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We present a new proposal for distinguishing heat from work based on a control-theoretic observ-
ability decomposition. We derive a Hermitian operator representing instantaneous dissipation of
observable energy, and suggest a generalization of the von-Neumann entropy which can account for
the model-uncertainty also present in pure states if the measured observables are informationally
incomplete. In this view, the transition from a fundamental to a thermodynamic model consists in
mapping the fundamental density matrix to an effective one, generally of lower dimension, encoding
only what is observable given the constraints of our sensor and actuator capabilities. The general-
ized entropy captures the information loss incurred in this mapping. The theory is illustrated for
the central spin model, where we show that the application of external controls can increase the size
of thermal fluctuations and lower the entropy.

I. INTRODUCTION: HEAT AND WORK

The First Law of Thermodynamics, aside from being
a statement of energy conservation, claims that there are
two qualitatively different ways to alter the energy of
a thermal system: by the application (or extraction) of
work, or the addition (or subtraction) of heat. How to
make this distinction precise is a major conceptual issue
in thermodynamics, with fundamental ramifications. A
satisfactory solution is still lacking, and this presents a
roadblock towards the development of a mature science
of quantum thermodynamics [1, 2].

A common approach is to proceed in a heuristic man-
ner and make sure that the problem under consideration
contains a subsystem which, whatever the exact defini-
tions of heat and work, is one which would surely be rec-
ognized as either a heat or a work reservoir, or in other
words, as a bath or a battery [3]. The bath is usually
taken to be an infinite collection of quantum harmonic
oscillators, and the battery as any system whose energy
can be read off from measurements, and efficiently stored
and extracted on demand. In this way the issue of precise
definitions is sidelined for particular applications. Alter-
natively, in order to obtain a heat-work decomposition for
interactions with a more general environment, one may
follow R.Alicki [4] and consider the following application
of the Leibniz product rule

d

dt
⟨Ĥ⟩ = ⟨ d

dt
Ĥ, ρ̂⟩+ ⟨Ĥ, d

dt
ρ̂⟩, (1)

and decide that the first term corresponds to ”work”,
and the second to ”heat”. This method is applied widely
in the research literature to reduced density matrices in
open systems [5, 6]. It can be shown that under certain
constraints imposed on the Hamiltonian, only the second
term contributes to an increase in the local von-Neumann
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entropy. A slightly more general method which relaxes
said constraints is obtained using a so called local effec-
tive measurement basis (LEMBAS) which is determined
by the experimental set-up [7]. In either of the aforemen-
tioned views, only open quantum systems can thermalize,
and any heat-work decomposition requires a partitioning
of the total system into a ”working medium” of interest,
and an ”external bath”. But recent experiments [8–11]
have indicated that closed systems thermalize as well,
stimulating new interest in alternative methods, such as
the eigenstate thermalization hypothesis [12]. In the view
proposed in this paper, both closed and open systems
can thermalize, and instead of proclaiming a system-bath
split by fiat it is derived based on the measurement and
control resources at hand.
The two central notions of control theory are controlla-

bility and observability. The first deals with the extent to
which state transformations can be actuated by varying
externally controllable parameters, and the second the
extent to which the state of the system can be inferred
from measurements. Control-theorists are interested in
separating out degrees of freedom which are controllable
and/or observable, from those which are not [13]. We
claim that it is only when the system is not fully ob-
servable, that is, when at least a part of it is a ”black
box”, that thermodynamics as typically conceived is ap-
plicable. ”Entropy” appears when degrees of freedom are
hidden from us. This is effectively the case in classical
thermodynamics where we only have access to course-
grained macroscopic observables, and fundamentally so
for an event horizon surrounding a black hole, obscuring
the interior for outside observers. In our view, the tran-
sition from a fundamental to a thermodynamical model
amounts to a model-reduction procedure where the un-
observable degrees of freedom have been discarded, here
described as a mapping to an effective density matrix.
Using this mapping we obtain an entropy function that
is non-vanishing also for pure states, provided at least
a part of the system is unobservable, and is in general
time-varying for an isolated system.
We claim that the control-theoretic notion of observ-
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ability is needed for a proper understanding the heat-
work decomposition: heat is energy flow into unobserv-
able degrees of freedom, and work into those which are ob-
servable. Or in other words, work is energy transfer into
information-bearing degrees of freedom. While the use
of the observability decomposition to this end is novel
the general idea is to some extent already familiar to
physicists, who have recognized the connection between
information and thermodynamics ever since Maxwell for-
mulated his famous thought experiment with the demon
[14], and even more so since Shannon introduced his
information-theoretic entropy [15], and Landauer’s dis-
covery of the link between heat production and informa-
tion erasure [16]. Our theory solidifies this connection
and brings together the fields of quantum control, infor-
mation and thermodynamics in a very explicit manner.

