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Abstract

Non-relativistic conformal field theory describes many-body physics at unitarity. The correlation functions

of the system are fixed by the requirement of the conformal invariance. In this article, we discuss the correla-

tion functions of scalar operators in non-relativistic conformal field theories in momentum space. We discuss

the solution of conformal Ward identities and express 2,3, and 4-point functions as a function of energy and

momentum. We also express the 3- and 4-point functions as the one-loop and three-loop Feynman diagram

computations in the momentum space.
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1 Introduction

The critical point of non-relativistic many-body systems is described by a scale-invariant non-relativistic field

theory. Such a theory is invariant under the Galilean transformation together with the anisotropic scale trans-

formation. A special case of scale invariant systems with anisotropic exponent z = 2 is the system described

by a non-relativistic conformal field theory (NRCFT). The space-times symmetry group of such theory is the

Schrödinger group, which consists of an expansion transformation in addition to the scale and Galilean trans-

formations. The operators in NRCFT are also labelled by a particle number, which appears in the conformal

algebra as the central extension of the Galilean algebra. For the details of NRCFT and its application in many

body systems, see [1–11].

Conformal invariance restricts the form of the correlation function. In this article, we will confine ourselves

to scalar operators. On the scalar operators, the conformal invariance requires the correlation function to satisfy

the following Ward identities.
n∑

a=1

(
2τa

∂

∂τa
+ xai

∂

∂xai
+∆a

)
< T O1(x1)......On(xn) >= 0 ,

n∑
a=1

(
τ2a

∂

∂τa
+ τaxai

∂

∂xai
+ τa∆a +

Na

2
x2
a

)
< T O1(x1)......On(xn) >= 0 ,

n∑
a=1

(
τa

∂

∂xai
+Naxai

)
< T O1(x1)......On(xn) >= 0 . (1)

The first equation follows from the dilatation, the second from the expansion transformation and the last from

the boost transformation. Here < T O1(x1)......On(xn) > is the time-ordered product of scalar operators of

particle number Na and scaling dimensions ∆a, and xa = (τa, x⃗a). On top of these, we also have the condition

of space and time translational invariance. In the above, we are working in the Euclidean picture where we have

replaced the conventional t by iτ .

A general structure of the correlation function in the position space can be obtained by solving the above

Ward identities. The correlation functions also need to satisfy the particle number conservation, i.e. a non-zero

correlation function exists, provided
n∑

a=1

Na = 0 . (2)

Solving Ward identities for 2, 3 and 4-point functions, we obtain (taking τ1 > τ2 > .... > τn)

< O1(x1)O2(x2) >= δ∆1,∆2

CO

τ∆12
e−

N1x⃗2
12

2τ12 ,

< O1(x1)O2(x2)O3(x3) >= e−
N1
2

x⃗2
13

τ13
−N2

2

x⃗2
23

τ23 τ∆12
12 τ∆13

13 τ∆23
23 f(v123) , (3)

< O1(x1)O2(x2)O3(x3)O4(x4) >= e−
N1
2

x⃗2
14

τ14
−N2

2

x⃗2
24

τ24
−N3

2

x⃗2
34

τ34

∏
i<j

τ
∆
6 −

∆i+∆j
2

ij h(v124, v134, v234,
τ12τ34
τ13τ24

) .

In the above τij = τi − τj and x⃗ij = x⃗i − x⃗j and ∆ =
∑n

a=1 ∆a. Also, the combinations of scaling dimensions

that appear in the 3-point function are

∆12 =
∆

2
− (∆1 +∆2), ∆13 =

∆

2
− (∆1 +∆3), ∆23 =

∆

2
− (∆3 +∆2) . (4)
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Finally, the conformal cross ratios that appear in the above are

vijk =
x⃗2
jk

τjk
+

x⃗2
ij

τij
− x⃗2

ik

τik
, i < j < k . (5)

