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ABSTRACT traditional approaches [5, 65, 76], requires manually-designed tem-

Automated Program Repair (APR) aims to automatically generate
patches for rectifying software bugs. Recent strides in Large Lan-
guage Models (LLM), such as ChatGPT, have yielded encouraging
outcomes in APR, especially within the conversation-driven APR
framework. Nevertheless, the efficacy of conversation-driven APR
is contingent on the quality of the feedback information. In this
paper, we propose ContrastRepair, a novel conversation-based APR
approach that augments conversation-driven APR by providing
LLMs with contrastive test pairs. A test pair consists of a failing
test and a passing test, which offer contrastive feedback to the LLM.
Our key insight is to minimize the difference between the generated
passing test and the given failing test, which can better isolate the
root causes of bugs. By providing informative and specific feed-
back, ContrastRepair enables the LLM to produce effective bug
fixes. The implementation of ContrastRepair is based on the state-
of-the-art LLM, ChatGPT, and it iteratively interacts with ChatGPT
until plausible patches are generated. We evaluate ContrastRepair
on multiple benchmark datasets, including Defects4j, QuixBugs,
and HumanEval-Java. The results demonstrate that ContrastRepair
significantly outperforms existing methods, achieving a new state-
of-the-art in program repair. For instance, among Defects4j 1.2 and
2.0, ContrastRepair correctly repairs 143 out of all 337 bug cases,
while the best-performing baseline fixes 124 bugs.

1 INTRODUCTION

With the increasing complexity of software, the presence of bugs
and vulnerabilities has become inevitable. These issues can lead to
system failures, security breaches, and a compromised user expe-
rience. Manually debugging and fixing these problems is a time-
consuming and laborious task, demanding substantial resources
and effort from developers. As reported, the annual expenditure
on bug finding and fixing amounts to billions of dollars [7] and
developers spend about 50% of their time in the crucial process of
debugging and fixing errors [6, 28, 76]. In light of this challenge, Au-
tomatic Program Repair (APR) has emerged as a promising solution,
offering automated generation of patches to fix bugs.

Automatic Program Repair has been the subject of extensive
research in recent years. Traditional APR techniques can be catego-
rized into template-based [34, 35, 42], heuristic-based [30, 31, 59],
and constraint-based [29, 39, 43] methods. However, the effective-
ness of these traditional methods is still not satisfactory. For in-
stance, template-based APR, considered the state-of-the-art among

plates, demanding significant human effort and domain knowledge.
Consequently, such methods exhibit limited generalization capa-
bility, primarily functioning well only on specific types of bugs
they were designed for. Recently, machine learning techniques,
particularly deep learning-based APR, have gained prominence.
These deep learning (DL) models have the advantage of learning
diverse patterns of buggy problems from a vast amount of data,
surpassing the performance of traditional methods. Nonetheless,
DL-based APR techniques still face certain challenges. One sig-
nificant concern is the reliance on training data; if the training
data lacks representation of certain bug types, the model may still
struggle to generalize to unseen bugs effectively [64, 65]. Moreover,
constructing comprehensive bug-fixing datasets for training the
DL models requires substantial effort and resources. Furthermore,
while DL-based methods show promise in APR, their effectiveness
remains limited. These approaches often produce a considerable
number of candidate patches, leading to a time-consuming valida-
tion process, which presents significant obstacles to the practical
implementation of these techniques [24].

To overcome the challenges, a promising approach that has
gained traction in more recent research is the use of Large Lan-
guage Models (LLMs). LLMs are trained on vast datasets, such as
large-scale code corpora, and have demonstrated superior perfor-
mance across various tasks [12, 24, 58, 64, 65]. The primary factor
for their superior performance lies in the remarkable ability to
comprehend program semantics. In the context of APR, studies
[24, 51, 55, 62, 63] have shown that even without fine-tuning, LLMs
exhibit competitive fixing capabilities compared to traditional DL-
based APR techniques. The fixing capability can be significantly
enhanced by fine-tuning the LLMs on relevant data [24]. Previously,
most of the works invoke LLMs independently without incorporat-
ing conversation. With the advance of dialog-based LLMs, such as
ChatGPT, recent conversational-driven APR based on ChatGPT has
achieved new state-of-the-art performance [64, 65]. The basic idea
is to generate patches in a conversational style. At each conver-
sation, the system combines previous incorrect patches with test
failure information to prompt the LLM to generate a new patch.
This conversational-driven APR has demonstrated remarkable per-
formance in guiding the LLM to propose more effective repairs.

This paper primarily focuses on the utilization of LLMs for
conversational-driven APR. The paramount challenge in applying
LLMs for this purpose is the formulation of high-quality prompts,
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which play a crucial role in guiding the LLM to comprehend pro-
grams and subsequently fix bugs. While recent research [65] has
shown promising results using LLMs, the proposed approach mainly
depends on providing error feedback information for the conversa-
tions. Unfortunately, this feedback might not always offer specific
and informative prompts for effective repair.

To this end, we propose a method that aims to craft more specific
and informative prompts for enhancing the capabilities of LLMs in
accurately localizing bugs and generating high-quality fixes. Our
key insight lies in that relying solely on negative feedback, i.e., error
information from running failing tests, may not always be adequate
for LLMs to precisely pinpoint the bugs. We propose the inclusion
of positive feedback, derived from successful tests, to supplement
the negative feedback. By providing comparative input pairs that
juxtapose the outcomes of these tests, LLMs are more likely to
effectively localize the root cause. We propose a novel conversation-
driven approach ContrastRepair that generates prompts by utilizing
both positive and negative feedback. Given a failing test case and the
buggy function, we create a corresponding passing test case that is
quite similar to the failed one, forming a contrastive pair that is then
forwarded to the LLMs'. By providing such pair-wise information,
LLMs receive more specific and informative cues, allowing them
to better pinpoint the root cause of the bug and generate accurate
fixes. Nevertheless, a challenge lies in selecting the appropriate
passing test case (from a considerable number of passing tests) to
pair with the failing test case. Our basic idea is to construct the test
pair (i.e., the failing test and the passing test) by minimizing their
difference, such that the difference (which makes one test fail and
another one pass) can effectively isolate and pinpoint the failure
causes. Specifically, we present a method designed to generate a
passing test case by making minimal modifications to a failing test
case. If there already exists a collection of passing test cases, we
then select the most similar one from the set. In addition, some bugs
may have strong dependencies on other functions, which is also an
important context for the repair. We incorporate more contextual
information by selecting relevant functions from the traceback
of the failing test case. Finally, the prompt provided to the LLM
consists of the buggy function, the dependent functions, the test
pair, and the traceback information from the failing test case. The
LLM then outputs a patch function. If the patch is deemed incorrect,
we adopt a similar approach to iteratively generate the next patches.
This iterative process continues until plausible patches, i.e., those
capable of passing all the tests, are produced, or the repair budget
is exhausted.

We evaluated ContrastRepair on three distinct datasets: Defects4],
QuixBugs, and HumanEval-Java. Specifically, we compared the per-
formance of ContrastRepair against state-of-the-art approaches,
encompassing both learning-based APR methods and conversation-
based APR methods, such as CHATREPAIR [65]. The results of our
evaluation clearly demonstrate that ContrastRepair significantly
outperforms the baseline methods. Notably, ContrastRepair success-
fully resolved 360 out of 581 bugs, surpassing the state-of-the-art
ChatGPT-based method CHATREPAIR, which could fix 334 bugs.

'While our approach is general, we specifically chose ChatGPT in this work due to its
state-of-the-art performance in handling conversational-style interactions.
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Additionally, our findings reveal that ContrastRepair exhibits en-
hanced efficiency in terms of API calls with an average reduction
of 20.91% compared to CHATREPAIR. Furthermore, our ablation
study underscored the significance of pair selection and contextual
information in augmenting the performance of ContrastRepair.

