
Projected Newton method for large-scale Bayesian linear

inverse problems

Haibo Li ∗

Abstract

Computing the regularized solution of Bayesian linear inverse problems as well as
the corresponding regularization parameter is highly desirable in many applications.
This paper proposes a novel iterative method, termed the Projected Newton method
(PNT), that can simultaneously update the regularization parameter and solution step
by step without requiring any high-cost matrix inversions or decompositions. By re-
formulating the Tikhonov regularization as a constrained minimization problem and
writing its Lagrangian function, a Newton-type method coupled with a Krylov sub-
space method, called the generalized Golub-Kahan bidiagonalization, is employed for
the unconstrained Lagrangian function. The resulting PNT algorithm only needs solv-
ing a small-scale linear system to get a descent direction of a merit function at each
iteration, thus significantly reducing computational overhead. Rigorous convergence
results are proved, showing that PNT always converges to the unique regularized solu-
tion and the corresponding Lagrangian multiplier. Experimental results on both small
and large-scale Bayesian inverse problems demonstrate its excellent convergence prop-
erty, robustness and efficiency. Given that the most demanding computational tasks in
PNT are primarily matrix-vector products, it is particularly well-suited for large-scale
problems.

Keywords Bayesian inverse problem, Tikhonov regularization, constrained optimization,
Newton method, generalized Golub-Kahan bidiagonalization, projected Newton direction
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1 Introduction

Inverse problems arise in various scientific and engineering fields, where the aim is to recover
unknown parameters or functions from noisy observed data. Applications include image
reconstruction, computed tomography, medical imaging, geoscience, data assimilation and
so on [29, 25, 6, 31, 49]. A linear inverse problem of the discrete form can be written as

b = Ax+ ϵ, (1.1)

where x ∈ Rn is the underlying quantity to reconstruct, A ∈ Rm×n is the discretized
forward model matrix, b ∈ Rm is the vector of observation with noise ϵ. We assume that
the distribution of ϵ is known, which follows a zero mean Gaussian distribution with positive
definite covariance matrix M , i.e., ϵ ∼ N (0,M). A big challenge for reconstructing a good
solution is the ill-posedness of inverse problems, which means that there may be multiple
solutions that fit the observation equally well, or the solution is very sensitive with respect
to observation perturbation.

To overcome the ill-posedness, regularization is a commonly used technique. From a
Bayesian perspective [29, 51], this corresponds to adding a prior distribution of the desired
solution to constrain the set of possible solutions to improve stability and uniqueness. By
treating x and b as random variables, the observation vector b has a conditional probability
density function (pdf)

p(b|x) ∝ exp

(
−1

2
∥Ax− b∥2M−1

)
.

In order to get a regularized solution, we assume a Gaussian prior about the desired solution
with the form x ∼ N (0, α−1N), where N is a positive definite covariance matrix. Then the
Bayes’ formula leads to

p(x|b, λ) ∝ p(x|λ)p(b|x) ∝ exp

(
−1

2
∥Ax− b∥2M−1 −

µ

2
∥x∥2N−1

)
,

where ∥x∥B := (x⊤Bx)1/2 is the B-norm of x for a positive definite matrix B. Maximize
the posterior pdf p(x|b, λ) leads to the Tikhonov regularization problem

min
x∈Rn

{∥Ax− b∥2M−1 + µ∥x∥2N−1}, (1.2)

where the regularization term ∥x∥2
N−1 enforces extra structure on the solution that comes

from the prior distribution of x.

The parameter µ in the Gaussian prior N (0, µ−1N) is crucial for obtaining a good
regularized solution, which controls the trade-off between the data-fit term and regularization
term. There is tremendous effort in determining a proper value of µ. For the standard 2-
norm problem, i.e. M = N = I, the classical parameter-selection methods include the
L-curve (LC) criterion[23], generalized cross-validation (GCV) [22], unbiased predictive risk
estimation (UPRE) [47] and discrepancy principle (DP) [40]. There are also some iterative
methods based on solving a nonlinear equation of µ; see e.g. [38, 2, 46, 18, 20]. However, the
aforementioned methods can not be directly applied to (1.2). A common procedure needs
to first transform (1.2) into the standard 2-norm form

min
x∈Rn

{∥LM (Ax− b)∥22 + µ∥LNx∥22}, (1.3)

where M−1 = L⊤
MLM and N−1 = L⊤

NLN are the Cholesky factorizations, and then apply
the parameter-selection methods. This procedure needs the matrix inversions of M and N
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as well as the Cholesky factorizations of M−1 and N−1. For large-scale matrices, the above
two types of computations are almost impossible or extremely expensive.

For large-scale problems, there exist some iterative regularization methods that can avoid
choosing µ in advance. A class of commonly used iterative methods is based on Krylov sub-
spaces [36], where the original linear system is projected onto lower-dimensional subspaces
to become a series of small-scale problems [41, 44, 19, 27, 35]. For dealing with the general-
form Tikhonov regularization term ∥LNx∥22, some recent Krylov iterative methods include
[39, 30, 45, 26, 33] and so on. When the Cholesky factor LN is not accessible, a key dif-
ficulty is dealing with the prior covariance N , which means that the subspaces should be
constructed elaborately such that the prior information of x can be effectively incorporated
into these subspaces [8, 34]. Such methods have been proposed in [9, 7, 8], where the sta-
tistically inspired priorconditioning technique is used to whiten the noise and the desired
solution. However, these methods still require large-scale matrix inversions and Cholesky
factorizations, which prohibits their applications to large-scale problems.

Recently, there are several Krylov methods for solving (1.1) without choosing µ in ad-
vance and can avoid the matrix inversions and Cholesky factorizations [12, 34]. These meth-
ods use the generalized Golub-Kahan bidiagonalization (gen-GKB), which can iteratively
reduce the original large-scale problem to small-scale ones and generate Krylov subspaces
that effectively incorporate the prior information of x. In [34], the regularization effect of
the proposed method comes from early stopping the iteration, where the iteration number
plays the role of the regularization parameter, while in [12], the authors proposed a hybrid
regularization method that simultaneously computes the regularized parameter and solu-
tion step by step. Although these two methods are very efficient for large-scale problems,
there may be some issues in certain situations. The method in [34] only computes a good
regularized solution but not a good µ. However, in some applications, we need an accurate
estimate of µ to get the posterior distribution of x for sampling and uncertainty quantifica-
tion [51, 50, 16]. For the hybrid method in [12], the convergence property does not have a
solid theoretical foundation, and it has been numerically found that the method sometimes
does not converge to a good solution, which is a common potential flaw for hybrid methods
[11, 48].

Many optimization methods have been proposed for solving inverse problems, especially
those arising from image processing that leads to total variation regularization and ℓp reg-
ularization. These methods include the Bregman iteration [42, 54, 21], iterative shrinkage
thresholding [15, 3], and some others [1, 52, 37]. However, these methods either need a
good parameter µ in advance or can not well deal with M−1 and N−1. In [32] the au-
thor proposed a modification of the Newton method that can iteratively compute a good µ
and regularized solution simultaneously. However, this method needs to solve a large-scale
linear system at each iteration, which is very costly for large-scale problems. This method
was improved in [13, 14], where the Newton method is successfully combined with a Krylov
subspace method to get a so-called projected Newton method. Compared with the original
method, the projected Newton method only needs to solve a small-scale linear system at each
iteration, thereby very efficient for large-scale Tikhonov regularization (1.3). However, for
solving (1.2), this method needs to compute ∇( 12∥x∥

2
N−1) = N−1x to construct subspaces,

which is also very costly. Besides, their methods lack rigorous proof of convergence.

In this paper, we develop a new and efficient iterative method for (1.2) that simulta-
neously updates the regularization parameter and solution step by step, where the matrix
inversions and Cholesky factorizations are not required any longer. This method is based
on a Newton-type method for a constrained minimization problem, and the gen-GKB pro-
cess is used to compute a projected Newton direction by solving a small-scale linear system
at each iteration, thereby we also name it the projected Newton method (PNT). The main
contributions of this paper are listed as follows:

• Based on the discrepancy principle, the regularization of the original Bayesian linear
inverse problems is reformulated as a noise constrained minimization problem. We
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show the correspondence between the constrained minimization problem and Tikhonov
regularization (1.2), where the Lagrangian multiplier λ is just the reciprocal of µ.

• For the constrained minimization problem, we compute the solution by optimizing its
Lagrangian function while getting the corresponding Lagrangian multiplier, which is
now an unconstrained optimization with a nonlinear nonconvex function. A Newton-
type method for this problem is combined with the gen-GKB process to get the new
projected Newton method, where only a small-scale linear system needs to be solved
to compute a descent direction at each iteration.

• A rigorous convergence proof of the proposed method is provided. With a very practi-
cal initialization (x0, λ0), we prove that PNT always converges to the unique solution
of the constrained minimization problem and its corresponding Lagrangian multiplier.

We use both small-scale and large-scale inverse problems to test the proposed method
and compare it with other state-of-the-art methods. The experimental results demonstrate
excellent convergence properties of PNT, and it is very robust and efficient for large-scale
Bayesian linear inverse problems. Since the most computationally intensive operations in
PNT primarily involve matrix-vector products, it is especially appropriate for large-scale
problems.

This paper is organized as follows. In Section 2, we formulate the noise constrained
minimization problem for regularizing (1.1) and study its properties. In Section 3, we
propose the new projected Newton method. In Section 4, we prove the convergence of the
propsoed method. Numerical results are presented in Section 5, and conclusions are provided
in Section 6.

Throughout the paper, we denote by I and 0 the identity matrix and zero matrix/vector,
respectively, with orders clear from the context, and denote by span{·} the subspace spanned
by a group of vectors or columns of a matrix.

2 Noise constrained minimization for Bayesian inverse
problems

In order to get a good estimate of µ in (1.2), the discrepancy principle (DP) criterion is
commonly used, which depends on the variance of the noise. Based on DP, we can rewrite
(1.2) as an equivalent form of noise constrained minimization problem. The Lagrangian of
this problem can be solved by the Newton method.