Quantum field theory in the position space is useful to reveal various properties of the underlying system,

such as correlation length, causality, OPE, etc. However, generically, it is convenient to perform the computation

of scattering amplitude and Green’s functions using Feynman diagrams in the momentum space. Algebras in

these computations are simpler in the momentum space than in the position space. This motivates to study the

conformal field theory in the momentum space. Several works have been done in understanding the implications

of conformal Ward identities in the momentum space, see [12–14]. In the present article, we would like to carry

out a similar analysis in the NRCFT context, i.e. finding the general form of the correlation function in the

energy-momentum space. We will find the expression for 2-,3- and 4-point functions in momentum space. We

will see that the correlation function may not be well-defined for all scaling dimensions. For example, the 2-point

function is divergent for ∆ = d
2 + 1 + n, where n is a non-negative integer. Making sense of the correlation

function requires regularization and renormalization. We will discuss this in the case of the 2-point function.

Note added: While this draft was in preparation, an article [15] appeared on the arXiv. The article

presents the conformally invariant quantum mechanics in momentum space. We find that, even though the

contexts are different, many of our results have similarities with the results obtained in the paper.

2 Solving Conformal Ward identities in Momentum Space

Let us consider the following Fourier transformations of a scalar operator

O(τ, x⃗) =

∫
dE ddp

(2π)d+1
eiEτ+ip⃗·x⃗O(E, p⃗), O(E, p⃗) =

∫
dτ ddxe−iEτ−ip⃗·x⃗O(τ, x⃗) . (6)

Then time and space translation invariance implies that

< O1(τ1, x⃗1).....On(τn, x⃗n) >= (2π)d+1δ(E1+ ...+En)δ
d(p⃗1+ ...+ p⃗n) << O1(E1, p⃗1)......On(En, p⃗n) >> . (7)

The dilatation Ward identity in the momentum space becomes[ n∑
a=1

∆a − (n− 1)(d+ 2)−
n−1∑
a=1

(
pa

∂

∂pa
+ 2Ea

∂

∂Ea

)]
<< O1(E1, p⃗1)......On(En, p⃗n) >>= 0 . (8)

The expansion Ward identity is
n−1∑
a=1

(
− i(d+2−∆a)

∂

∂Ea
− iEa

∂2

∂E2
a

− ipai
∂2

∂Ea∂pai
−Na

2

∂2

∂pai∂pai

)
<< O1(E1, p⃗1)......On(En, p⃗n) >>= 0 . (9)

Finally, the boost Ward identity is
n−1∑
a=1

(
− pai

∂

∂Ea
+ iNa

∂

∂pai

)
<< O1(E1, p⃗1)......On(En, p⃗n) >>= 0 . (10)

2-point function: We start with the 2-point function << O1(E, p⃗)O2(−E,−p⃗) >>. The dilatation Ward

identity gives the differential equation[
(∆− (d+ 2))−

(
pi

∂

∂pi
+ 2E

∂

∂E

)]
<< O1(E, p⃗)O2(−E,−p⃗) >>= 0 . (11)
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Here ∆ = ∆1 +∆2. This implies that

<< O1(E, p⃗)O2(−E,−p⃗) >>= E
∆−(d+2)

2 g(
p2

E
) . (12)

Next, we look at the boost Ward identity. We get

(−pi
∂

∂E
+ iN1

∂

∂pi
)(E

∆−(d+2)
2 g(

p2

E
)) = 0 , (13)

which simplifies to

−
(∆− (d+ 2)

2
g(

p2

E
)− g′(

p2

E
)
p2

E

)
+ 2iN1g

′(
p2

E
) = 0 . (14)

The solution to the above equation is

g(
p2

E
) = (

p2

E
+ 2iN1)

∆−(d+2)
2 . (15)

Thus, the two point function becomes

<< O1(E, p⃗)O2(−E,−p⃗) >>= c′
( p2

2N1
+ iE

)∆−(d+2)
2

, (16)

where c′ is a constant.