In summary, this paper makes the following contributions

e We present a novel approach for APR that leverages Large Lan-
guage Models in a conversation-driven manner. Through the
integration of both negative and positive feedback, our approach
empowers LLMs to provide high-quality fixes.

e We propose a method to construct and prioritize suitable test
pairs comprising both failed and corresponding passing tests.
This method ensures that the prompt provided to LLMs is more
informative, aiding in precise bug localization and more effective
patch generation.

e We perform a comprehensive evaluation to evaluate the effec-
tiveness of our tool. The results demonstrate that ContrastRepair
achieves new state-of-the-art performance in terms of correct
bug fixes, increasing by 15.32% than the best baseline, surpassing
existing APR tools.

2 MOTIVATION EXAMPLE

Fig 1 depicts a motivating example (Lang-16 from Defects4j) that
comprises a buggy function and a set of test cases designed for
evaluating this function. By giving different types of test cases,
we show the results of ChatGPT, including fixed code and the
explanation about the fixes. Specifically, createNumber works to
parse a given string str and returns its corresponding Number
object. A subtle bug is present in the function code. When str
represents the string of a hexadecimal integer, the function correctly
handles cases where it starts with lowercase “0x” or “-0x”. However,
it overlooks the uppercased inputs, leading to incomplete handling
of corner cases. Consequently, when evaluating createNumber on
three test cases, both T2 and T3 pass, while T1 fails.

When fixing this program, the repairer needs to first locate the
buggy line(s) and then correctly address the missed corner case.
Relying on ChatGPT, although it exhibits a good understanding
of program semantics, additional guidance on the requested task
remains beneficial. While the failing test case T1 is supplied to aid in
the repair process and narrow down the search space by providing
hints on the buggy lines and potential fixes, the impact of failing
test cases alone is somewhat limited. As a result, more effective
guidance is desired to achieve better results.

On the other hand, when we provide a well-crafted contrastive
test pair <T1, T3>, such as (“-0Xfade”, “-0xfade”), it significantly
simplifies the task for the repairer to deduce that the characters
‘X’ and ‘x’ may be the problematic elements causing the bug. This
enables the repairer to accurately pinpoint the buggy lines, i.e.,
those dealing with problematic elements, and propose a suitable fix.
It shows how contrastive information derived from both positive
and negative feedback can offer more precise guidance for program
repair. By leveraging such contrastive test pairs, the repair process
becomes more efficient and effective. However, it is crucial to rec-
ognize that not every test pair provides valuable guidance for the
repair process. In some cases, the guidance from certain compar-
isons may be indirect or even incorrect. For instance, the pair <T1,
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Figure 1: A Motivating Example

T2>, ie., (“-0Xfade”, “Oxfade”), could lead ChatGPT to mistakenly
infer that the symbol *-’ is the cause of the bug, which could be
misleading for the repair. Thus, how to better select and craft con-
trastive test pairs is of great importance to ensure the effectiveness of
the repair guidance.

3 METHODOLOGY

3.1 Overview of ContrastRepair

Fig 2 provides an overview of the ContrastRepair. Essentially, it
involves a conversation process that constructs prompts using con-
trastive test pairs, feeds these prompts to an LLM such as ChatGPT,
and receives responses that lead to the repaired code.

Specifically, at each iteration of the conversation, ContrastRepair
takes as input a program to be validated, along with a test suite
consisting of multiple test cases. The initial program is assumed to
be buggy code. ContrastRepair then evaluates the program with the
test suite. If all tests pass successfully, a plausible patch is obtained,
which is further investigated by a human. On the other hand, if any
test fails (f), and triggers the bug in the program, then the corre-
sponding traceback logs (Tf) are captured. Additionally, all passing
tests (P) that the program handles correctly are also collected for
further test pair construction.

Next, ContrastRepair constructs test pairs that involve the fail-
ing test f and other passing tests (e.g., f’, f’’). To ensure these
test pairs provide informative contrastive guidance, we propose
a similarity-guided selection process. Inspired by the concept of
Delta Debugging [73], which aims to isolate failure causes by min-
imizing the failing test, we select a passing test that has minimal
difference from the failing test. This enables ChatGPT to isolate
failure causes by contrasting their minor differences. In cases where
no existing test cases have high similarity with f, we introduce
a type-aware test mutation technique to generate a satisfactory
passing test based on its type. It minimizes the mutation of the

failing test case, thereby enhancing the contrastive information
that is helpful in isolating the failure causes.

We then follow the best practices [2] to construct prompts for
ChatGPT. To collect the dependency information of the bug, we
identify the dependent functions from the traceback of the failing
test case. The prompt consists of the traceback logs from the failing
test case f, the constructed test pairs, the dependent functions,
the target buggy function, and the description of the requirements.
With this prompt, ChatGPT generates the repaired code, which is
then validated in the subsequent iteration. The iterative process
continues until a plausible patch is identified or the repair budget
(e.g., the maximum number of iterations) is reached.

3.2 Constructing Contrastive Test Case Pairs

A common sense for code debugging is that “Often people who
encounter a bug spend a lot of time investigating which changes
to the input file will make the bug go away and which changes
will not affect it” [73]. The changes that make the bug go away are
called critical changes. These critical changes hold valuable insights
into understanding the root cause of bugs, making them essential
for successful bug localization and repair. Therefore, our objective
is to identify and provide critical change information to LLMs.

To facilitate the exposure of the crucial changes to LLMs, we
present a method that involves constructing contrastive test case
pairs, consisting of a failing test case and a corresponding passing
test case. We ensure that the failing test and the passing test are suf-
ficiently similar, which allows LLMs to deduce the critical changes
based on their minor differences that lead to the triggering of the
bug.

Specifically, to create the contrastive test case pairs, we first
construct a set of passing tests P. Then we select the suitable passing
tests (denoted as S) from P to pair with the given failing f, ensuring
that they exhibit higher similarity with f: S = {p|p € P A S(f,p) >
0}. where S represents the similarity measurement between the
failing test f and a passing test p, and 0 is a predefined threshold.
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Figure 2: Overview of ContrastRepair

Two main problems need to be addressed: how to measure the
similarity (§) and how to construct the passing test set (P).

3.2.1 Similarity Measurement. Various similarity metrics can be
considered. However, since our primary objective is to expose
critical changes regarding the failing test, a string-based similar-
ity metric is more relevant for this task. In this paper, we select
the Damerau-Levenshtein distance [14, 32] as the chosen similarity
measure. The Damerau-Levenshtein distance is a metric used to
gauge the similarity between two strings by quantifying the mini-
mum number of operations required to transform one string into
the other. It accounts for four types of edit operations, i.e., inser-
tion, deletion, substitution, and transposition. A smaller Damerau-
Levenshtein distance indicates greater similarity between the two
cases, which is more beneficial for LLMs to isolate the root causes.
We normalize the similarity score to the range of (0, 1), i.e., §(f, p) =
1 —d/max(len(f),len(p)).

Note that the test cases may have different types. To accommo-
date this, we convert the tests with other types into string repre-
sentation before calculating their similarity using the Damerau-
Levenshtein distance. For object or array types, we recursively
convert each element to its corresponding string representation
and then calculate the similarity.

3.22  Passing Test. To gather the passing test cases, we adopt two
strategies: utilizing existing passing tests and generating new pass-
ing tests. Many projects, such as Defects4j, include unit tests that
are designed to validate the correctness of individual functions. We
execute all unit tests and collect the corresponding passing test
cases for each function. In cases where certain functions lack unit
tests or the existing unit tests have low similarity with the failing
test f, we propose a type-aware mutation technique to generate
new passing test cases. The mutation is based on the failing test f
with changes made as minimally as possible.

Type-aware Mutation. The type-aware mutation comprises two
main components: a general string-based mutation and type-specific
mutations. Given that the similarity is measured based on string
representations, the natural approach is to first convert the fail-
ing test f to a string representation. We then perform string-level
mutations while constraining the degree of mutations. Finally, we
convert the string mutants back to their original types based on a

Python lib-javaobj [3]. Additionally, we employ type-specific mu-
tations to enhance the diversity of the generated test cases. The
mutation strategies are listed as follows:

o String Mutation: 1) Random Character Replacement; 2) Random
Substring Replacement; 3) Random Character Insertion; 4) Ran-
dom Character Deletion; 5) Substring Swapping; 6) Case Conver-
sion and 7) Truncation/Extension.

e Integer, Double, and Float Mutation: 1) Random Perturbation,
adding or subtracting a small random value; 2) Scaling, mul-
tiplied by a scaling factor; 3) Flip Sign, changing from positive to
negative or vice versa and 4) Magnitude Perturbation, adding or
subtracting a small percentage of the number’s magnitude.

o Char Mutation. Replace the original character with a randomly
chosen different character (Random Replacement).

e Boolean Mutation. Negate the boolean value (Negation).

e Object Mutation. Element-wise mutation is based on the muta-
tions on primitive types above.

e Array, List: 1) Element-wise Mutation, mutating one or more
elements; 2) Element Swapping; 3) Element Insertion; 4) Element
Deletion and 5) Element Shuffling.