2.1 Noise constrained minimization

For the case that ϵ ∼ N (0, σ2I) is a white Gaussian noise, the DP criterion states that the
2-norm discrepancy between the data and predicted output ∥Ax(µ)− b∥2 should be of the
order of ∥ϵ∥2, where x(µ) is the solution to (1.2); note that ∥ϵ∥2 ≈

√
mσ; see [29, §5.6]. If

ϵ is a general Gaussian noise, notice that (1.1) leads to

LMb = LMAx+LMϵ, (2.1)

and LMϵ ∼ N (0, I), thereby this transformation whitens the noise. Since ϵ̄ := LMϵ is a
white Gaussian noise with zero mean and covariance I, it follows that

E
[
∥ϵ̄∥22

]
= E

[
trace

(
ϵ̄⊤ϵ̄

)]
= E

[
trace

(
ϵ̄ϵ̄⊤

)]
= trace

(
E
[
ϵ̄ϵ̄⊤

])
= trace (I) = m.

Therefore, the DP for (2.1) can be written as

∥Ax(µ)− b∥2M−1 = ∥LMAx(µ)−LMb∥22 = τm (2.2)

where τ is chosen to be marginally greater than 1, such as τ = 1.01.
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Using this expression of DP, we rewrite the regularization of (1.1) as the noise constrained
minimization problem

min
x∈Rn

1

2
∥x∥2N−1 s.t.

1

2
∥Ax− b∥2M−1 ≤

τm

2
(2.3)

and its Lagrangian

L(x, λ) = 1

2
∥x∥2N−1 +

λ

2

(
∥Ax− b∥2M−1 − τm

)
, (2.4)

where λ ≥ 0 is the Lagrangian multiplier. Note that λ plays the role of µ−1 in (1.2), meaning
that the solution to (1.2) with µ = λ−1 is just the solution to (2.4). In fact, there is a one-to-
one correspondence between (1.2) and (2.3). We first state the following basic assumption,
which is used throughout the paper.

Assumption 2.1 For all x ∈ {x ∈ Rn : ∥Ax− b∥M−1 = min}, it holds

∥Ax− b∥2M−1 < τm < ∥b∥2M−1 . (2.5)

The first inequality means that the naive solutions to (1.1) fit the observation very well,
and it ensures the feasible set of (2.3) is nonempty. The second inequality comes from
the condition ∥LMϵ∥2 < ∥LMb∥2 for (2.1), meaning that the noise does not dominate the
observation, which ensures the fruitfulness of the regularization. Under this assumption, the
following result describes the solution to (2.3).

Theorem 2.1 The noise constrained minimization (2.3) has a unique solution x∗ satisfying
∥Ax∗ − b∥2

M−1 = τm. Furthermore, there is a unique λ∗ > 0, which is the Lagrangian
multiplier corresponding to x∗ in (2.4).

Proof. Let φ(x) := 1
2∥Ax− b∥2

M−1 , which is a convex function. In (2.3) we seek solutions

to min 1
2∥x∥

2
N−1 in the feasible set S := {x ∈ Rn : φ(x) ≤ τm

2 }, which is the τm
2 -lower

level set of φ(x). Note that S is a compact and convex set, and 1
2∥x∥

2
N−1 is continous and

strictly convex since N−1 is positive definite. Thus, there is a unique solution x∗ to (2.3).

Suppose λ∗ is a Lagrangian multiplier corresponding to x∗. By the Karush-Kuhn-Tucker
(KKT) condition [28, §12.3], the solution (x∗, λ∗) satisfies

N−1x∗ + λ∗∇φ(x∗) = 0,

λ∗φ(x∗) = 0,

λ∗ ≥ 0.

If λ∗ = 0, then N−1x∗, leading to x∗ = 0. This means 0 ∈ S, i.e. φ(0) ≤ τm
2 , thereby

∥b∥2
M−1 ≤ τm, a contradiction. Consequently, it must hold λ∗ > 0. From the relation

λ∗φ(x∗) = 0 we have φ(x∗) = 0, i.e. ∥Ax∗ − b∥2
M−1 = τm.

To prove the uniqueness of λ∗, first note that for any λ ≥ 0, there is a unique xλ that
solves the first equality of the KKT condition:

N−1x+ λ∇φ(x) = 0 ⇔ (N−1 + λA⊤M−1A)x = λA⊤M−1b, (2.6)

since N−1+λA⊤M−1A is positive definite. Here we prove a stronger property: there exist
a unique λ ≥ 0 such that ∥Axλ− b∥2

M−1 = τm. The existence of such a λ has been proved,
since x∗ = xλ∗ . For the uniqueness, define two functions

K(λ) :=
1

2
∥xλ∥2N−1 , H(λ) :=

1

2

(
∥Axλ − b∥2M−1 − τm

)
.
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Note that L(x, λ) is strictly convex for a fixed λ > 0, which has the unique minimizer xλ.
Thus, for any two positive λ1 ̸= λ2, we have

L(xλ1
, λ1) < L(xλ2

, λ1) ⇔ K(λ1) + λ1H(λ1) < K(λ2) + λ1H(λ2),

since xλ1
̸= xλ2

; see the following Lemma 2.1. Similarly, we have

K(λ2) + λ2H(λ2) < K(λ1) + λ2H(λ1).

Adding the above two inequalities leads to

(λ1 − λ2)(H(λ1)−H(λ2)) < 0,

meaning that H(λ) is a strictly monotonic decreasing function. Therefore, there is a unique
λ such that H(λ) = 0. 2

Lemma 2.1 For each λ ≥ 0, the regularization problem

min
x∈Rn

{λ∥Ax− b∥2M−1 + ∥x∥2N−1} (2.7)

has the unique solution xλ. If λ1 ̸= λ2, then xλ1
̸= xλ2

.

Proof. Note that the normal equation of (2.7) is equivalent to (2.6). Thus, xλ is the
unique solution to (2.7). Using the Cholesky factors of M−1 and N−1, and noticing that
LN is invertible, we can write the generalized singular value decomposition (GSVD) [53] of
{LMA,LN} as

LMA = UAΣAZ
−1, LN = UNΣNZ−1,

with

ΣA =

(
DA r

0 m− r
r n− r

)
, ΣN =

(
DN r

I n− r
r n− r

)
,

where r = rank(A), the two matrices UA ∈ Rm×m and UN ∈ Rn×n are orthogonal, and
DA = diag(σ1, . . . , σr) with 1 > σ1 ≥ · · · ≥ σr > 0 and DN = diag(ρ1, . . . , ρr) with
0 < ρ1 ≤ · · · ≤ ρr < 1, such that σ2

i + ρ2i = 1. Then xλ can be expressed as

xλ = [λ(LMA)⊤LMA+L⊤
NLN ]−1λ(LMA)⊤LMb =

r∑
i=1

λσi

λσ2
i + ρ2i

(u⊤
A,iLMb)zi,

where uA,i is the i-th column of UA. Since {zi}ri=1 are linear independent, if xλ1 = xλ2 ,
then it must hold

λ1σi

λ1σ2
i + ρ2i

=
λ2σi

λ2σ2
i + ρ2i

⇔ (λ1 − λ2)σiρ
2
i = 0, i = 1, . . . , r.

Since σiρi > 0 for i = 1, . . . , r, we obtain λ1 = λ2. 2

Note that x∗ = xλ∗ . Comparing (2.7) with (1.2), we can use (λ∗)−1 as a good estimate
of the optimal regularization parameter. From Theorem 2.1 and its proof, we have the
following result.

Corollary 2.1 Let R+ = [0,∞). Write the gradient of L(x, λ) as

F (x, λ) =

(
λA⊤M−1(Ax− b) +N−1x

1
2∥Ax− b∥2

M−1 − τm
2

)
. (2.8)

Then F (x, λ) = 0 has a unique solution (x∗, λ∗) in Rn×R+, which is the unique minimizer
and corresponding Lagrangian multiplier of (2.3).

The Newton method can be used to solve the nonlinear equation F (x, λ) = 0 to obtain
simultaneously the solution pair (x∗, λ∗).

6



2.2 Newton method

A modification of the Newton method proposed in [32] can be used to compute the nonlinear
equation F (x, λ) = 0, which is referred to as the Lagrange method since it is based on the
Lagrangian of (2.3). In this method, the Jacobian matrix of F (x, λ) is first computed as

J(x, λ) =

(
λA⊤M−1A+N−1 A⊤M−1(Ax− b)

(Ax− b)⊤M−1A 0

)
(2.9)

at the current iterate (x, λ), and then it computes the Newton direction (∆x⊤,∆λ)⊤ by
solving inexactly the linear system

J(x, λ)

(
∆x

∆λ

)
= −F (x, λ) (2.10)

using the MINRES solver [43]. We remark that this method is essentially a Newton-Krylov
method [5] for optimizing the nonlinear and nonconvex Lagrangian function (2.4). It was
shown that the computed (∆x,∆λ) in the Lagrange method is a descent direction for the
merit function hw : Rn × R+ → R+ defined as

hw(x, λ) =
1

2

(
∥∇xL(x, λ)∥22 + w|∇λL(x, λ)|2

)
with a positive w, meaning that ∇h(x, λ)⊤

(
∆x

∆λ

)
≤ 0. By a backtracking line search

strategy to determine a step length γ > 0, the iterate is updated as (x, λ) ← (x, λ) +
γ(∆x,∆λ). It was shown that the iterate eventually converges to the global minimizer of
h(x, λ). Note that h(x, λ) achieves its global mininum at the unique point (x∗, λ∗), which
is the zero point of F (x, λ).