Next, we see the Ward identity for the expansion transformation. The differential equation is(
− 2i

∂

∂E
− iE

∂2

∂E2
− id

∂

∂E
− ipi

∂2

∂E∂pi
+ i∆1

∂

∂E
− N1

2

∂2

∂pi∂pi

)
<< O1(E, p⃗)O2(−E,−p⃗) >>= 0 . (17)

The 2-point function (16) solves the above provided the following condition is satisfied,

∆1 = ∆2 . (18)

Thus, the 2-point function is

<< O1(E, p⃗)O2(−E,−p⃗) >>= c′ δ∆1,∆2

( p2

2N1
+ iE

)∆1− d
2−1

(19)

In a non-relativistic conformal field theory, the scaling dimension of an operator satisfies the unitarity bound.

All operators have the scaling dimension ∆a ≥ d
2 . Looking at the above 2-point function, we observe that the

2-point function of the operators with scaling dimensions ∆n = d
2 +1+n, with n = 0, 1, 2, ..., are local. This is a

situation very similar to the relativistic CFTs in momentum space. In the position space, this would correspond

to the following 2-point function,

< O1(τ, x⃗)O
†
1(0, 0⃗) >=

(
∂τ − ∇2

2N1

)n

δ(τ)δd(x⃗) . (20)

As a consequence, the correlation function can be set to zero by adding the local counter term of the form

J(τ, x⃗)†
(
∂τ − ∇2

2N1

)n

J(τ, x⃗) , (21)

where J(τ, x⃗) is the source of the operator O1(τ, x⃗). This would imply that O1(τ, x⃗) must be a null operator.

Generically, this is not the case. For example, if we consider d = 2 and ϕ† is the scalar operator with scaling

4



dimension ∆ϕ = 1 and particle number +1, then we see that ϕ† r, with r ≥ 2, is a non-trivial operator with

scaling dimension ∆r = r and particle number r. A related issue which we will discover in the next section

while performing the Fourier transform is that the transform exists provided ∆a ̸= d
2 + 1 + n.

The regularization of the 2-point function for the operator of the dimension ∆1 = d
2 +1+n can be performed

in a very similar manner as done in [13]. We work in the dimensional regularization where 1

d → d′ = 2 + 2κ1ϵ, ∆ → ∆′
1 = ∆1 + (κ1 + κ2)ϵ (22)

In this case, the dilatation (D) and expansion (C) differential operators are modified as

D̃ = D + 2κ2ϵ, C̃ = C − i(κ1 − κ2)ϵ
∂

∂E1
. (23)

Then the two point function in the dimensions d′ + 1 is

<< O1(E, p⃗)O2(−E,−p⃗) >>regul= c(κ1, κ2, ϵ)
( p2

2N1
+iE

)∆′
1− d′

2 −1

= c(κ1, κ2, ϵ)
( p2

2N1
+iE

)∆1− d
2−1( p2

2N1
+iE

)κ2ϵ

(24)

In the regularized dimensions, the coefficient c(κ1, κ2, ϵ) will have simple pole in ϵ, i.e.

c(κ1, κ2, ϵ) =
c−1

ϵ
+ c0 +O(ϵ) . (25)

Then the regularised two point function is

<< O1(E, p⃗)O2(−E,−p⃗) >>regul=
( p2

2N1
+ iE

)n[c−1

ϵ
+ c−1κ2 ln(

p2

2N1
+ iE)

]
. (26)

The divergent term is local and can be removed by the counter term∫
dτ dd+2κ1ϵxµκ2ϵJ†

(
∂τ − ∇2

2N1

)n

J . (27)

The counter term introduces a scale µ and the renormalized two point function becomes

<< O1(E, p⃗)O2(−E,−p⃗) >>renorm.= c
( p2

2N1
+ iE

)n

ln
( p2

2N1
+ iE)

µ
. (28)

3-point function: Next, we discuss the 3-point function. The Ward identities are as follows: the dilatation

Ward identity is[
(∆− 2(d+ 2))−

(
p1,i

∂

∂p1,i
+ p2,i

∂

∂p2,i
+ 2E1

∂

∂E1
+ 2E2

∂

∂E2

)]
f(E1, E2, p⃗1, p⃗2) = 0 . (29)