As functions may have multiple parameters, we consider each
parameter as an element or attribute of an object. Consequently, we
treat the set of parameters as an object-type test case. This allows
us to conduct object-level mutation and similarity comparisons.

Test Oracle. The collection of passing test cases poses a challenge
due to the lack of test oracles, especially for logical bugs. We catego-
rize bugs into two groups: exception bugs, for which the test oracles
can be determined based on whether the exception is thrown, and
logical bugs, which can only be captured through explicit assertions.
For exception bugs, we employ type-aware mutation to generate
passing tests. However, for logical bugs, in this paper, we primarily
rely on existing assertion-based test cases to serve as our test ora-
cles for logical bugs. If there is no existing passing test case, we use
a single failing test instead of a pair. We leave the integration and
exploration of existing solutions for addressing logical bug oracles
(e.g., constructing metamorphic relations) as our future work.
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Algorithm 1: ContrastRepair

Input: Func: the buggy function, a: the whole tests, k: the number
of pairs selected,

m: the maximum number of restarting repair attempts, n: the

maximum number of continuous repair attempts

Output: PFuncs: the plausible patch(es)

P,F :=Collect(Func,a); // collect passing and failing tests

¢={(f,p)If e FApePAS(f,p)>0}; // get all similar

pairs

-

M)

3 iter; :=0;

-

while iter; < m do
// restart repair from original function

5 p = SelectPair(¢, k); // select k pairs

6 tmp := Func;
7 itery := 0;
8 while iter, < n do
// continuous repair from previous patch
9 T := Execute(tmp, pf); // get traceback info
10 D := ExtractDF (Func,T); // get dependent functions
from T
11 prompt := ConstructPrompt(¢tmp, p, T, D);
12 Func’ := ChatGPT (prompt);
13 P’,F’ :=Collect(Func’,a); // evaluate the patched
function
14 if F/ = () then
15 PFuncs := PatchAug(Func’) // generate

alternative plausible patches

16 return PFuncs; // plausible patches
17 ¢ ={(fip)If eF"ApeP AS(f.p) >0}

18 p = SelectPair(¢’, k);

19 tmp = Func’; // update ¢’, p and tmp
20 itery =itery + 1;

21 itery =iter; +1;

22 return Func; // fail to repair

3.3 Conversation-Driven Repair

The repair process follows an iterative approach that involves in-
teracting with LLMs to gradually repair the buggy function. Two
main strategies can be employed during the repair process:

e Continuing from Previous Patch: In this strategy, at each iteration,
we continue the repair process from the previous patch that is
still not correct. This approach allows us to build on the previous
repair attempts and leverage continuous feedback from LLMs to
refine and improve the patches incrementally. However, there is a
risk that the repair process may continue in the wrong direction,
potentially worsening the patches.

Restarting Repair from Original Buggy Function: Alternatively, at
each iteration, we can start the repair process from the original
buggy function. This strategy ensures that each repair attempt be-
gins from a clean state, reducing the risk of compounding errors
from previous iterations. However, it also loses the continuous
feedback that can be valuable for guiding the repair process.

To strike a balance between these two strategies, we impose a
limit on the depth of continuous repairs. If the function cannot be
repaired within the specified maximum depth, we restart the repair
process from the original buggy function and select different test

Conference’17, July 2017, Washington, DC, USA

pairs. This approach allows us to explore multiple repair paths and
increase the chances of generating accurate fixes.

Algorithm 1 presents the overall repair process of ContrastRepair.
The algorithm takes as input the buggy function and a set of test
cases « used to evaluate its correctness. The objective is to output a
plausible patch if successful. ContrastRepair collects all failing test
cases and passing test cases by running all available tests (Line 1).
In cases where the number of passing tests is insufficient or they
have low similarities with the failing test, the function Collect
includes the type-aware mutation to generate additional passing
tests for exception bugs. Then it selects all contrastive test pairs that
exhibit sufficient similarity (Line 2). The repair process involves
both restarting the repair (Line 4) and continuous repair (Line 8).
The total number of repair attempts is limited to m X n, where m is
the maximum tries for the restarting repair and n is the maximum
tries for the continuous repair.

At each restarting iteration, k test pairs are selected for construct-
ing prompts (Line 5). The SelectPair function aims to prioritize
pairs based on how often a pair is selected before. The pairs that
were rarely selected have high priority, which prevents an exces-
sive number of selections of the same pairs. For the selected pairs
p, the algorithm performs continuous repair within n tries. The
failure test cases in the k pairs (denoted as p ) may or may not be
caused by the same root cause. We execute all of them to collect
the bug traceback logs and remove the redundant duplicates to
reduce the tokens sent to LLMs (Line 9). In cases where the bug de-
pends on other functions, ContrastRepair identifies the dependent
functions from the traceback logs, then merges them together and
forms the dependent function collection D (Line 10). The prompt is
constructed (Line 11), including the buggy function tmp, the test
pairs p, the traceback ¢, dependent functions d, and specific repair
requirements. The prompt is then fed to ChatGPT, and the patched
function is obtained (Line 12).

The patch is evaluated with all tests (Line 13). If passed, a plausi-
ble patch is generated. Following the work [65], we generate alter-
native plausible patches by ChatGPT in case the generated patch
is not the correct patch but is very close to it (Line 15). Otherwise,
the repair process continues from the current patched function and
its test pairs (Line 17-19). If the repair fails within the given budget,
the original buggy function is returned.

Prompt Construction. The construction of prompts is a crucial
step in effectively guiding ChatGPT for program repair. Following
best practices [2, 21, 60], we design the prompt to include essential
elements that provide context, task description, and constraints
on the output. We manually examined several alternative prompts
using the web version of ChatGPT and selected the best one. As
is presented in Fig 3, the prompt begins by setting the context for
ChatGPT, introducing it as a “Java program repair expert.” Then it
includes the code of the buggy function that requires repair, along
with the contrastive test pair that was constructed. The traceback
information from the failed test is added to the prompt, providing
additional context and insights into the bug. If the bug depends
on other functions, we include the code about these dependent
functions. Specifically, we extract the function names that appear
in both the traceback of the error message and the source code of
the project. Those that are direct callers or callees of the buggy func-
tion are considered dependent functions. If a dependent function
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Figure 3: Illustration of Prompt Construction

depends on other functions, then others are also taken into account
unless the length of the prompt hits the maximum limit. The de-
pendent function could provide more information for ChatGPT to
understand the buggy program and the root causes of bugs. The
prompt concludes with specific requirements, instructing ChatGPT
to generate a complete patched function.

4 EVALUATION

In this section, we aim to answer the following research questions:

o RQ1: How effective is ContrastRepair compared to state-of-the-art
APR techniques? We evaluate the performance of ContrastRe-
pair by comparing it to traditional APR methods, DL-based APR
techniques, and the recent conversation-driven APR tools.

o RQ2: How useful is ContrastRepair in unknown datasets? Consid-
ering the potential data leak risk caused by LLMs, we evaluate
ContrastRepair on previously unseen datasets, which were not
used during the training of ChatGPT.

e RQ3: How do different hyperparameters affect the repair perfor-
mance of ContrastRepair? We conduct a study to examine the
impact of various hyperparameters on ContrastRepair’s effective-
ness, including the number of test pairs, and the thresholds for
continuous repair and restarting repair.

o RQ4: What are the contributions of different components of Con-
trastRepair in improving repair effectiveness? We aim to under-
stand the usefulness of each component of ContrastRepair, in-
cluding the contrastive test pairs and the dependent functions.

