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ABSTRACT

With the advancement of generative modeling techniques,
synthetic human speech becomes increasingly indistinguish-
able from real, and tricky challenges are elicited for the audio
deepfake detection (ADD) system. In this paper, we ex-
ploit audio features to improve the generalizability of ADD
systems. Investigation of the ADD task performance is con-
ducted over a broad range of audio features, including various
handcrafted features and learning-based features. Experi-
ments show that learning-based audio features pretrained on
a large amount of data generalize better than hand-crafted
features on out-of-domain scenarios. Subsequently, we fur-
ther improve the generalizability of the ADD system using
proposed multi-feature approaches to incorporate compli-
mentary information from features of different views. The
model trained on ASV2019 data achieves an equal error rate
of 24.27% on the In-the-Wild dataset. The code will be
released as soon 1.

Index Terms— Audio deepfake detection, anti-spoofing,
feature incorporation

1. INTRODUCTION

AI technology currently has made breakthroughs with the
support of large-scale models, massive datasets, and powerful
computing capabilities. Speech synthesis, speech conversion,
and speech editing technologies have been able to generate
human speech that is virtually indistinguishable from real
human speech. However, progress in these speech generation
technologies has also raised potential threats. The synthetic
speech could be misused for spreading rumors, executing
fraud, and eliciting other illicit activities. Therefore, identi-
fying synthetic speech is increasingly important. In response
to such challenges, efforts including automatic speaker verifi-
cation spoofing and countermeasures (ASVspoof), and audio
deepfake detection (ADD) competitions have been held to
collect solutions [1, 2, 3].

Many works in ADD focus on finding proper audio fea-
tures, which can be roughly categorized into hand-crafted and

†Euqal contribution
*Corresponding author

1Mindspore: https://gitee.com/mindspore/models

learning based features. Hand-crafted features, although sim-
ple, have acceptable performance since their special design to
extract audio properties. For instance, the constant-Q trans-
form (CQT) is good at capturing both long-range features
and fine details in audio signals with its different filter win-
dow lengths across frequency bands[4]. MFCC and LFCC
features, have good match with human auditory characteris-
tics and emphasis on low-frequency information to bolster
speech detection tasks. In recent years, the application of
learning-based audio features in ADD tasks has attracted
tremendous attention. Research has explored the use of audio
features of Whisper [5] for detecting synthetic speech. Large
amounts of audio data support the Whisper ASR system,
demonstrating their superiority over handcrafted features [6].
Similarly, self-supervised learning-based audio features have
also proven beneficial for ADD tasks [7] The success of self-
supervised models in various scenarios can be attributed to
the usage of extensive pre-training data sourced from diverse
domains, ensuring the model to produce meaningful audio
features even in complicated situations. These features aid
in distinguishing between real and fake speech and perform
well on out-of-domain dataset [8].

However, performance of ADD model based on single
feature might be degraded since the spurious speech can be
generated from distinctive audio synthesis systems, where
single feature fails to represent characteristics of all the syn-
thesis systems. Based on such phenomenon, we propose to
use multiple features, which can improve the model gener-
alizability by providing information from different aspects.
Two methods are proposed based on feature selection and fea-
ture fusion respectively. These approaches can better capture
the subtle differences between fake speech and real speech,
bolstering detection system accuracy of identifying deep
forgery samples especially generated by unknown synthesis
systems.

This work focuses on improving the generalizability of
ADD system, and contributions are:

1. We investigate a broad range of handcrafted features
and learning-based deep features. Experimental re-
sults show strong generalizability for learning-based
features pretrained on large amounts of data.

2. We propose two multi-view feature incorporation meth-
ods to capture subtlety of the multiple candidate fea-
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tures to further improve the performance and general-
izability of the system.

2. AUDIO FEATURES AND MULTI-VIEW FEATURE
INCORPORATION

In this section, we first introduce audio features of the hand-
crafted and learning-based approaches, which are investigated
in the experiments section. Then, the proposed feature multi-
view approaches based on feature selection and feature fusion
are demonstrated.

