ONB {X̃ = AX, Ỹ = AY } that spans a tangent plane in TAG, the
sectional curvature is

KG(X̃, Ỹ ) =
1

4
∥[X,Y ]∥2I .

For quotient spaces, because of the natural reductive homogeneous space struc-
ture, the horizontal spaces HA at arbitrary locations A ∈ G are translates of the
horizontal space m ∼= T[I]G/H. Therefore, the tangent space of the quotient G/H is
identified with

T[A]G/H ∼= HA = Am.

Let X̃, Ỹ ∈ T[A]G/H be an ONB of a tangent plane in the quotient space. Let X̄, Ȳ ∈
HA ⊂ TAG be horizontal lifts of X̃, Ỹ ∈ T[A]G/H ∼= Am with X̄ = AX, Ȳ = AY ,
X,Y ∈ m. Then the sectional curvature at [A] ∈ T[A]G/H with respect to the tangent
plane is given by

(4) KG/H(X̃, Ỹ ) =
1

4
∥[X,Y ]m∥2I + ∥[X,Y ]h∥2I .

For details, see [10, §19–23].

2.2. Canonical curvature formulae on Grassmann and Stiefel. In this
section we recap the expressions for the sectional curvature on the Grassmann and
the Stiefel manifold. Both the Stiefel manifold St(n, p) and the Grassmann manifold
Gr(n, p) are considered as quotients of SO(n). The Riemannian metric on the total
space SO(n) is

(5) ⟨X,Y ⟩Q =
1

2
tr(XTY ), X, Y ∈ TQSO(n) = Q skew(n).

All conditions of Theorem 2 are fulfilled for G = SO(n) with this metric and its
quotient spaces St(n, p) and Gr(n, p).

Grassmann sectional curvature. The Grassmann manifold of linear subspaces can
be realized as the quotient space Gr(n, p) = SO(n)/(SO(p) × SO(n − p)). The
canonical projection and the left cosets are

ΠGr : SO(n) → Gr(n, p)

[Q] =: ΠGr(Q) = {Q
(
S 0
0 R

)
|
(
S 0
0 R

)
∈ SO(p)× SO(n− p)}.

By splitting Q =
(
U U⊥

)
with U ∈ Rn×p, U⊥ ∈ Rn×(n−p), [Q] ∈ Gr(n, p) is uniquely

represented by ran(U) ⊂ Rn.
When lifting [Q] ∈ Gr(n, p) to Q ∈ SO(n) (in practice, this is nothing but fixing a
representative Q for the equivalence class [Q]), the vertical space is represented by

V Gr
Q =

{
X̄ = Q

(
A 0
0 C

)
| A ∈ skew(p), C ∈ skew(n− p)

}
= QhGr.

The associated horizontal space is

T[Q]Gr(n, p) ∼= HGr
Q =

{
X̄ = Q

(
0 −BT

B 0

)
| B ∈ R(n−p)×p

}
= QmGr.

For Grassmann tangent vectors (already represented in matrix form by their lifts)

X =

(
0 −BT

1

B1 0

)
, Y =

(
0 −BT

2

B2 0

)
∈ mGr ∼= T[I]Gr(n,m), it holds that X,Y are
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orthonormal w.r.t. (5) if and only if B1, B2 ∈ R(n−p)×p are orthonormal w.r.t. the
standard Euclidean inner product ⟨·, ·⟩F . For such orthonormal X,Y , a straightfor-
ward evaluation of (3) yields

KGr(X,Y ) =
1

4
∥[X,Y ]mGr∥2[I] + ∥[X,Y ]hGr∥2[I]

=
1

2
∥BT

1 B2 −BT
2 B1∥2F +

1

2
∥B1B

T
2 −B2B

T
1 ∥2F(6)

= tr(BT
1 B2B

T
2 B1) + tr(B1B

T
2 B2B

T
1 )− 2 tr(BT

1 B2B
T
1 B2).(7)

Stiefel sectional curvature. The Stiefel manifold of orthonormal p-frames can be
realized as the quotient space St(n, p) = SO(n)/SO(n− p). The canonical projection
and the left cosets are

ΠSt : SO(n) → St(n, p)

[Q] =: ΠSt(Q) = {Q
(
I 0
0 R

)
| R ∈ SO(n− p)}.

By splitting Q =
(
U U⊥

)
, [Q] ∈ St(n, p) is uniquely determined by U ∈ Rn×p.

When lifting [Q] ∈ St(n, p) to Q ∈ SO(n), the vertical space is represented by

V St
Q =

{
X̄ ∈ Rn×n | X̄ = Q

(
0 0
0 C

)
, C ∈ skew(n− p)

}
= QhSt.

The associated horizontal space is

T[Q]St(n, p) ∼= HSt
Q =

{
X̄ = Q

(
A −BT

B 0

)
| A ∈ skew(p), B ∈ R(n−p)×p

}
= QmSt.

For tangent vectors X =

(
A1 −BT

1

B1 0

)
, Y =

(
A2 −BT

2

B2 0

)
∈ mSt ∼= T[I]St(n, p) that

are orthonormal w.r.t. (5), a straightforward evaluation of (3) yields

KSt
c (X,Y ) =

1

4
∥[X,Y ]mSt∥2[I] + ∥[X,Y ]hSt∥2[I]

=
1

2
∥B2B

T
1 −B1B

T
2 ∥2F +

1

4
∥B1A2 −B2A1∥2F

+
1

8
∥[A1, A2]− (BT

1 B2 −BT
2 B1)∥2F .(8)

This is in line with the result of [22, Prop 4.2, eq. (34)].

3. Matrix norm inequalities and curvature estimates. In this section,
we investigate the extremal behavior of the sectional curvature on the Grassmann
and the Stiefel manifold. It is known since [32], that the sectional curvature on the
Grassmann manifold ranges in the interval [0, 2] with both the lower and the upper
bound attained. The upper bound can be established by using the matrix inequality

(9) ∥B1B
T
2 −B2B

T
1 ∥2F ≤ 2∥B1∥2F ∥B2∥2F

of Wu and Chen, [33].
Applying (9) to the terms (6) and keeping ∥B1∥F = 1 = ∥B2∥F in mind immedi-

ately gives 0 ≤ KGr(X,Y ) ≤ 2. A key idea in [33] is to exploit the skew-symmetry of
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the real Schur form of B1B
T
2 − B2B

T
1 . They also show by algebraic means that the

inequality is sharp if and only if

B1 =

0 1
λ µ

0

0 0

 , B2 =

λ µ
0 −1

0

0 0

 ,

up to an orthogonal transformation and scaling. Hence, under the normalization
constraint ∥B1∥F = 1 = ∥B2∥F , both terms in (6) attain their upper bound of 2
simultaneously for the rank-2 matrices

B1 =
1√
2

0 1
1 0

0

0 0

 , B2 =
1√
2

1 0
0 −1

0

0 0

 .

Observe that ⟨B1, B2⟩F = 0. Hence, this matrix pair forms an ONB and so do the
associated Grassmann tangent vectors.

To gain more insight on how the various trace terms contribute to the overall
curvature value, we will re-establish this result via an optimization approach. To this
end, we will consider the three trace terms

tr(BT
1 B2B

T
2 B1), tr(B1B

T
2 B2B

T
1 ), and − 2 tr(BT

1 B2B
T
1 B2) B1, B2 ∈ R(n−p)×p,

in the curvature expression (7) separately. Eventually, this will leads to an alternative
proof and a refinement of the matrix inequality of Wu and Chen, [33]. We start
with a preparatory lemma that improves on the classical submultiplicativity property
∥AB∥F ≤ ∥A∥F ∥B∥F .

Lemma 3. Let A ∈ Rn×m, B ∈ Rm×p. Then

(10) ∥AB∥F ≤ min{∥A∥2∥B∥F , ∥A∥F ∥B∥2}.

If either A or B is skew-symmetric, then

(11) ∥AB∥F ≤ 1√
2
∥A∥F ∥B∥F .

Proof. On (10): First, consider D ∈ Rm×m diagonal. Write B = (b1, . . . , bp)
column-wise. It holds

∥DB∥2F = tr(BTD2B) =

p∑
j=1

bTj D
2bj =

p∑
j=1

∥bj∥22
bTj D

2bj

bTj bj

≤ max
j

{d2j}
p∑

j=1

∥bj∥22 = ∥D∥22∥B∥2F .

The general case can be reduced to this case. Let UΣV T = A be the full SVD of A.

∥AB∥2F = ∥UΣV TB∥2F = tr(BTV ΣTΣV TB)

= ∥
√
ΣTΣV TB∥2F

D=
√
ΣTΣ

= σ2
1∥V TB∥2F = ∥A∥22∥B∥2F .