Here ∆ = ∆1 +∆2 +∆3. The boost Ward identity is[
i(N1

∂

∂p1,i
+N2

∂

∂p2,i
)− (p1,i

∂

∂E1
+ p2,i

∂

∂E2
)
]
f(E1, E2, p⃗1, p⃗2) = 0 . (30)

and the expansion Ward identity becomes(
− i(d+ 2−∆1)

∂

∂E1
− i(d+ 2−∆2)

∂

∂E2
− iE1

∂2

∂E2
1

− iE2
∂2

∂E2
2

−ip1i
∂2

∂E1∂p1i
− ip2i

∂2

∂E2∂p2i
− N1

2

∂2

∂p1i∂p1i
− N2

2

∂2

∂p2i∂p2i

)
f(E1, E2, p⃗1, p⃗2) = 0 . (31)

1In the non-relativistic case, where space and time are not at equal footing, there are different possible ways of doing dimensional
regularization, e.g. one can regularize both space and time dimensions separately. Furthermore, as noted in the paper [13], this regularization
may lead to a new kind of anomaly in the non-relativistic systems [16].
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Here f(E1, E2, p⃗1, p⃗2) =<< O1(E1, p⃗1)O2(E2, p⃗2)O3(E3, p⃗3) >>.

Next, we want to obtain the general solution of the above differential equations. It is clear that the rotation

invariance implies that f(E1, E2, p⃗1, p⃗2) will be a function of E1,2 and p⃗21, p⃗
2
2, p⃗

2
3. It is convenient to work in the

variables (z1, z2, p1, p2, p3) where

iz1 = iE1 +
p⃗21
2N1

, iz2 = iE2 +
p⃗22
2N2

. (32)

In terms of these variables, the boost Ward identity becomes the following set of equations(N1

p1

∂

∂p1
− N3

p3

∂

∂p3

)
f(z1, z2, p1, p2, p3) = 0 ,(N2

p2

∂

∂p2
− N3

p3

∂

∂p3

)
f(z1, z2, p1, p2, p3) = 0 ,(N1

p1

∂

∂p1
− N2

p2

∂

∂p2

)
f(z1, z2, p1, p2, p3) = 0 . (33)

Clearly not all three equations are independent. The above implies that the function f(z1, z2, p1, p2, p3) depends

on the variable

q =
p21
2N1

+
p22
2N2

+
p23
2N3

. (34)

Thus, we have the function f(z1, z2, q). Furthermore, the dilatation Ward identity implies that

f(z1, z2, q) = z
∆
2 −d−2
1 f̃(u, v) , (35)

where u = − z2
z1

and v = −i q
z1

.

Next, we look at the expansion Ward identity in zi and q coordinates. We get(
− i(

d

2
+ 2−∆1)

∂

∂z1
− i(

d

2
+ 2−∆2)

∂

∂z2
− iz1

∂2

∂z21
− iz2

∂2

∂z22
− d

2

∂

∂q
− q

∂2

∂q2

)
f(z1, z2, q) = 0 . (36)

In the variables (u, v), the differential equation becomes

u(1− u)
∂2f̃

∂u2
+ v(1− v)

∂2f̃

∂v2
− 2uv

∂2f̃

∂u∂v
+ (−3d

2
−∆1 +∆− 4)

(
u
∂f̃

∂u
+ v

∂f̃

∂v

)
+(

d

2
+ 2−∆2)

∂f̃

∂u
+

d

2

∂f̃

∂v
− (

∆

2
− d− 2)(−d

2
−∆1 +

∆

2
− 1)f̃ = 0 . (37)

Note that using the condition E1 + E2 + E3 = 0, we could also write v as

v = 1− u− w, where w = −
iE3 +

p2
3

2N3

iE1 +
p2
1

2N1

. (38)

Let us now discuss the solution of the differential equation (37). Note that it is a differential equation in two

variables, and because of the term uv ∂2f̃
∂u∂v , we can not have the solution using the separation of variables. Let

us look for a solution in the following form

f̃(u, v) =

∞∑
n=0

vnCn(u) . (39)

One can also look for the solution as a Taylor series expansion in powers of u. This may provide a set of

bootstrap equations in the NRCFT.