A big advantage of this method is that it can compute a good regularized solution and
its regularization parameter simultaneously. However, for large-scale problems, we need to
compute M−1 and N−1 to form F (x, λ) and J(x, λ), which is almost impossible. Moreover,
at each iteration, an (n+1)× (n+1) linear system (2.10) needs to be solved, which is very
computationally expensive even if we only compute a less accurate solution by an iterative
algorithm.

In [13], the authors proposed a projected Newton method, where at each iteration, the
large-scale linear system (2.10) is projected to be a small-scale linear system that can be
solved cheaply. However, this method can only deal with the standard ℓ2 − ℓ2 regulariza-
tion, which means we can only apply this method to (1.3) by the substitution x̄ = LNx,
requiring the expensive Cholesky factorization of N−1. A generalization of this method [14]
can deal with a general-form regularization term. However, for (2.3), it needs to compute
∇( 12∥x∥

2
N−1) = N−1x to construct subspace for projecting (2.10), also very costly.

3 Projected Newton method based on generalized Golub-
Kahan bidiagonalization

To reduce expensive computations of the Newton method for large-scale problems, we design
a new projected Newton method to solve (2.3). This method uses the generalized Golub-
Kahan bidiagonalization (gen-GKB) to construct Krylov subspaces to compute projected
Newton directions by only solving small-scale problems, and it does not need any matrix
factorizations and inversions.
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3.1 Overview

Algorithm 1 outlines the basic framework of the new projected Newton method (PNT),
which is composed by the following three main steps:

Step 1: Construct Kylov subspaces. We adopt the gen-GKB process to iteratively construct a
series of low-dimensional Krylov subspaces. The procedure is presented in Algorithm 2.

Step 2: Compute the projected Newton direction. At each iteration, based on gen-GKB we
compute the projected Newton direction by only solving a small-scale problem; see
(3.14).

Step 3: Determine the step-length to update solution. With the projected Newton direction,
we use the Armijo backtracking line search strategy to determine a step-length, and
then update the solution.

Algorithm 1 PNT: Projected Newton method

Input: A ∈ Rm×n, b ∈ Rm, M ∈ Rm×m, N ∈ Rn×n, τ ≳ 1
1: Initialize x0, λ0

2: for k = 1, 2, . . . ,until convergence do
3: Step 1: Perform gen-GKB to construct k-dimensional Kylov subspace V k

4: Step 2: Compute the projected Newton direction (∆yk,∆λk) as (3.14)
5: Step 3: Determine a step-length γk by backtracking line search, and update the

solution (xk, λk) = (xk−1, λk−1) + γk(V k∆yk,∆λk)
6: Check the convergence condition to stop iteration
7: end for

Output: Final solution for approximating (x∗, λ∗)

In the next subsection, we present detailed derivations of the whole algorithm. All the
proofs can be found in Section 3.3.

3.2 Derivation of projected Newton method

This subsection presents detailed derivations for the three steps in Algorithm 1.

Step 1: Construct Kylov subspaces by gen-GKB. The gen-GKB process has been
proposed for solving Bayesian linear inverse problems in [12, 34]. The basic idea is to treat
A as the compact linear operator under the canonical bases of Rn and Rm

A : (Rn, ⟨·, ·⟩N−1)→ (Rm, ⟨·, ·⟩M−1), x 7→ Ax

between the two finite dimensional Hilbert spaces (Rn, ⟨·, ·⟩N−1) and (Rm, ⟨·, ·⟩M−1), where
the inner products are defined as

⟨x,x′⟩N−1 := x⊤N−1x′, ⟨y,y′⟩M−1 := y⊤M−1y′. (3.1)

Then the adjoint of A

A∗ : (Rm, ⟨·, ·⟩M−1)→ (Rn, ⟨·, ·⟩N−1), y 7→ A∗y

defined by the relation ⟨Ax,y⟩M−1 = ⟨x,A∗y⟩N−1 has the matrix-form expression

A∗ = NA⊤M−1, (3.2)

since (Ax)⊤M−1y = x⊤N−1A∗y for any x ∈ Rn and y ∈ Rm.

Now we can generate Krylov subspaces while reducing A to a bidiagonal form. This can
be achieved by applying the standard GKB process to the compact operator A with starting
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vector b between the two Hilbert spaces (Rn, ⟨·, ·⟩N−1) and (Rm, ⟨·, ·⟩M−1); see [10]. The
basic recursive relations are as follows:

β1u1 = b, (3.3a)

αivi = A∗ui − βivi−1, (3.3b)

βi+1ui+1 = Avi − αiui, (3.3c)

where αi and βi are computed such that ∥ui∥M−1 = ∥vi∥N−1 = 1, and v0 := 0. In order
to avoid explicitly computing N−1-norm to obtain αi, let ūi = M−1ui and v̄i = N−1vi.
By (3.3b) and (3.2), we have αiv̄i = A⊤ūi − βiv̄i−1. Let r̄i = A⊤ūi − βiv̄i−1 and si =
Avi − αiui. Then αi = ∥Nr̄i∥N−1 = (r̄⊤i Nr̄i)

1/2 and βi+1 = ∥si∥M−1 = (s⊤i M
−1si)

1/2.
We remark that computing with M−1 can not be avoided to get ui, but for the most
commonly encountered cases that ϵ is a Gaussian noise with uncorrelated components, M
is diagonal and thereby M−1 can be directly obtained. The whole iterative process is
summarized in Algorithm 2.

Algorithm 2 Generalized Golub-Kahan bidiagonalization (gen-GKB)

Input: A ∈ Rm×n, b ∈ Rm, M ∈ Rm×m, N ∈ Rn×n

1: s̄ = M−1b, β1 = s̄⊤b, u1 = b/β1, ū1 = s̄/β1

2: r̄ = A⊤ū1, r = Nr̄
3: α1 = (r⊤r̄)1/2, v̄1 = r̄/α1, v1 = r/α1

4: for i = 1, 2, . . . , k do
5: s = Avi − αiui, s̄ = M−1s
6: βi+1 = (s⊤s̄)1/2, ui+1 = s/βi+1, ūi+1 = s̄/βi+1

7: r̄ = A⊤ūi+1 − βi+1v̄i, r = Nr̄
8: αi+1 = (r⊤r̄)1/2, v̄i+1 = r̄/αi+1, vi+1 = r/αi+1

9: end for
Output: {αi, βi}k+1

i=1 , {ui,vi}k+1
i=1

After k steps, the gen-GKB generates two orthonormal bases {ui}k+1
i=1 and {vi}k+1

i=1

for (Rm, ⟨·, ·⟩M−1) and (Rn, ⟨·, ·⟩N−1), respectively. Define Uk+1 = (u1, . . . ,uk+1) and
V k+1 = (v1, . . . ,vk+1). Then Uk+1 and V k+1 are two M−1 and N−1 orthonormal matri-
ces, respectively, meaning U⊤

k+1M
−1Uk+1 = I and V ⊤

k+1N
−1V k+1 = I. This property is

presented in the following result; see [34] for the proof.

Proposition 3.1 The group of vectors {ui}ki=1 is an M−1-orthonormal basis of the Krylov
subspace

Kk(ANA⊤M−1, b) = span{(ANA⊤M−1)ib}k−1
i=0 , (3.4)

and {vi}ki=1 is an N−1-orthonormal basis of the Krylov subspace

Kk(NA⊤M−1A,NA⊤M−1b) = span{(NA⊤M−1A)iNA⊤M−1b}k−1
i=0 . (3.5)

We remark that the gen-GKB will eventually terminate at most min{m,n} steps, since
the column rank of Uk or V k can not exceed min{m,n}. If we define the termination step
as

kt := max{k : αkβk > 0}, (3.6)

which means that kt is the first iteration such that αkt+1 = 0 or βkt+1 = 0, then V k will
eventually expand to be V kt

with kt ≤ min{m,n}.
By (3.3a)–(3.3c), we can write the k-step (k ≤ kt) gen-GKB in the matrix-form:

β1Uk+1e1 = b, (3.7a)

AV k = Uk+1Bk, (3.7b)

NA⊤M−1Uk+1 = V kB
⊤
k + αk+1vk+1e

⊤
k+1, (3.7c)
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where e1 and ek+1 are the first and (k+1)-th columns of the identity matrix of order k+1,
respectively, and

Bk =



α1

β2 α2

β3
. . .

. . . αk

βk+1


∈ R(k+1)×k. (3.8)

If k < kt, i.e. the gen-GKB does not terminate before the k-th iteration, then Bk has full
column rank. At the kt-th iteration, maybe βkt+1 = 0 happens first or αkt+1 = 0 happens
first. For the former case, the relations (3.7) are replaced by

β1Ukt
e1 = b, (3.9a)

AV kt
= Ukt

Bkt
, (3.9b)

NA⊤M−1Ukt
= V kt

B⊤
kt
, (3.9c)

where Bkt
is the first k × k part of Bkt

by discarding βkt+1.

Step 2: Compute the projected Newton direction. At the k-th iteration, we update
xk ∈ span{V k} and λk from the previous one. For any x ∈ span{V k} of the form x = V ky
with y ∈ Rk, define the projected gradient of L(x, λ) as

F (k)(y, λ) =

(
V ⊤

k

1

)
F (x, λ) (3.10)

and the projected Jacobian of F (x, λ) as

J (k)(y, λ) =

(
V ⊤

k

1

)
J(x, λ)

(
V k

1

)
. (3.11)

Remark 3.1 Since gen-GKB must terminate at the kt-th iteration and V k eventually ex-
pands to be V kt

, we need to discuss the two different cases that k ≤ kt and k > kt. For
notational simplicity, in the rest part of the paper, we use V k and Bk by default unless
otherwise specified to denote

V k =

V k, k ≤ kt

V kt , k > kt

, Bk =

Bk, k ≤ kt

Bkt , k > kt

, xk =

V kyk, k ≤ kt

V ktyk, k > kt

,

where y ∈ Rk for k ≤ kt and y ∈ Rkt for k > kt. Moreover, for the case βkt+1 = 0, the
relations (3.7) are replaced by (3.9) and Bkt is replaced by Bkt

. In the following discussions,
we use the unified notations as in (3.7), but the readers can easily distinguish between the
two cases.