When working with the SVD of B, the same argument may be applied to ∥BTAT ∥2F
and yields ∥BTAT ∥2F ≤ ∥BT ∥22∥AT ∥2F = ∥B∥22∥A∥2F .
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The second inequality (11) comes as a corollary. W.l.o.g. assume that A ∈ skew(m).
Then, all eigenvalues of A are either zero or form purely imaginary, complex conjugate
pairs. The singular values of A are the absolute values of the eigenvalues of A.
Therefore, the singular values also come in pairs. Let σ1 = σ2 ≥ · · · ≥ σr−1 = σr > 0
be the non-zero singular values of A. We obtain

∥A∥22 = σ2
1 =

1

2

(
σ2
1 + σ2

2

)
≤ 1

2

(
σ2
1 + σ2

2 + · · ·+ σ2
r

)
=

1

2
∥A∥2F .

Hence, (10) yields ∥AB∥F ≤ ∥A∥2∥B∥F ≤ 1√
2
∥A∥F ∥B∥F .

Alternatively, (10) can also be established as a consequence of [30, Lemma 1].
The following lemma is obvious.

Lemma 4. Let m ≥ p and consider B2 ∈ Rm×p as fixed. Let UΣV T = B2 be the

(full) SVD of B2 with Σ =

(
Σp

0

)
∈ Rm×p and Σp = diag(σ1, . . . , σp).

(1.) The global optimum of

max
B1∈Rm×p

tr(BT
1 B2B

T
2 B1) s.t. ∥B1∥F = 1

is σ2
1 and is attained for any normalized B1 such that B̃1 := UTB1V only features

scaled copies of the first unit vector e1 = (±1, 0, . . . , 0)T ∈ Rm as columns.
(2.) The global optimum of

max
B1∈Rm×p

tr(B1B
T
2 B2B

T
1 ) s.t. ∥B1∥F = 1

is σ2
1 and is attained for any normalized B1 such that B̃1 := UTB1V only features

scaled copies of the first unit vector e1 = (±1, 0, . . . , 0)T ∈ Rp as rows.

The next lemma concerns the third trace term in (7).

Lemma 5. Let m ≥ p and let B2 = UΣV T ∈ Rm×p (not necessarily normalized).
Then

max
B1∈Rm×p,∥B1∥F=1

tr(BT
1 B2B

T
1 B2) = σ2

1 ,

min
B1∈Rm×p,∥B1∥F=1

tr(BT
1 B2B

T
1 B2) = −σ1σ2.

The global maximum and minimum are attained for B+
1 = UB̃+

1 V T and B−
1 =

UB̃−
1 V T , where

(12) B̃+
1 = ±

1 0
0 0

0

0 0

 , and B̃−
1 = ± 1√

2

 0 1
−1 0

0

0 0

 , respectively.

For B1, B2 both of unit Frobenius norm,

−1

2
≤ tr(BT

1 B2B
T
1 B2) ≤ 1.

In this case, the global extrema are attained for B+
1 , B−

1 as above and B+
2 of rank one

(σ1 = 1) and B−
2 of rank 2 (σ1 = σ2 = 1√

2
).



HIGH CURVATURE MEANS LOW-RANK 9

Remark 6. The extrema may not be isolated nor are they necessarily unique (up
to the trace-preserving transformation). If m = p, B2 = σI, then any normalized
symmetric B1 yields the maximum tr(BT

1 B2B
T
1 B2) = σ2∥B1∥2F = σ2

1 . Likewise, any
normalized skew-symmetric B1 yields the minimum tr(BT

1 B2B
T
1 B2) = −σ2∥B1∥2F =

−σ2 = (−σ1σ2). However, for both B1 and B2 of unit Frobenius norm, the global
extrema are attained only for the matrices in (12) (up to the trace preserving trans-
formation).

Proof (Lemma 5). Let B2 = UΣV T ∈ Rm×p be the full SVD of B2. Under
the norm-preserving bijection B 7→ UTBV =: B̃, the trace optimization problem
minB∈Rm×p,∥B∥F=1 ± tr(BTB2B

TB2) becomes minB̃∈Rm×p,∥B̃∥F=1 ± tr(B̃TΣB̃TΣ).

Write Σ =

(
Σp

0

)
and B̃ =

(
B̃p

B̃m−p

)
, with empty lower blocks if m = p. As a

preliminary, observe that tr(B̃T
p B̃

T
p ) = ⟨B̃p, B̃

T
p ⟩F =

∑p
j=1

∑p
k=1 bjkbkj . It holds

tr(B̃TΣB̃TΣ) =

p∑
j=1

p∑
k=1

σjσkbjkbkj(13)

= σ2
1b

2
11 +

p∑
k=2

σ1σkb1kbk1 +

p∑
j=2

(
σjσ1bj1b1j +

p∑
k=2

σjσkbjkbkj

)
≤ σ2

1⟨B̃p, B̃
T
p ⟩F ≤ σ2

1∥B̃∥2F = σ2
1 .

The maximum is attained, if all weight in B̃ is put on the upper diagonal entry, i.e.,
for B̃+ as in the statement of the lemma. If σ1 > σ2, then the maximum is isolated.

Now on the minimum. Reconsider (13) and extract the ‘diagonal terms’,

tr(B̃TΣB̃TΣ) =

p∑
j=1

p∑
k=1,k ̸=j

σjσkbjkbkj +

p∑
j=1

σ2
j b

2
jj .

One sees that the diagonal terms in B̃p only make nonnegative contributions to the
trace total. All remaining terms become non-positive, if bjk and bkj are of opposite
sign for all k ̸= j. In this case and with bjj = 0, it holds

tr(B̃TΣB̃TΣ) = −
∑p

j=1

∑p
k=1,k ̸=j σjσkbjkbkj ≥ −σ1σ2

p∑
j=1

p∑
k=1,k ̸=j

bjkbkj

≥ −σ1σ2⟨B̃p, B̃
T
p ⟩F ≥ −σ1σ2∥B̃∥2F = −σ1σ2.

The pairing σ1σ2 of the largest singular values features only as a factor in front of the
product b12b21. Therefore, the estimate is sharp if all weight in B̃ is placed on these

terms. Consider B̃ =

 0 b12
b21 0

0

0 0

 with b212 + b221 = 1. This yields

tr(B̃TΣB̃TΣ) = tr(

(
0 b12
b21 0

)(
σ1 0
0 σ2

)(
0 b12
b21 0

)(
σ1 0
0 σ2

)
)

= 2σ1σ2b12b21.

The product b12b21 gets extremal for b12, b21 = ± 1√
2
, the associated trace minimum is

−σ1σ2 and is attained when b12 and b21 feature opposite signs. The global minimum
is isolated, if σ2 > σ3.
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Under the additional normalization of ∥B2∥F = 1, the global minimum of − 1
2 is

attained, if σ1 = σ2 = 1√
2
(which enforces σ3, . . . , σp = 0). The global maximum of a

value of 1 is attained if σ1 = 1 (which enforces σ2, . . . , σp = 0).

The next theorem includes (and refines) the inequality of Wu and Chen. The
proof is different and is based on an optimization approach.

Theorem 7. For B1, B2 ∈ Rm×p, with SVDs B1 = U1PV T
1 ∈ Rm×p, B2 =

U2ΣV
T
2 ∈ Rm×p, where the upper left diagonal blocks of the singualar values matrices

P,Σ are Pp = diag(ρ1, . . . , ρp), and Σp = diag(σ1, . . . , σp), respectively, it holds

tr(BT
1 B2B

T
2 B1)− tr(BT

1 B2B
T
1 B2) ≤ min{∥B1∥2F (σ2

1 + σ2
2), ∥B2∥2F (ρ21 + ρ22)},(14)

tr(B1B
T
2 B2B

T
1 )− tr(BT

1 B2B
T
1 B2) ≤ min{∥B1∥2F (σ2

1 + σ2
2), ∥B2∥2F (ρ21 + ρ22)}.(15)

As a consequence,

(16)
1

2
∥BT

1 B2 −BT
2 B1∥2F ≤ ∥B1∥2F ∥B2∥2F ,

1

2
∥B1B

T
2 −B2B

T
1 ∥2F ≤ ∥B1∥2F ∥B2∥2F .