2.1. Audio features

2.1.1. Hand-crafted features

Hand-crafted acoustic features have been well investigated
in ADD studies. In this paper, we evaluate 5 hand-crafted
features including Mel-scaled spectrogram (Mel), Mel fre-
quency cepstral coefficient (MFCC), log-frequency spec-
trogram (LogSpec), linear frequency cepstral coefficients
(LFCC) and constant-Q transform (CQT).

2.1.2. Learning-based features

Learning-based acoustic features are generated from various
audio tasks, and there is already precedent for using them for
ADD tasks [9, 6, 7]. In this paper, 9 learning-based audio
features proposed for various tasks have been extensively in-
vestigated and benchmarked for generalization performance
on the ADD task.

The learnable acoustic front-ends automatically get the
proper filter banks while optimizing the objective. We adopt
SincNet [10] and LEAF [11] as learnable front-ends for ADD.
Besides, we also evaluate a range of deep learning-based au-
dio features, where the use of additional data as well as task-
related training approaches can be beneficial for the ADD
task. 7 deep learning-based models across various tasks are
chosen to generate audio features. For audio neural codec
models, we use EnCodec [12] and AudioDec [13] mainly con-
sisted of autoencoder architecture and aimed to encode audio
compactly. AudioMAE [14] is selected as representative of
pretrained model towards universal audio perception. For pre-
trained model on human speech, we select Wav2Vec2, Hubert
[15], and WavLM [16], which share similar network architec-
tures but different self-supervised losses. For the ASR model,
we use Whisper [5] model trained on a large dataset from di-
verse speech scenario.

2.2. Multi-view feature incorporation

Features extracted from different deep models contain unique
information, which can further boost ADD model generaliz-
ability with proper feature incorporation methods. Therefore,

we propose two methods based on feature selection and fea-
ture fusion respectively.

2.2.1. Feature selection

Identifying the most effective feature for the ADD task is dif-
ficult, especially for test data with unknown distributions. So,
we introduce multi-feature candidates to improve the gener-
alization of the ADD system. However, the introduction of
redundant or irrelevant features may hinder the learning pro-
cess of the classifier. Therefore, we propose a feature se-
lection mechanism that decides whether to introduce a fea-
ture into the decision process based on sample-specific infor-
mation, thus exploiting the information provided by multi-
features while avoiding the negative impact of certain fea-
tures.

mi = Sθ(fi)

Fselect = Concat({fi ⊙mi}), i ∈ [0 ,N ]
(1)

Our proposed feature selection mechanism is shown as eq1.
Where fi denotes the candidate features, mi and Fselect is the
selected mask and select features respectively. Each feature
goes through a selection module Sθ before concatenated and
fed into the classifier. This module consists of lightweight
self-attentive layers, and the output of the module is a binary
mask that determines whether the feature should be used in
the decision for this sample. The discrete decision is obtained
by the Gumbel-max method, thus allowing the selection mod-
ule to be trained end-to-end with the whole system.

2.2.2. Feature fusion

Feature fusion, on the other hand, can incorporate all infor-
mation in the multi-view feature without deleting any views.
To smoothly incorporate acoustic representations from differ-
ent pretrained models, we combine channel attention mecha-
nism and Transformer encoder to build a feature fusion mod-
ule in (2). The multi-view feature, formed by concatenat-
ing candidate fi on channel dimension, is first processed by
a lightweight channel attention block to fuse on channel level
(each channel represents one deep feature). Then, a Trans-
former encoder is applied to fuse the feature ri, on both time
and frequency dimensions. With element-wise global recep-
tive field, the final fused representation Ffusion are input into
the classifier.

ri = CA(Concat(fi))

Ffusion = TE(Concat({ri})), i ∈ [0 ,N ]
(2)

Where CA means channel-attention and TE means vallina
Transformer encoder.



3. EXPERIMENTS

3.1. Datasets

We train our models on the train and dev subsets of the
ASVSpoof 2019 Logical Access (LA) dataset part [17],
which is consistent with most related works. To evaluate
our systems, we adopt three datasets. The eval subset of
ASVspoof 2019 and 2021 challenge are used to test the per-
formance within similar domains [2]. The spoof audio of
the ASVspoof challenge is generated by 11 TTS and 8 VC
algorithms from VCTK corpus. The samples of its eval sub-
set is generated with different algorithms compared to the
train subset. To evaluate the generalization ability of our sys-
tems, we also test our systems on In-the-Wild dataset, which
contains 20.8 hours of real audio and 17.2 hours of deep-
fake audio[18]. The In-the-Wild dataset is collected from the
Internet and consists of audio from various realistic scenarios.

