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Studies of water thermodynamics have long been tied to the identification of two distinct families of
local structures, whose competition could explain the origin of the many thermodynamic anomalies
and of the hypothesized liquid-liquid critical point in water. Despite the many successes and insights
gained, the structural indicators proposed throughout the years were not able to unequivocally
identify these two families over a wide range of conditions. We show that a recently introduced
indicator, Ψ, which exploits information on the HB network connectivity, can reliably identify these
two distinct local environments over a wide range of thermodynamic conditions (188 to 300 K and
0 to 13 kbar), and that close to the liquid-liquid critical point the spatial correlations of density
fluctuations are identical to those of the Ψ indicator. Our results strongly support the idea that
water thermodynamic properties arise from the competition between two distinct and identifiable
local environments.

I. INTRODUCTION

Water is a liquid with fascinating physical proper-
ties [1–4]. Differently from many other common com-
pounds, the thermodynamics response functions of liquid
water display a non-monotonic temperature and pressure
dependence. For example, at ambient pressure, the com-
pressibility has a minimum at 46 ◦C and a maximum
at approximately −43 ◦C, and the density has a maxi-
mum at 4 ◦C [2, 5]. These non-monotonic behaviors are
strongly suggestive of relevant structural changes taking
place in the liquid state.

The peculiarities of water can be traced back to the
strength and directionality of the hydrogen-bond interac-
tion and to the limited number of hydrogen-bonds that a
water molecule can form with its neighbours [6, 7]. Unlike
other substances, water molecules can assume a variety of
local structures, from the highly tetrahedral open config-
uration in which the water molecule participates in four
linear hydrogen bonds, to more distorted and denser lo-
cal environments. The radial distribution function of the
oxygen atoms indeed reveals the presence of interstitial
molecules, located between the first and the second tetra-
hedral shells [8, 9]. There is consensus that molecules in
“tetrahedral” configurations are characterized by low en-
ergy, local order, low local density, while molecules at
the other extreme are characterized by higher energies,
higher disorder, higher local density [10–12]. If this large
variety of configurations can be grouped in two families
or if it reflects a continuum of geometries is still object
of controversy [13–15].

The idea of two families of different local environments
is consistent with the hypothized presence of a liquid-
liquid critical point [16] in supercooled states, the end
point of a line of liquid-liquid first order transitions. Such
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a critical point, originally discovered in the ST2 water
model [16], has recently been confirmed with accurate
free-energy calculations in several high-quality classical
potentials (TIP4P/2005, TIP4P/Ice [17], WAIL [18]) sig-
nificantly strengthening the possibility that such uncon-
ventional thermodynamic scenario is representative of
real water. Neural network potentials based on quan-
tum mechanics calculations [19] and path-integral sim-
ulations [20] also support the presence of such liquid-
liquid critical point. Several experiments also support
the liquid-liquid critical point scenario [5, 21, 22]. In
particular, recent X-rays scattering experiments probing
sub-microsecond timescales to observe the relaxation of
the metastable liquid before nucleation have provided
evidence of a transition between two different struc-
tures [23, 24] in deep supercooled states.

The presence of a critical point requires the compe-
tition between two different local structures and a free-
energy gain when local structures of the same type clus-
ter in space. Several studies have shown that a simple
two-state description of the free-energy [10–12, 25–29],
in which the entropic term of mixing two different local
structures (differing in energy, entropy and density) is
complemented by a clustering contribution is able to de-
scribe the equation of states of several numerically stud-
ied models, as well as reproduce the equation of states of
water better than any other previously proposed expres-
sion [30].

Numerical simulations have been thoroughly scruti-
nised searching for quantities that could detect the two
families of molecular structures [25, 31–37]. Unfortu-
nately, most proposed indicators (but see for exceptions
Refs. [25, 35, 36]), while based on strong physical intu-
itions, have typically resulted into wide distributions —
which in some cases can be represented by the superpo-
sition of two distributions with relative weights changing
with pressure and/or temperature. A clear indication of
a well separated two-state behavior (a distribution func-
tion with two well resolved peaks) has remained elusive.
The ongoing attempt to include longer-range informa-
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tions in the definition of the structural indicators [38–41],
despite its sound physical expectation, has not drastically
improved the classification.