Note that (16) is the Wu-Chen matrix inequality of [33]. While (14), (15) do not
give tighter general bounds, they can be significantly tighter in special situations. For
example, if B2 ∈ St(m, p) is column-orthogonal, then all singular values of B2 are 1
and ∥B2∥2F = tr(I) = m. The bound of (14) is ∥BT

1 B2 − BT
2 B1∥F ≤

√
2
√
2∥B1∥F ,

while that of (16) gives ∥BT
1 B2 − BT

2 B1∥F ≤
√
2
√
m∥B1∥F , which grows with the

dimension m.

Proof. It holds 1
2∥B

T
1 B2 − BT

2 B1∥2F = tr(BT
1 B2B

T
2 B1) − tr(BT

1 B2B
T
1 B2) and

1
2∥B1B

T
2 − B2B

T
1 ∥2F = tr(B1B

T
2 B2B

T
1 ) − tr(BT

1 B2B
T
1 B2). We normalize and apply

again the coordinate change based on the SVD data of B2 to obtain

tr(BT
1 B2B

T
2 B1)− tr(BT

1 B2B
T
1 B2)

=∥B1∥2F tr

(
BT

1

∥B1∥F
B2B

T
2

B1

∥B1∥F

)
− ∥B1∥2F tr

(
BT

1

∥B1∥F
B2

BT
1

∥B1∥F
B2

)
=∥B1∥2F

(
tr(B̃TΣΣT B̃)− tr(B̃TΣB̃TΣ)

)
, B̃ = UT (B1/∥B1∥F )V, ∥B̃∥F = 1.

By the preparatory lemmata, it is clear that all weight in the (normalised) matrix
B̃ must be concentrated on the upper (2 × 2)-diagonal block. Therefore, we look

for B̃ =

(
a b
c d

)
with the optimal balance between the parameters a, b, c, d that

maximizes the combination of trace terms. Yet, a quick calculation shows that the
diagonal entries a, d do not contribute to the result. We have

tr(B̃TΣΣT B̃)− tr(B̃TΣB̃TΣ) = σ2
1b

2 + σ2
2c

2 − 2σ1σ2bc = (σ1b− σ2c)
2.

To maximize this term, all weight in B̃ must be on the off-diagonal terms so that
a, d = 0 and b2 + c2 = 1. Let S1 = {(b, c) ∈ R2 | b2 + c2 = 1} be the unit circle,
parameterized by γ : t 7→ (b(t), c(t) = (cos(t), sin(t)). The function f : [−π, π) →
R, t 7→ (σ1 cos(t)−σ2 sin(t))

2 attains its global maximum on S1 at t∗ = arctan
(
−σ2

σ1

)
.

This yields b∗ = σ1√
σ2
1+σ2

2

, c∗ = −σ2√
σ2
1+σ2

2

and a global maximum of

(17) (σ1b∗ − σ2c∗)
2 = (σ2

1 + σ2
2).
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Combined, it holds

tr(BT
1 B2B

T
2 B1)− tr(BT

1 B2B
T
1 B2) ≤ ∥B1∥2F (σ2

1 + σ2
2) ≤ ∥B1∥2F ∥B2∥2F .

The roles of B1 and B2 can be exchanged. The same reasoning applies to (15) but
with the transpose of B1, B2. This yields

(18) tr(B̃ΣTΣB̃T )− tr(B̃TΣB̃TΣ) = (σ2b− σ1c)
2.

The global optimum is the same value of (σ2
1 + σ2

2), but is attained for b∗ =
σ2√
σ2
1+σ2

2

, c∗ = −σ1√
σ2
1+σ2

2

, which corresponds to the transpose of the maximizer of (14).

Both inequalities become simultaneously sharp for the same input pair B̃,Σ, if σ1 =
σ2.

3.1. The classical Grassmann sectional curvature bounds. With Theo-
rem 7, the global bound of KGr ≤ 2 of the sectional curvature on Gr(n, p) is an
immediate consequence of (6), (7) (as was already clear from [33], and clear to Wong
in 1968, [32]). The curvature formulas (6), (7) hold for {B1, B2} forming an ONB.
With B2 = UΣV T , under the transformation B1 7→ UTB1V =: B̃1, this is equivalent
to {B̃1,Σ} being an ONB. According to Theorem 7, the matrices, for which both
matrix inequalities are simultaneously sharp are

(19) B̃1 = ±

 0 1√
2

−1√
2

0
0

0 0

 , and Σ̃ =

σ 0
0 σ

0

0 0

 .

This pair of matrices is orthogonal; it is an ONB if σ = 1√
2
. Observe that B̃T

1 Σ is

skew-symmetric. The tangent plane spanned by the associated tangent vectors is the
only tangent plane of maximum sectional curvature.

3.2. Bounds on the canonical sectional curvature on Stiefel. In this sec-
tion, we establish a global upper bound on the sectional curvature on St(n, p) under
the canonical metric for all Stiefel manifolds n ≥ p that are at least two-dimensional.
(Otherwise, the concept of sectional curvature does not apply.) We start from (8) for
an orthonormal pair of Stiefel tangents

X =

(
A1 −BT

1

B1 0

)
, Y =

(
A2 −BT

2

B2 0

)
∈ T[I]St(n, p).

Orthonormality in the canononical Stiefel metric means that

1

2
∥Aj∥2F + ∥Bj∥2F = 1, j = 1, 2,

1

2
tr(AT

1 A2) + tr(BT
1 B2) = 0.

From [12, Lemma 2.5], we have norm bounds for the commutator bracket of skew-
symmetric matrices,

∥[A1, A2]∥2F ≤ ∥A1∥2F ∥A2∥2F , ∀p ≥ 4,(20)

∥[A1, A2]∥2F ≤ 1
2∥A1∥2F ∥A2∥2F , p = 3,(21)

∥[A1, A2]∥2F = 0, p = 2.(22)

The last one is obvious, because (2×2)-skew symmetric matrices necessarily commute;
(21) is a straightforward consequence of the interplay between skew-symmetric (3×3)-
matrices and their representation with 3-vectors, see Appendix B for a short recap.
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Write α1 = ∥A1∥F , α2 = ∥A2∥F , β1 = ∥B1∥F , β2 = ∥B2∥F and note that for
normalized tangent vectors β2

j = 1− 1
2α

2
j , βj ∈ [0, 1], αj ∈ [0,

√
2].

Because A1, A2 are skew-symmetric, eq. (11) of Lemma 3 yields the following
refined estimate for the ‘one-fourth’-term in (8)

1

4
∥B1A2 −B2A1∥2F ≤ 1

4

(
1√
2
∥B1∥F ∥A2∥F +

1√
2
∥B2∥F ∥A1∥F

)2

=
1

8

(
β2
1α

2
2 + β2

2α
2
1 + 2α1α2β2β2

)
.

With the above inequalities and Theorem 7, a global bound for the Stiefel curvature
is

KSt
c (X,Y ) =

1

2
∥B2B

T
1 −B1B

T
2 ∥2F +

1

4
∥B1A2 −B2A1∥2F

+
1

8
∥[A1, A2]− (BT

1 B2 −BT
2 B1)∥2F

≤ 5

4
+

5

16
α2
1α

2
2 −

1

2
(α2

1 + α2
2) +

1 +
√
2

4
α1α2

√
1− 1

2
α2
1

√
1− 1

2
α2
2.(23)

This function in (α1, α2) has an isolated local maximum at α1 = 0 = α2 with a
corresponding function value of 5

4 , which is the global maximum in the admissible

range of (α1, α2) ∈ [0,
√
2]2. For a verification see Appendix A. For most Stiefel

manifolds, more precisely, for all Stiefel manifolds with p ≥ 2, n ≥ p+2, this bound is
tight. This main result is detailed in the next theorem. For the sake of completeness,
the remaining cases are also included, even though they are not new. The cases
p = 2, n = 3 and p = 2, n > 3 are explicitly treated in [22, Prop. 6.1] for a parametric
family of metrics [16, 35] that include the canonical metric as a special case. Since
St(n, 1) ∼= Sn−1, St(n, n − 1) ∼= O(n) and St(n, n) ∼= SO(n), one may argue that
St(n, p), p ≥ 2, n ≥ p+ 2 are the only ‘true’ Stiefel manifolds.

Theorem 8. The sectional curvature under the canonical metric on the Stiefel
manifold St(n, p), n ≥ p, is globally bounded by

0 ≤ KSt
c (X,Y ) ≤ 5

4
.

1. For p ≥ 2, n ≥ p+ 2, the bound is sharp. Up to trace-preserving transforma-
tions, the maximum curvature is attained only for the tangent plane spanned

by

{
X =

(
0 −BT

1

B1 0

)
, Y =

(
0 −BT

2

B2 0

)}
, where

(24) B1 = ± 1√
2

 0 1
−1 0

0

0 0

 , and B2 = ± 1√
2

1 0
0 1

0

0 0

 .