3.2. Implement details

All audio samples are trimmed or padded to 4s and resam-
pled to 16kHz for all acoustic features except the neural audio
codec models EnCodec and AudioDec, which support sam-
ple rate of 24kHz. For all handcrafted features, the window
length and hop length are set to 25 ms and 10 ms, respectively.

For speech self-supervised models, we employ the Wav2-
Vec2 XLS-R [19] model pretrained on 128 languages, Hubert-
base model pretrained on LibriSpeech, WavLM-Base-Plus
model pretrained on Libri-Light, GigaSpeech and VoxPopuli
datasets. For the neural audio codec models, the continu-
ous features of encoder output, instead of the discrete code,
are used as audio features to prevent information loss. The
AudioMAE model used in our experiments is pretrained on
AudioSet. The selected Whisper model is a tiny version pre-
trained on the speech recognition task. Besides, We select the
24khz version of the EnCodec and AudioDec model. Audio
features extracted from above deep models are output of their
encoders respectively.

For all experiments, we use a ResNet18 as classifier. We
train all of our systems with a cross-entropy loss. We use
Adam optimizer with fixed learning rate at 1e-4 and weight
decay at 1e-4. We train all the systems 100 epochs. Check-
point with lowest loss on validation set is saved for evaluation.
All systems are evaluated by equal-error rate (EER).

4. RESULT AND ANALYSIS

4.1. Single feature

Table 1 shows the results of our experiments, where we eval-
uate 14 audio features under the same experimental setup and
test our systems on 3 datasets. The classification results for all
features on the ASV2019 LA evaluation set are significantly
better than those on the ASV2021 DF evaluation dataset

Table 1. Performance of various single audio features on the
ADD task EER (%)

Features
ASVspoof19

LA eval
ASVspoof21

DF eval In-the-Wild

Mel 7.42 20.13 50.56
MFCC 6.45 27.27 75.43
LogSpec 5.67 20.62 52.93
LFCC 15.35 25.67 65.45
CQT 4.91 20.75 56.69
LEAF 8.54 21.54 49.70
SincNet 6.12 20.78 56.74
EnCodec 10.25 24.93 39.44
AudioDec 10.47 26.13 43.69
AudioMAE 11.07 30.47 75.40
XLS-R 2.07 11.78 29.19
Hubert 6.78 14.76 27.48
WavLM 7.24 15.53 30.50
Whisper 5.59 23.28 42.73

and the In-the-Wild dataset. However, the results from the
ASV2021 DF evaluation dataset and the In-the-Wild dataset
show that the ADD system trained on the ASV2019 dataset
is poorly generalized. The ASV2021 DF dataset contains
samples from various spoofing systems that utilize different
audio codec processing methods. For the In-the-Wild dataset,
samples are collected from complex environments outside of
professional studio and the speech content differs.

In our experiments, the handcrafted features fail to show
reliable discrimination ability in realistic scenario. All the
systems using handcrafted features get ERR greater than 50%
in the In-the-Wild dataset. The learnable front-end Leaf and
SincNet learn filter banks during training, but still generalize
poorly, with EERs 56.69 and 49.70 respectively.

On the contrary, most deep features show stronger gener-
alizability. The neural audio codecs EnCodec and AudioDec
emphasize the compression rate and the fidelity of the de-
coded audio. While underperforming on the ASV2019 LA
and ASV2021 DF evaluation datasets, these two models get
an EER of 39.44 and 43.69 on the In-the-Wild dataset. The
Wav2Vec2 XLS-R model is pretrained on 436K hours of
speech in 128 languages, based on which the system achieves
the best EER on the ASV2019 LA and ASV2021 DF datasets.
For results in the In-the-Wild dataset, EER decreases by 21.37
in comparison to the best manual features. The Hubert and
WavLM features also perform excellently on the In-the-Wild
dataset, where the Hubert feature achieves the best EER
among all single-feature detection systems at 27.48.