6



Substituting the ansatz (39) in (37), we obtain∑
n

(
u(1− u)vn

∂2Cn

∂u2
+ (1− v)n(n− 1)vn−1Cn − 2unvn

∂Cn

∂u
+ vn(u

∂Cn

∂u
+ nCn)(−

3d

2
−∆1 +∆− 4)

+(
d

2
+ 2−∆2)v

n ∂Cn

∂u
+

d

2
nvn−1Cn − (

∆

2
− d− 2)(−d

2
−∆1 +

∆

2
− 1)vnCn

)
= 0 . (40)

Then, comparing the coefficient of vn, we obtain

u(1− u)
∂2Cn

∂u2
+ [c− (an + bn + 1)u]

∂Cn

∂u
− anbnCn = −(n+ 1)(n+

d

2
)Cn+1 . (41)

Here

c =
d

2
+ 2−∆2 , (42)

and an and bn are solutions of equations

an+ bn = 2n+
3d

2
+∆1−∆+3, anbn = n(n−1)+n(

3d

2
+∆1−∆+4)− (

∆

2
−d−2)(

d

2
+∆1−

∆

2
+1) . (43)

In particular, we note a solution for an and bn as given by

an = 2 + d+ n− ∆

2
, bn = 1 +

d

2
+ n− ∆

2
+∆1 . (44)

The differential equation (41) can be written as

D(n)Cn = −(n+ 1)(n+
d

2
)Cn+1 . (45)

The above tells us that if we know say C0(u), then we can determine C1(u) and using the recursion relations,

we can determine all the coefficients Cn(u),

D(n−1)D(n−2)......D(0)C0 = 4!(−1)n
(d
2

)
n
Cn , (46)

where (q)n = q(1 + q)....(n− 1 + q). Thus, the complete solution is

f̃(u, v) =

∞∑
n=0

vn
(−1)n

4!
(

d
2

)
n

D(n−1)D(n−2)......D(0)C0(u) . (47)

We see that the solution is undetermined up to a function of u, i.e. C0(u). This is a reflection of the fact that

the 3-point function is determined up to a function of a cross-ratio. Thus, the 3-point function is

<< O1(E1, p⃗1)O2(E2, p⃗2)O3(E3, p⃗3) >>=
(
iE1 +

p⃗21
2N1

)∆
2 −d−2 ∞∑

n=0

vn
(−1)n

4!
(

d
2

)
n

D(n−1)D(n−2)......D(0)C0(u) .

(48)

We note here an interesting connection with the Appell F2 hypergeometric function, see for example [18]

and references therein. The Appell F2 hypergeometric function is a solution of the following coupled differential

equations in two variables x and y:

x(1− x)
∂2g(x, y)

∂x2
− xy

∂2g(x, y)

∂x ∂y
+ [c1 − (a+ b1 + 1)x]

∂g(x, y)

∂x
− b1y

∂g(x, y)

∂y
− ab1g(x, y) = 0 ,

y(1− y)
∂2g(x, y)

∂y2
− xy

∂2g(x, y)

∂x ∂y
+ [c2 − (a+ b2 + 1)y]

∂g(x, y)

∂y
− b2x

∂g(x, y)

∂x
− ab2g(x, y) = 0 .

(49)
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The most general solution of these equations is

g(x, y) = C1 F2(a, b1, b2, c1, c2;x, y) + C2 x
1−c1F2(a− c1 + 1, b1 − c1 + 1, b2, 2− c1, c2;x, y)

+C3 y
1−c2 F2(a− c2 + 1, b1, b2 − c2 + 1, c1, 2− c2;x, y)

+C4 x
1−c1y1−c2 F2(a− c1 − c2 + 2, b1 − c1 + 1, b2 − c2 + 1, 2− c1, 2− c2;x, y) (50)

Here F2(a, b1, b2, c1, c2;x, y) is the Appell F2 hypergeometric function, and for |x|+ |y| < 1, it has the following

series representation

F2(a, b1, b2, c1, c2;x, y) =

∞∑
m,n=0

(a)m+n(b1)m(b2)n
(c1)m(c2)nm!n!