2. If rank(B1) = 1 or rank(B2) = 1 holds for the B-blocks in X or Y , respec-
tively, then

KSt
c (X,Y ) ≤ 1.

The bound is attained for the matrices stated in eq. (25) below.
3. For p = 1 and n ≥ 3,

KSt
c (X,Y ) ≤ 1

and the bound is sharp. It is attained for the matrices specified in eq. (25) if
these are reduced to their first column.
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4. For (n, p) = (3, 2) or (n, p) = (3, 3), the sectional curvature has a constant
value of

KSt
c (X,Y ) ≡ 1

4
.

5. For n ≥ 4 and p = n− 1 or p = n,

KSt
c (X,Y ) ≤ 1

2

and the bound is sharp.
For n = 2, p = 2 or n = 2, p = 1, St(n, p) is one-dimensional so that the concept of
sectional curvatures does not apply.

Proof. On 1.: The global bound of 5
4 is already established by the maximum of

(23). A direct calculation shows that the bound is attained for the tangent plane as-
sociated with the matrices in (24). Hence, the bound is sharp for all Stiefel manifolds
that fit these matrices dimension-wise. Moreover, the matrices in (24) are the only
matrices (up to trace-preserving transformations) for which the bound is achieved.
This can be established analogously to the Grassmann manifold case, since the max-
imum curvature is attained for zero skew-symmetric blocks Aj = 0.
On 2.: If one of the matrices B1 or B2 is of rank one, then from the proof of Theorem 7
one can deduce that

1

2
∥B2B

T
1 −B1B

T
2 ∥2F +

1

2
∥BT

1 B2 −BT
2 B1∥2F ≤ ∥B1∥2F ∥B2∥2F .

Compared to the general case, the bound is improved by a factor of 2. As before, the
maximum curvature is attained for zero skew-symmetric blocks Aj = 0. Hence, the
curvature is bounded by

KSt
c (X,Y ) ≤ 1

2
∥B2B

T
1 −B1B

T
2 ∥2F +

1

8
∥(BT

1 B2 −BT
2 B1)∥2F

=
3

8
∥B2B

T
1 −B1B

T
2 ∥2F

+
1

4

(
1

2
∥B2B

T
1 −B1B

T
2 ∥2F +

1

2
∥(BT

1 B2 −BT
2 B1)∥2F

)
≤ 3

4
∥B1∥2F ∥B2∥2F +

1

4
∥B1∥2F ∥B2∥2F ≤ 1.

The rank-one bound is attained for

(25) B1 = ±

0 0
1 0

0

0 0

 , and B2 = ±

1 0
0 0

0

0 0

 .

The matrix B1 may feature multiple copies of the canonical unit vector eT1 as rows.
On 3.: This is a direct consequence of item 2.
On 4.: See [22, Prop. 6.1] or see Appendix B for a direct proof.
On 5.: This is clear because St(n, n − 1) ∼= O(n), St(n, n) ∼= SO(n). In both these
cases, [X,Y ]m = [X,Y ], [X,Y ]h = 0 so that the curvature formula (3) reduces to (2).
For O(n) and SO(n), the formula from Remark 1 applies. The global bound of 1

2
stems from (20).
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Remark 9. The bound of Theorem 8 was already correctly guessed in [27, p. 94,
95], but the derivation there is not correct. It was overlooked that tangent matrices
X of unit norm w.r.t. the Riemannian metric 1 = ∥X∥2 = 1

2∥X∥2F have a Frobenius

norm of ∥X∥F =
√
2. In [22, Prop. 6.2] it is shown that the sectional curvature range

of the Stiefel manifold under the canonical metric includes the interval [0, 5
4 ]. But to

argue that this is the exact range, the author resorted to the result of [27, p. 94, 95],
which was lacking a valid proof.

3.3. Bounds on the Euclidean sectional curvature on Stiefel. Besides
the canonical metric that follows from equipping the orthogonal group with the Eu-
clidean metric ⟨X,Y ⟩Q = 1

2 ⟨X,Y ⟩F and the quotient space representation St(n, p) =
O(n)/O(n−p), the most important metric for applications is obtained from consider-
ing the Stiefel manifold as an embedded submanifold of the Euclidean matrix space,

St(n, p) ⊂ Rn×p. Tangent vectors are then rectangular matrices ∆ = Q

(
A
B

)
=

UA + U⊥B ∈ Rn×p, where Q =
(
U U⊥

)
∈ O(n), A ∈ skew(p), B ∈ R(n−p)×p. The

natural Riemannian metric in this setting is obtained from restricting the Euclidean
inner product2 to the Stiefel tangent spaces. This yields the so-called Euclidean metric
on St(n, p) ⊂ Rn×p,

⟨∆, ∆̃⟩St
e = tr

((
AT BT

)
QTQ

(
Ã

B̃

))
= tr(AT Ã) + tr(BT B̃).

The differences between this metric and the canonical one have been discussed in
[9, p. 313]. Most notably, this metric is not directly related to a quotient space
construction so that the formulas of Section 2 do not readily apply. One option for
calculating curvatures is via direct computations and the geometry of submanifolds,
see [19, Section 8]. Yet, the canonical and the Euclidean metric are included in a
parametric family of metrics considered in [16, Def. 3.1, Remark 1], where the authors
show that all these metrics stem from a bi-invariant metric associated with a different
quotient space representation, namely St(n, p) ∼= (O(n) × O(p))/(O(n − p) × O(p)).
The associated sectional curvature is computed in [22]. We omit the details and quote
only the final result for the Stiefel manifold under the Euclidean metric: For a tangent

plane section spanned by an ONB {X = Q

(
A1

B2

)
, Y =

(
A2

B2

)
},

KSt
e (X,Y ) = ∥B1A2 −B2A1∥2F +

1

2
∥B1B

T
2 −B2B

T
1 ∥2F − 1

2
∥BT

1 B2 −BT
2 B1∥2F

+
1

4
∥[A1, A2]− (BT

2 B1 −BT
1 B2)∥2F ,(26)

see [22, Prop 4.2, eq. (34) with α = 1]. In the same work, it is shown that the interval
[− 1

2 , 1] is contained in the range of the Euclidean curvature and it is conjectured that
− 1

2 ≤ KSt
e (X,Y ) ≤ 1. We confirm this conjecture. The Euclidean sectional curvature

formula shares many terms with the canonical one from (8) but with different factors.
The occurrence of a negative contribution is annoying in view of estimates. As before,
we restrict our considerations to plane sections spanned by ONBs. Shifting the base

point has no impact on the curvature. Hence, w.l.o.g. Q = I, {X =

(
A1

B2

)
, Y =

2Caution: Here without the factor 1
2
!



HIGH CURVATURE MEANS LOW-RANK 15(
A2

B2

)
} ⊂ T[I]St(n, p). The matrices X,Y form a (Riemannian) ONB if and only if

1 = ∥Ai∥2F + ∥Bi∥2F , i = 1, 2, 0 = tr(AT
1 A2) + tr(BT

1 B2).

The lower bound on the Euclidean Stiefel curvature. For an ONB X,Y consisting
of subblocks Ai, Bi as above, let αi = ∥Ai∥F , βi = ∥Bi∥F , i = 1, 2 so that α2

i +β2
i = 1.

By the reversed triangle inequality,

KSt
e (X,Y ) ≥ ∥B1A2 −B2A1∥2F +

1

2
∥B1B

T
2 −B2B

T
1 ∥2F − 1

2
∥BT

1 B2 −BT
2 B1∥2F

+
1

4

(
∥[A1, A2]∥2F + ∥BT

2 B1 −BT
1 B2∥2F

−2∥[A1, A2]∥F ∥BT
2 B1 −BT

1 B2∥F
)

= ∥B1A2 −B2A1∥2F +
1

4
∥[A1, A2]∥2F − 1

2
∥[A1, A2]∥F ∥BT

1 B2 −BT
2 B1∥F

+
1

2
∥B1B

T
2 −B2B

T
1 ∥2F − 1

4
∥BT

1 B2 −BT
2 B1∥2F

≥ −1

2
∥[A1, A2]∥F ∥BT

1 B2 −BT
2 B1∥F − 1

4
∥BT

1 B2 −BT
2 B1∥2F

≥ −1

2
α1α2

√
2β1β2 −

1

2
β2
1β

2
2

= −1

2

(
β1β2

(√
2
√
1− β2

1

√
1− β2

2 + β1β2

))
.

where we have used the Wu-Chen matrix inequality (16). The minimum of this
function in the admissible range of (β1, β2) ∈ [0, 1]2 is attained at the corner point
β1 = 1 = β2, so that

KSt
e (X,Y ) ≥ −1

2
.