Notice that y is uniquely determined from x = V ky since V k has full-column rank.
Thus, F (k)(y, λ) and J (k)(y, λ) are well-defined. The next result shows how we can obtain
F (k)(y, λ) and J (k)(y, λ) from Bk without any extra computations.

Lemma 3.1 For any x ∈ span{V k} with the form x = V ky, the projected gradient of
L(x, λ) has the expression

F (k)(y, λ) =

(
λB⊤

k (Bky − β1e1) + y
1
2∥Bky − β1e1∥22 − τm

2

)
, (3.12)
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and the projected Jacobian of F (x, λ) has the expression

J (k)(y, λ) =

(
λB⊤

k Bk + I B⊤
k (Bky − β1e1)

(Bky − β1e1)
⊤Bk 0

)
(3.13)

Now we can compute the projected Newton direction used for updating the solution.
Starting from an initial solution (x0, λ0), consider the following two cases:

• Update (xk, λk) from (xk−1, λk−1) for k ≤ kt. Suppose at the (k − 1)-th iteration,
we have computed a solution xk−1 = V k−1yk−1, where x0 := 0 and y0 := () is an

empty vector. Let ȳk−1 = (y⊤
k−1, 0)

⊤ ∈ Rk. If J (k)(ȳk−1, λk−1) is nonsingular, we can

calculate the Newton direction for the projected function F (k)(y, λ) at (ȳk−1, λk−1):(
∆yk

∆λk

)
= −J (k)(ȳk−1, λk−1)

−1F (k)(ȳk−1, λk−1). (3.14a)

Then we update (ȳk, λk) by yk = ȳk−1 + γk∆yk

λk = λk−1 + γk∆λk

(3.14b)

with a suitably chosen step-length γk > 0, and let xk = V kyk.

• Update (xk, λk) from (xk−1, λk−1) for k > kt. At each iteration, we seek a solution of
the form xk = V kt

yk with yk ∈ Rkt . We calculate the Newton direction(
∆yk

∆λk

)
= −J (k)(yk−1, λk−1)

−1F (k)(yk, λk−1), (3.14c)

and then compute yk = yk−1 + γk∆yk

λk = λk−1 + γk∆λk

(3.14d)

to get xk = V kt
yk.

For both the two cases, we call (∆yk,∆λk) the projected Newton direction, since it is the
Newton direction of the projected problem. The corresponding update formula for xk is

xk = xk−1 + γk∆xk, ∆xk := V k∆yk. (3.15)

Remember that V k = V kt
for k > kt. The above formula is easy to be verified:

xk = V kyk = V kȳk−1 + γkV k∆yk = V k−1yk−1 +∆xk = xk−1 + γk∆xk

for k ≤ kt, and

xk = V kt
yk = V kt

yk−1 + γkV kt
∆yk = xk−1 + γk∆xk

for k > kt. For notational simplicity, in the following part of the paper, we always use the
unified notation

ȳk−1 =

(y⊤
k−1, 0)⊤, k ≤ kt

yk−1, k > kt

(3.16)

for ȳk−1. Following the notations in (3.1) and (3.16), we can use (3.14a), (3.14b) and (3.15)
to describe the update procedure for both the two cases.

It is vital to make sure that the updating procedure does not breakdown, i.e. the pro-
jected Jacobian matrix J (k)(ȳk−1, λk−1) is nonsingular. This desired property is given in
the following result. The proof appears as a part of the proof of Lemma 4.5.
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Proposition 3.2 If we choose x0 = 0 and ȳ0 = 0, then at each iteration J (k)(ȳk−1, λk−1)
is nonsingular as long as λk−1 ≥ 0.

In order to investigate the convergence behavior of the algorithm, define the following
merit function:

h(x, λ) =
1

2

(
∥λA⊤M−1(Ax− b) +N−1x∥2N +

(
1

2
∥Ax− b∥2M−1 −

τm

2

)2
)
. (3.17)

Note by Corollary 2.1 that (x∗, λ∗) is the unique minimizer of h(x, λ) and h(x∗, λ∗) = 0.
The following result shows that (∆x⊤

k ,∆λk)
⊤ is indeed a descent direction for h(x, λ).

Theorem 3.1 Let (∆y⊤
k ,∆λk)

⊤ be defined as (3.14a) and let ∆xk = V k∆yk. Then it
holds

∇h(xk−1, λk−1)
⊤

(
∆xk

∆λk

)
= −2h(xk−1, λk−1) ≤ 0. (3.18)

Theorem 3.1 is a desired property for a gradient descent type algorithm. At the (k− 1)-
th iteration, if h(xk−1, λk−1) = 0, then we have (xk−1, λk−1) = (x∗, λ∗), meaning we have
obtained the unique solution to (2.3). Otherwise, (∆x⊤

k ,∆λk)
⊤ is a descent direction of

h(x, λ) at the point (xk−1, λk−1), thereby we can continue updating the solution by a back-
tracking line search strategy.

Step 3: Determine step-length by backtracking line search. For the case that
h(xk−1, λk−1) ̸= 0, we need to determine a step-length γk such that h(xk, λk) decreases
strictly. To this end, we use the backtracking line search procedure to ensure that the
Armijo condition [28, §3.1] is satisfied:

h(xk, λk) ≤ h(xk−1, λk−1) + cγk(∆x⊤
k−1,∆λk)∇h(xk−1, λk−1), (3.19)

where (xk, λk) = (xk−1, λk−1) + γk(∆xk,∆λk), and c ∈ (0, 1) is a fixed constant. At each
iteration, we can quickly compute h(xk, λk) based on the following result.

Lemma 3.2 Let

F̄ (k)(y, λ) =

(
λB̄

⊤
k (B̄ky − β1e1) + y

1
2∥B̄ky − β1e1∥22 − τm

2

)
, B̄k =


α1

β2 α2

. . .
. . .

βk+1 αk+1

 .

Then we have

h(xk−1, λk−1) =
1

2
∥F (k)(ȳk−1, λk−1)∥22, (3.20)

h(xk, λk) =
1

2
∥F̄ (k)(ȳk, λk)∥22. (3.21)

We remark that in the above expression we have B̄k = Bkt for k ≥ kt, and specifically,
we have B̄k = B⊤

kt
if βkt+1 = 0.

The following theorem shows the existence of a suitable step-length; see e.g. [4, pp. 121,
Theorem 2.1] for details.

Theorem 3.2 (Armijo-backtracking) For any continuously differentiable function f(s) :
Rl → R, suppose ∇f is Lipschitz continuous with constant ζ(s) at s. If p is a descent di-
rection at s, i.e ∇f(s)⊤p < 0, then for a fixed c ∈ (0, 1) the Armijo condition

f(s+ γp) ≤ f(s) + cγ∇f(s)Tp
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is satisfied for all γ ∈ [0, γmax] where

γmax =
2(c− 1)∇f(s)⊤p

ζ(s)∥p∥2
.

Therefore, with the aid of Lemma 3.2, a suitable step-length γk can be found using the
following backtracking line search strategy.

Routine 1 Armijo backtracking line search:

1. Given γinit > 0, let γ(0) = γinit and l = 0.

2. Until 1
2∥F̄

(k)(ȳk, λk)∥22 <
(
1
2 − cγ(l)

)
∥F (k)(ȳk−1, λk−1)∥22,

(i) set γ(l+1) = ηγ(l), where η ∈ (0, 1) is a fixed constant;
(ii) l← l + 1.

3. Set γk = γ(l).

We set c = 10−4, γinit = 1.0 and η = 0.9 by default. Note that at each iteration we need to
make sure that λk > 0. Suppose at the (k− 1)-th iteration we already have λk−1 > 0. Then
the at k-th iteration if ∆λk < 0, we only need to enforce γinit < −λk−1/∆λk.

Overall, the whole procedure of the projected Newton method is presented in Algo-
rithm 3. In the PNT algorithm, at each k-th iteration, computing the projected Newton
direction only needs to solve the (k+1)-order linear system (3.14a), which can be done very
quickly when k ≪ n. From the termination step kt, at each iteration, a (kt +1)-order linear
system (3.14c) needs to be solved. Furthermore, we numerically find that the algorithm
almost always obtains a satisfied solution before gen-GKB terminates.

Algorithm 3 Projected Newton method (PNT) for (2.3) and (2.4)

Input: A ∈ Rm×n, b ∈ Rm, M ∈ Rm×m, N ∈ Rn×n, τ ≳ 1
1: Initialization: λ0 > 0, ȳ0 = 0; c = 10−4, η = 0.9; tol>0
2: Compute β1, α1, u1, v1 by Algorithm 2
3: for k = 1, 2, . . . do
4: Compute βk+1, αk+1, uk+1, vk+1 by Algorithm 2; Form Bk+1 and V k

5: (Terminate gen-GKB if βk+1 or αk+1 is extremely small)
6: Compute F (k)(ȳk−1, λk−1) and J (k)(ȳk−1, λk−1) by (3.12) and (3.13)
7: Compute (∆yk,∆λk) by solving (3.14a)
8: if ∆λk > 0 then
9: γinit = 1

10: else
11: γinit = min{1,−ηλk−1/∆λk} ▷ Ensure the positivity of λk

12: end if
13: Determine the step-length γk by Routine 1
14: Update (yk, λk) by (3.14b)
15: if 1

2∥F̄
(k)(ȳk, λk)∥2 ≤ tol then

16: Compute xk = V kyk; Stop iteration
17: end if
18: end for
Output: Final solution (xk, λk)

3.3 Proofs

Here we give the proofs of all the results in Section 3.2. Remember that we always follow
the notations as stated in Remark 3.1 and (3.16).
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Proof of Lemma 3.1. By (3.10) and (3.11) we have

F (k)(y, λ) =

(
λ(AV k)

⊤M−1(AV ky − b) + V ⊤
k N

−1V ky
1
2∥AV ky − b∥2

M−1 − τm
2

)
,

and

J (k)(y, λ) =

(
λ(AV k)

⊤M−1(AV k) + V ⊤
k N

−1V k (AV k)
⊤M−1(AV ky − b)

(AV ky − b)⊤M−1(AV k) 0

)
.

