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ABSTRACT

Context. Extreme TeV BL Lacs are a class of blazars with unique spectral and temporal features that are not easily reproducible
using standard one-zone models based on single shock acceleration. To account for their peculiar properties, we elaborated a two-step
acceleration model in which a recollimation shock and the subsequent downstream turbulence energize non-thermal electrons.
Aims. We applied the model to a sample of extreme TeV BL Lacs with well-characterized spectral energy distributions. Since we
used several sources, we automatized the exploration of the parameter space. This allowed us to derive the parameter distributions
and study the correlations among them.
Methods. We numerically solved a system of two coupled nonlinear differential equations to obtain the non-thermal particles and tur-
bulence spectra. We calculated the spectral energy distribution via the synchrotron self-Compton emission model. The automatization
of the parameter space exploration is possible through a Markov chain Monte Carlo (MCMC) ensemble sampler, in our case emcee.
Results. We derived well-defined posterior distributions for the parameters, showing that the model is well constrained by avail-
able data and demonstrating the suitability of our method. The cross-correlations among some of the physical parameters are not
trivial. Therefore, we conclude that MCMC sampling is a key instrument for characterizing the complexity of our multiparameter
phenomenological model.

Key words. radiation mechanisms: non-thermal — shock waves —- instabilities

1. Introduction

Active galactic nuclei (AGNs) are the most powerful persistent
sources in the Universe. The output of these objects is powered
by the gravitational energy released by gas accreting onto a su-
permassive black hole residing in a galactic nucleus. Radio-loud
AGNs are characterized by the presence of a relativistic jet pro-
duced in the supermassive black hole vicinity that can propa-
gate up to hundreds of kiloparsecs in the most powerful sources.
Radio-loud AGNs are further divided into several classes based
on their observational features, which are strongly dependent
on the observational angle (Urry & Padovani 1995). Blazars are
radio-loud AGNs whose jet is pointing toward the observer, and
therefore the non-thermal emission of the jet dominates the emis-
sion thanks to relativistic Doppler beaming (Romero et al. 2017;
Blandford et al. 2019).

The spectral energy distribution (SED) of blazars presents
two broad humps, the first due to synchrotron emission by non-
thermal electrons. The origin of the second hump, peaking in
the gamma-ray band, is still disputed: it could be generated by
the interaction of non-thermal electrons with the synchrotron
photons or with photons filling the external environment (i.e.,
synchrotron self-Compton and external Compton models; e.g.,
Ghisellini et al. 1998) or by hadronic processes, such as proton
synchrotron emission or photo-pion production (e.g., Böttcher
et al. 2013).

Blazars can be classified using the frequencies of the two
peaks (e.g., Ghisellini et al. 2017): the first ranges from the in-
frared to the X-ray bands and the second from MeV to TeV
energies. The most efficient accelerators are the so-called ex-
tremely high-frequency-peaked BL Lacs (EHBLs; Costamante

et al. 2001), which, in turn, can be divided into two subclasses,
extreme synchrotron BL Lacs (which present the first peak above
1 keV) and extreme TeV BL Lacs. In addition, the latter are char-
acterized by the second peak surpassing 1 TeV and a hard GeV
spectrum (Γ < 2 with Fν/ν ∝ ν−Γ). Furthermore, extreme TeV
BL Lacs, at odds with the general behavior of blazars, present a
low temporal variability at high energies (Biteau et al. 2020). The
SEDs of these sources are difficult to explain through a leptonic
single-zone model with a single shock acceleration: the spectral
features imply a large minimum Lorentz factor, a small magnetic
field far from equipartition, and a power law index incompati-
ble with the theory of diffusive shock acceleration (p < 2 with
dN/dE ∝ E−p). Several solutions have been proposed, such as a
Maxwellian-like electron distribution (Lefa et al. 2011), a beam
of high-energy hadrons (Essey & Kusenko 2010), internal ab-
sorption (Aharonian et al. 2008), emission from a large-scale
jet (Böttcher et al. 2008), lepto-hadronic models (Cerruti et al.
2015), and multiple shock acceleration (Zech & Lemoine 2021).