As in the case of the canonical metric, the extrema are attained for tangent vectors
with zero A-blocks. For a section spanned by such an ONB, the curvature formula
reduces to

(27) KSt
e (X,Y ) =

1

2
∥B1B

T
2 −B2B

T
1 ∥2F − 1

4
∥BT

1 B2 −BT
2 B1∥2F .

The lower bound is attained for a normalized, orthogonal matrix pair B1, B2 such that
the first positive term vanishes, while the second negative term becomes extremal. A
corresponding matrix pair can be read off from (17) and (18), when choosing σ1 =
1 = b∗ and σ2 = 0 = c∗. The associated matrices that span an extremal tangent plane

section are X =

(
0
B1

)
, Y =

(
0
B2

)
, where

(28) B1 =

(
0 1
0 0

)
, B2 =

(
1 0
0 0

)
.

For these matrices, 1
2∥B

T
1 B2 − BT

2 B1∥2F = 1, while 1
2∥B1B

T
2 − B2B

T
1 ∥2F = 0. Note

that this matrix pair is a maximizer of the trace term in Lemma 4, item (1).
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The upper bound on the Euclidean Stiefel curvature. Continuing the above nota-
tion and introducing γ = ∥BT

1 B2 − BT
2 B1∥F ∈ [0,

√
2β1β2], we obtain for the upper

bound on the Euclidean Stiefel curvature

KSt
e (X,Y ) ≤ ∥B1A2 −B2A1∥2F +

1

2
∥B1B

T
2 −B2B

T
1 ∥2F − 1

2
∥BT

1 B2 −BT
2 B1∥2F

+
1

4

(
∥[A1, A2]∥2F + ∥BT

1 B2 −BT
2 B1∥2F

+2∥[A1, A2]∥F ∥BT
1 B2 −BT

2 B1∥F
)

≤ 1

2
α2
2β

2
1 +

1

2
α2
1β

2
2 + α1α2β1β2 + β2

1β
2
2 − 1

2
γ2

+
1

4

(
α2
1α

2
2 + γ2 + 2α1α2γ

)
=

1

2
(1− β2

2)β
2
1 +

1

2
(1− β2

1)β
2
2 +

√
1− β2

1

√
1− β2

2β1β2 + β2
1β

2
2

−1

2
γ2 +

1

4

(
(1− β2

1)(1− β2
2) + γ2 + 2γ

√
1− β2

1

√
1− β2

2

)
.(29)

When considering all other parameters as fixed, the last expression is a parabola in
γ; the parametric maximum is γ∗ = γ∗(β1, β2) =

√
1− β2

1

√
1− β2

2 . Inserting this γ
in (29) yields

KSt
e (X,Y ) ≤ 1

2
(1− β2

2)β
2
1 +

1

2
(1− β2

1)β
2
2 +

√
1− β2

1

√
1− β2

2β1β2 + β2
1β

2
2

+
1

2
(1− β2

1)(1− β2
2).

This expression has its global maximum at β1 = 1 = β2, which can be verified by
elementary means similar to the discussion of (23). We omit the details. Again,
the associated matrix maximizers feature a zero A-block. Reconsidering (27), we can
utilize (17) and (18) to find a maximizing matrix pair. This time one needs to choose
σ1 = 1 = c∗ and σ2 = 0 = b∗. (Mind the ”transposition duality” that has been
mentioned before.) The associated matrices that span an extremal tangent plane

section are X =

(
0
B1

)
, Y =

(
0
B2

)
, where

(30) B1 =

(
0 0
1 0

)
, B2 =

(
1 0
0 0

)
.

For these matrices, 1
2∥B

T
1 B2 − BT

2 B1∥2F = 0, while 1
2∥B1B

T
2 − B2B

T
1 ∥2F = 1. Note

that this matrix pair is a maximizer of the trace term in Lemma 4, item (2). Unlike
the canonical metric, the Euclidean metric achieves the cases of extreme curvature
for tangent plane sections spanned by rank-1 matrices.

The next theorem summarizes the findings, extended by the cases of special di-
mensions.

Theorem 10. The sectional curvature under the Euclidean metric on the Stiefel
manifold St(n, p), n ≥ p, is globally bounded by

−1

2
≤ KSt

e (X,Y ) ≤ 1.
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1. For p ≥ 2, n ≥ p + 2, the bound is sharp. Up to trace-preserving transfor-
mations, the maximum and minimum curvature is attained for the tangent
plane associated with the matrices of (30) and (28), respectively.

2. For p = 1 and n ≥ 3, the sectional curvature has a constant value of

KSt
e (X,Y ) ≡ 1.

3. For p = n ≥ 4, it holds

0 ≤ KSt
e (X,Y ) ≤ 1

4
.

4. For p = n = 3, it holds

KSt
e (X,Y ) ≡ 1

8
.

5. For (n, p) = (3, 2) the sectional curvature is bounded by

−1

2
≤ KSt

e (X,Y ) ≤ 1

2
.

The bounds are sharp. The lower bound is sharp and is attained for the
matrices from (28), but reduced to their first row. The upper bound is attained,
e.g., for

X =

 0 0
0 0
−1 0

 , Y =

 0 − 1√
2

1√
2

0

0 0

 .

6. For n ≥ 4 and (n, p) = (n, n− 1) the sectional curvature is bounded by

−1

2
≤ KSt

e (X,Y ) ≤ 2

3
.

The lower bound is sharp and is attained for the matrices from (28), but
reduced to their first row.

Conjecture 1. For n ≥ 4 and (n, p) = (n, n − 1), sharp bounds on the sectional
curvature of the Stiefel manifold under the Euclidean metric are

−1

2
≤ KSt

e (X,Y ) ≤ 1

2
.

Proof. (of Theorem 10) The global bounds have already been established by con-
siderations that are independent of the dimensions. However, the bounds are not
sharp in all dimensions.
On 1.: In the cases, p ≥ 2, n ≥ p+ 2, both extremal pairs from (30) and (28) fit into
the tangent space and thus provide examples in which the global lower and upper
bounds are reached.
On 2.: For p = 1 and n ≥ 3, the A-block in a tangent vector is a skew-symmetric
(1× 1)–matrix, i.e., A = 0. Moreover, the B-blocks are ((n− 1)× 1)–column vectors.
Hence, ∥BT

1 B2 −BT
2 B1∥F = 0. The curvature formula reduces to

KSt
e (X,Y ) =

1

2
∥B1B

T
2 −B2B

T
1 ∥2F .

Because X,Y form an ONB, we have in this case BT
i Bi = 1 and BT

1 B2 = 0. As a
consequence, 1

2∥B1B
T
2 −B2B

T
1 ∥2F = 1

2 (2∥B1∥22∥B2∥22 − 2⟨B1, B2⟩22) = 1.
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On 3.: For p = n ≥ 4, the B–blocks of the spanning tangent vectors vanish. The
curvature formula becomes

KSt
e (X,Y ) =

1

4
∥[A1, A2]∥2F .

Now, the upper bound of 1
4 is from (20), while the lower bound of 0 is obvious.

The upper bound is attained, e.g., for the (4 × 4) skew-symmetric matrices A1, A2

listed at the beginning of Subsection 4.3. For a full discussion of the sharpness of the
bound, see [12]. The lower bound is attained for any orthogonal, commuting pair of
skew-symmetric matrices, e.g.,

A1 =
1√
2


0 1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0

 , A2 =
1√
2


0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0

 .

Of course, the curvature is the same for all matrices of higher dimensions that feature
the above examples as sub-blocks and are otherwise filled up with zeros.
On 4.: This is in analogy to item 4. of Theorem 8. The argument is the same as
outlined in Appendix B.
On 5.: For (n, p) = (3, 2), the matrix blocks A1, A2 ∈ skew(2) and B1, B2 ∈ R1×2 can
be written as

A1 = α

(
0 −1
1 0

)
, A2 = a

(
0 −1
1 0

)
, B1 =

(
β1 β2

)
, B2 =

(
b1 b2

)
,

for α, β1, β2, a, b1, b2 ∈ R. The curvature formula reduces to

KSt
e (X,Y ) = ∥B1A2 −B2A1∥2F − 1

4
∥BT

1 B2 −BT
2 B1∥2F

and the orthogonality constraints

1 = ∥Ai∥2F + ∥Bi∥2F , i = 1, 2, 0 = tr(AT
1 A2) + tr(BT

1 B2)

translate to

α2 =
1

2
− 1

2
(β2

1 + β2
2), a2 =

1

2
− 1

2
(b21 + b22), β1b1 + β2b2 = −2αa.