In the attempt to better characterize the features of
the radial distribution function g(r), we have recently
developed [42, 43] an analysis connecting the physical
distance between two molecules with their chemical dis-
tance, measured as the (smallest) number of hydrogen
bonds that need to be crossed on going from one molecule
to the other. All structural features appearing in g(r)
were thus associated to specific bonding geometries. In
particular, the interstitial molecules, the ones populat-
ing the region around 3.5 Å between the first and sec-
ond peak of the g(r), have been associated to molecules
with chemical distance larger or equal to four. We have
also found that a molecular order parameter (that we
named Ψi), defined for each molecule i as the smallest
distance in real space among all molecules with chemi-
cal distance four has, close to the critical point, a well
defined bimodal distribution function. Tetrahedral, low-
density local structures were found to be characterised
by large values of Ψi (∼ 6.5Å), while high-density local
structures favour shorter distances (∼ 3.5Å). Even more,
at pressures close to the critical point, the average over
all molecules in the system ⟨Ψi⟩ fluctuates exactly as the
density [44], confirming that ⟨Ψi⟩ could very well be cho-
sen as order parameter of the liquid-liquid transition.

In this article we extend this analysis to a wide range
of temperatures (from 180 to 300 K) and pressures (from
1 to 2500 bar), to quantify the temperature and pressure
dependence of this indicator. At the lowest temperature,
we extend the analysis to the very high density region (up
to pressures of 13 kbar), presenting an interpretation of
the VHDA glass as the limiting structure composed by
Ψi ∼ 3.5Å molecules.

II. METHODS

Most of the trajectories analyzed in this article have
been previously generated [42, 43] using GROMACS
5.1.4 [45] in the NPT ensemble (Nosé-Hoover thermo-
stat and Parrinello-Rahman barostat) and reproduce the
dynamics of a system of 1000 rigid water molecules inter-
acting via the TIP4P/Ice model [46]. To suppress ther-
mal vibration that are known to blur structural proper-
ties and hydrogen-bond identification, we have calculated
the inherent structures (IS) [47], the local potential en-
ergy minima, via a constant volume steepest descent path
starting from equilibrated configurations. As previously
done [42, 43], we find the IS using the steepest descent
algorithm in GROMACS. The reproducibility of our MD
simulations was tested against other TIP4P/Ice results
recently reported by Lupi et al. [48], Espinosa et al. [49]
(see SI). The presence of an hydrogen bond between two
molecules is detected via the Luzar-Chandler geometric
criterion [50]. In short, two molecules are hydrogen-
bonded if the H-O-H angle is smaller than 30◦ and the

oxygen-oxygen distance is smaller than 3.5 Å. When ap-
plied to IS, this criterion can properly identify the hydro-
gen bonds in the system over an extremely wide range of
temperatures and pressures [43].
To evaluate the Ψ structural indicator, the chemical

distance D between any pair of molecules i and j is cal-
culated by counting the minimum number of hydrogen
bonds which needs to be traveled to move along the HB
network from site i to site j. As we will show the result-
ing Ψ histograms can be for convenience represented as
a binary mixture of Burr Type XII distributions [51].
We also analyze new simulations of a system of 250000

water molecules in the NVT ensemble at density 1.015
g/cm3 and T = 191K. This state point, on the critical
isochore, is quite close to the critical point, such that
density fluctuations at small wavevectors can be observed
and correlated with the fluctuations of ⟨Ψ⟩.

(nm)

FIG. 1. Pressure dependence of the Ψ∗ distribution along (A)
a sub-critical isotherm T = 188K and (B) a super-critical
isotherm T = 190K. A clear bimodal behavior is manifested.
The simulation labeled 1775B was initialized from a high-
density configuration as opposed to the one labeled 1775 bar
which was initialized from a low-density configuration. Points
represent simulation data and solid lines the regression from
Eq. 1.

III. RESULTS AND DISCUSSION

It is well established that, as water is exposed to in-
creasing pressures, the Oxygen-Oxygen radial distribu-
tion function shows an increasing signal at separations
around 3.5 Å, a distance which lies between the peaks of
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FIG. 2. Temperature dependence of P (Ψ∗) for four different pressure values. Points represent simulation data and solid lines
the regression from Eq. 1.