Using relations (3.7) and Proposition 3.1, we haveAV ky−b = Uk+1(Bk−β1e1), V
⊤
k N

−1V k =
I and U⊤

k+1M
−1Uk+1 = I, leading to

(AV k)
⊤M−1(AV ky − b) = (Uk+1Bk)

⊤M−1Uk+1(Bk − β1e1) = B⊤
k (Bk − β1e1),

and
∥AV ky − b∥2M−1 = ∥Uk+1(Bk − β1e1)∥2M−1 = ∥Bk − β1e1∥22.

We remark that if βkt+1 = 0, then for k ≥ kt, the relation AV ky− b = Uk+1(Bk−β1e1) is
replaced by AV kty− b = Ukt(Bkt

− β1e1). Therefore, the above identity is also applied to
the case k ≥ kt. Now we have proved (3.12). The expression (3.13) can be proved similarly.
2

In order to prove Lemma 3.2, we first give the following result.

Lemma 3.3 Let N̂ =

(
N

1

)
. Then we have the following identity:

∥F (xk−1, λk−1)∥N̂ = ∥F (k)(ȳk−1, λk−1)∥2. (3.22)

Proof. First notice that

∥F (xk−1, λk−1)∥2N̂ =
∥∥∥λk−1A

⊤M−1(Axk−1 − b) +N−1x
∥∥∥2
N
+

(
1

2
∥Axk−1 − b∥2M−1 −

τm

2

)2

.

For the first term of the above summation, we have∥∥∥λk−1A
⊤M−1(Axk−1 − b) +N−1xk−1

∥∥∥2
N

=
(
λk−1A

⊤M−1(Axk−1 − b) +N−1xk−1

)⊤
N
(
λk−1A

⊤M−1(Axk−1 − b) +N−1xk−1

)
,

and

N
(
λk−1A

⊤M−1(Axk−1 − b) +N−1xk−1

)
= λk−1NA⊤M−1Uk+1(Bkȳk−1 − β1e1) + V kȳk−1

= λk−1(V kB
⊤
k + αk+1vk+1e

⊤
k+1)(Bkȳk−1 − β1e1) + V kȳk−1

= V k

(
λk−1B

⊤
k (Bkȳk−1 − β1e1) + ȳk−1

)
,

where we have used

αk+1vk+1e
⊤
k+1(Bkȳk−1 − β1e1) = αk+1βk+1vk+1e

⊤
k ȳk−1 =

0 (e⊤k ȳk−1 = 0 for k ≤ kt)

0 (αk+1βk+1 = 0 for k > kt)
.
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Similarly, we have

λk−1A
⊤M−1(Axk−1 − b) +N−1xk−1 = N−1V k

(
λk−1B

⊤
k (Bkȳk−1 − β1e1) + ȳk−1

)
.

Using V ⊤
k N

−1V k = I, we get∥∥∥λk−1A
⊤M−1(Axk−1 − b) +N−1xk−1

∥∥∥
N

=
∥∥∥λk−1B

⊤
k (Bkȳk−1 − β1e1) + ȳk−1

∥∥∥
2
.

From the above derivation, we also have 1
2∥Axk−1−b∥2M−1− τm

2 = 1
2∥Bkȳk−1−β1e1∥22− τm

2 .
The desired result immediately follows by using (3.12). 2

Proof of Lemma 3.2. First notice that

h(x, λ) =
1

2
∥F (x, λ)∥2

N̂
. (3.23)

Combining the above relation with Lemma 3.3 we obtain (3.20). Also, for k < kt we have

h(xk, λk) =
1

2
∥F (k+1)(ȳk, λk)∥22

with

F (k+1)(ȳk, λk) =

(
λB⊤

k+1(Bk+1ȳk − β1e1) + ȳk
1
2∥Bk+1ȳk − β1e1∥22 − τm

2

)
.

Since the last element of β1e1 and ȳk is zero, it is easy to verify that

Bk+1ȳk − β1e1 =

(
B̄kȳk − β1e1

0

)
, B⊤

k+1(Bk+1ȳk − β1e1) = B̄
⊤
k (B̄kȳk − β1e1).

For k ≥ kt, we have F (k)(y, λ) = F (k+1)(y, λ) = F̄ (k)(y, λ), and (3.21) is always true.
Therefore, we finally prove (3.21). 2

In order to prove Theorem 3.1, we need Lemma 3.3 and the following result.

Lemma 3.4 For any k ≥ 1 we have the following identity:(
V ⊤

k

1

)
J(xk−1, λk−1)N̂F (xk−1, λk−1) = J (k)(ȳk−1, λk−1)F

(k)(ȳk−1, λk−1).

Proof. First notice from (2.9) that(
V ⊤

k

1

)
J(xk−1, λk−1)N̂ =

(
λk−1(AV k)

⊤M−1AN + V ⊤
k (AV k)

⊤M−1(Axk−1 − b)

(Axk−1 − b)⊤M−1AN 0

)
.

Using (3.7c) and similar derivations to the proof of Lemma 3.3, we get

(Axk−1 − b)⊤M−1AN =
(
Bkȳk−1 − β1e1

)⊤
U⊤

k+1M
−1AN

=
(
Bkȳk−1 − β1e1

)⊤ (
BkV

⊤
k + αk+1ek+1v

⊤
k+1

)
=
(
Bkȳk−1 − β1e1

)⊤
BkV

⊤
k . (3.24)

Also, we can get

(AV k)
⊤M−1AN = (Uk+1Bk)

⊤M−1AN = B⊤
k

(
BkV

⊤
k + αk+1ek+1v

⊤
k+1

)
= B⊤

k BkV
⊤
k + αk+1βk+1ekv

⊤
k+1,
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and

(AV k)
⊤M−1(Axk−1 − b) = (BkUk+1)

⊤M−1Uk+1(Bkȳk−1 − β1e1)

= B⊤
k (Bkȳk−1 − β1e1).

Using (3.13), we get(
V ⊤

k

1

)
J(xk−1, λk−1)N̂

=

(
(λk−1B

⊤
k Bk + I)V ⊤

k B⊤
k (Bkȳk−1 − β1e1)(

Bkȳk−1 − β1e1
)⊤

BkV
⊤
k 0

)
+

(
αk+1βk+1ek+1v

⊤
k+1

0

)

= J (k)(ȳk−1, λk−1)

(
V ⊤

k

1

)
+

(
αk+1βk+1ekv

⊤
k+1

0

)

Using similar derivations to the proof of Lemma 3.3, we get

F (xk−1, λk−1) =

(
N−1

1

)(
λk−1NA⊤M−1(Axk−1 − b) + xk−1

1
2∥Axk−1 − b∥2

M−1 − τm
2

)

=

(
N−1

1

)(
V k

1

)(
λk−1B

⊤
k (Bkȳk−1 − β1e1) + ȳk−1

1
2∥Bkȳk−1 − β1e1∥22 − τm

2

)

=

(
N−1

1

)(
V k

1

)
F (k)(ȳk−1, λk−1).

Using the relations(
V ⊤

k

1

)(
N−1

1

)(
V k

1

)
= I,

(
αk+1βk+1ekv

⊤
k+1

0

)(
N−1

1

)(
V k

1

)
= 0,

we finally obtain the desired result. 2

Now we can now give the proof of Theorem 3.1.

Proof of Theorem 3.1. Noticing (3.23) and that J(x, λ) is the Jacobian of F (x, λ), we
have

∇h(x, λ) = J(x, λ)N̂F (x, λ).

Using Lemma 3.3 and Lemma 3.4, we obtain

∇h(xk−1, λk−1)
⊤

(
∆xk

∆λk

)
=

(
∆yk

∆λk

)⊤(
V ⊤

k

1

)
J(xk−1, λk−1)N̂F (xk−1, λk−1)

=

(
∆yk

∆λk

)⊤

J (k)(ȳk−1, λk−1)F
(k)(ȳk−1, λk−1)

= −∥F (k)(ȳk−1, λk−1)∥22 = −∥F (xk−1, λk−1)∥2N̂
= −2h(xk−1, λk−1) ≤ 0.

The proof is completed. 2
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4 Convergence analysis

This section aims to prove the convergence of the iterated solution, which is stated in the
following result and Corollary 4.1.

Theorem 4.1 Suppose the PNT algorithm is initialized with ȳ0 = 0, x0 = 0 and λ0 > 0.
Then we either have

h(xk, λk) = 0 (4.1)

for some k <∞, or have
lim
k→∞

h(xk, λk) = 0. (4.2)

Notice that (x∗, λ∗) is the unique minimizer of h(x, λ) and h(x∗, λ∗) = 0. Therefore,
(4.1) implies that the algorithm finds the exact solution to (2.3) and (2.4) at the k-th
iteration. In the following part, we prove (4.2) under the assumption that h(xk, λk) > 0 for
any k ≥ 1.

We need a series of lemmas, which are Lemma 4.1–Lemma 4.6. All these lemmas follow
the assumption of Theorem 4.1.

Lemma 4.1 For any matrix C ∈ Rm×n with full column rank and d ∈ Rm, if the vector
sequence {wk} ∈ Rn satisfies

lim
k→∞

∥C⊤(Cwk − d)∥2 = 0,

then
lim
k→∞

wk = w∗ := argmin
w∈Rn

∥Cw − d∥2.