By squaring both sides of the equation β1b1 + β2b2 = −2αa and exploiting the equa-
tions for α2 and a2, we obtain

(β2
1 + β2

2) + (b21 + b22)− 1 = (β1b2 − β2b1)
2 ≥ 0

and therefore (β2
1 + β2

2) + (b21 + b22) ≥ 1. By exploiting the equations resulting from
the orthogonality constraints once again, the bound on the curvature is obtained:

KSt
e (X,Y ) =

3

2
−
(
(β2

1 + β2
2) + (b21 + b22)

)
≤ 1

2
.

On the other hand, − 1
2 ≤ KSt

e (X,Y ) applies because (β2
1 + β2

2) + (b21 + b22) ≤ 2.
For an alternative, but more involved argument, see [22, Prop. 6.1], which gives tight
bounds in the case p = 2 for a family of metrics including the Euclidean and the
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canonical one.
On 6.: For p = n − 1, the matrix blocks B1, B2 ∈ R(n−(n−1))×(n−1) are row vectors
in R1×(n−1). The global lower curvature bound of Ke ≥ − 1

2 continues to hold and
the sharpness of the bound is confirmed by the example of the tangent space section
associated with the matrix blocks from (28), which fit into this setting dimension-
wise, when reduced to their first row and possible filled up with zeros. By taking
∥B1B

T
2 −B2B

T
1 ∥2F = 0 into account, the curvature formula reads

KSt
e (X,Y ) = ∥B1A2 −B2A1∥2F − 1

2
∥BT

1 B2 −BT
2 B1∥2F

+
1

4
∥[A1, A2]− (BT

2 B1 −BT
1 B2)∥2F .

The upper bound of Ke ≤ 2
3 can be established in the same manner as before. We

omit the details, on the one hand because this is straightforward, on the other hand,
because we do not believe that this bound is sharp anyways.

3.4. Impact on the injectivity radius of the Stiefel manifold. On a Rie-
mannian manifold M, the injectivity radius is the largest possible radius within which
geodesics are unique and lengths-minimizing, regardless of where you start from. In
loose words, as long as you stay within the injectivity radius when travelling along
a geodesic, you are guaranteed not to travel unnecessary distances. This concept
is formalized with introducing the Riemannian exponential map at a point p ∈ M,
which sends a tangent vector v ∈ TpM, to the endpoint of the geodesic on the unit
interval that starts from p with velocity v. For a precise definition of the notion of
the injectivity radius, we refer the reader to [8, Chap. 13].

A classical result from Riemannian geometry relates the injectivity radius with
the sectional curvature:

Theorem 11 (Klingenberg, stated as Lemma 6.4.7 in [25]). Let M be a compact
Riemannian manifold with sectional curvatures bounded by K(X,Y ) ≤ C, where C >
0. Then the injectivity radius inj(p) at any p ∈ M satisfies

inj(p) ≥ min

{
π√
C
,
1

2
lp

}
,

where lp is the length of a shortest closed geodesic starting from p. For the global
injectivity radius, it holds

inj(M) ≥ π√
C

or inj(M) =
1

2
l,

where l is the length of a shortest closed geodesic on M.

From Theorem 8 and Theorem 10, one obtains for p ≥ 2, n ≥ p+ 2.

1. inj(St(n, p)) ≥
√

4
5π (canonical metric).

2. inj(St(n, p)) = π unless there is a closed geodesic of length strictly smaller
than 2π (Euclidean metric).

Under the canonical metric, it is clear that closed geodesics have a length of at least
2π, see [27, Chapter 5] or the recent preprints [3], [29]. A closed geodesic on the unit
interval [0, 1] of length 2π on the Stiefel manifold St(4, 2) under the Euclidean metric
is

c(t) = expm

(
t

(
2A −BT

B 0

))(
expm(−tA)

0

)
, A = 0 ∈ skew(2), B =

(
2π 0
0 0

)
.
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The form of this geodesic follows the representation from [35, Prop. 1]. Note that

c(0) = c(1) =

(
I2
0

)
and that the length of c|[0,1] is l = 2π. Of course, this geodesic can

be embedded in higher dimensions of p ≥ 2, n ≥ p+ 2. Examples of closed geodesics
and their length with respect to the metrics of the family from [16] are given in [3,
Section 6]. We believe that the above example is a shortest closed geodesic under the
Euclidean metric. A more detailed discussion is beyond the scope of this paper, but
will be provided in [29]. Closely related investigations can be found in [3].

4. Numerical Experiments. In this section, we illustrate the behavior of the
sectional curvature on SO(n), Gr(n, p) and St(n, p) at special parametric sections,
where the rank of the spanning matrices increase with the parameter. We also in-
vestigate the behavior of the generic sectional curvature on these manifolds when
increasing the dimension p. For St(n, p) both the canonical and the Euclidean metric
feature in the experiments.

4.1. Experiment 1. In the first experiment, we start with the rank-one matrices

B1 =

0 1
0 0

0

0 0

 and B2 =

1 0
0 0

0

0 0

 ∈ R10×10.

Then we fill the remaining diagonal entries of B2 and the super- and sub-diagonal
entries of B1 one after the other in the following way

B1(u) =


0 1

−u2 0
. . .

0 u9

−u10 0

 and B2(u) =


1

u2

. . .

u10

 ∈ R10×10.

In the beginning, u2 = u3 = . . . = u10 = 0. Then, we first increase u2 ∈ [0, 1] linearly
until the upper bound 1 is reached. Then, we keep u2 = 1 and let u3 run through
[0, 1] and so on. For each matrix pair B1(u), B2(u) under this procedure, we compute
the tangent vectors

(31) X(u) =

(
0 −B1(u)

T

B1(u) 0

)
, Y (u) =

(
0 −B2(u)

T

B2(u) 0

)
and the sectional curvatures associated with the tangent planes spanned byX(u), Y (u)
for the special orthogonal group, the Stiefel manifold and the Grassmann manifold,

KSO(X(u), Y (u)), KSt
c (X(u), Y (u)), KSt

e (X(u), Y (u)), KGr(X(u), Y (u)).

It is understood that the matrices X(u), Y (u) are normalized according to the metric
of the respective manifold. To catch both the maximal and the minimal case of
the Stiefel curvature under the Euclidean metric, the experiment is performed twice.
Once with B1(u) as above and once with BT

1 (u). The results are displayed in Figure 1.
The figure confirms that for the matrices under consideration, the global curvature
maximum on all manifolds under consideration is reached for tangent planes spanned
by X,Y that feature zero skew-symmetric A-blocks. For SO(n), Gr(n, p) and St(n, p)
under the canonical metric, the maximum sectional curvature occurs for the rank-two
subblocks B1, B2 from (24). Under the Euclidean metric the curvature maximum and
minimum occur for the rank-one matrices B1, B2 from (30) and (28), respectively.
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Fig. 1. (Corresponding to Subsection 4.1.) Sectional curvature on SO(20), St(20, 10),
Gr(20, 10) for the tangent sections defined by (31). For SO(20), Gr(20, 10), and St(20, 10) under
the canonical metric, the respective global sectional curvature maximum is attained for the matrices
with subblocks B1, B2 as stated in Theorem 8. For St(n, p) under the Euclidean metric, the extreme
curvature cases occur for the rank-one matrices from (30) (max) and (28) (min).

4.2. Experiment 2: Curvature associated with pseudo-random sec-
tions. Next, we run an experiment with random-matrices of increasing dimension.
To this end, we create random skew-symmetric matrices

X(A1, B1, C1) =

(
A1 −BT

1

B1 C1

)
, Y (A2, B2, C2) =

(
A2 −BT

2

B2 C2

)
∈ skew(2p).