the first (2.8 Å) and second(4.5 Å) spatial shells of the liq-
uid at ambient conditions [8, 9]. This feature, which sig-
nals a progressive distorsion of the open tetrahedral ge-
ometry, has been well characterized over a broad range of
conditions and becomes particularly evident in the amor-
phous ices, when, upon crossing from HDA to VHDA, an
initially minor signal in this “interstitial” region, trans-
forms into a dominant peak, highlighting a drastic re-
structuring of the H-bond network [43, 52]. Interestingly,
this interstitial population has been shown to arise from
molecules which are at a chemical distance of four (or
more) from the central one [42]. It is important to stress
that most of these interstitial molecules are still involved
in four hydrogen bonds, albeit more distorted on average
than in the open tetrahedral environment, and therefore
they cannot be directly associated with coordination de-
fects (c.f. three or five coordinated molecules) in the HB
network, although some correlation exists [40, 42]). In a
previous work [42], we have shown that the distribution
of real space distances between molecules at chemical dis-
tance four displays a clear separation between a group of
molecules located around 3.5 Å and anoter group with
distances ≈ 8 Å. This significant separation in real space
(3.5 vs. 8.0 Å) has been exploited to build, in Ref. [44],
a molecular indicator expressly designed to quantify the
local environment of each molecule. More precisely, Ψi

is defined as the minimum distance in real space between

all pairs i−j , where the index j runs over all molecules at
chemical distance four from i. Once a proper definition
of H-bond is accepted, this new indicator Ψi does not
require any arbitrary cut-off in its definition, eliminating
the possibility of cut-off dependent findings. In Ref. [44]
it was shown that averaging Ψi over all molecules in the
system produces a global (as opposed to local) indica-
tor which accurately describes the critical fluctuations in
the vicinity of the liquid-liquid critical point, which, for
the TIP4P/Ice model, was estimated at Tc ≈ 188.6K,
Pc ≈ 1750 bar, ρc ≈ 1.015 g/cm3 [17].

Fig. 1 shows the distribution of Ψi for different pres-
sures at deep supercooled conditions, below (T=188 K)
and above (T=190 K) the critical temperature Tc ≈
188.6K [17]. To subtract the trivial isotropic scaling com-
ponent in the relative distances on varying the density, we

show the distribution as a function of Ψ∗ ≡ Ψ[ ρ(T,P )
1 g/cm3 ]

1/3,

where ρ(T, P ) is the temperature and pressure dependent
density. At low pressures (P < 1000 bar), the distribu-
tion is asymmetric and centred around Ψ∗ ≈ 0.6, with a
negligible tail below Ψ∗ ≈ 0.4. On increasing pressure,
this last region starts to be populated. Below Tc the dis-
tribution jumps from the low density to the high density
liquid value, while the same change is observed progres-
sively at temperature above (but close to) Tc. The cross-
over from the open tetrahedral distance Ψ∗ ≈ 0.6 to the
interstitial distance Ψ∗ ≈ 0.35 is clearly detectable from
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FIG. 3. Cross-over from the high-density liquid to the very
high-density structure as reflected by the P (Ψ∗) distribution
at T = 188 K. In a continuous way, all molecules become sur-
rounded by interstitial molecules. Points represent simulation
data and solid lines the regression from Eq. 1.

the distribution functions. Beside the cross-over, the dis-
tributions show a marked two-peak behavior, with an ap-
proximate crossing (isosbestic) point around Ψ∗ ≈ 0.5.
The clear two-peaks structure provides an indisputable
evidence of two major local environments characterizing
supercooled water, significantly reinforcing the underly-
ing idea on which two-state models have been developed
in the past. Data in Fig. 1 also show that, as expected,
the two coexisting liquids (data for P = 1775 bar at
T=188 K), are not ”pure”, the low-density liquid con-
taining a small fraction of interstitial molecules and, vice
versa, the high-density liquid containing a non-negligible
fraction of tetrahedral local structures.

To highlight the temperature dependence next we con-
sider the behavior of Ψ∗ along four different isobars
(1,1000,1700, 2500 bar) from 300 K down to Tc. The two
lowest isobars are characterized by a significant change
in density on cooling. Fig. 2 shows that the change in
density is accompanied by a significant change in the
structure of the liquid, as revealed by the distributions
of Ψ∗. Both for P = 1 and P = 1000 bar, the frac-
tion of interstitial molecules decreases on cooling, almost
vanishing at the lowest temperature, consistent with the
expectation that interstitial local configurations are char-
acterized by a higher energy per molecule. The density
change with temperature at P = 1700 and P = 2500 bar
is significantly more limited and correspondingly, the Ψ∗

distributions do not show a significant change. At all
state points the two-peaks structure is very evident, con-
firming that the two families of local environments are
already very well characterised also at ambient temper-
atures. We stress that above the critical point there is
a single free energy minimum in supercritical conditions,
which encompasses two structurally distinct families: at
the single molecule level, the two families unequivocally
exist as shown by the bimodality of P (Ψ).