Proof. First note thatw∗ is well-defined, since argminw∈Rn ∥Cw−d∥2 has a unique solution
for the full column rank matrix C. For any wk, let wk = w∗ + w̄k. Then we have

lim
k→∞

∥C⊤(Cwk − d)∥2 = lim
k→∞

∥C⊤(Cw∗ − d) +C⊤Cw̄k∥2 = lim
k→∞

∥C⊤Cw̄k∥2 = 0,

since C⊤(Cw∗ − d) = 0. Now we have ∥w̄k∥2 → 0 since C⊤C is positive definite and all
norms of Rn are equivalent. Therefore, we have ∥wk − w∗∥2 → 0 or the equivalent form
limk→∞ wk = w∗. 2

Lemma 4.2 If the unique solution to miny∈Rkt ∥Bkt
y − β1e1∥2 is ymin, then xmin :=

V kt
ymin is the unique solution to

min
x∈Rn

∥x∥N−1 s.t. ∥Ax− b∥M−1 = min. (4.3)

Proof. It is easy to verify that both miny∈Rkt ∥Bkt
y − β1e1∥2 and (4.3) have a unique

solution. A vector x is the unique solution to (4.3) if and only if

A⊤M−1(Ax− b) = 0, x ⊥N−1 N (A),

where ⊥N−1 means the orthogonality relation under the N−1-inner product. Now we verify
the above two conditions for xmin. For the first condition, using the relations Axmin =
AV kt

ymin = Ukt+1Bkt
ymin and (3.7c), we have

A⊤M−1(Axmin − b) = A⊤M−1Ukt+1(Bkt
ymin − β1e1)

= N−1(V kt
B⊤

kt
+ αkt+1vkt+1e

⊤
kt+1) (Bkt

ymin − β1e1)

= N−1
[
V kt

B⊤
kt
(Bkt

ymin − β1e1) + αkt+1βkt+1vkt+1e
⊤
kt
ymin

]
= 0,

17



since B⊤
kt
(Bkt

ymin − β1e1) = 0 and αkt+1βkt+1 = 0. For the second condition, by Proposi-
tion 3.1 we have

xmin ∈ span{V kt} = span{(NA⊤M−1A)iNA⊤M−1b}kt−1
i=0 ⊆ R(NA⊤) = NN (A)⊥.

Write xmin = Nx̄min with x̄min ∈ N (A)⊥. For any w ∈ N (A), we have

⟨xmin,w⟩N−1 = ⟨Nx̄min,w⟩N−1 = ⟨x̄min,w⟩2 = 0.

Therefore, it holds that xmin ⊥N−1 N (A). 2

Lemma 4.3 There exist a positive constant C1 such that for any k ≥ 1, it holds

∥A⊤M−1(Axk−1 − b)∥N = ∥B⊤
k (Bkȳk−1 − β1e1)∥2 ≥ C1 > 0 (4.4)

Proof. First, we get from (3.24) the first indentity:

∥A⊤M−1(Axk−1 − b)∥2N
= (Axk−1 − b)⊤M−1ANN−1

(
(Axk−1 − b)⊤M−1AN

)⊤
=
(
Bkȳk−1 − β1e1

)⊤
BkV

⊤
k N

−1V ⊤
k B

⊤
k

(
Bkȳk−1 − β1e1

)
= ∥B⊤

k

(
Bkȳk−1 − β1e1

)
∥22.

Then, we prove
∥Axk−1 − b∥M−1 = ∥Bkȳk−1 − β1e1∥2 ≥

√
τm (4.5)

by mathematical induction. For k = 1, we have ∥Ax0 − b∥M−1 = ∥b∥M−1 >
√
τm since

x0 = 0; see Assumption 2.1. Suppose ∥Axk−1 − b∥M−1 ≥
√
τm for k ≥ 1. We have

∥Axk − b∥2M−1 = ∥AV k(ȳk−1 + γk∆yk)− b∥2M−1

= ∥Axk−1 − b∥2M−1 + γ2
k∥AV k∆yk∥2M−1 + 2γk(Axk−1 − b)⊤M−1AV k∆yk

= ∥Bkȳk−1 − β1e1∥22 + γ2
k∥AV k∆yk∥2M−1 + 2γk(Bkȳk−1 − β1e1)

⊤Bk∆y,

since

(Axk−1 − b)⊤M−1AV k = (Bkȳk−1 − β1e1)
⊤U⊤

k+1M
−1Uk+1Bk = (Bkȳk−1 − β1e1)

⊤Bk.

Writing the equation J (k)(ȳk−1, λk−1)

(
∆yk

∆λk

)
= −F (k)(ȳk−1, λk−1) in the matrix form

(
λk−1B

⊤
k Bk + I B⊤

k (Bkȳk−1 − β1e1)

(Bkȳk−1 − β1e1)
⊤Bk 0

)(
∆yk

∆λk

)
= −

(
λk−1B

⊤
k (Bkȳk−1 − β1e1) + ȳk−1

1
2∥Bkȳk−1 − β1e1∥22 − τm

2

)

and using ∥Bkȳk−1−β1e1∥2 ≥
√
τm, we get from the second equility of the above equation

that

(Bkȳk−1 − β1e1)
⊤Bk∆y = −1

2

(
∥Bkȳk−1 − β1e1∥22 − τm

)
≤ 0.

Since γk ≤ 1, we get

∥Axk − b∥2M−1 ≥ ∥Bkȳk−1 − β1e1∥22 + γ2
k∥AV k∆yk∥2M−1 −

(
∥Bkȳk−1 − β1e1∥22 − τm

)
= τm+ γ2

k∥AV k∆yk∥2M−1 ≥ τm.

Therefore, we prove (4.5).

To obtain the lower bound in (4.4), we investigate two cases: k < kt and k ≥ kt. Case
1: k < kt. For this case, we have

∥B⊤
k

(
Bkȳk−1 − β1e1

)
∥2 ≥ σmin(Bk)∥Bkȳk−1 − β1e1∥2 ≥ σmin(Bkt

)
√
τm > 0,
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where σmin(·) is the smallest singular value of a matrix, and

Bkt
=


α1

β2 α2

. . .
. . .

βkt αkt

 .

Case 2: k ≥ kt. For this case, we can write xk−1 as xk−1 = V kt ȳk−1. Remember that

ȳk−1 = yk−1 if k > kt. We first prove ∥B⊤
kt
(Bkt

ȳk−1 − β1e1)∥2 ̸= 0. If it is not true, then
ȳk−1 = argminy ∥Bkt

y − β1e1∥2. By Lemma 4.2, xk−1 is the solution to (4.3). Thus, it
must hold that ∥Axk−1 − b∥M−1 <

√
τm by Assumption 2.1, in contradiction with (4.5).

Now suppose the lower bound in (4.4) is not true. Then there exists a subsequence {ȳkj−1}
with kj ≥ kt such that

lim
j→∞

∥B⊤
kt
(Bkt ȳkj−1 − β1e1)∥2 = 0.

By Lemma 4.1, we have

lim
j→∞

ȳkj−1 = ymin := argmin
y
∥Bkt

y − β1e1∥2,

leading to
lim
j→∞

xkj−1 = lim
kj→∞

V kt
ȳkj−1 = V kt

ymin.

It follows from Lemma 4.2 that V kt
ymin = xmin, which is the solution to (4.3). Therefore,

it must hold
lim
j→∞

∥Axkj−1 − b∥M−1 = ∥Axmin − b∥M−1 <
√
τm

by Assumption 2.1, which is in contradiction with (4.5). Summarizing both the two cases,
the desired result is proved. 2

Lemma 4.4 The points {(xk, λk)}∞i=0 generated by the PNT algorithm lie in a bounded set
of Rn × R+.

Proof. We only need to prove {(xk, λk)}k≥kt is bounded above. In this case, recall that
xk = V kt

yk and

h(xk, λk) =
1

2

(
∥λkA

⊤M−1(Axk − b) +N−1xk∥2N +

(
1

2
∥Axk − b∥2M−1 −

τm

2

)2
)

=
1

2

(
∥λkA

⊤M−1(Axk − b) +N−1xk∥2N +

(
1

2
∥Bkt

yk − β1e1∥22 −
τm

2

)2
)
.

Notice that h(x0, λ0) ≥ h(x1, λ1) ≥ · · · . If the points do not lie in a bounded set, there exists
a subsequence {(xkj

, λkj
)} with kj ≥ kt such that (xkj

, λkj
) → ∞. If ∥xkj

∥2 → ∞, then
∥ykj
∥2 →∞, since xkj

= V kt
ykj

and V kt
has full column rank. This leads to ∥Bkt

ykj
∥2 →

∞ since Bkt
has full column rank. If follows that the second term of h(xkj

, λkj
) tends

to infinity and h(xkj , λkj ) → ∞, a contradiction. Therefore, it must hold that ∥xkj∥2 is

bounded above and λkj →∞. By Lemma 4.3, we have ∥λkjA
⊤M−1(Axkj−b)∥N ≥ λkjC1.

Notice that {N−1xkj} lie in a bounded set. It follows that ∥λkjA
⊤M−1(Axkj − b) +

N−1xkj
∥N →∞ and h(xkj

, λkj
)→∞, also a contradiction. 2

Lemma 4.5 There exist a positive constant C2 < +∞ such that for any k ≥ 1, it holds

∥J (k)(ȳk−1, λk−1)
−1∥2 ≤ C2. (4.6)
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Proof. First, we prove that J (k)(ȳk−1, λk−1) is always nonsingular. Write it as

J (k)(ȳk−1, λk−1) =

(
λk−1B

⊤
kt
Bk + I B⊤

k (Bkt
ȳk−1 − β1e1)

(Bkȳk−1 − β1e1)
⊤Bk 0

)
=:

(
Ck dk

d⊤
k 0

)

and notice that(
Ck dk

d⊤
k 0

)
=

(
I 0

−d⊤
k C

−1
k 1

)−1(
Ck 0

0 −d⊤
k C

−1
k dk

)(
I −C−1

k dk

0 1

)−1

.