4.1 Setup

4.1.1 Configuration. For the experiments conducted in this paper,
we opted to utilize ChatGPT with the gpt-3.5-turbo-0301 model as
the pre-trained Large Language Model (LLM) for ContrastRepair.
To interact with the ChatGPT service, we employed its API. In
order to increase the potential search space and generate diverse

patches, we set the sampling temperature to 1, which is the default
setting. The maximum number of continuous repair attempts (n)
and the maximum number of restarting repair attempts (m) were
set as 3 and 40. Therefore, the maximum number of conversations
per buggy function is 120. Specifically, in the process of querying
ChatGPT to repair bugs, there is no timeout setting, when query
times are used up, the repair process stops. Once a plausible patch is
generated, we take patch augmentation to generate more plausible
patches by prompting ChatGPT with already collected plausible
ones, and we set query times for this process to 40. Based on an
initial study on similarity distribution after mutations (see RQ1),
we set the similarity threshold, 0, at 0.5. This decision balances the
number of test pairs we can select while aiming to maximize their
similarity. Instead, we generated a set of test cases by mutating the
failing test from a small to a large degree or by collecting existing
passing tests. For the mutation of the failing test, we randomly
generate 1,000 new test cases for validation and selection. And in the
process of evaluating newly generated test cases, there is a timeout.
Specifically, We set the maximum time as 30 seconds to evaluate
each generated test case and verify whether the buggy function
can pass it. With this setting, the time cost for each bug in the
process of type-aware mutation(the time cost for mutation is really
little, which can be omitted) and validation of newly generated test
cases can be limited to 25 minutes. Notably, in our approach, test
generation is only invoked once before the repair process starts.

4.1.2  Benchmark. We evaluate the effectiveness of ContrastRepair
by using well-established benchmark datasets, including Defects4j
and QuixBugs. Defects4j is a widely studied collection of open-
source bugs from 15 different projects, while QuixBugs consists of
40 buggy and fixed versions of classic programming problems in
both Python and Java.

To provide fault localization during the repair process, we adopt
the approach used in prior research [63, 65] by providing perfect
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fault locations derived from ground truth. We evaluate the per-
formance of the tools in three different scenarios based on the
granularity of the provided fault locations: at the function level, the
statement level, and the hunk level. These scenarios correspond
to single-function fixes, single-line fixes, and single-hunk fixes, re-
spectively. It is worth noting that function-level fault localization
is more practical and more challenging for repair, given that fine-
grained fault localization is often difficult to obtain in real-world
situations.

For the Defects4j dataset, we follow the standard practice in
prior APR works and divide it into two versions: Defects4j 1.2 and
Defects4;j 2.0. Defects4j 1.2 contains a total of 391 bugs in 6 different
Java projects. Based on the fault localizations provided, they can
be categorized as 255 single-function bugs, 154 single-hunk bugs
and 80 single-line bugs. Due to the budget constraint for invoking
the ChatGPT API, for Defects4;j 2.0, we select 82 single-line bugs,
which is a commonly used setting in prior APR tools [63, 65] for
easier comparison. Notably, the category of single-line bugs is a
subset of the single-function bug category and single-hunk bug
category, and the single-hunk category is also a subset of the single-
function category. In addition, we also assess the performance of
ContrastRepair on the QuixBugs dataset, which consists of both
Java and Python bugs,

Additionally, for our evaluation, we incorporated the HumanEval-
Java [24] benchmark, which has 163 bug cases and most of them are
single-line ones. The release date of HumanEval-Java postdates the
data collection used for training GPT-3.5, ensuring that there is no
risk of data leakage. Within this benchmark, developers translated
Python programs from HumanEval and their corresponding test
cases into Java programs and JUnit test cases. Some bugs are intro-
duced into the correct Java programs. Similarly, we also provide
function-level localization for the repair of all bugs.

4.1.3 Implementation. In our selected datasets, the provided unit
tests may not always target the buggy functions; they might in-
stead target the callers of these buggy functions. To obtain test cases
specifically designed for the buggy functions, we employ an instru-
mentation process. Specifically, we use the Java lib-Javassist [4] to
insert instrumentation code at the beginning of the buggy functions
to capture the parameter values during the execution of unit tests.
These captured values effectively serve as test cases tailored for the
buggy functions. Once we have gathered the test cases, we apply
our type-aware mutation strategy to the failing tests, resulting in
a set of mutated test cases. For executing the mutated test cases,
we utilize the original test driver employed by Defects4;j. During
the execution of the test driver, the instrumented code within the
buggy functions substitutes the values of the parameters with the
values from the mutated test cases.

4.1.4 Baselines. In our comparative evaluation, we evaluate Con-
trastRepair by comparing it with seven state-of-the-art baselines,
including six learning-based APR methods (SelfAPR [70], AlphaRe-
pair [63], RewardRepair [71], Recoder [78], and CURE [25]), one
traditional APR method (TBar [35]), and one recent LLM-based tech-
nique, CHATREPAIR [65]. Additionally, we create an LLM-based
baseline called BaseChatGPT, which uses a basic prompt without
detailed feedback, such as test pairs and traceback information.
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BaseChatGPT takes the buggy function as input and iteratively out-
puts the patched functions. We selected only one traditional APR
method because: 1) TBar is the state-of-the-art traditional method
and 2) previous research [40, 63, 65, 70, 78] has demonstrated that
their performance is usually inferior to learning-based methods.

We chose CHATREPAIR due to two main reasons: firstly, both
ContrastRepair and CHATREPAIR utilize the state-of-the-art LLM,
ChatGPT, making the comparison more relevant. Secondly, al-
though not yet accepted at the time of our submission, CHATRE-
PAIR has achieved new state-of-the-art results, as reported in [65],
surpassing the state-of-the-art methods. Since CHATREPAIR is
not publicly open-sourced, so we re-implement it following the
instructions provided in the paper [65].

4.1.5 Metrics. We select two widely-used metrics to compare Con-
trastRepair with the baselines:

o Number of Correct Fixes (#Correct): Assesses the ability of the
repair tool to produce accurate patches. This metric counts the
number of programs that have been properly repaired based on
a manual review of the plausible patches generated by each tool.

o Number of Queries to ChatGPT (#Query): Quantifies the resource
utilization and efficiency of the LLM-based method. We evaluate
the average number of ChatGPT API queries made across all bug
cases, providing insight into the frequency with which ChatGPT
calls are needed.

4.2 ROQ1: Effectiveness of ContrastRepair

Repair Performance on Defects4j. Table 1 presents the results of
different tools on the number of correct fixes for Defects4j 1.2 and
Defects4j 2.0 datasets, where the tools are represented by abbrevia-
tion. Notably, ContrastRepair, BaseChatGPT and CHATREPAIR’s
results on Defects4j 1.2 encompass the union of single-function
fix, single-hunk fix, and single-line fix. The symbol * indicates that
the results were not obtained by us, but rather collected from their
paper [65] due to the code not being open-sourced or the failure
to run in our local configuration. However, the configuration of
them are the same as that of the other baselines, and we firmly
believe that this does not affect the validity of our comparative con-
clusions, as ContrastRepair consistently demonstrates significant
improvements compared to these baselines. As the results suggest,
ContrastRepair achieves the best performance compared to other
baselines. Specifically, ContrastRepair can repair 103 out of 255 bugs
and 40 out of 82 bugs in Defects4j 1.2 and Defects4j 2.0, respec-
tively. These results set a new state-of-the-art repair performance,
showecasing the effectiveness of ContrastRepair.

Comparing the LLM-based tools with other methods, we can
clearly observe that integrating ChatGPT significantly improves
the repair performance. For instance, the best non-LLM method,
AlphaRepair, correctly repairs 70 and 36 bugs on Defects4j 1.2 and
2.0, respectively. On the other hand, BaseChatGPT can achieve
competitive performance, i.e., correctly repairs 68 and 28 bugs,
demonstrating the usefulness of LLM in the repair task.

Comparing ContrastRepair with other LLM-based methods, we
can observe that both ContrastRepair and CHATREPAIR achieve
better results than BaseChatGPT, highlighting the significance of
providing informative feedback to LLM in program repair. Note
that, there is a gap between the results of CHATREPAIR obtained
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Table 1: Comparative results with on Defects4j.