The data in Fig. 2 show that a pure tetrahedral system

is reached at very deep supercooling at ambient pressure.
The opposite limit, in which essentially all molecules have
interstitial neighbours is found in the very-high density
limit, again at low temperature. To show this we fol-
low at T = 188 K the evolution of the distribution of Ψ
with pressure also in the region between 2000 and 13000
bar, where the high density liquid continuously trans-
forms into the very high density structure. This process,
described in Fig. 3, is accompanied by the progressive
disappearance of molecules with large Ψ. Around 13000
bar, all molecules have at least one interstitial neighbour
and P (Ψ∗) peaks around 0.35.
We also observe that Ψ, unlike other indicators, is not

critically affected by being evaluated using the inherent
structure coordinates. When evaluated in the real dy-
namics (i.e., the structures directly sampled during the
simulation, before the suppression of thermal vibrations
via energy minimization), the features of Ψ at low T are
fundamentally unchanged (see Fig. 4). The peaks triv-
ially display a slight broadening due to the vibrational
noise (and hence also a relatively less accurate defini-
tion of H-bond), but the shape of the distribution, its bi-
modality, and the large separation between the two con-
figurations are all well-conserved properties, highlight-
ing the robustness of the structural description provided
by Ψ. The agreement between RD and IS apparently
deteriorates on increasing T (Fig. 5). The differences
arise from the mis-identification of H-bonds in the RD
configurations at higher temperatures (needed to define
the topological distances used to compute Ψ). Indeed,
as discussed in detail in the SI, at higher temperatures
the distribution of molecular distances and orientations
is widened by the increasing contribution of vibrational
and librational modes, mixing the configurations corre-
sponding to H-bonded and non-H-bonded pairs. Above
≈ 240K, the two distributions (bonded and non-bonded,
see Fig. S3) are so widened by thermal motion that they
superimpose in the region where the Luzar-Chandler cut-
off acts. However, if the distribution of Ψ is evaluated
using the spatial configuration of the RD but retaining
the H-bond network identified in the corresponding IS
configuration (thick violet curves in Fig. 5), then the
same agreement between RD and IS that was observed
at T = 188K, is found at all temperatures.
At all the conditions we analyzed, the Ψ∗ distributions

can be faithfully represented as a mixture of two Burr
Type XII distributions [51]

P (Ψ) = sPL(Ψ; cL, kL, λL) + (1− s)PH(Ψ; cH , kH , λH)
(1)

whose parameters (c, k, λ) and relative weights (s) were
optimized independently for each thermodynamic condi-
tion. These fits are superimposed as solid lines on the
simulation data in Figures 1–4. The behavior of the dis-
tribution parameters (see SI) suggests that a non-trivial
dependence on thermodynamic conditions is still present
after removing the isotropic scaling component, prevent-
ing us from obtaining a simpler description of the behav-
ior of Ψ∗.
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FIG. 4. The distribution of Ψ∗ evaluated in the real dynamics
conserves the bimodality and the wide separation of the two
local states that is observed in the inherent structures. Shown
here selected points along the T = 188K isotherm. The thin
dashed lines represent the distributions at the corresponding
thermodynamic states in the inherent structures.

FIG. 5. The distribution of Ψ∗ evaluated from 194K to 300K
along the 1700 bar isobar, shows no significant differences be-
tween inherent structures and real dyamics, provided that H-
bonds are properly identified. Curves labeled “IS” and “RD”
(thin green and dashed orange, respectively), correspond to
Ψ∗ distributions evaluated in the inherent structures and real
dynamics. Curves labeled “RD/IS”, in thick violet, have been
evaluated using the spatial configuration of the RD, but em-
ploying the definition of the H-bond network obtained from
the IS.

To provide a graphical representation of the spatial
correlation of the molecules with similar Ψ value, we per-
form and analyse a simulation of a 250000 molecules sys-
tems, at T = 190 K and ρ = 1.015 g/cm3, corresponding
to the critical isochore of the TIP4P/Ice model. The
250000 molecule system are contained in a cubic box of
side of about 19.5 nm. Such a large distance, more than
60 times the nearest neighbour oxygen-oxygen distance
(0.28 nm) makes it possible to investigate the presence of