Of all the deep features, the AudioMAE model pretrained
on the audio spectrograms using mask autoencoder shows the
poorest generalization on the ADD task. The EER is 75.40
on the In-the-Wild dataset, which is even worse than most of
the handcrafted features. The failure might be attributed to
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Fig. 1. Visualization of CQT features and Hubert features for
real and fake speech in the In-the-Wild dataset.

the pretrained dataset. AudioMAE is pretrained on the Au-
dioset dataset, which contains more universal audio than hu-
man speech, dispersing the ability to discriminate between
true and false human speech. The whisper feature also fails to
generalize well, even though pretrained with more than 680k
hours of unlabeled speech data. This feature is obtained by
weakly supervised training on the ASR task, which focuses
more on speech content instead of audio signal information.

To visualize the superior generalizability of deep features
over hand-crafted features, Fig 4.1 shows the visualization of
CQT features and Hubert features for real and fake speech
in the In-the-Wild dataset using t-SNE. Although difficulty in
discriminating between real and fake is revealed, the Hubert
feature is more distinguishable than the CQT feature space
where the two categories completely overlap.

4.2. Multi-view feature incorporation

Based on results from single-view feature experiments, Hu-
bert, XLS-R, and WavLM features that perform well in the
ASV2021 datasets are chosen as multi-view feature to further
improve the generalizability of the detection system.

Table 2 shows results based on incorporating these three
deep features on the In-the-Wild dataset. Compared to re-
sults either implemented in this work or results from stud-
ies [20, 18], both proposed approaches are proved beneficial
to significantly improve the model generalizability where the
EER reduces from 27.48, to 24.27 by the feature fusion, or to
25.98 by the feature selection. The effectiveness of feature se-
lection comes from a sample-aware mask mechanism, based
on which each individual sample can select the most appro-
priate feature, while single-feature detection system provide
no feature selection space. The audio characteristic of the in-
dividual sample is learned to form the mask, which is also
supervised by the detection task. This end-to-end approach
guarantees such effectiveness. On the other hand, the success
of feature fusion indicates a complementary effect among the
selected three deep features. Each value in the fused feature

Table 2. The comparison of EER (%) score on In-the-Wild
dataset.

Model Features In-the-Wild

RawNet2[20] waveform 36.74
RawNet2[18] waveform 33.94
AASIST[20] waveform 34.81
ResNet34[20] XLS-R 46.35
LCNN[20] XLS-R 39.82
Res2Net[20] XLS-R 36.62

ResNet18(ours) XLS-R 29.19
ResNet18(ours) Hubert 27.48
ResNet18(ours) WavLM 30.50

Selection(ours) XLS-R,WavLM,Hubert 25.98
Fusion(ours) XLS-R,WavLM,Hubert 24.27

attends to any other value not only across time and frequency
dimension, but also feature dimension. So, the fused feature
are better representation for the ResNet18 classifier to get the
best EER on the In-the-Wild dataset.

5. CONCLUSION

In this paper, we study the association between audio features
and the generalizability of the ADD system. First, more audio
features are tested and analyzed compared to any other studies
on the ADD task, including handcrafted features, learnable
audio front-end, audio neural codec, audio pretrained model,
speech pretrained model, and speech recognition model in
a total of 14 audio features. Experimental results show that
in the In-the-Wild dataset, features of the speech pretraining
models have good generalization performance while hand-
crafted features generalize poorly. The generalization perfor-
mance of speech features on ADD task comes from the large
amount of pretraining data as well as the appropriate pretrain-
ing task. We further improve the generalization ability of the
model based on the proposed feature selection and feature fu-
sion methods. The results show that these two methods can
improve the generalizability compared to single features.
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[12] Alexandre Défossez, Jade Copet, Gabriel Synnaeve, and
Yossi Adi, “High fidelity neural audio compression,”
arXiv preprint arXiv:2210.13438, 2022.

[13] Yi-Chiao Wu, Israel D Gebru, Dejan Marković, and
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