To explain the phenomenology of extreme TeV BL Lacs, we
elaborated a double-step acceleration model based on a scenario
involving a jet recollimated by the pressure of external material.
If the magnetization of the jet is low, which is likely for extreme
TeV BL Lacs, the downstream of the shock formed as a con-
sequence of the recollimation becomes unstable and turbulent
(Gourgouliatos & Komissarov 2018; Costa et al. 2023). In this
scheme, non-thermal particles are first accelerated by the shock
and then further energized in the downstream by turbulence
through resonant interaction. Comparing turbulence cascading
and damping timescales, it is evident that the damping cannot
be neglected (Tavecchio et al. 2022). In Sciaccaluga & Tavec-
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chio (2022) we presented a time-dependent one-zone model that
includes damping by the accelerating electrons. We calculated
the nonthermal electron and turbulence spectra and then derived
the SED using the synchrotron self-Compton (SSC) model. We
compared our model with data of the prototypical extreme TeV
BL Lacs 1ES 0229+200 and adjusted, via visual inspection, our
model on the flux points.

In this paper we apply the model sketched above but includ-
ing other EHBLs with well-sampled SEDs. Moreover, to autom-
atize and parallelize the comparison between the model and data,
we developed a procedure based on a Markov chain Monte Carlo
(MCMC) sampler. This technique allowed us to explore the pa-
rameter space of the model.

The paper is organized as follows: in Sect. 2 we describe
the code updates, in Sect. 3 we explain how we use MCMC
sampling in our framework, and Sect. 4 is dedicated to the dis-
cussion. Throughout the paper, the following cosmological pa-
rameters are assumed: H0 = 70 km s−1 Mpc−1, ΩM = 0.3, and
ΩΛ = 0.7.

2. The model

Supposing a proton-electron plasma, the non-thermal electrons
are the solely responsible for the emission. As described above,
we assumed a model in which particles are accelerated at a
shock and then energized through stochastic acceleration in the
downstream, where they also emit through synchrotron and SSC
mechanism. In our model, the non-thermal population of elec-
trons accelerated at the shock is treated as an injection term in a
kinetic equation for the stochastic acceleration.

The time evolution of non-thermal electrons and turbulence
is described by a system of two coupled nonlinear Fokker-Planck
equations (Eilek 1979; Miller & Roberts 1995; Kakuwa 2016):

∂ f
∂t

=
1
p2

∂

∂p

[
p2Dp

∂ f
∂p

+ p2
(

∂p
∂t

)
rad

f
]
+

f
tesc

+ I f

∂Z
∂t

=
1
k2

∂

∂k

(
k2Dk

∂Z
∂k

)
+

Z
tdam

+
IW
k2

. (1)

Here f (p, t) is the momentum distribution of non-thermal elec-
trons, and Z(k, t) =W/k2, where W (k, t) is the wavenumber en-
ergy spectrum of turbulence, that is, the energy density (includ-
ing both the kinetic and the magnetic component) of waves with
wavenumber between k and k+dk. Eq. (1) includes all the phys-
ical processes related to non-thermal electrons and turbulence:
particle resonant acceleration, cooling, escape, and injection to-
gether with turbulence cascading, damping, and injection. The
two coupled equations are solved numerically using standard
schemes (details in Appendix C). We used 20 points per decade
for the momentum and wavenumber grid, 50 time steps, and 10
points per decade for the frequency grid.

The momentum diffusion coefficient of the electrons is ob-
tained from the quasi-linear theory of particle-wave interaction,
supposing only parallel and antiparallel propagating magneto-
hydrodynamics waves for a further simplification (e.g., Kakuwa
2016):

Dp =
p2 v2

a

UB r2
g c

∫
kres

WB

k
dk, (2)

where va is the Alfvén velocity, UB = B2/8π the total (ordered
plus turbulent) energy density of the magnetic field, me the elec-
tron mass, c the light speed, rg = γmec/eB the Larmor radius,

WB ≈ W/2 the magnetic field component of the turbulence en-
ergy spectrum, and kres = 2π/rg is the resonant wavenumber.