Dataset  ContrastRepair BaseChatGPT CHATREPAIR AlphaRepair SelfAPR RewardRepair® Recoder TBar* CURE
Chart 12 10 11 8 9 5 11 11 9
Closure 32 19 30 22 18 15 22 16 13
Lang 19 10 17 11 12 7 9 13 9
Math 30 23 26 21 15 19 22 22 16
Mockito 8 5 5 5 2 3 1 3 4
Time 2 1 3 3 1 2 3 1
D4J1.2 103 68 90 70 59 50 67 68 52
D4J2.0 40 28 34 36 31 25 18 8 19

Passing Case: "eE1" Failing Case: "1eE"

Number createNumber(String str)
throws NumberFormatException {

{ﬁé decPos = str.index0f('.");
int expPos = str.indexOf('e') + str.indexOf('E') + 1;
if (decPos > -1) {

if (expPos > -1) {
if (expPos < decPos) {
throw new NumberFormatException(...);

dec = str.substring(decPos + 1, expPos);
} else {
dec = str.substring(decPos + 1);

mant = str.substring(@, decPos);
} else {
if (expPos > -1) {
i mant = str.substring(@, expPos);
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(b) Repair Results of CHATREPAIR
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if (decPos > -1) {
if (expPos > -1) {
if (expPos >= str.length()) {
throw new NumberFormatException(...);

} else {
if (expPos > -1) {
if (expPos >= str.length()) {
throw new NumberFormatException(...);

(a) Buggy Information

(c) Repair Results of ContrastRepair

Figure 4: An illustrative example of a bug uniquely fixed by ContrastRepair in Defects4] 1.2.
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Figure 5: Bug fix Venn diagram on D4J1.2.

in this paper and that in the original paper [65]. The main reason,
leading to that the results of CHATREPAIR reported in the original
paper are superior, is the variation of hyperparameter settings. In
the original paper, the default setting for the maximum number
of restarting repair attempts allowed is 200 for single-line and
single-hunk scenarios, and 100 for the single-function scenario,
which are much larger than ours. A further comparison between
ContrastRepair and CHATREPAIR is presented in Table 4, where
columns SL, SH and SF show the results of single-line fixes, single-
hunk fixes and single-function fixes, respectively. As we can see,

among all the fix scenarios, ContrastRepair performs better than the
others. In the three repair scenarios of Defects4j 1.2, ContrastRepair
significantly outperforms CHATREPAIR by repairing 11, 16, and 23
more bugs respectively. In the single-line-fix scenario of Defects4j
2.0, ContrastRepair outperforms CHATREPAIR with 40 correct bug
fixes compared to 34. Furthermore, we found that ContrastRepair
generates about 20% more plausible fix than CHATREPAIR, 56
versus 47. The improvements demonstrated that ContrastRepair
could provide more useful prompts, such as the test pairs, which
contributes to its superior performance.

Repair Performance on QuixBugs. Table 2 displays the results
for QuixBugs. Notably, ContrastRepair successfully rectified all
bugs within the QuixBugs-Java and QuixBugs-Python datasets,
demonstrating its marked superiority over other methods. De-
tailed repair results across three distinct scenarios are presented
in Table 3. Specifically, ContrastRepair outperforms CHATREPAIR
among three scenarios in both QuixBugs-Python and QuixBugs-
Java. In QuixBugs-Python, ContrastRepair can respectively fix three,
one and three more bugs than CHATREPAIR in three different sce-
narios. Similarly, in QuixBugs-Java, it can perform better by giving
two, two and three more correct fixes.

Repair Efficiency. The repair efficiency in terms of the number
of API calls is reported in Table 4. Compared to CHATREPAIR,
ContrastRepair exhibited an enormous reduction in average query
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Table 2: Comparison with baselines on QuixBugs

Constrast CHAT Alpha Reward

QuixBUES | popair  REPAIR Repair Repair CORL
Python 40 38 27 -
Java 40 37 28 20 26

Table 3: Comparison on Distinct Scenarios.

| D412 QuixBugs-Py  QuixBugs-J
Tools

|SL SH SF SL SH SF SL SH SF
BaseChatGPT |38 50 37 31 32 30 29 30 33
CHATREPAIR | 45 53 52 33 35 34 32 33 34

ContrastRepair | 56 69 75 36 36 37 34 35 37

Table 4: Comparison with Baselines on D4J1.2.

‘ #Correct #Plausible #Query
Tools

‘ SL SH SF SL SH SF SL SH SF
BaseChatGPT 38 50 37 43 67 67  66.88 79.89 96.16
CHATREPAIR 45 53 52 47 70 101 6236 79.14 82.27
ContrastRepair | 56 69 75 60 102 120 44.38 55.24 77.36

times among all bug cases (#Query), especially in single-line and
single-hunk repair scenarios, with #Query decreased by 28.83%
and 30.20%, respectively. It indicates that ContrastRepair employs
better prompts, allowing the LLM to pinpoint bugs and enabling
more effective repair. In the single-function repair scenario, we
noticed that #Query only decreased by 5.97%. After analyzing the
experiment results, we found that ContrastRepair repaired some
bugs that CHATREPAIR was unable to fix. Patches of these bugs
are more complicated, ContrastRepair could only address them
when it approached the maximum number of attempts, leading to
a marginal decrease in #Query.

Fig 5 shows a Venn diagram of the bugs fixed by all baselines and
ContrastRepair on Defects4j 1.2. We selected the top three baselines
based on the number of bugs they fixed correctly and grouped the
remaining ones under “Other”. We can see that ContrastRepair fixes
13 unique bugs not addressed by any other prior tools.

Fig 4 presents a specific example (Lang-27) that was only fixed by
ContrastRepair. This bug manifested as an unexpected StringIndex-
OutOfBoundsException error on the highlighted line. In Fig 4 (a),
we showcase the buggy function and highlight the line where fail-
ing cases trigger the unexpected exception. The input is considered
passed if it either parses successfully or raises a NumberFormatEx-
ception when it is invalid. As depicted in Fig 4 (b), CHATREPAIR
erroneously directs ChatGPT’s focus toward the value of expPos,
leading to an incorrect adjustment in its calculation. When provided
with the failing test case 1eE, ContrastRepair initially generates a
similar passing test case, eE1. We conjecture that the passing test
could possibly imply that the calculation of expPos is fine and a
proper fix can be attained by adding a bounds check. Additionally,
the values of expPos for the passing test eE1 and the failing test
1eE are expPos=2 and expPos=4, respectively, with both inputs
having a length of 3. This contrastive information (4>3 and 2<3)
might provide stronger guidance for ChatGPT to infer that the bug
is triggered when the value of expPos exceeds the input length. As a
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Figure 6: Similar Scores before and after Mutation.

Table 5: Comparison on HumanEval-Java.

Tools | #Plausible #Correct #Query
BaseChatGPT 136 126 28.90
CHATREPAIR 143 130 24.68
ContrastRepair 151 137 17.44

result, as shown in Fig 4 (c), ContrastRepair successfully fixes the
bug.

Performance of type-aware mutation. We also evaluate the
effectiveness of the proposed type-aware mutation. We find that
when applying the mutation operations, we can have 45 extra bugs
that can successfully generate passing test cases on the Defects4;j
Dataset, which demonstrate the effectiveness of type-aware muta-
tion. The remaining bugs we can not successfully generate passing
test cases are because these buggy functions have no parameters
in primitive type or all parameters are objects instantiated from
classes defined by developers. We also analyzed the test pair sim-
ilarity before and after type-aware mutation. Fig 6 displays the
frequency distribution of maximum similarity scores before and
after mutation. The x-axis denotes similarity scores, while the y-
axis represents the number of bugs. For each bug, we calculate the
highest similarity score among its multiple test pairs. Note that
a bug receives a maximum similarity score of 0 if it has no test
pairs. The original number of this kind of bug is 43, however, after
mutation, it decreases to 25. The results reveal a wide distribution
of initial similarity scores, with only 14.67% (11/75) of the bugs
falling between 0.5 and 1. However, after mutation, these scores
predominantly cluster in the 0.6 to 1 range, encompassing 53.33%
(40/75) of the bugs. This indicates a notable enhancement in simi-
larity scores attributable to our mutation strategy. For each bug, we
randomly generate 1,000 test cases and validate them via the com-
mand provided by Defects4j, the time cost of this process ranges
from 15 to 25 minutes based on the complexity of different buggy
functions.