It follows that(
Ck dk

d⊤
k 0

)−1

=

(
I −C−1

k dk

0 1

)(
C−1

k 0

0 −(d⊤
k C

−1
k dk)

−1

)(
I 0

−d⊤
k C

−1
k 1

)
, (4.7)

Since Ck is positive definite and ∥dk∥2 ≥ C1 > 0.

To give an upper bound on ∥J (k)(ȳk−1, λk−1)
−1∥2, we only need to consider k ≥ kt,

where Bk = Bkt
in J (k)(ȳk−1, λk−1). Since σmin(Ck) = σmin(λk−1B

⊤
kt
Bkt

+ I) ≥ 1, we

have ∥C−1
k ∥2 ≤ 1. By Lemma 4.4, there exist a positive constant C3 < +∞ such that

λk ≤ C3, thereby

σmax(Ck) ≤ σmax(λk−1B
⊤
kt
Bkt) + σmax(I) ≤ C3σmax(B

⊤
kt
Bkt) + 1 =: C̄3.

By Lemma 4.3 we have ∥dk∥2 = ∥B⊤
kt
(Bkt

ȳk−1 − β1e1)∥2 ≥ C1. On the other hand, by
Lemma 4.4 we know that ∥xk−1∥2 = ∥V kt

ȳk−1∥2 is bounded above, thereby ∥ȳk−1∥2 is
bounded above since V kt has full column rank. Thus, there exists a positive constant C̄1

such that ∥dk∥2 ≤ C̄1, leading to

∥C−1
k dk∥2 ≤ ∥C−1

k ∥2∥dk∥2 ≤ C̄1σmin(Ck)
−1 ≤ C̄1,

and
d⊤
k C

−1
k dk ≥ σmin(C

−1
k )∥dk∥22 = σmax(Ck)

−1∥dk∥22 ≥ C2
1/C̄3 > 0.

Therefore, we have∥∥∥∥∥
(
0 −C−1

k dk

0 0

)∥∥∥∥∥
2

2

=

∥∥∥∥∥∥
(
0 −C−1

k dk

0 0

)⊤(
0 −C−1

k dk

0 0

)∥∥∥∥∥∥
2

=

∥∥∥∥∥
(
0

∥C−1
k dk∥22

)∥∥∥∥∥
2

≤ C̄2
1

and ∥∥∥∥∥
(
I −C−1

k dk

0 1

)∥∥∥∥∥
2

≤

∥∥∥∥∥
(
I

1

)∥∥∥∥∥
2

+

∥∥∥∥∥
(
0 −C−1

k dk

0 0

)∥∥∥∥∥
2

≤ 1 + C̄1.

Similarly, we have ∥∥∥∥∥
(
C−1

k 0

0 −(d⊤
k C

−1
k dk)

−1

)∥∥∥∥∥
2

≤ max{1, C̄3/C
2
1}.

Using the expression of J (k)(ȳk−1, λk−1) in (4.7), we finally obtain the desired result. 2

Lemma 4.6 There exists a positive constant C4 such that for any k ≥ 1, the step-length
satisfies

γk ≥ C4 > 0. (4.8)
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Proof. By Theorem 3.2 and Theorem 3.1, at each iteration the Armijo backtracking line
search must terminate in finite steps with a γk satisfying

γk ≥ min

{
1,

4(1− c)ηh(xk−1, λk−1)

ζ(xk−1, λk−1)∥(∆x⊤
k ,∆λk)∥22

}
, (4.9)

where ζ(xk−1, λk−1) is the Lipschitz constant of ∇h at (xk−1, λk−1); see also [4, pp. 122,
Corollary 2.1]. Now we prove ζ(xk−1, λk−1) are bounded above. Notice that ∇h(x, λ) =

J(x, λ)N̂F (x, λ). Thus, all the elements in the Jacobian of ∇h(x, λ) are polynomials of
(x, λ) with degrees not bigger than 4. Since {(xk−1, λk−1)} lie in a bounded set, the norms
of the Jacobians of ∇h(x, λ) at the points {(xk−1, λk−1)} are bounded above. Therefore,
the Lipschitz constants ζ(xk−1, λk−1) are bounded above.

Let ζ(xk−1, λk−1) ≤ ζ0 with 0 < ζ0 < +∞ for any k ≥ 1. Then by Lemma 4.5 and
Lemma 3.3, we have∥∥∥∥∥

(
∆xk

∆λk

)∥∥∥∥∥
2

≤

∥∥∥∥∥
(
V k

1

)∥∥∥∥∥
2

∥∥∥∥∥
(
∆yk

∆λk

)∥∥∥∥∥
2

≤ (∥V kt
∥2 + 1)∥J (k)(ȳk−1, λk−1)

−1∥2∥F (k)(ȳk−1, λk−1)∥2
≤ C2(∥V kt

∥2 + 1)∥F (xk−1, λk−1)∥N̂
= C2(∥V kt

∥2 + 1)(2h(xk−1, λk−1))
1/2.

Then we obtain

γk ≥ min

{
1,

4(1− c)ηh(xk−1, λk−1)

ζ0∥(∆x⊤
k ,∆λk)⊤∥22

}
≥ min

{
1,

2(1− c)η

ζ0C2
2 (∥V kt∥2 + 1)2

}
=: C4.

The desired result is obtained. 2

Now we can now give the proof of Theorem 4.1.

Proof of Theorem 4.1. By Lemma 4.4, the sequence {(xk, λk)}∞k=1 is contained in a
bounded set, thereby there exists a convergent subsequence {(xkj , λkj )}∞j=1. Suppose (xkj , λkj )→
(x̂, λ̂). Then it follows that h(xkj

, λkj
) → h(x̂, λ̂) since h(x, λ) is continuous. Note that

h(xkj
, λkj

) is nonincreasing, thereby h(x̂, λ̂) ≤ h(xkj
, λkj

) for any kj . Thus, for any ε > 0,
there exist a k⋆ ∈ N such that

h(xkj , λkj ) < h(x̂, λ̂) + ε, kj > k⋆.

Select one kj that satisfies kj > k⋆. Then for any k ≥ kj , it holds that

h(xk, λk) ≤ h(xkj , λkj ) < h(x̂, λ̂) + ε,

which means that
lim
k→∞

h(xk, λk) = h(x̂, λ̂).

By the Armijo condition and Theorem 3.1, we have

h(xk+1, λk+1)− h(xk, λk) ≤ cγk
(
∆x⊤

k ,∆λk

)
∇h(xk, λk) ≤ 0.

Taking the limit on both sides leads to

lim
k→∞

cγk
(
∆x⊤

k ,∆λk

)
∇h(xk, λk) = 0

By Lemma 4.6 we get limk→∞
(
∆x⊤

k ,∆λk

)
∇h(xk, λk) = 0. Noticing by Theorem 3.1 that

−2h(xk, λk) =
(
∆x⊤

k ,∆λk

)
∇h(xk, λk), we obtain

h(x̂, λ̂) = lim
k→∞

h(xk, λk) = 0. (4.10)

This proves the desired result. 2
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Now we can give the convergence result of (xk, λk) with respect to the true solution
(x∗, λ∗).

Corollary 4.1 The sequence {(xk, λk)}∞k=0 generated by the PNT algorithm eventually con-
verges to (x∗, λ∗), i.e. the solution of (2.3) and the corresponding Lagrange multiplier.

Proof. Using the same notations as the proof of Theorem 4.1, we obtain from (4.10) that

(x̂, λ̂) = (x∗, λ∗), since h(x, λ) has the unique zero point (x∗, λ∗). Therefore, the subse-
quence {(xkj

, λkj
)}∞j=1 defined in the proof of Theorem 4.1 converges to (x∗, λ∗). Now we

need to prove the whole sequence {(xk, λk)}∞k=1 converges to (x∗, λ∗). Assume that there
is a subsequence {(xlj , λlj )}∞j=1 that does not converge to (x∗, λ∗). We can select a subse-

quence from {(xlj , λlj )}∞j=1 that converges to a point (x̄, λ̄) ̸= (x∗, λ∗). Since h(xlj , λlj ) is
nonincreasing with respect to j, using the same procedure as the proof of Theorem 4.1, we
can obtain again that h(x̄, λ̄) = 0, leading to (x̄, λ̄) = (x∗, λ∗), a contradiction. Therefore,
any subsequence of {(xk, λk)}∞k=0 converges to (x∗, λ∗), thereby {(xk, λk)}∞k=0 converges to
(x∗, λ∗). 2

5 Experimental results

We test the PNT method and compare it with the standard Newton method. These two
methods use the same initialization and backtracking line search strategy. The setting of
hyperparameters follows Algorithm 3, and we set τ = 1.001 and λ0 = 0.1 in all the ex-
periments. We also implement the generalized hybrid iterative method proposed in [12]
(denoted by genHyb), which is also based on gen-GKB. The genHyb iteratively computes
approximations to µopt and xopt = x(µopt), where µopt is the optimal Tikhonov regulariza-
tion parameter, that is µopt = minµ>0 ∥x(µ) − xtrue∥2; the k-th corresponding Lagrangian
multiplier is λk = 1/µk. All the experiments are performed on MATLAB R2023b. The
codes are available at https://github.com/Machealb/InverProb_IterSolver,

5.1 Small-scale problems

We choose two small-scale 1D inverse problems from [24]. The first problem is heat, an
inverse heat equation described by the Volterra integral equation of the first kind on [0, 1]
with the kernel

k(s, t) = ϕ(s− t), ϕ(t) =
t−3/2

2
√
π

exp

(
− 1

4t

)
.

The second problem is shaw, a one-dimensional image restoration model described by the
Fredholm integral equation of the first kind on [−π/2, π/2] with the kernel

k(s, t) = (cos s+ cos t)2
(
sinu

u

)2

, u = π(sin s+ sin t).