In addition to synchrotron cooling, this time we included
Compton cooling for electrons, which increased the execution
time but, after some optimizations, we were able to reach speeds
(approximately a few seconds) comparable with other leptonic
codes (e.g., Stathopoulos et al. 2023). For the synchrotron and
Compton cooling, we used standard formulae.

In our scenario, the escape depends on the turbulence. When
the turbulence is strong, the electrons diffuse in the acceleration
region, while if damping is important, the escape time is sim-
ply equal to the geometrical escape time. Therefore, the energy-
dependent escape timescale can then be written as

tesc =
R
c
+

R2

κ∥
, (3)

where κ∥ = crg/9ζ(kres) is the spatial diffusion coefficient along
the total magnetic field, while ζ(k) = kWB/UB is the relative am-
plitude of the turbulent magnetic field energy density for a given
k.

The injection term describes the particles accelerated at
the recollimation shock and advected downstream, supposing a
strong shock:

In = In,0 γ
−2 e−

γ

γcut with 103 < γ < 107, (4)

where In is the injected electron number density per unit of
time, which can be converted to the injection in the momen-
tum space In = 4πp2mecI f . The range of injection is determined
from recent simulations of diffusive shock acceleration (Zech &
Lemoine 2021). The injection is normalized to the injected non-
thermal electron power, Pn:

Pn =V
∫

γme c2 In dγ, (5)

where V = 10πR3 is the emission region volume, modeled as
a cylinder with radius R and length 10R. This estimate of the
length for the emission volume, related to the region where the
instability develops and triggers turbulence in the plasma, is
roughly based on the simulations shown in Matsumoto et al.
(2021). We expect that within such a distance, both the mag-
netic field decay and the adiabatic losses effectively quench the
emission (Tavecchio et al. 2022).

Regarding the turbulence equation, we used the Kolmogorov
phenomenology, for which the effective diffusion coefficient is

Dk =
1
2

k3 va

√
kW
UB

. (6)

Without strong damping, with this diffusion coefficient and con-
stant injection, W (k) would reach a standard Kolmogorov spec-
trum, W (k) ∝ k−5/3 (Zhou & Matthaeus 1990).

The damping time is obtained by imposing energy conserva-
tion, that is, the energy used to accelerate the electrons is sub-
tracted from the turbulence:

tdam =

∣∣∣∣4πe2v2
a

mec3k

∫
γ>γres

γ
2 ∂

∂γ

(
ne

γ2

)
dγ

∣∣∣∣−1

. (7)

Here ne = 4πmecp2 f is the electron energy spectrum and γres is
the resonant Lorentz factor, defined by k = 2π/rg(γres).
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Table 1. Recap parameter table, indicating their symbols, units, ranges,
and prior distributions

Parameter Symbol Units Range Type of prior
Emitting region radius R cm [1014,1020] Log-flat
Alfvén velocity va cm/s [108,1010] Log-flat
Total magnetic field B G [10−5,100] Log-flat
Electrons injected power Pn erg/s [1035,1044] Log-flat
Turbulence injected power Pw erg/s [1038,1042] Log-flat

Finally, the turbulence is injected at a length L equal to one-
tenth of the emitting region radius, from which it cascades to
shorter scales:

IW = IW,0 δ(k− k0). (8)

Here δ is the Dirac function and k0 = 2π/L is the injection
wavenumber. The injection is normalized to the injected turbu-
lence power, Pw:

Pw =V
∫

IW dk. (9)

More information on the different terms can be found in Sciac-
caluga & Tavecchio (2022).

3. Markov chain Monte Carlo (MCMC)

In the previous exploratory paper (Sciaccaluga & Tavecchio
2022) the model was adjusted on data by eye, a standard proce-
dure in literature. However, this method presents several short-
comings, such as confirmation bias and repetition for each
source. Therefore, we decided to move to MCMC sampling. This
technique has several advantages: it automatizes and parallelizes
the exploration of the parameter space, it can calculate the dis-
tribution and the cross-correlation of the model parameters and
it permits the imposition of non-diagonal priors (i.e., conditions
that depend on multiple parameters).