xmyn . (51)

In particular, note that we can partially sum the above series as

F2(a, b1, b2, c1, c2;u, v) =

∞∑
m=0

(a)m(b2)m
(c2)mm!

vm2F1(a+m, b1; c1;u) . (52)

The Appell F2 is relevant in our case because when we add the two equations in (49), we get the differential

equation (37) provided we make the following identifications,

c1 =
d

2
+ 2−∆2, c2 =

d

2
,

a(b1 + b2) = (d+ 2− ∆

2
)(
d

2
+ ∆1 −

∆

2
+ 1), a+ b1 + b2 =

3d

2
+ ∆1 −∆+ 3 . (53)

Thus, the Appell F2 is a solution of the differential equation (37). However, it is not the complete solution as

it is evident from the solution (48) that the most general solution is labelled by a priori unknown function of

u. In the next section, we will obtain an explicit form of the 3-point function as a product of 2-point functions,

thus providing an interpretation in terms of the Feynman diagram in momentum space.

3 Explicit Fourier transform

In this section, we obtain the momentum space correlation function by directly performing the Fourier transform

of the position space correlations function (3). We start with the 2-point function. The Fourier transform is∫ ∞

0

dτ

∫
ddx e−iE1τe−ip⃗1·xCO

t∆
e−

N1x⃗2

2τ =
(2π)

d
2CO

N
d
2
1

(
iE1 +

p⃗21
2N1

)∆− d
2−1

Γ(1 +
d

2
−∆) . (54)

From the above expression, we note that the integral is not convergent when ∆− d
2 − 1 = n, where n is a non-

negative integer. We see this from the gamma function, which has a simple pole for ∆ = d
2 + 1 + n. We have

seen previously that the 2-point function in the momentum space is not well defined and requires regularization.

The renormalized 2-point function is given in (28).

Next, we discuss the Fourier transform of the 3-point function. We start with the Fourier transform of the

spatial part of the correlation function

I(pi) =

∫ 3∏
i=1

ddxi e
−ip⃗i·x⃗ie−

N1
2

x⃗2
13

τ13
−N2

2

x⃗2
23

τ23 F (v123) . (55)
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For the later purposes, it will be convenient to choose F (v123) = e−αv123 = e−α(
x⃗2
23

τ23
+

x⃗2
12

τ12
− x⃗2

13
τ13

). Then we have

the integration

I(pi, α) =

∫ 3∏
i=1

ddxi e
−ip⃗i·x⃗ie−

N1
2

x⃗2
13

τ13
−N2

2

x⃗2
23

τ23 e−α(
x⃗2
23

τ23
+

x⃗2
12

τ12
− x⃗2

13
τ13

) . (56)

We can express the above Fourier transform as the convolution of the product of the Fourier transform of 2-point

functions. In order to do this, we express the integral as

I(pi, α) =

∫ 3∏
i=1

ddxid
dyi e

−ipixi

3∏
i=1

δd(xi − yi) e
−N1

2

x2
13

t13
−N2

2

x2
23

t23 eα(
x2
23

t23
+

x2
12

t12
− x2

13
t13

) ,

=

∫ 3∏
i=1

ddqi
(2π)d

∫ 3∏
i=1

ddxid
dyi e

−ipixi+iqi(xi−yi) e−
Ñ1
2

x̃2
13

t13
− Ñ2

2

x̃2
23

t23
− Ñ3

2

x̃2
12

t12 . (57)

Here,

Ñ1 = N1 − 2α, Ñ2 = N2 + 2α Ñ3 = 2α, ⃗̃x13 = x⃗1 − y⃗3, ⃗̃x23 = y⃗2 − x⃗3, ⃗̃x12 = y⃗1 − x⃗2 . (58)