We use the code in [24] to discretize the two problems to generate A, xtrue and btrue =
Axtrue, where m = n = 2000 and m = n = 3000 for heat and shaw, respectively. We set the
noisy observation vector b as b = btrue + ϵ, where ϵ is a Gaussian noise. For heat, we set ϵ
as a white noise (i.e. M is a scalar matrix) with noise level ε := ∥ϵ∥2/∥btrue∥2 = 5× 10−2;
for shaw, we set ϵ as a uncorrelated non-white noise (i.e. M is a diagonal matrix) with
noise level ε = 10−2. The true solutions and noisy observed data for these two problems are
shown in Figure 5.1.

For heat, we assume a Gaussian prior x ∼ N (0, λ−1N) withN coming from the Gaussian
kernel κG, i.e. the ij element of N is

[N ]ij = KG(rij), KG(r) := exp
(
−r2/(2l2)

)
,

22
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Figure 5.1: True solution and noisy observed data. Top: heat. Bottom: shaw.

where rij = ∥pi−pj∥2 and {pi}ni=1 are discretized points of the domain of the true solution;
the parameter l is set as l = 0.1. For shaw, we construct N using the exponential kernel

Kexp(r) := exp (−(r/l)ν) ,

where the parameters l and ν are set as l = 0.1 and ν = 1. We set τ = 1.001 for both the
two problems. We factorize M−1 and N−1 to form (1.3) and solve it directly to find µopt

and xopt; the corresponding Lagrangian multiplier is λopt = 1/µopt. We also compute the
µ of (2.2) and the corresponding regularized solution, which is denoted by µDP and xDP ,
respectively. Therefore, the solution to (2.3) and (2.4) is (x∗, λ∗) = (xDP , 1/µDP ). We use
the optimal Tikhonov solution and the DP solution as the baseline for the subsequent tests.
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Figure 5.2: Relative errors of iterative solutions, convergence of λk, and convergence of merit
functions. Top: heat. Bottom: shaw.

We compare the convergence behavior of PNT, Newton and genHyb methods by plotting
the relative error curve of xk with respect to xtrue and the convergence curves of λk and
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merit functions. The relative errors and the λ of (xDP , 1/µDP ) and (xopt, 1/µopt) are used
as baselines. From Figure 5.2 we find that both PNT and Newton methods converge very fast
to xDP and λDP := 1/µDP with very few iterations, and PNT converges only slightly slower
than Newton. For heat, the error of the DP solution is slightly higher than the optimal
Tikhonov solution, because DP slightly under-estimates λ. The merit functions of both
PNT and Newton decrease monotonically, and h(xk, λk) of PNT eventually decreases to an
extremely small value for the two problems. We remark that we set w = 1 for hw(x, λ)
in all the tests. For Newton method for heat, we stop the iterate at k = 34 because the
step-length γk is too small. In comparison, the genHyb method converges much slower than
the previous two methods, especially for heat.
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Figure 5.3: Comparision of reconstructed solutions at the final iterations with the optimal
Tikhonov regularized solution. Top: heat. Bottom: shaw.

Figure 5.3 plots the recovered solutions computed by PNT and genHyb methods at the
final iterations; the solution by Newton is almost the same as that by PNT, thereby we omit
it. We also plot the optimal Tikhonov regularized solution as a comparison, where the DP
solution is very similar and omitted. We find that both PNT and genHyb can recover good
regularized solutions, and PNT is slightly better for heat.
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Figure 5.4: Comparision of scalability of PNT and Newton methods as the scale of the
problems increasing from n = 1000 to n = 5000. Left: heat. Right: shaw.

To show the advantage of the computational efficiency of PNT over Newton, we gradually
increase the scale of the test problems and measure the running time of the two methods,
where both the algorithms stop at the first iteration such that

∣∣∥Axk − b∥2
M−1 − τm

∣∣ ≤
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Table 5.1: Running time (measured in seconds) of PNT and Newton methods as the scale
of the problems increasing from n = 1000 to n = 5000. Both the two methods stop at the
first k (in parentheses) such that

∣∣∥Axk − b∥2
M−1 − τm

∣∣ ≤ 10−8.

n 1000 2000 3000 4000 5000

heat

PNT 0.033 (18) 0.098 (21) 0.143 (19) 0.279 (19) 0.407 (19)

Newton 0.267 (10) 1.708 (11) 4.007 (10) 9.027 (10) 17.715 (11)

ratio 8.1 17.4 28.0 32.4 43.5

shaw

PNT 0.014 (17) 0.057 (16) 0.133 (19) 0.277 (18) 0.356 (16)

Newton 0.577 (17) 4.349 (17) 8.196 (16) 11.600 (13) 55.919 (16)

ratio 41.2 77.9 61.6 41.9 157.1

10−8. The time data are listed in Table 5.1. We also compute the ratio of the running time,
i.e. the value of Newton-time/PNT-time. For shaw, we find that both PNT and Newton stop
with similar iteration numbers, and the computational speed of PNT is much faster than
Newton, with the speedup ratio varying from 41 to 157. For heat, we find that Newton stops
with only about half iteration numbers of PNT’s. However, the total running time of PNT is
still much smaller than Newton’s, with the speedup ratio varying from 8 to 43. To compare
the scalability of PNT and Newton more clearly, we use the data in Table 5.1 to plot the
curve of time growth with respect to n. Clearly, PNT saves much more time compared to
Newton while obtaining solutions with the same accuracy.

5.2 Large-scale problems

We choose three 2D image deblurring and computed tomography inverse problems from
[17]. The first problem is PRblurshake, which simulates a spatially invariant motion blur
caused by the shaking of a camera. The second problem is PRblurspeckle, which simulates a
spatially invariant blur caused by atmospheric turbulence. The third problem is PRspherical
that models spherical means tomography. The true images and noisy observed data are
shown in Figure 5.5, where all the images have 128 × 128 pixels, and ϵ are uncorrelated
non-white Gaussian noises with ε = 10−3, 5 × 10−3 and 10−2, respectively. Therefore, we
have m = n = 1282 for all the three problems.

For PRblurshake and PRblurspeckle, we construct N using the Gaussian kernel with
l = 5.0 and l = 1.0, respectively. For PRspherical, we construct N using the Matérn kernel

KM (r) :=
21−ν

Γ(ν)

(√
2νr

l

)ν

Bν

(√
2νr

l

)
,

where Γ(·) is the gamma function, Bν(·) is the modified Bessel function of the second kind,
and l and ν are two positive parameters of the covariance; we set l = 100 and ν = 1.5.

For the three large-scale problems, it is almost impossible to get (µopt,x(µopt)) and
(µDP ,x(µDP )) by solving (1.3). The standard Newton method and the methods in [13, 14]
can not be applied because these methods have to deal with N−1. To test the performance
of PNT, here we only compare it with genHyb for convergence behavior and accuracy of the
regularized solutions.

The relative error curves of the two methods, the convergence curves of λk and h(xk, λk)
are plotted in Figure 5.6. It can be observed that PNT for both the three problems converge
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Figure 5.5: True solution and noisy observed data for deblurring and tomography problems.
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PRspherical.
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Figure 5.7: Reconstructed solutions at the final iterations by PNT and genHyb. From the
leftmost column to the rightmost column are PRblurshake, PRblurspeckle and PRspherical.

very fast: the variations of relative error and λk become quickly stabilized after 50 to 150
iterations, although for the first two problems h(xk, λk) are still decreasing significantly
after 200 iterations. The genHyb method for PRblurshake converges much slower, and after
200 iterations it only obtains a solution with a much larger relative error than that of
PNT, this is because genHyb significantly under-estimates λ than PNT. For PRblurspeckle,
genHyb computes a regularized solution with accuracy slightly better than PNT, while for
PRspherical, the accuracy of PNT is slightly better. The reconstructed images are shown in
Figure 5.7, which reveals the effectiveness of both the two methods.
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Figure 5.8: Relative errors of iterative solutions by PNT and genHyb, and the decrease of
h(xk, λk). The test problem is PRblurspeckle. From the leftmost column to the rightmost
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To further test the robustness of PNT and genHyb as the noise level gradually increases,
we set the noise level of PRblurspeckle to be ε = 5 × 10−2, 10−1, 5 × 10−1. Figure 5.8
shows the corresponding relative error curves and the curves of h(xk, λk). We can find
that, when the noise is not very big, both PNT and genHyb converge stably with almost
the same accuracy. However, when the noise gradually increases, the situations are very
different. First, we find that as the noise increases, PNT still converges stably, and faster.
Second, h(xk, λk) can always decrease to an extremely small value, which is promised by
Theorem 4.1. The iterate of PNT stops when the step-length γk becomes too small (less than
10−16), which happens more early if the noise is bigger. In comparison, the convergence of
genHyb becomes unstable as the noise increases. For ε = 10−1, it can be observed that the
relative error for genHyb slightly increases after a certain iteration, while for ε = 5×10−1, the
increase of relative error happens more early and more clearly. This is a common potential
flaw for hybrid regularization methods, which is overcome by the PNT method.

6 Conclusion

We have proposed the projected Newton method (PNT) as a novel iterative approach for
simultaneously updating both the regularization parameter and solution without any com-
putationally expensive matrix inversions or decompositions. By reformulating the Tikhonov
regularization as a corresponding constrained minimization problem and leveraging its La-
grangian function, the regularized solution and the corresponding Lagrangian multiplier can
be obtained from the unconstrained Lagrangian function using a Newton-type method. To
reduce the computational overhead of the Newton method, the generalized Golub-Kahan
bidiagonalization is applied to project the original large-scale problem to become small-
scale ones, where the projected Newton direction is obtained by solving the small-scale
linear system at each iteration. We have proved that the projected Newton direction is a
descent direction of a merit function, and the points generated by PNT eventually converge
to the unique minimizer of this merit function, which is just the regularized solution and
the corresponding Lagrangian multiplier.

Experimental tests on both small and large-scale Bayesian inverse problems have demon-
strated the excellent convergence property, robustness and efficiency of PNT. The most
demanding computational tasks in PNT are primarily matrix-vector products, making it
particularly well-suited for large-scale problems.
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