long range correlations. Fig. 6(a) shows with a red sphere
the position of the molecules with Ψ∗ < 0.45. Eyes imme-
diately catch the spatial correlation between them, with
a correlation scale significantly larger than the nearest
neighbour distance. Such a correlation is a clear indi-
cation of a net attraction between molecules with sim-
ilar environments. This observation can be quantified
and strengthened by calculating the structure factor, the
power spectrum of the Fourier transform of the density,
shown in Fig. 6B (evaluated in the IS configurations).
As expected close to the critical point, and as previ-
ously demonstrated for the ST2 water model [53] and
also for TIP4P/2005 and TIP4P/Ice in smaller-sized sys-
tems [17], a strong increase in the scattered intensity at
small q is observed. To provide evidence that this correla-
tion is brought up by the correlation between molecules
with similar environment we define a ⟨Ψ⟩ field, by av-
eraging Ψi over all molecules included in a small cubic
volume. For convenience, we pick this volume as (L/32)3

where L is the simulation box side. With this choice there
are about 8 molecules in each mesh volume. The result-
ing field ⟨Ψ⟩ can then be Fourier transformed in space
and compared with S(q). The result of this comparison
in shown in Fig. 6B, neatly demonstrating by the simi-
larity of the two Fourier transforms that the density field
and the ⟨Ψ⟩ field not only provide the same information,
but also that the spatial correlation in the density picked
up by the small-angle scattering is identical to the spa-
tial correlation of ⟨Ψ⟩. In this respect, the two families of
molecules can be identified as the two states commonly
assumed in mean field models.

IV. CONCLUSIONS

In this manuscript we have demonstrated that two dis-
tinct families of local environments can be clearly identi-
fied in numerical simulations of bulk liquid water on the
basis of the structural indicator Ψi. This indicator quan-
tifies the distance from a central molecule i of the clos-
est molecule separated by four hydrogen bonds. In this
respect, it requires information on the connectivity and
local geometry of the hydrogen bond network departing
from each molecule. The distribution of Ψi becomes uni-
modal in two extreme cases, both at deep supercooling:
at T=188 K, below the critical pressure and at ambi-
ent pressure, all molecules belong to the large Ψ family,
while at T=188 K and pressures above 10 kbar (when
the configuration of water in the supercooled liquid is
reminiscent of the very-high density amorphous struc-
ture [43]), all molecules belong to the small Ψ family.
Since the small Ψ family is characterised by the presence
of interstitial molecules between the first and the second
tetrahedral shell, the very high density amorphous can
be described as the limiting structure in which, despite
the hydrogen bonds being mostly preserved (with only
∼ 10% of the molecules showing coordination defects at
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FIG. 6. (A) Snapshot of molecules with low Ψ∗ from a constant-density simulation with 250000 molecules at T = 191K and
ρ = 1.015 g/cm3 visually shows spatial correlations extending over large length-scales. (B) Comparison between the Fourier
transform of the averaged Ψ∗ field (multiplied along y by an arbitrary factor) and the Fourier transform of the density field
ρ (i.e., the structure factor), evaluated in the IS configurations, confirms that these two scalar fields show the same spatial
correlations. The same calculation was also performed in the RD configurations (Fig. S6) and shows no noticeable difference
from the calculations in the IS.

13 kbar [43]), all molecules are surrounded by and act as
interstitial molecules. The bimodal character of Ψ is also
conserved at ambient conditions, where, despite the in-
creased thermal noise leading to a broadening of the two
peaks and the existence of a single free energy minimum
(at system level), it is still possible to clearly discern two
structural families (at the single molecule level, in terms
of Ψ).

The present findings provide a strong support to theo-
retical modelling of the thermodynamics of water as aris-
ing from the relative competition between these two fam-
ilies of local environments, each of them characterised by
its own local energy, density and entropy. The water
anomalies originate from the competition between these
two local structures, a phenomenon which is missing in
simple liquids.

Finally, we have demonstrated that these local struc-
tures cluster in space. The analysis of a very large sim-
ulation, with more than 250000 molecules and providing
access to distances extending up to 10 nm, allows us to
demonstrate that the correlation goes well beyond the
0.8-1 nm range which has long been associated to the
typical decay of the spatial correlations in water [54],
thus confirming the preferential association of molecules
of similar type, a feature which is essential for the exis-
tence of the liquid-liquid critical phenomenon.

SUPPLEMENTARY MATERIAL

The supplementary material includes data on the
phase diagram of the TIP4P/Ice model of water used

in the present work, discussion on the identification of
Hydrogen bonds, and additional data relative to the pa-
rameterization of the Ψ∗ distribution through Burr type
XII distributions, and the comparison between inherent
structures and real dynamics.
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FIG. S1. Equation of state ρ(T ) of TIP4P/Ice sampled by our simulations. The star markers are

density estimates from TIP4P/Ice simulations at 1 and 1000 bar extracted from Espinosa et al.