To explore the parameter space, we used the Python li-
brary emcee as the MCMC ensemble sampler (Foreman-Mackey
et al. 2013). It implements several moves; we tested the de-
fault strech move (Goodman & Weare 2010) and the differential-
independence mixture ensemble move (Boehl 2022): with an
equal number of steps, the latter presents a lower autocorrela-
tion time, and we therefore decided to adopt it. We assumed a
Gaussian likelihood,

lnL =
1
2 ∑

i

[(νF)i,m − (νF)i]
2

σ2
i

, (10)

where (νF)i and σi are respectively the i-th flux point and its un-
certainty, while (νF)i,m is the model flux at the i-th frequency.
The model flux is calculated using standard synchrotron and SSC
emissivities, after integrating Eq. (1) until tmax = 10R/c (see Sci-
accaluga & Tavecchio 2022 for the details). In literature, it is a
standard procedure to add a term in the likelihood to account
for the scatter due to the non-simultaneity of flux points (Hogg
et al. 2010; Stathopoulos et al. 2023), but extreme TeV BL Lacs
are highly stable. Tests that included this nuisance parameter re-
sulted in extremely low values; therefore, we neglected it.

3.1. Fixing priors

Our model presents several parameters: the radius of the emis-
sion region, R, the Alfvén velocity, va, the total magnetic field,

B, the non-thermal electron and turbulence injection power in
the jet frame, respectively Pn and Pw, and the relativistic Doppler
factor, δ.

After some tests, we decided to fix the relativistic Doppler
factor to δ = 20. If left free, it tends to reach δ ∼ 100, a value
that we consider implausible for a blazar. On the other hand, the
relativistic Doppler factor cannot be too small, since it would
result in small boosting and in a large emission region radius,
again implausible for a blazar region (at sub-parsec scales). We
were finally left with five free parameters.

As shown in Table 1, we applied log-flat priors to all param-
eters over broad ranges, allowing the walkers to explore a large
part of the parameter space. Furthermore, we imposed two non-
diagonal priors. Since the interaction between turbulence and
non-thermal particles is described using quasi-linear theory, we
required the turbulent component to be small compared to the to-
tal field in the emission region. Moreover, we required the non-
thermal component to be a minor part of the post-shock plasma
(e.g., Sironi & Spitkovsky 2011). Specifically, we put constraints
on the ratio of the energy density of the magnetic turbulence and
of the total field, UB, and on the ratio of the number density of
the non-thermal electrons, Ne, and of the thermal plasma, Np,
calculated from the Alfvén velocity and the total magnetic field:

δB2

B2 =

∫
WB(k)dk

UB
< 0.1

Ne

Np
< 0.1.

(11)

No strong limits were imposed on the magnetization σ =
B2/8πmpNp, where mp is the proton mass. It was used as a con-
sistency check since we expect a low value, necessary for the
development of the instabilities in the downstream region.

4. Results

We applied the procedure described above to four extreme TeV
BL Lacs taken from Costamante et al. (2018): 1ES 0229+200,
1ES 0347-121, RGB J0710+591, and 1ES 1101-232. All these
EHBLs have a well-characterized SED with a synchrotron peak
well tracked by Swift and NuSTAR and a high-energy peak cov-
ered by Fermi and Cherenkov telescopes. From the sample of
Costamante et al. (2018), comprising a total of six sources, we
did not consider two EHBLs, namely 1ES 0414+009 and 1ES
1218+304. For the former object, the slope of the Fermi and the
TeV spectra are apparently in disagreement, making the SED un-
suitable for the automated fit approach. For 1ES 1218+304 the
situation is rather complex: in the optical-UV region, the relative
contribution of the host galaxy and the jet is not easy to disen-
tangle. Moreover, the Swift data do not clearly trace the shape of
the low-energy part of the synchrotron peak. For these reasons,
we preferred to exclude also this complex source from our study.