Answer to RQ1: ContrastRepair improves the state-of-the-art
APR tools significantly, including ChatGPT-based repair method
CHATREPAIR. For instance, in the three fix scenario of Defects4;j 1.2,
ContrastRepair achieves a success repair rate of 70.00%, 44.81% and
29.41% respectively, whereas CHATREPAIR achieves 56.25%, 34.42%
and 20.39% respectively. Furthermore, ContrastRepair requires fewer
API queries than CHATREPAIR.

4.3 RQ2: Evaluation on Unknown Dataset

In light of concerns surrounding potential data leaks from the
widely-used benchmarks, Defects4j and QuixBugs, which could be
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Table 6: Evaluation on Pair Number.

Settings ‘ #Fail #Pair ‘ #Correct  #Plausible #Query
CHATREPAIR 0 0 33 54 69.09
BaseChatGPT 0 0 31 48 76.16
+SingleFail 1 0 32 53 69.23
+DoubleFail 2 0 33 55 68.57
+SinglePair 0 1 35 58 66.14
ContrastRepair 0 2 37 60 63.09

Table 7: Evaluation on Restarting/Continuous Repair.

Iteration (m) Rounds (n) ‘ #Correct  #Plausible #Query

12 10 15 23 88.48
120 1 18 31 74.78
40 3 21 33 70.53

included in the training data of ChatGPT, we conducted experi-
ments to assess the effectiveness of ContrastRepair on unseen new
datasets. It is worth noting that while there is a possibility of data
influence from Defects4j and QuixBugs, our comparative analysis
with ChatRepair and BaseChatGPT in RQ1 still underlines the ef-
fectiveness of ContrastRepair, given that all three methods employ
the same version of ChatGPT. To explore a fresh perspective, we
opted to utilize the recently introduced benchmark, HumanEval-
Java, which was made publicly available in January 2023. In our
evaluation, ContrastRepair was configured for single-function fixes
with setting n and m as 3 and 40, and we compared the outcomes
with those obtained using CHATREPAIR and BaseChatGPT.

As illustrated in Table 5, ContrastRepair achieves the best results
among the three tools, successfully fixing 137 out of 164 total bugs.
In comparison, CHATREPAIR achieved 130 fixes, while BaseChat-
GPT managed 126. Notably, ContrastRepair exhibited an improve-
ment in the success repair rate by 5.38% and 8.73% when compared
to CHATREPAIR and BaseChatGPT, respectively.

Furthermore, ContrastRepair significantly outperforms the other

two methods in terms of efficiency, as indicated by the average
number of ChatGPT queries on each bug (#Query). Specifically,
ContrastRepair reduced the number of #Query by 29.34% (from
24.68 to 17.44) in comparison to CHATREPAIR, and by 39.66% (from
28.90 to 17.44) when compared to BaseChatGPT. These results
are consistent with our findings from the Defects4j benchmark,
demonstrating its effectiveness.
Answer to RQ2: The evaluation of the unseen dataset, HumanEval-
Java, again showecases the superior performance of ContrastRepair
in terms of both the number of correct fixes and the efficiency of
ChatGPT API queries.

4.4 RQ3: Hyperparameter Evaluation

The primary hyperparameters for ContrastRepair encompass the
number of test case pairs (k) and the total number of attempts,
determined by the continuous and restarting repair configuration
(m, n). We perform the single-function repair as it is a more practical
scenario, and the dataset consists of 106 bugs (from Defects4j)
in which at least one pair can be constructed. Table 6 shows the
outcomes from various test case configurations (Columns #Fail
and #Pair). These configurations span four variants: a single failed
case, two failed cases, one test pair, and two test pairs. We present
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Table 8: Effectiveness of Selection and Contextual Code.

Tools ‘ #Correct  #Plausible #Query
w/o Pair 30.67 48.00 76.16
w/o Similarity 33.33 56.33 72.62
ContrastRepair-106 37.00 60.33 63.09
w/o Context 32.67 61.67 62.17
ContrastRepair-103 36.00 64.67 58.28

the repair results of LLM-based baselines on these 106 bugs. We
limit the maximum number of test pairs to 2, as half of the bugs in
the dataset have fewer than 2 pairs of test cases with a similarity
threshold of 0.5. For consistency, we only retrain using the top-2
test pairs when a bug has more than two pairs. Comparisons were
made based on the correct fixes (Column #Correct), plausible fixes
(Column #Plausible), ChatGPT API query count (Column #Query).

Our observations revealed that ContrastRepair, when provided
with two test case pairs, yielded the highest correct and plausible fix
rates (37/60). Offering just a single test case pair led to the second-
highest fix effectiveness (35/58). Crucially, using test case pairs
consistently outperformed merely submitting the same quantity of
failed test cases. Moreover, introducing two failed test cases (33/55)
was more effective than just one (32/53). Notably, ContrastRepair,
when fed with two test case pairs, demanded the fewest #Query
(63.09). These findings underscore the value of test pairs: they de-
liver more useful information to LLMs for bug repair than simply
relaying failed tests. Consequently, supplying an increased number
of tests or test pairs tends to optimize results.

For our restarting repair and continuous repair parameters (m x
n), we considered three distinct configurations: 12 x 10, 40 X 3, and
120 x 1. Each configuration adheres to the same overall budget limit,
totaling 120 tries. However, they differ in their approach: the 12x10
setup emphasizes a deeper search, the 120 x 1 aims for a broader
search, while 40 x 3 strikes a balance between the two.

An analysis of the outcomes in Table 7 reveals that the 40X 3 con-
figuration excels in terms of the number of correct/plausible fixes
(21/33). Conversely, 12 X 10 exhibits the least effectiveness (15/23).
This disparity suggests that the parameter n is pivotal in influencing
ContrastRepair’s performance. A larger n seems detrimental: if an
initial repair attempt deviates from the optimal solution, realigning
to a correct path becomes challenging as iterations increase. This
can hinder the generation of accurate patches. However, setting n
too low can be counterproductive. If the initial direction of repair
is on track but achieving the desired patch demands successive
iterations, a moderately large n becomes beneficial. Continuous
feedback in such cases can aid in formulating the correct fixes.
Answer to RQ3: Utilizing test pairs provides more comprehensive
information to LLMs for effective and efficient bug repair compared
to solely relying on failed tests. The balance between restarting and
continuous repairs is crucial to ensure the repair performance.

4.5 RQ4: Ablation Study on ContrastRepair

In this section, we delve into an ablation study to evaluate the use-
fulness of two critical components in ContrastRepair: pair selection
and dependent functions. Specifically, we configure three variants
of our tool: ContrastRepair without test pairs (referred to as w/o
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Pair), the tool that replaces the similarity-based selection with ran-
dom selection (referred to as w/o Similarity) and ContrastRepair
without dependent functions (referred to as w/o Context).

To evaluate the evaluation of w/o Pair and w/o Similarity, we
employ the same dataset used in RQ3, consisting of 106 bugs, each
with multiple test pairs. For w/o Context, we chose all the 103
bugs from Defects4j where each sample has multiple dependent
functions. The reason for this selection is that not each sample has
the function invocation or test pair. Similar to RQ3, we repair the
bugs in a practical setting, i.e., single-function fix. Moreover, to
mitigate the effect of randomness, we repeated the bug rectification
process three times for each bug.

As indicated in Table 8, the results underscore the importance
of test pair, dependent functions and the similarity-based selection
used in ContrastRepair. For the 106 bugs, ContrastRepair generates
60.33 plausible fixes and 37.00 correct fixes on average. ContrastRe-
pair w/o Pair only has 48.00 plausible fixes and 30.67 correct fixes
on average. However, when we replace the similarity selection
with the random selection that may not select the pair with high
similarity, the results are 56.33 plausible fixes and 34.00 correct
fixes on average, which is higher than the setting without pairs
but lower than ContrastRepair. This highlights an enhancement
achieved by including the similarity-based pair selection. For the
103 bugs where ContrastRepair leverages the contextual informa-
tion regarding dependent functions, it produces 64.67 plausible
fixes and 36.00 correct fixes on average. Conversely, w/o Context,
without the contextual information, generates 61.67 plausible fixes
and 32.67 correct fixes.