[1].
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FIG. S2. Isothermal compressibility of TIP4P/Ice sampled by our simulations. The star markers

are compressibility estimates from TIP4P/Ice simulations at 1000 and 1700 bar extracted from

Espinosa et al. [1].

NUMERICAL SIMULATIONS

The results of our numerical simulations of TIP4P/Ice were successfully tested for repro-

ducibility against the results reported in the recent work of Espinosa et al. [1], as shown for

the equation of state in Fig. S1 and the isothermal compressibility in Fig. S2, displaying the

characteristic maxima.
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FIG. S3. Joint radial-angular pair distribution function of water molecules in (left) RD and (right)

IS configurations at T = 300K and P = 1700 bar. The strong contribution of thermal motion at

high temperatures complicates the definition of H-bonds in the RD. Dashed cyan lines represent the

Luzar-Chandler definition of H-bond; solid green line is an ad-hoc definition obtained by defining

a line of minimum cost passing through the saddle point of the pair distribution function. Level

curves of the distributions are shown in logarithmic scale.

IDENTIFICATION OF HYDROGEN BONDS IN THE REAL DYNAMICS

The vibrational and librational motion of water molecules, which is present in the RD

but suppressed in the IS, significantly widens the radial-angular pair distribution function,

adding a random thermal component that complicates the identification of H-bonds. Fig. S3

shows the joint pair distribution of the Oxygen-Oxygen distance (r) and the intermolecular

Hydrogen-Oxygen-Oxygen angle (θ) for all pairs of molecules in the system. In the IS, the

identification of H-bonded pairs is obvious and unambiguous, as there is a well-separated

basin which is perfectly captured by a simple definition such as that of Luzar and Chan-

dler [2]: r < 3.5 Å and θ < 30◦. In the RD, while we can still identify these two basins,

we are unable to clearly define a boundary between them to separate H-bonded and non-

H-bonded pairs. The two basins are now broadened by thermal motion and superimpose

in the region where the Luzar-Chandler cutoff acts. Even using ad-hoc approaches, such as

defining a diagonal cut through the saddle point of the pair distribution function, we are

bound to mis-identify a non-negligible number of H-bonds, which will affect our definition

of the H-bond network, and by extension the evaluation of Ψ.
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FITTING THE PROBABILITY DISTRIBUTION OF Ψ∗

We tested a wide class of probability density functions to fit the behavior of Ψ∗ (Cauchy,

Gamma, inverse Gamma, F, Frechet, Gumbel, Weibull, Burr and Skew-Normal distribu-

tions). The initial investigation was conducted by independently fitting the two limit dis-

tributions for the low-density (T = 188K, P = 0bar) and the high-density (T = 188K,

P = 13 kbar) states for different distribution families. For both states, the Burr Type XII

distributions [3] were found to provide the most accurate description of the data (although

a good quality fit could also be obtained with Skew-Normal distributions):

P (x) =
ck

λ

(x
λ

)c−1[
1 +

(x
λ

)c]−k−1

; x > 0, c > 0, k > 0, λ > 0. (S1)

For each state point (T, P ), the distribution parameters were evaluated by optimizing

over a binary mixture of the two distributions

P (Ψ) = sPL(Ψ; cL, kL, λL) + (1− s)PH(Ψ; cH , kH , λH) (S2)

The mixing parameter s ∈ [0, 1] represents the weight of the distribution associated to

the LDL-like structure, it is therefore equivalent to what is generally identified as the order

parameter or the fraction of locally-favored structures [4–6]. The other parameters which

define the distributions, the two “shape” parameters c and k and the “scale” parameter λ,

don’t have an obvious physical meaning. Therefore, the two quantities of interest with an

immediate physical interpretations are the average values of each structural component’s

distribution and the mixing parameter, shown in Fig. S4. For both high- and low-density

structures, the distribution average decreases with increasing pressure, highlighting how

pressure increases disorder within both types of structural arrangements, by reducing the

average distance of molecules in the fourth coordination shell. The mixing parameter reflects

the behavior displayed by the density in the equation of state (Fig. S1), confirming its

accuracy as a possible order parameter.

The behavior displayed in Fig. S4B is indeed what would be expected for an order pa-

rameter which is tightly linked to the system density. When the isobars investigated in this

work cross through temperature of maximum density (TMD) locus, then the inversion in

the ρ(T ) dependency is reflected in s(T ). Fig. S5 shows the same data for the fraction of

locally favored structures, s, as a function of the system density ρ. At low P , an increase in

4



FIG. S4. Temperature dependence of (A) the average of each structural family’s distribution and

(B) mixing parameter along the 4 isobars of Fig. S1, resulting from the fit of two Burr distributions.