In the X-ray band, the model uncertainty is smaller than in
other bands since Swift and NuSTAR measurements are more ac-
curate than Fermi and Cherenkov arrays. It is also worth notic-
ing that the Fermi spectrum is well reproduced for each source,
thanks to the softening due to the turbulence damping (Sciac-
caluga & Tavecchio 2022). Finally, very high-energy data are
compatible within 1σ uncertainty, except for the most energetic
flux points of 1ES0229+200 and 1ES 0347-121, which are still
compatible at < 2σ. In no cases did we consider the optical-UV
data in the fit, since in these bands the emission is dominated by
the host galaxy.
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For each source, we initialized 30 walkers, each moving for
10000 steps and with ∼ 1000 burn-in steps. In Figs. 1, 2, 3, and
4 the measured flux data points are shown together with the me-
dian and the 1σ credible interval of the calculated SEDs, ob-
tained drawing ∼ 1000 random samples from the posterior. The
corresponding corner plots, showing the distribution of the de-
rived model parameters, are shown in Appendix A.
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Fig. 1. Flux points with their errors (black) of 1ES 0229+200 with
1σ credible intervals (orange) and the median (red) obtained from the
model posterior. Gray points correspond to Swift/UVOT data.
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Fig. 2. Flux points with their errors (black) of 1ES 0347-121 with
1σ credible intervals (orange) and the median (red) obtained from the
model posterior. Gray points correspond to Swift/UVOT data.

Examining the corner plots (see Figs. A.1, A.2, B.1, and
B.2), the distributions in logarithmic space appear narrow (ev-
idence of a good reconstruction of the physical parameters), but
strongly not-gaussian. They peak in the same range of param-
eters, with slightly broader uncertainties for RGB J0710+591
and with 1ES 1101-232 as the only exception. The emitting
region radius (R ∼ 1016÷17 cm) and the magnetic field (B ∼
10−3÷−2 G) are compatible with the values obtained by phe-
nomenological models that leave the acceleration process un-
specified (e.g., Costamante et al. 2018). The Alfvén velocity
(va ∼ 109 cm/s) aligns with values obtained in literature (e.g.,
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Fig. 3. Flux points with their errors (black) of 1ES 1101-232 with
1σ credible intervals (orange) and the median (red) obtained from the
model posterior. Gray points correspond to Swift/UVOT data.
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Fig. 4. Flux points with their errors (black) of RGB J0710+591 with
1σ credible intervals (orange) and the median (red) obtained from the
model posterior. Gray points correspond to Swift/UVOT data.

Kakuwa 2016; Tavecchio et al. 2022). Finally, the injected elec-
tron power (Pn ∼ 1040÷41 erg/s) is consistent with values utilized
with other BL Lacs (e.g., Ghisellini et al. 2010).

For 1ES 1101-232 the fit provides a radius much larger than
the value derived for the other sources (R ∼ 1 pc), together with
a smaller magnetic field and higher electron and turbulence pow-
ers. These differences are probably connected to the steeply de-
creasing X-ray spectrum (i.e., a relatively low synchrotron peak
frequency), a feature absent in the other sources. A sub-parsec-
sized emission region can be obtained by applying a larger rel-
ativistic Doppler factor (δ ∼ 40). The results are shown in Ap-
pendix B.

Quite interestingly, the corner plots reveal strong cross-
correlations among some of the parameters, which are hard to
discover through the standard approach based on the visual com-
parison of the model and data. For example, there is a strong an-
ticorrelation between the radius of the emitting region and the
magnetic field for each source. This is explained by the fact that
the magnetic field determines the magnetic field energy density
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UB, while, for a fixed synchrotron luminosity, the radius regu-
lates the radiation energy density, Urad. Since the ratio UB/Urad
is fixed by the ratio of the synchrotron and SSC peak luminosi-
ties (e.g., Tavecchio et al. 1998), this fixes the product BR. While
this correlation is strong for each source and can be directly in-
terpreted, some other correlations are weaker and much more
difficult to explain in simple terms, because they are associated
with observational features that involve several parameters.
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Fig. 5. Final electron energy distribution for 1ES 0229+200 with 1σ

credible intervals (orange) and the median (red) obtained from the
model posterior.
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Fig. 6. Final spectrum of the turbulence for 1ES 0229+200 with 1σ

credible intervals (violet) and the median (blue) obtained from the
model posterior.