To demonstrate the value of each component, we adopted an ad-
ditional metric, Pass@m, with m indicating the maximum number
of repair attempts allowed (refer to Algorithm 1). We set varying
values for m, as detailed in Table 9. In this table, ours denotes the
results achieved by ContrastRepair on various datasets, which con-
tained 106 and 103 bugs, respectively. Overall, the results continue
to affirm the usefulness of test pairs, similarity-based test pair se-
lection, and the context involving dependent functions. Notably,
with a smaller m (i.e., a tighter budget), the impact of these compo-
nents on generating correct (#C) and plausible (#P) patches becomes
more pronounced, as seen in Pass@20, Pass@10, and Pass@5. Fur-
thermore, the incorporation of similarity-based pair selection and
contextual information contributes to a reduction in the number of
queries made to ChatGPT API. For instance, on the two selected
datasets, the average number of queries per bug for ContrastRepair
is 63.09 and 58.28 respectively. In contrast, w/o Pair, w/o Simi-
larity and w/o Context have averages of 76.16, 72.62, and 62.17,
representing increases of 20.72%, 15.11% and 6.67%, respectively.
Answer to RQ4: Incorporating similarity-based pair selection
and dependent functions in prompts helps enhance the capabilities
of ContrastRepair for bug repair. These components not only sig-
nificantly improve the effectiveness of LLMs in generating more
correct fixes (8.82% and 9.09%) but also reduce the number of API
calls (20.72%, 15.11% and 6.67%).
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Table 9: Pass@m for ablation on Similarity and Context.

Tools Pass@40 Pass@30 Pass@20 Pass@10 Pass@5
#C #P #C #P #C #P #C #P #C #P
w/o Pair 30.67 48.00 29.67 45.00 2833 41.00 24.00 3733 22.67 36.00
w/o Sim. 3333  56.33 3200 5133 27.67 43.67 2333 37.67 2233 32.00
ContrastRepair (106) | 37.00 60.33 36.00 59.00 33.67 55.33 31.67 50.00 28.67 42.33
w/o Con. 32.67 61.67 32.00 59.67 29.00 54.33 24.67 46.00 20.00 3133
ContrastRepair (103) | 36.00 64.67 34.67 61.33 33.00 58.67 30.33 52.00 2533 41.33

Table 10: Pass@m to investigate the effectiveness of different
similarity strategies to select cases.

Tools Pass@40 Pass@30 Pass@20 Pass@10 Pass@5
#C #P #C #P #C #P #C #P #C #P
BM25 35.67 59.00 33.00 5533 3333 5333 27.33 4567 24.67 38.00
CodeBERT 33.00 5733 32.67 53.00 29.00 51.00 27.67 45.00 26.33 38.00
UniXcoder 32.67 54.00 3133 5133 28.00 4533 2733 39.67 2633 36.00
ContrastRepair (106) | 37.00 60.33 36.00 59.00 33.67 55.33 31.67 50.00 28.67 42.33

5 DISCUSSION

5.1 Selection with Different Similarity
Strategies

To investigate the effectiveness of our selection strategy, we use
BM25 [52] (lexical-based) and CodeBERT [17], UniXcoder [20]
(semantic-based) approaches for comparison. Compared with our
used Damerau-Levenshtein distance for similarity measurement,
BM25 utilized sparse vector representation for lexical matching.
CodeBERT and UniXcoder are both learn-based approaches where
CodeBERT learns code representations by the masked language
modeling from a large code corpus and UniXcoder further incorpo-
rates AST with different pre-training tasks for learning. Like the
configuration in RQ4, we explore the effectiveness of the 106 bugs
with multiple pairs. The experiments are repeated three times to
avoid randomness. Furthermore, for CodeBERT and UniXcoder, we
feed the test cases to the model and obtain the vector representation
to calculate the similarity based on the cosine function.

The experimental results are presented in Table 10, and we can
find that using Damerau-Levenshtein distance is superior to other
approaches. As the objective of similarity measurement is to find
the critical changes in the test cases, hence using the vector repre-
sentation for retrieval may be indirect and inappropriate for this
task rather than string-based similarity retrieval. The experimen-
tal results in Table 10 have demonstrated the effectiveness of our
similarity measurement approach,

5.2 Threats to Validity

The first potential threat to the validity of our results is the selection
of the datasets used for evaluation. The improvement obtained
by ContrastRepair may not generalize to other repair datasets. To
mitigate this threat, we have selected diverse datasets for evaluation,
including Defects4;j 1.2, Defects4j 2.0, QuixBugs. The second threat
is data leakage which arises when the ground truth patches are part
of the original training data of ChatGPT. To address this, we selected
an additional dataset, HumanEval-Java, which was published after
the training of the ChatGPT models.

Manual verification of the plausible patches is a threat. A careful
examination is needed to determine whether they are semantically
equivalent. To mitigate the threat, we invited three researchers in
SE field to check respectively, and then discuss the patches where
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validation answers were inconsistent, ultimately reaching a con-
sensus. Additionally, we have made our patches open-source for
public evaluation.

The assessment of efficiency in our experiments could poten-
tially present challenges. Notably, we did not measure the runtime
of different methods due to two reasons. The main one is we have
observed that LLM-based repair methods not only consume sig-
nificantly less time but also perform much better compared to
learning-based repair methods during the experimental process in
RQ1. Even if ContrastRepair consumes about twice total time (con-
sists of query and mutation phases) as much as ChatRepair does
(only contains query), it still remains entirely within an acceptable
range. At this juncture, we think prioritizing repair effectiveness
more than efficiency could be more reasonable when considering a
trade-off. Another one is the presence of numerous uncontrollable
factors when invoking ChatGPT API calls, such as network delays,
the configuration of ChatGPT models, and their parallelism and
scheduling strategies. To mitigate this, we metered the number of
API calls (i.e., #Query) to gauge the informativeness of prompts,
which helps measure whether ChatGPT better understands the root
cause of the bugs. Our observations suggest that the performance
of conversation-based repair typically improves with an increased
number of API calls. By comparing the query counts, we can assess
the effectiveness of different feedback in guiding the repair process.
Furthermore, we did not use the total number of tokens as a mea-
sure of cost or efficiency. There were two primary reasons: 1) the
prompts used in each method still have substantial potential for
streamlining and optimization by adjusting their content, which
is not our main focus. 2) Our reproduced CHATREPAIR may not
precisely match the number of tokens in their original implemen-
tation, potentially leading to unfair comparisons. To this end, we
made a trade-off and selected the number of API calls as a suitable
metric for the efficiency assessments.

Another potential threat to the validity of our results is that
some of the results from RewardRepair and TBar are collected from
existing paper [65]. However, we believe that these comparisons
do not affect our conclusions, as there is a significant performance
gap [65] between these methods and the LLM-based methods.

6 RELATED WORK

6.1 Automatic Program Repair

Automated Program Repair (APR) tools are employed to create
patched code from the original code and the corresponding buggy
location. Every patch generated by the APR tool undergoes vali-
dation against the test suite. Plausible patches refer to those that
successfully pass the entire suite, while correct patches are plausible
patches that effectively rectify the underlying bug. Generally speak-
ing, there are two kinds of methods in the APR field, traditional
and learning-based methods.

Traditional tools can be broadly divided into three main cate-
gories: heuristic-based [30, 31, 59], constraint-based [29, 39, 43] and
template-based [34, 35, 42]. However, these traditional methods
have some limitations. Template-based tools have been regarded as
state-of-the-art ones among traditional methods due to their best
repair performance, but these APR tools depend much on manually
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designed templates or specific fix patterns to repair limited kinds
of bugs.