In panel A, the dashed lines represent the curves for the high-density component. At the lowest

temperatures below the critical isobar, the fraction of high-density structure is extremely low

(ϕ ≃ 1), so the corresponding parameter values are less significant: values of the HDL component

are therefore not shown when s > 0.9.

T leads to an increase in ρ, and therefore to a decrease in s. At intermediate P the TMD

line is crossed at ≈ 270K and ≈ 240K (for 1000 bar and 1700 bar respectively), showing

that minimum s corresponds to maximum ρ. Finally, the P = 2500 bar isobar lies entirely

above the TMD line, so that with increasing T , ρ decreases, and s increases.

We note that the position of the inflection point in the T -dependence of the mixing

parameter s along the 1 bar and (to a lesser extent) the 1000 bar isobars (see Fig. S4B) does

not coincide with the temperatures at which the isothermal compressibility has a maximum.

In our case, the value of s at the compressibility maxima is larger than 1/2. In terms of

two-state models, this could indicate either the presence of clustering in the two molecular

local arrangements or a non-negligible contribution to the compressibility of the reference

state, more relevant when far from the critical point. A future analysis of TIP4P/Ice with a

two-state model which incorporates correlations between the local environments [7, 8] may

help shed light on these observations.

The parameters resulting from our fits, for all the thermodynamic conditions analyzed,

are reported in Tables S1 and S2.

5



ρ (g/cm³)
0.95 1.00 1.05 1.10

s

0.2

0.4

0.6

0.8

1.0

1 bar

1000 bar

1700 bar

2500 bar

T
 (

K
)

200

250

300

FIG. S5. Fraction of locally favored structures s, evaluated by the regression of Burr Type XII

distributions to the Ψ∗ distributions, shown as a function of the system density, ρ, for four different

isobars (as indicated by annotations). The temperature along the isobars is color-coded following

the colorbar on the right.

LONG-RANGE CORRELATIONS IN THE REAL DYNAMICS

Fig. S6 shows the Fourier transform of the coarse-grained ⟨Ψ∗⟩ field and of the density

field (i.e., the structure factor) evaluated in the RD, comparing them to their values in

the IS as shown in Fig.6B in the main text. Indeed, the energy minimization procedure

only produces local changes in the coordinates of the molecules, leaving the low-q density

fluctuations unaffected. Similarly, close to the critical point, hydrogen bonds are properly

identified both in the RD and the IS, yielding identical estimates of Ψ.
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FIG. S6. Comparison of the Fourier transforms of the density field (structure factor) and of

the coarse-grained ⟨Ψ∗⟩ field between the RD and IS configurations, evaluated for a system of

N = 250000 molecules at T = 190K and ρ = 1.015 g/cm3.
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TABLE S1. Parameters resulting from the fit of the Ψ∗ distributions with a binary mixture of two

Burr Type XII distributions (part 1).