We calculated the final electron energy distribution, n(γ), and
the final turbulence spectrum, W (k), (medians and credible in-
tervals), drafted from the posterior. As a representative case, we
display in Fig. 5 and Fig. 6 the results for 1ES 0229+200. Fi-
nally, we report the median and the credible interval of the final
timescales associated with electrons (i.e., acceleration, cooling,
and escape time) and turbulence (cascading and damping times)
for 1ES 0229+200, respectively in Fig. 7 and Fig. 8.

As discussed in Sciaccaluga & Tavecchio (2022), the com-
bined effects of acceleration and radiative cooling result in a fi-
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t
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tesc

Fig. 7. Final electron timescales (acceleration, cooling, escape) for 1ES
0229+200 with 1σ credible intervals and the median obtained from the
model posterior.
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Fig. 8. Final turbulence timescales (cascading and damping) for 1ES
0229+200 with 1σ credible intervals and the median obtained from the
model posterior.

nal electron energy distribution displaying a well-defined peak
that, for EHBLs, is generally located at Lorentz factors γp ≈ 106,
where tacc ∼ tcool (see Fig. 7). The role of turbulence acceleration
is relevant only at high energies, 105 ≲ γ ≲ 106, where it piles
up the injected electrons. At a lower energies (γ ≲ 105), parti-
cles are inefficiently accelerated and effectively escape from the
acceleration and emission region. Since at these energies elec-
trons are unaffected by acceleration or cooling (tesc ≪ tcool and
tesc ≪ tacc), the distribution tends to be similar to that injected by
the shock (i.e., γ−2).

For turbulence, damping is effective only at large k, where
the damping time is less than the cascading time (Figs. 6 and
8). At these wavenumbers, the damping is a consequence of the
large number of resonating low-energy electrons. High-energy
electrons (γ ≳ 105), responsible for the X-ray emission, resonate
with low k modes (k < 10−11 cm−1), where, instead, damping is
not efficient due to their small number. Notably, the very ineffi-
cient acceleration of the electrons at low Lorentz factors at late
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times (clearly visible in Fig. 7) is related to the strong damping
of the turbulence at large k.

The electron energy distribution shows a large uncertainty
(about an order of magnitude) linked to the complex interplay
between the electron density, the peak energy of the electron en-
ergy distribution, the magnetic field and the radius of the emit-
ting region. The uncertainty on the normalization of the electron
density, n, can be understood recalling that, as discussed above,
the product BR is fixed by the observed ratio of the synchrotron
and SSC peak luminosity. This, for a fixed synchrotron luminos-
ity, proportional to LS ∝ nB2R3, implies that n and R are anti-
correlated: nR =const. Therefore, a large (small) radius implies
both a low (high) density and a low (high) magnetic field. In
order to have a fixed synchrotron peak frequency, proportional
to νs ∝ γ2

pB, the electron distribution must peak at high (low)
Lorentz factor γp (as visible in Fig. 5). The large uncertainty
of the electron distribution is also reflected by the SSC spec-
trum, which, however, presents a smaller variance. The same
SSC spectrum can be obtained by using different electron spec-
tra and target photon fields, therefore reducing the SSC spectrum
uncertainty at the expense of less constrained optical and radio
spectra.

The turbulence energy spectrum displays a large uncertainty
as well. In fact, the same acceleration efficiency can be obtained
with a high magnetic field (or Alfvén velocity) and low turbu-
lence injection and vice versa (see Eq. 2 and the corner plot).
The much larger uncertainty in the region of k where the spec-
trum is affected by damping reflects the strong interaction with
the electrons.

Starting from the Alfvén velocity, we calculated the magne-
tization distributions to confirm the consistency of our model.
Using 1ES0229+200 as a representative case, we obtain a low
magnetization σ < 10−2 (see Fig. 9). Such low values are com-
patible with estimates from simple leptonic scenarios (e.g., Zech
& Lemoine 2021) and are below the threshold derived for the
development of instabilities in the downstream region of the rec-
ollimation shock (Gourgouliatos & Komissarov 2018).

−2.50 −2.25 −2.00 −1.75 −1.50 −1.25 −1.00

log(σ)

0.00

0.25

0.50

0.75

1.00

1.25
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1.75

Fig. 9. Distribution of the magnetization of 1ES0229+200 obtained
from the model posterior.