Then, the integral (57) can be written as

I(pi, α) =

∫ 3∏
i=1

ddqi
(2π)d

f13(p⃗1 − q⃗1, q⃗3)f23(q⃗2, p⃗3 − q⃗3)f12(q⃗1, p⃗2 − q⃗2) , (59)

where

fab(p⃗a, q⃗b) =

∫
ddza d

dzb e
−i(p⃗a·z⃗a+q⃗b·z⃗b)e

− Ña(z⃗a−z⃗b)
2

2τab = (2π)dδd(pa + qb)
(2πτab

Ña

) d
2

e
− τab

2Ña
p⃗2
a . (60)

Thus, using all the delta functions we obtain

I(pi, α) = (2π)dδd(p1 + p2 + p3)
( (2π)3τ13τ23τ12

Ñ1Ñ2Ñ3

) d
2

∫
ddq

(2π)d
e
− τ13

2Ñ1
(p⃗1−q⃗)2− τ23

2Ñ2
(p⃗2+q⃗)2− τ12

2Ñ3
q⃗2

. (61)

Now, let us calculate the rest of the integrals

J(Ei, pi, α) =

∫ ∞

−∞

3∏
i=1

dτi e
−iEiτiτ∆12

12 τ∆13
13 τ∆23

23 I(pi, α)Θ(τ1 − τ2)Θ(τ2 − τ3)Θ(τ1 − τ3) . (62)

Proceeding in the same manner as we did with momentum integration, we obtain

J(Ei, pi, α) = (2π)dδd(p1 + p2 + p3)
( (2π)3

Ñ1Ñ2Ñ3

) d
2

∫ 3∏
i=1

dei
(2π)

g(e1, E2 − e2)g(e2, E3 − e3)g(E1 − e1, e3) , (63)

where

g(e, E) =

∫
dt dT e−i(Et+eT )− (t−T )p2

2m (t− T )δΘ(t− T ) = (2π)δ(e+ E) (iE +
p2

2m
)−1−δΓ(1 + δ) . (64)

Using the above expression, our final integration is

J(Ei, pi, α) = (2π)d+1δd(p1 + p2 + p3)δ
d(E1 + E2 + E3)

( (2π)3

Ñ1Ñ2Ñ3

) d
2

Γ(1 + ∆12 +
d

2
)×

×Γ(1 + ∆13 +
d

2
)Γ(1 + ∆23 +

d

2
)

∫
de ddq

(2π)d+1

(
i(E1 − e) +

(p1 − q)2

2Ñ1

)−1−∆13− d
2 ×

×
(
i(E2 + e) +

(p2 + q)2

2Ñ2

)−1−∆23− d
2
(
ie+

q2

2Ñ3

)−1−∆12− d
2

,

= (2π)d+1δd(p1 + p2 + p3)δ
d(E1 + E2 + E3) << J(Ei, pi, α) >> . (65)
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where << J(Ei, pi, α) >> can be identified with << O(E1, p⃗1)O(E2, p⃗2)O(E3, p⃗3) >> for the above choice

of the function F (v123). We see that the 3-point function has the structure of one loop computation and has

a diagrammatic representation as shown in the Figure 1. Furthermore, the parameter α used in the Fourier

transform behaves like the particle number. The form of the function F (v123) is a theory dependent; nevertheless,

given the Fourier transform for F (v123) = e−αv123 , and assuming that the integral (65) exists, we can write the

general 3-point function as the inverse Laplace transform, i.e

<< O(E1, p⃗1)O(E2, p⃗2)O(E3, p⃗3) >>=
1

2πi

∫ γ+i∞

γ−i∞
dα ρ(α)J(Ei, pi, α) , (66)

for a suitable choice of γ. Here, ρ(α) is a theory dependent function which can be identified as the spectral

function. The function ρ(α) contains the information of the particle number of operators running inside the

loop.

E1 − e, ~p1 − ~q

E2 + e, ~p2 + ~q

e, ~q

E1, ~p1

E3, ~p3
E2, ~p2

Figure 1: Diagrammatic representation of 3-point function. Note that the particle number is conserved at every
vertex. The internal lines (e, q⃗), (E2 + e, p⃗2 + q⃗) and (E1 − e, p⃗1 − q⃗) carry particle number 2α,N2 + 2α and
N1 − 2α, respectively. The diagram is drawn using the Tikz-Feynman package [17].