T (K) P (bar) cL kL λL cH kH λH s

188.0 0.0 16.25 5.949 0.6752 16.16 0.598 0.4602 0.958

188.0 1000.0 14.31 36.66 0.779 11.95 0.591 0.4079 0.973

188.0 11000.0 12.88 42.13 0.7468 60.6 0.2565 0.3391 0.07635

188.0 13000.0 3.208 20.92 1.514 60.97 0.2925 0.3398 0.09002

188.0 1675.0 12.31 81.33 0.8625 15.81 0.3064 0.3572 0.8379

188.0 1775.0 14.07 80.08 0.836 8.024 1.782 0.471 0.8851

188.0 1776.0 11.67 186.3 0.9189 37.15 0.1095 0.3319 0.3742

188.0 1801.0 11.95 124.0 0.8778 36.66 0.1119 0.3329 0.3473

188.0 1901.0 12.36 119.5 0.861 39.16 0.1112 0.333 0.2932

188.0 2500.0 14.07 127.3 0.8207 50.92 0.1009 0.3315 0.1791

188.0 5000.0 12.93 78.42 0.8011 56.22 0.1657 0.3347 0.1261

188.0 7000.0 12.54 27.41 0.7389 57.56 0.2087 0.3368 0.1042

188.0 9000.0 11.79 86.68 0.8212 61.36 0.2264 0.3383 0.08738

190.0 0.0 13.47 52.14 0.8149 61.70 0.5982 0.3991 1.0

190.0 1000.0 13.29 71.81 0.8426 20.06 0.5614 0.3852 0.9863

190.0 1500.0 12.69 83.11 0.859 9.253 1.06 0.4262 0.8892

190.0 1650.0 12.93 69.47 0.8415 9.565 0.7417 0.4054 0.8215

190.0 1725.0 11.76 133.9 0.9094 26.48 0.1433 0.3326 0.6441

190.0 1800.0 11.66 100.7 0.8751 37.3 0.1058 0.3313 0.39

190.0 1900.0 12.38 126.2 0.8629 41.55 0.1024 0.3319 0.2843

190.0 2000.0 12.34 136.0 0.8676 40.9 0.1088 0.3321 0.2698

190.0 2500.0 13.94 81.55 0.797 48.58 0.1065 0.3319 0.1847
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TABLE S2. Parameters resulting from the fit of the Ψ∗ distributions with a binary mixture of two

Burr Type XII distributions (part 2).

T (K) P (bar) cL kL λL cH kH λH s

192.0 1000.0 14.61 15.67 0.7339 10.59 4.88 0.5564 0.923

194.0 1700.0 11.27 137.4 0.9078 32.71 0.1246 0.3336 0.4153

196.0 1700.0 10.87 177.1 0.9375 34.94 0.1185 0.3327 0.4037

200.0 1000.0 13.19 59.69 0.8239 7.874 2.259 0.4872 0.9382

200.0 1700.0 10.77 207.2 0.9559 36.17 0.1119 0.3321 0.3952

210.0 0.0 13.72 59.89 0.8152 10.94 2.954 0.4657 0.9797

210.0 1000.0 12.46 46.64 0.8169 9.457 0.8321 0.4122 0.8192

210.0 1700.0 10.54 161.9 0.9346 37.49 0.1102 0.331 0.3792

210.0 2500.0 12.76 205.5 0.8764 48.11 0.09701 0.3299 0.2073

220.0 0.0 13.14 86.5 0.8455 7.929 2.072 0.4986 0.9273

220.0 1000.0 10.55 138.5 0.9356 18.12 0.2457 0.3457 0.6486

220.0 2500.0 11.66 135.9 0.8722 50.78 0.08798 0.3286 0.2252

240.0 0.0 11.76 52.34 0.8266 9.371 0.9294 0.42 0.7651

240.0 1000.0 9.269 85.13 0.9204 29.28 0.1411 0.3323 0.5316

240.0 1700.0 9.384 197.3 0.9913 35.76 0.1211 0.3304 0.3789

240.0 2500.0 10.38 159.9 0.9214 45.22 0.1018 0.3287 0.2592

250.0 0.0 10.85 135.0 0.9166 11.07 0.6345 0.3893 0.6997

270.0 0.0 9.042 168.3 0.9983 20.45 0.2244 0.3398 0.6648

270.0 1000.0 8.493 155.6 1.01 28.75 0.1484 0.3313 0.5104

270.0 1700.0 8.299 177.9 1.032 38.76 0.1118 0.3284 0.4185

270.0 2500.0 8.988 95.34 0.9214 43.62 0.1044 0.3279 0.3233

300.0 0.0 8.286 103.7 0.9693 19.24 0.2616 0.3443 0.6518

300.0 1000.0 7.88 11.13 0.7365 24.07 0.2425 0.3356 0.6054

300.0 1700.0 7.856 97.14 0.9746 34.8 0.1302 0.3292 0.4731

300.0 2500.0 8.048 100.3 0.9667 40.76 0.1131 0.328 0.401

9



[1] J. R. Espinosa, J. L. F. Abascal, L. F. Sedano, E. Sanz, and C. Vega, J. Chem. Phys. 158,

204505 (2023).

[2] A. Luzar and D. Chandler, J. Chem. Phys. 98, 8160 (1993).

[3] I. W. Burr, Ann. Math. Stat. 13, 215 (1942).

[4] J. Russo and H. Tanaka, Nat. Commun. 5, 3556 (2014).

[5] H. Tanaka, H. Tong, R. Shi, and J. Russo, Nat. Rev. Phys. 1, 333 (2019).

[6] R. Foffi and F. Sciortino, J. Phys. Chem. B 127, 378 (2023).

[7] V. Holten, D. T. Limmer, V. Molinero, and M. A. Anisimov, J. Chem. Phys. 138, 174501

(2013).

[8] I. Daidone, R. Foffi, A. Amadei, and L. Zanetti-Polzi, J. Chem. Phys. 159, 094502 (2023).

10