5. Discussion

We have presented the modeling of a sample of EHBLs
with well-reconstructed SEDs using a double acceleration

(shock+stochastic) model (Tavecchio et al. 2022). By means
of the MCMC technique, we have explored the full parameter
space. The MCMC sampling permitted us to approach the mod-
eling without confirmation biases and showed us that the differ-
ent parameters are correlated in a nontrivial way. This confirms
that the standard simple visual comparison between the data and
one realization of the model is strongly limited and that sam-
pling is necessary to completely characterize the model com-
plexity. Indeed, while the most probable values of the derived
model parameters are in line with those derived with the stan-
dard approach, in the present work we were able to infer the re-
lated uncertainties and the correlations among them. We confirm
for all sources that the interplay between the turbulence and the
accelerating electrons leads to a strong damping of the turbulent
energy at large wave vectors. From the point of view of the ener-
getic budget, the scenario requires moderate powers in the form
of injected turbulence and electrons, which is completely com-
patible with the jet power derived by means of standard one-zone
models (Ghisellini et al. 2010).

In the original version of our scenario (Tavecchio et al. 2022)
we assumed that the stochastic acceleration occurs in the turbu-
lent region after a recollimation shock. However, constraining
the size of the emission region to sub-parsec scales results in a
relatively large relativistic factor (δ = 20−40). Such values, al-
though modest compared to those derived with simple one-zone
leptonic models (e.g., Costamante et al. 2018), seem to challenge
the scenario in which turbulence energizing the pre-accelerated
electrons is the result of global instabilities excited by recolli-
mation, since these instabilities are expected to strongly affect
the flow, eventually disrupting it. For instance, in the simula-
tions of Matsumoto et al. (2021) and Costa et al. (2023), the tur-
bulent post-shock flow is strongly decelerated and the average
bulk Lorentz factor is only a few, implying a moderate beam-
ing of the radiation. Another factor that potentially impacts our
scenario was revealed in recent results from the Imaging X-ray
Polarimetry Explorer (IXPE). Observations of 1ES 0229+200
(Ehlert et al. 2023) show that the X-ray polarization is rather
high, ∼ 18%, and strongly chromatic (i.e., X-ray polarization is
higher than optical polarization). In our previous work, we sug-
gested that in the model it is natural to expect a low polarization
in all bands, but more accurate estimates are necessary in light of
these detailed measurements. Following the phenomenological
approach of Marscher & Jorstad (2022), the mean polarization
degree of a turbulent emitting region is equal to

⟨P⟩ ≈ 0.75[ f 2
ord +(1− ford)

2N−1
cell]

1
2 , (12)

where ford = Bord/B (with Bord the ordered component of the
magnetic field) and Ncell is the number of turbulent cells. Fix-
ing ford, the minimum is reached when Ncell → ∞; therefore, the
maximum value of ford necessary to obtain the polarization de-
gree observed by IXPE is given by ford,max = ⟨P⟩/0.75 ≈ 0.24,
which implies δB2/B2∼>0.6, a value beyond the scope of the
quasi-linear theory at the base of our treatment of stochastic ac-
celeration.

In view of these difficulties, we propose a modification of
the scenario that can potentially account for both the moderate
relativistic Doppler factor and the chromatic polarization. While
in the original idea the post-shock turbulence is supposed to be
related to the onset of global jet instabilities triggered by rec-
ollimation, an alternative is to assume the existence of inhomo-
geneities in the upstream flow. This, in particular if the plasma is
characterized by a low magnetization, promotes the development
of Richtmyer–Meshkov-like instability at the shock, with the re-