We start from p = 2. For each p = 2, . . . , 1000, a number of 100 random pairs
X,Y ∈ skew(2p) are computed and the sectional curvature of

• the tangent plane spanned by X,Y ∈ TISO(2p),
• the tangent plane spanned by XmSt = X(A1, B1,0), YmSt = Y (A2, B2,0) ∈

T[I]St(2p, p) (canonical metric),
• the tangent plane spanned by Xeucl = (AT

1 , B
T
1 )

T , Yeucl = (AT
2 , B

T
2 )

T ∈
T(I,0)T St(2p, p) (Euclidean metric),

• and the tangent plane spanned byXmGr = X(0, B1,0), YmGr = Y (0, B2,0),∈
T[I]Gr(2p, p),

respectively, is computed. The result is then averaged over the number of 100 random
runs. Figure 2 displays the sectional curvature versus the block dimension p on a
logarithmic scale. It can be seen that the curvature of these ”random” planes is
largest for p = 2 and drops considerably, when p is increased. To be precise, for the
canonical Stiefel data, the averaged random curvature at p = 2 is K = 0.33, while it
is K = 8.8 · 10−3 for p = 100 and K = 8.9 · 10−4 for p = 1000.
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Fig. 2. (Corresponding to Subsection 4.2.) Averaged sectional curvature for random tangent
sections X = X(A1, B1, C1), Y = Y (A2, B2, C2) ∈ skew(2p). The dimension of the sub-blocks is
p. For Grassmann and Stiefel (canonical metric), X,Y are projected onto the respective horizontal

space. For Stiefel under the Euclidean metric, X =

(
A1

B1

)
, Y =

(
A2

B2

)
are formed. In all cases, the

tangent vectors are orthonormalized according to the respective metric.

4.3. Experiment 3: Impact of the blocks A and B. Consider the special
matrices

A1 =


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

 , A2 =


0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0



B1(u, v) =


0 1 0 0
−1 0 0 0
0 0 0 u
0 0 −v 0

 , B2(u, v) =


1 0 0 0
0 1 0 0
0 0 u 0
0 0 0 v


The matrix pair A1, A2 maximizes the commutator norm ∥[A1, A2]∥F . For (u, v) =
(0, 0), the matrix pair B1, B2 makes the Wu-Chen inequality sharp. Let

KSt
c (A1, B1, A2, B2) := KSt

c (

(
A1 −BT

1

B1 0

)
,

(
A2 −BT

2

B2 0

)
),

KSt
e (A1, B1, A2, B2) := KSt

e (

(
A1

B1

)
,

(
A2

B2

)
).

Figure 3 displays the function

[0, 1]2 → R, (u, v) 7→ KSt
m (0, B1(u, v),0, B2(u, v)), m ∈ {c, e}

under the canonical metric and the Euclidean metric. In both cases, the curvature
decreases, when the lower subblocksB1, B2 get filled up. Figure 4 displays the function

[0, 1] → R, u 7→ KSt
m (uA1, (1− u)B1(0, 0), uA2, (1− u)B2(0, 0)), m ∈ {c, e}
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under the canonical metric and the Euclidean metric. The figure illustrates that the
sectional curvature decreases in both cases, when the weight in the normalized tangent
vectors is shifted from the B-blocks to the A-blocks.

Fig. 3. Sectional curvature on Stiefel for the tangent sections spanned by the matrix blocks of
Subsection 4.3. Left: canonical metric, Right: Euclidean metric.
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Sectional curvature for increasing A-block

Stiefel (can.)

Stiefel (Euclid)

Fig. 4. Sectional curvature on Stiefel when the weight in the spanning normalized tangent
matrices is shifted from the B-blocks to the A-blocks.

5. Summary. This paper resumes the investigation of the sectional curvature
on the Stiefel and Grassmann manifolds. In the Grassmann case, tight bounds have
been known since the work of Wong [32] from 1968. We pay special attention to the
maximizers of the curvature bounds and provide refined matrix trace inequalities for
this purpose.
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An extensive study of the sectional curvature on the Stiefel manifold equipped
with a parametric family of Riemannian metrics has been conducted in [22]. However,
since the formulae apply to all members of the family, it can be tedious to extract
specific formulae for a particular metric. Moreover, tight bounds were only obtained
for Stiefel manifolds St(n, p) with p = 2.

Under the canonical metric, which is a member of the parametric family, we
confirm prior conjectures regarding the sectional curvature. Specifically, we establish
that the curvature on the Stiefel manifold equipped with this metric globally does not
exceed 5/4. With this addition, we now have a complete account of the curvature
bounds in all admissible dimensions.

Under the Euclidean metric, we prove sharp global bounds on the sectional cur-
vature in all admissible dimensions with one single exception: For the special case
p = n− 1 and n ≥ 4, we could only establish a sharp lower bound of Ke ≥ −1/2 and
an upper bound of Ke ≤ 2/3. We believe that the true upper bound is at Ke ≤ 1/2.
We share this believe with the author of [22].

We also show that the sections that maximise the Grassmann curvature are ex-
actly those for which the Stiefel curvature is maximised under the canonical metric,
and that these tangent space sections are necessarily spanned by special rank-two
matrices. Under the Euclidean metric, the extreme cases occur for tangent space sec-
tion spanned by special rank-one matrices. This supports the observation that ’high
curvature means low-rank’, which is illustrated by numerical experiments that reveal
a decrease in curvature with increasing the rank.

Acknowledgements. The authors would like to thank Prof. P.-A. Absil, Uni-
versity of Louvain, for stimulating conversations on the subject.

Appendix A. The global maximum of the curvature bound of (23). We
formally verify that the function in (23) that bounds the sectional curvature of the
Stiefel manifold

(32) f̃ : (α1, α2) 7→
5

4
+

5

16
α2
1α

2
2 −

1

2
(α2

1 + α2
2) +

1 +
√
2

4
α1α2

√
1− 1

2
α2
1

√
1− 1

2
α2
2

has its global maximum at (0, 0) for (α1, α2) ∈
[
0,
√
2
]2
.

Consider the transformation α :
[
0, π

2

]
→
[
0,
√
2
]
, r 7→ α(r) =

√
2 sin (r) so that√

1− 1
2α

2 = cos (r) and

α

√
1− 1

2
α2 =

√
2 sin (r) cos (r) =

√
2

2
sin (2r).

With parameterizing α1 = α1(r), α2 = α2(s) in this form, the task is equivalent to
showing that the global maximum of f(r, s) := f̃(α1(r), α2(s)),

f(r, s) =
5

4
+

5

4
sin(r)2 sin(s)2 − sin(r)2 − sin(s)2 +

1 +
√
2

8
sin(2r) sin(2s),

in the admissible range
[
0, π

2

]2
is at (0, 0). The gradient of f is

∇f(r, s) =

[
fr(r, s)
fs(r, s)

]
=

[
1
2 sin(r) cos(r)

(
5 sin(s)2 − 4

)
+ 1+

√
2

4 cos(2r) sin(2s)
1
2 sin(s) cos(s)

(
5 sin(r)2 − 4

)
+ 1+

√
2

4 cos(2s) sin(2r)

]
.
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The condition fr(r, s) = 0 gives

(33)
1

2
sin(r) cos(r)

(
4− 5 sin(s)2

)
=

1 +
√
2

4
cos(2r) sin(2s).

We assume r, s ̸= π
4 and sin(s)2, sin(r)2 ̸= 4

5 and tackle those special cases afterwards.
With excluding those cases we equivalently obtain

(34)
1

2

sin(r) cos(r)

cos(2r)
=

1 +
√
2

4

sin(2s)

4− 5 sin(s)2
.

The left-hand side is greater than zero for r < π
4 and smaller than zero for r > π

4 and
in each case monotonically increasing. The same holds for the right-hand side with
sin(s)2 < 4

5 and sin(s)2 > 4
5 . We only consider the case where both sides are greater

than zero. The other cases can be tackled analogously. Due to the monotonicity of
both sides, it immediately follows that there is at most one pair (r, s) that fulfills the
equation. Suppose (r, s) is a pair satisfying the equation. We will show that in this
case r has to be equal to s. Assume r ̸= s. Let s < r < π

4 and investigate fs(r, s) = 0
which is equivalent to

(35)
1

2

sin(s) cos(s)

cos(2s)
=

1 +
√
2

4

sin(2r)

4− 5 sin(r)2
.

With s < π
4 we are also in the case where both sides have to be positive in order for

the equation to hold. The equation (35) for fs is the same as the equation (34) for fr,
but with the roles for r and s reversed. Thus, for the pair (r, s) fulfilling the equation
(35), r < s applies. This contradicts the above assumption. The case r < s can be
tackled in the same way. In summary, for the equation to hold, r must be equal to
s so that candidates for extrema lie necessarily on the diagonal r = s. Along this
diagonal, the function (32) bounding the sectional curvature becomes a parabola in
α2

f̃ : α 7→ 5

4
+

3− 2
√
2

16
α4 − 3−

√
2

4
α2.

It is easy to show that f̃ is monotonically strictly decreasing for α ∈
[
0,
√
2
]
and

therefore the maximum is at α = 0.
Now, we tackle the remaining cases r, s = π

4 and sin(s)2, sin(r)2 = 4
5 . At r = π

4 , the
condition fr(r, s) = 0 yields sin(s)2 = 4

5 . But in this case fs(r, s) ̸= 0. The other
combinations can be treated analogously (and are also not describing any extreme
points). This completes the analysis and verifies that f̃ has its unique global maximum

in the admissible range
[
0,
√
2
]2

at (0, 0). Figure 5 displays the function f̃ .