With the rapid development of deep learning techniques, there
has been a growing focus on learning-based approaches, such
as CURE [25], RewardRepair [71], Recoder [78], CoCoNut [40]
and SelfAPR [70], which convert APR to Neural Machine Trans-
lation(NMT) problem and have shown remarkable potential for
enhancing bug repair performance. Unlike conventional methods,
learning-based approaches can automatically capture semantic re-
lations among parallel bug-fixing pairs. This capability enables the
creation of patch solutions that are not only more effective but
also contextually aware. Nevertheless, the quality and quantity
of the training datasets largely determine the effectiveness of the
model. The training corpus may include a lot of noise when scrap-
ing repositories that have irrelevant commits and changes from
GitHub.

Recently, researchers have explored the feasibility of employing
potent LLMs for APR. LLMs demonstrate the ability to produce
accurate patches directly from the contextual information, without
the necessity for fine-tuning. AlphaRepair [63], the first cloze-style
APR approach to directly leveraging large pre-trained code models
for APR without any fine-tuning/retraining on historical bug fixes.

Despite LLM-based methods have yielded remarkable results [16,
24, 51, 55, 62, 63], they mainly focus on the buggy code and treat
bug repair as a one-step process, overlooking the interactive and
collaborative aspects inherent in bug resolution. Furthermore, by
mining and analyzing historical data from interaction records with
LLMs, and understanding the fundamental reasons for LLM failure
in bug fixing, researchers can better guide LLMs to perform program
repair in the correct direction in subsequent interactions.

Previous research [19, 66] has also demonstrated the effective-
ness of applying test cases to code repair tasks, aiding APR tools
in generating patches of high quality. Based on these intuitions,
CHATREPAIR [65], the first fully automated conversation-driven
APR approach that interleaves patch generation with instant feed-
back from test suites to perform APR in a conversational style, is
proposed. Compared to traditional and learning-based methods,
CHATREPAIR can achieve promising results through the use of
LLMs by providing error feedback information for the conversa-
tions. Regrettably, this feedback may not consistently provide the
precise and informative prompts required for efficient repairs. This
paper introduces a method, ContrastRepair, which aims to craft
more specific and directive prompts for enhancing the capabilities
of LLMs in accurately comprehending buggy-related semantics and
generating high-quality patches.

6.2 Large Language Models

Recent advancements in generative Al have resulted in a signifi-
cant increase in performance and the widespread embrace of Large
Language Models (LLMs) [11, 77]. In the Natural Language Process-
ing (NLP) domain, LLMs have achieved impressive performance
in many tasks such as machine translation [56], text summariza-
tion [38] and classification [69]. Initially excelling in Natural Lan-
guage Processing (NLP) tasks [45], such as document classifica-
tion [22], text summarization [68], and machine translation [75].
Tremendous progress has been made by treating programming
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language as another sort of natural language and training LLMs
on corpora of both program code and natural language text, and
LLMs are now widely applied in various software engineering tasks
including code generation [33, 74], and code summarization [1, 37].
Since LLMs are designed to be general and capable of acquiring
knowledge across various domains, researchers can then make
use of LLMs for related downstream tasks by offering customized
prompts or, if desired, a few task-solving demonstrations as in-
put [36].

LLMs are advanced language models with massive parameter
sizes and exceptional learning capabilities. The core module behind
many LLMs such as GPT-3 [18], InstructGPT [49], and GPT-4 [48]
is the self-attention module in Transformer [57] that serves as
the fundamental building block for language modeling tasks. An
important characteristic of LLMs is their ability to perform in-
context learning [8], wherein the model is trained to produce text
in accordance with a provided context or prompt. This capability
allows LLMs to produce responses that are more coherent and
contextually appropriate, rendering them well-suited for interactive
and conversational purposes.

Reinforcement Learning from Human Feedback(RLHF) [13, 79]
represents another pivotal element of LLMs. This approach entails
fine-tuning the model by utilizing human-generated responses as
rewards, enabling the model to learn from mistakes and enhance
its performance progressively. Significantly, ChatGPT [47], with
its emphasis on conversations and its capability to remember and
refer back to previous dialogues, has attained state-of-the-art per-
formance in diverse SE tasks [15, 55]. In this paper, our purpose is
focusing on how to design more powerful prompts by harnessing
and utilizing information from test cases to prompt and inspire
ChatGPT to understand the semantic aspects of bugs, achieving
more effective bug repair, during the process of interacting and
collaborating.

6.3 Automated Test Generation

Automated test generation is a widely used technique for detect-
ing software defects by generating tests automatically. Techniques
like fuzz testing [23, 44, 67] in black-box test generation, involve
supplying the system under test (SUT) with random test inputs
(e.g., random bytes) without examining its internal code structure.
Traditional black-box techniques can mainly be categorized into
generation-based [23, 67] and mutation-based [10, 46, 61] ones.
Generation-based techniques focus on creating test inputs from
scratch, whereas mutation-based approaches introduce systematic
alterations to existing seed inputs to craft a wider array of tests.
A core drawback, often termed as "blindness," of black-box strate-
gies is their struggle to develop intricately designed test cases that
thoroughly investigate complex code pathways. Generation-based
techniques focus on directly generating test inputs from scratch,
whereas mutation-based techniques apply systematic mutation
changes on seed inputs to generate more diverse tests.

As a fundamental limitation of “blindness”, black-box methods
may hardly produce well-designed test-cases to exhaustively ex-
plore deep code paths. White-box methods yield higher-quality test
cases by examining the source code of SUT. For example, symbolic
execution [9, 27] overcomes coverage limitations by employing
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symbolic path constraint to generate tests that target deeper paths.
However, due to the high cost of constraint solving, some solutions
to enhance scalability have been introduced, including algorith-
mic approaches like concolic testing [41, 53] and implementation
strategies such as optimized compilation [50]. Serving as an inter-
mediary between black- and white-box testing, coverage-guided
fuzzing [54, 72], also known as grey-box testing, leverages cov-
erage information from SUT as feedback to adjust the process of
generating and mutating inputs.

Due to our intention not to increase code coverage or the diver-
sity of test cases, we continue to follow black-box test generation.
Inspired by type-aware operator mutation [61], we implement mu-
tations on parameters, which is referred to as type-aware parameter
mutation. This strategy serves two purposes: firstly, it enables the
rapid generation of a substantial number of test cases in a short
period. Secondly, by employing fine-grained mutations that make
minimal alterations to the original cases, we ensure that the newly
generated cases are highly similar to their predecessors.

6.4 Test Case Similarity

To select similar pairs of test cases, we require certain metrics to
measure the similarity of each pair. There are two widely used met-
rics: Lexical-based Similarity and Semantic-based Similarity.
BM25 [52] is a lexical-based similarity, which uses sparse vector rep-
resentation for lexical matching. BM25 converts each code snippet
as a bag-of-words representation and computes a lexical similarity
between a pair < Fj, P; >. The computed similarity score is repre-
sented as fy (Fj, Pj) = BM25(F;, Pj). As a sparse term-based metric,
BM25 is sensitive to the choice of identifier naming in source code
which does not impact the code semantics. Dense Passage Retriever
(DPR) [26] belongs to semantic-based similarity. For training DPR
to effectively learn code embeddings, both positive pairs and nega-
tive pairs are needed, and this is based on the assumption that the
two similar code snippets often share similar semantics (e.g., identi-
fiers and code structures). However, in this paper, our test cases are
not represented in the form of code snippets, they consist of spe-
cific values for the parameters within the buggy function instead.
Consequently, the two aforementioned metrics used to assess code
similarity are not applicable to our context. Our method involves
first converting these values into strings, and then calculating their
similarity using the Damerau-Levenshtein distance [14, 32]

7 CONCLUSION

In this paper, we introduced ContrastRepair, a novel conversation-
based APR method that utilizes ChatGPT for repairing bugs. By gen-
erating contrastive test pairs, ContrastRepair provides informative
feedback to ChatGPT, enabling better localization of bug causes. We
conducted extensive evaluations on diverse benchmark datasets,
including Defects4j, QuixBugs, and HumanEval, and compared
ContrastRepair with state-of-the-art APR baselines. The results
demonstrate that ContrastRepair achieves a new state-of-the-art in
automated program repair.
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