Article number, page 6 of 9



A. Sciaccaluga et al.: Stochastic acceleration in extreme TeV BL Lacs through MCMC

sulting onset of turbulence in the downstream region. Impor-
tantly, dedicated magnetohydrodynamic simulations show that
close to the shock front the evolving turbulent eddies are small,
but their size grows moving away from the shock (e.g., Mizuno
et al. 2014). Since the jet does not mix with the external medium,
it can maintain a moderate relativistic Doppler factor, as required
by our fits. Moreover, the structure of the turbulence can explain
chromatism: low-energy electrons that emit in the optical band
are accelerated by small eddies (i.e., eddies characterized by a
large k), which are present both near the shock front and far
from it since large eddies naturally cascade at shorter lengths.
On the other hand, high-energy electrons emitting in the X-ray
band have large Larmor radii and are associated exclusively with
the eddies with large wavelengths (small k) far from the shock
front. We therefore expect that the effective volume where X-ray
emission occurs is much smaller than that associated with the
optical band, implying an X-ray polarization higher than the op-
tical one, in line with observations (Marscher & Jorstad 2022).
An improvement to our model could be the introduction of a
time-dependent injection, to model the increase in the eddy size
away from the shock front. Simulations are needed to understand
the complete phenomenology of extreme TeV BL Lacs. Thus,
our next step will be to use the Lagrangian particle framework
to investigate these sources (Vaidya et al. 2018; Mukherjee et al.
2021).

The next generation of gamma-ray facilities, such as CTA
and ASTRI, will provide more constraining measurements that
will further reduce the model uncertainty. In particular, our
model predicts a strong cutoff above 10 TeV that, if confirmed,
will strongly limit the use of extreme TeV BL Lacs as beacons to
test physics beyond the standard model (see, e.g., Galanti et al.
2020), such as axion-like particles and Lorentz invariance viola-
tion.

The exploration of the parameter space for phenomenologi-
cal models has recently improved thanks to neural networks. Af-
ter being trained on a sample of several SEDs, neural networks
are capable of computing spectra in milliseconds, instead of the
few seconds required by leptonic codes. Together with MCMC
or nested sampling, neural networks can be used to efficiently
explore the parameter space (Bégué et al. 2023; Tzavellas et al.
2023). We aim to implement this technique for our model as
well.
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Appendix A: Corner plots
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Fig. A.1. Corner plot of 1ES 0229+200.
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Fig. A.2. Corner plot of 1ES 0347-121.
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Fig. A.3. Corner plot of 1ES 1101-232.
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Appendix B: MCMC of 1ES 1101-232 with δ = 40
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Fig. B.1. Alternative corner plot of 1ES 1101-232.
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Fig. B.2. Flux points with their errors (black) of 1ES 1101-232 with
1σ credible intervals (orange) and the median (red) obtained from the
model posterior. Gray points correspond to Swift/UVOT data.

Appendix C: Comparison of numerical schemes

In previous papers, we used the Chang-Cooper (CC) scheme
(Chang & Cooper 1970; Park & Petrosian 1996) to solve both
equations of the system (1). We modified the boundary condi-
tions for non-thermal electrons to no flux conditions. This update
is negligible for the resulting emission, but it is useful to compare
the performances of the CC algorithm with alternative schemes,
such as the second-order implicit-explicit Runge-Kutta (IMEX-
RK) algorithms (Kundu et al. 2021). Specifically, we tested the
strong stability preserving scheme (2,2,2) of Pareschi & Russo
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(γ
)

[c
m
−

3
]

IMEX RK

CC

Fig. C.1. Comparison between two realizations of electron spectrum by
IMEX-RK (solid red) and CC (solid blue) using the same parameters,
momentum, and wavenumber stepping, but with shorter time stepping
for the former.

(2005), but it presents several drawbacks for the scenario we are
considering. IMEX-RK can be used exclusively for linear equa-
tions, so not for the turbulence equation, making the scheme
only first-order accurate. Instead, CC can be adapted for non-
linear equations (Larsen et al. 1985). Therefore, we are stuck to
the same grid accuracy, but, since the advection term is treated
explicitly in IMEX-RK, several time steps are necessary, which
makes the scheme much slower. However, we used IMEX-RK to
test our CC implementation: we used the same momentum and
wavenumber grid (i.e., 20 points per decade) but different time
stepping (i.e. ,100 time steps for CC and C = 0.9 for IMEX-RK,
where C is the Courant number). The two schemes produced
comparable results (see Fig. C.1), confirming the proper func-
tioning of CC implementation; therefore, we decided to keep
employing it.
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