Appendix B. The sectional curvature of special St(n, p). For the sake of
completeness, we give a direct proof of item 4 of Theorem 8:

On St(3, 2) and St(3, 3), the sectional curvature is KSt(X,Y ) ≡ 1
4 .

The result is already contained in [22, Prop. 6.1]. It follows also immediately from
Remark 1 combined with (21).

Proof. On St(3, 2), tangent vectors are skew-symmetric (3× 3)-matrices,

X =

(
A −BT

B 0

)
=

 0 −a −b1
a 0 −b2
b1 b2 0

 .
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Fig. 5. Plot of the function f̃ from (32) that bounds the Stiefel sectional curvature in the range
[−

√
2,

√
2]2.

For X ∈ skew(3) as above, let x := vec3(X) = (a, b1, b2) ∈ R3 be the vector that
features the independent entries of X as components. Let X,Y ∈ skew(3) and x =
vec3(X), y = vec3(Y ). The following facts are well-known and may be verified by
elementary means:

• vec3([X,Y ]) = x× y.
• ⟨X,Y ⟩F = 2⟨x, y⟩2. In particular, ∥X∥2F = 2∥x∥22 and (X⊥FY ) ⇔ (x⊥F y).

Let X,Y ∈ skew(3) be an ONB w.r.t. the Frobenius inner product. In this case,
∥x∥2 = 1√

2
= ∥y∥2 for the associated vector representations. The curvature formula

of Remark 1 applies and gives

K(X,Y ) =
1

2
∥[X,Y ]∥2F =

1

2
2∥x× y∥22 = ∥x∥22∥y∥22

∥∥∥∥ x

∥x∥2
× y

∥y∥2

∥∥∥∥2
2

=
1

4
.

The same reasoning applies to St(3, 3).

Note that with the tools at hand, (21) is a one-liner,

∥[X,Y ]∥2F = 2∥x× y∥22 ≤ 2∥x∥22∥y∥22 = 2
1

2
∥X∥2F

1

2
∥Y ∥2F =

1

2
∥X∥2F ∥Y ∥2F .

Equality holds if and only if X⊥FY .

Appendix C. Lie group essentials. This section recaps the basics of Lie
groups and quotients of Lie groups. It is mainly collected from the textbooks [10],
[15] and [23].

C.1. Matrix Lie groups. A Lie group is a differentiable manifold G which also
has a group structure, such that the group operations ‘multiplication’ and ‘inversion’,

G × G ∋ (g, g̃) 7→ g · g̃ ∈ G and G ∋ g 7→ g−1 ∈ G

are both smooth. By definition, a matrix Lie group G is a subgroup of GL(n,C) that
is closed relative to GL(n,C). It is then also a Lie group in the above sense.

Let G be a real matrix Lie group. When endowed with the bracket operator or
matrix commutator [X,Y ] = XY − Y X, the tangent space TIG at the identity is
the Lie algebra associated with the Lie group G and is denoted by g = TIG. The
linear, skew-symmetric bracket operation is called Lie bracket and satisfies the Jacobi
identity

[X, [Y,Z]] + [Z, [X,Y ]] + [Y, [Z,X]] = 0.

For any A ∈ G, the function “left-multiplication with A” is a diffeomorphism LA :
G → G, LA(B) = AB; its differential at a point B ∈ G is the isomporphism

d(LA)B : TBG → TLA(B)G, d(LA)B(X) = AX.
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(Analogous for “right-multiplication with A”, RA(B) = BA, d(RA)B(X) = XA.)
The tangent space at an arbitrary location A ∈ G is given by the translates (by
left-multiplication) of the tangent space at the identity:

(36) TAG = TLA(I)G = Ag =
{
∆ = AX ∈ Rn×n| X ∈ g

}
,

[13, §5.6, p. 160]. The Lie algebra g = TIG of G can equivalently be characterized as
the set of all matrices ∆ such that expm(t∆) ∈ G for all t ∈ R, see [15, Def. 3.18 &
Cor. 3.46] for the details. The exponential map for a matrix Lie group is the matrix
exponential restricted to the corresponding Lie algebra [15, §3.7],

expm |g : g → G.

A Riemannian metric ⟨·, ·⟩Gg on G is called left-invariant if

⟨d(LA)BX, d(LA)BY ⟩GAB(= ⟨AX,AY ⟩GAB) = ⟨X,Y ⟩GB

for all X,Y ∈ TBG. It is called right-invariant, if

⟨d(RA)BX, d(RA)BY ⟩GBA(= ⟨XA,Y A⟩GBA) = ⟨X,Y ⟩GB

for all X,Y ∈ TBG. If a metric is left- and right-invariant, it is called bi-invariant.

C.2. Quotients of Lie groups by closed subgroups. Let G be a Lie group
and H ≤ G be a Lie subgroup. For A ∈ G, a subset of G of the form [A] := AH =
{A · Q| Q ∈ H} is called a left coset of H. The left coset [I] is the subgroup itself.
The left cosets form a partition of G, and the quotient space G/H determined by this
partition is called the left coset space of G modulo H, see [18, §21, p. 551]. The next
is the central theorem for quotients of Lie groups.

Theorem 12. (cf. [18, Thm 21.17, p. 551]) Let G be a Lie group and let H
be a closed subgroup of G. The left coset space G/H is a manifold of dimension
dimG − dimH with a unique differentiable structure such that the quotient map π :
G → G/H, A 7→ [A] is a smooth surjective submersion. The left action of G on G/H
given by A(BH) = (AB)H turns G/H into a homogeneous G-space.

Each preimage Gπ(A) := π−1([A]) ⊂ G, called fiber, is a closed, embedded sub-

manifold. Under the Riemannian metric ⟨·, ·⟩GA, at each point A ∈ G, the tangent
space TAG decomposes into an orthogonal direct sum TAG = TAGπ(A) ⊕ (TAGπ(A))

⊥

with respect to the metric. The tangent space of the fiber TAGπ(A) =: VA is the
kernel of the differential dπA : TAG → Tπ(A)G/H and is called the vertical space. Its

orthogonal complement HA := V ⊥
A is the horizontal space. The key issue is that the

tangent space of the quotient at [A] = π(A) may be identified with the horizontal
space at A.

HA
∼= T[A]G/H.

• For every tangent vector Y ∈ T[A](G/H) there is Z̄ = X̄+Ȳ ∈ VA⊕HA = TAG
such that dπA(Z̄) = Y . The horizontal component Ȳ ∈ HA is unique and is
called the horizontal lift of Y ∈ Tπ(A)(G/H). By going to the horizontal lifts,
a Riemannian metric on the quotient can be defined by

(37) ⟨Y1, Y2⟩G/H[A] := ⟨Ȳ1, Ȳ2⟩GA

for Y1, Y2 ∈ T[A])(G/H).
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• W.r.t. this (and only this) metric, by construction, dπA preserves inner prod-
ucts: dπA is a linear isometry between HA and T[A](G/H).

• Horizontal geodesics in G are mapped to geodesics in G/H under π. Horizontal
geodesics are geodesics with velocity field staying in the horizontal space for
all time t.

At the special point A = I, the vertical space is the Lie algebra ofH, VI = ker dπI = h.
This is becauseH = π−1(I). For any curve C(t) ⊂ π−1(I) = H starting from C(0) = I
with image in the fiber, it holds Ċ(0) ∈ TIH = h. On the other hand, π is constant
along the fiber so that 0 = d

dt

∣∣
t=0

π(C(t)) = dπI [Ċ(0)]. Hence, any vector tangent
to H at I is in the kernel of dπI . At the identity I, the splitting into vertical and
horizontal space is

TIG = h⊕m = VI ⊕HI = TIH⊕ (TIH)⊥.

Hence, the tangent space of the quotient at π(I) is m ∼= Tπ(I)G/H. This choice of
symbols is common in the literature, but the reader should be aware that h is the
vertical space, with the choice of letter referring to the subgroup name H and not to
”h for horizontal”. The choice of the symbol m is motivated by the fact that if the
quotient space is called M := G/H, then m is the tangent space at π(I). It is not the
associated Lie algebra though, because in general G/H is not a Lie group.
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tations for manifold-valued data. SIAM Journal on Multiscale Modeling and Simulation,
4(4):1201–1232, 2005.

[27] Q. Rentmeesters. Algorithms for data fitting on some common homogeneous spaces. PhD
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