In a similar fashion, we can also express the 4-point function of scalar operators in momentum space. The

momentum space 4-point function has been obtained previously [3]; however, here, we will express it in terms of

the product of the 2-point function, which is reminiscent of Feynman diagram computations in the momentum

space.

The position space correlation function depends on an arbitrary function of four cross ratios, i.e. h(v124, v134, v234, τ12τ34
τ13τ24

).

Choosing

h(v124, v134, v234,
τ12τ34
τ13τ24

) = e−α1v134−α2v124−α3v234
(τ12τ34
τ13τ24

)δ

, (67)

and performing the Fourier transform, we obtain

<< O1(E1, p⃗1)O1(E2, p⃗2)O1(E3, p⃗3)O1(E4, p⃗4) >>{αi},δ= H({αi}, δ) . (68)
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Here

H({αi}, δ) =

∫ 3∏
i=1

dei d
dqi

(2π)d+1

(
ie1 +

q21
2Ñ1

)−1−δ1(
ie2 +

q22
2Ñ2

)−1−δ2(
ie3 +

q23
2Ñ3

)−1−δ3

(
i(E1 − e1 − e2) +

(p⃗1 − q⃗1 − q⃗2)
2

2Ñ4

)−1−δ4
×

(
i(E2 + e2 − e3) +

(p⃗2 + q⃗2 − q⃗3)
2

2Ñ5

)−1−δ5

×
(
i(E3 + e1 + e3) +

(p⃗3 + q⃗1 + q⃗3)
2

2Ñ6

)−1−δ6
. (69)

The above expression has the structure of a 3-loop Feynman diagram as shown in the figure 2. Interestingly,

this is the same structure that was obtained for the 4-point function in the relativistic CFT. The internal lines

have the definite particle number given as

Ñ1 = 2α1, Ñ2 = 2α2, Ñ3 = 2α3, Ñ4 = N1 − 2α1 − 2α2, Ñ5 = N2 + 2α2 − 2α3, Ñ6 = N3 + 2α1 + 2α3 (70)

and the scaling dimensions that are determined by

δ1 =
∆

6
− ∆1 +∆2

2
+

d

2
+ δ, δ2 =

∆

6
− ∆1 +∆3

2
+

d

2
− δ, δ3 =

∆

6
− ∆1 +∆4

2
+

d

2
,

δ4 =
∆

6
− ∆2 +∆3

2
+

d

2
, δ5 =

∆

6
− ∆2 +∆4

2
+

d

2
− δ, δ6 =

∆

6
− ∆3 +∆4

2
+

d

2
+ δ ,

(71)

where ∆ =
∑6

a=1 ∆a.

E1, ~p1

E2, ~p2

E3, ~p3

E4, ~p4

e1, ~q1

e2, ~q2

e3, ~q3
E1 � e1 � e2,

~p1 � ~q1 � ~q2

E2 + e2 � e3,

~p2 + ~q2 � ~q3

E3 + e3 + e1,

~p3 + ~q3 + ~q1

Figure 2: Diagrammatic representation of 4-point function. Note that the particle number is conserved at every
vertex.

Note that at every vertex, the particle number is conserved. Assuming that the integral (69) is convergent,

the general expression for the 4-point function in the momentum space can be given by

<< O1(E1, p⃗1)O1(E2, p⃗2)O1(E3, p⃗3)O1(E4, p⃗4) >>=

∫ γ1+i∞

γ1−i∞

∫ γ2+i∞

γ2−i∞

∫ γ3+i∞

γ3−i∞

3∏
i=1

dαi

2πi

∫ γ4+i∞

γ4−i∞

dδ

2πi
ρ({αi}, δ)H({αi}, δ) .

(72)

Here γi and ρ({αi}, δ) are suitable constants and spectral function, respectively.

The integrals (65) and (69) may diverge for certain scaling dimensions. Similar to the 2-point function

discussed previously, it needs regularization and renormalization.
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