We stress that the concepts of heat, work and entropy
presented here are not universal, but explicitly context-
dependent and specific for any given quantum control
system. The heat-work decomposition cannot be per-
formed for a dynamical system without specifying our
means for controlling and observing it. This philosophy
claims that thermodynamics is as much a theory of engi-
neering as of physics per se. This should not be surpris-
ing to the historian of science who is aware of the fact
that thermodynamics was developed during the indus-
trial revolution with the expressed purpose of optimizing
the performance of heat engines.

This formalism by itself does not force the usual ther-
modynamical laws to hold; this would require assump-
tions about the actual physics of the system under study.
There is no universal law stating that energy must tend
to flow into unobservable degreees of freedom (i.e. for en-
tropy to increase), but this becomes highly probable if we
assume that the dimensionality of the observable degrees
of freedom to be much smaller than that of the unob-
servable, as well as sufficient coupling between the two.
Its value therefore lies in clarifying fundamental concepts,
rather than replacing the other approaches. For example,
statistical mechanics is still required to understand the
route towards and conditions for equilibrium. Paradig-
matic applications we have in mind include the calcu-
lation of the energy dissipated in quantum computation
processes, and the construction of impurity models.

After giving an overview of the relevant concepts
from the quantum control theory literature, where D.
D’Alessandro’s observability decomposition [17] is at cen-
ter stage, we formulate our proposal explicitly and illus-
trate its application in the central spin model, which is
experimentally relevant as it can be used to model de-
coherence in NV centers [18] and quantum dots [19, 20].
Along the way we also prove a proposition connecting
the observability decomposition to a measure of Fisher
information.

II. QUANTUM CONTROL THEORY

An up to date overview of the current state of quantum
control theory can be found in [21]. Consider a quantum
system in the density matrix formalism governed by the
Liouville-von-Neumann equation

d

dt
ρ̂ = −i[Ĥ(u), ρ̂], (2)

where the Hamiltonian depends on a function u freely
selected by the control engineer from a set of admissible
controls U, generally assumed to be piece-wise constant.
The Hamiltonian is assumed to be of bilinear form

Ĥ(t) = Ĥ0 +

k∑
j=1

ui(t)Ĥi, (3)

where Ĥ0 is referred to as the drift Hamiltonian, and Ĥi

for i ∈ {1, ..., k} as control Hamiltonians. The measured
output is the expectation value of a Hermitian operator
Ŝ, i.e. y(t) = ⟨Ŝ, ρ̂⟩. If H is the Hilbert space of states
under consideration, we will refer to the quadruple Σ =
(H, Ĥ(·),U, Ŝ) as a quantum control system. Let n denote
dimH.

A. Controllability

The operator controllability problem consists of deter-
mining the reachable set

R ≜
{
Û ∈ U(n) | Û = Ûu(t) for some t ≥ 0, u ∈ U

}
,

where Ûu satisfies the operator Schrödinger equation

i
∂

∂t
Ûu = Ĥ(u)Ûu. (4)

R is the set of all unitary transformations which can be
achieved by varying u over U. If R = U(n) then any
unitary matrix can be obtained by a suitable choice of
controls u1, ..., uk and time t, in which case the system
is said to be operator controllable, the strongest of the
controllability notions considered in the literature. [22]
A central theorem of quantum control theory states

that the reachable set can be obtained as the exponential
image of the dynamical Lie algebra [23], i.e.

R = eL, (5)

where L is the Lie algebra generated by the set
{−iĤ0,−iĤ1, ...,−iĤk}. It is the vector space of all real
linear combinations of elements in this set, as well as
of their nested commutators. It follows from the above
that the system is operator controllable if L = u(n)
or L = su(n). The difference between the two cases
amounts to whether one can control the overall phase
of the system, a difference generally considered to lack
physical significance.
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B. Observability

A quantum control system is said to be observable if
its internal state can be determined from measurements
of the chosen observable(s). Observability is defined for-
mally with reference to the equivalence relation of in-
distringuishability. Let ρ̂(t, u, ρ̂0) denote the solution to
Eq. 2 for the initial state ρ̂0 and applied control u, and
assume that we are measuring an observable Ŝ.

Definition 1 A pair of states (ρ̂0, ρ̂
′
0) are indistinguish-

able, denoted by ρ̂0 ∼ ρ̂′0, if for any control u ∈ U we
have

⟨Ŝ, ρ̂(t, u, ρ̂0)⟩ = ⟨Ŝ, ρ̂(t, u, ρ̂′0)⟩, ∀t ≥ 0. (6)

The quantum control system Σ is observable in one step
if

ρ̂0 ∼ ρ̂′0 ⇐⇒ ρ̂0 = ρ̂′0. (7)

This definition has been generalized to both multiple and
non-projective measurements [24], but here we assume a
single projective measurement. A necessary and suffi-
cient condition for observability (in one step), due to D.
D’Alessandro [17], makes use of an object called the ob-
servability space, defined

V ≜
∞⊕
j=0

adjLspan{iŜ
′}, (8)

where Ŝ′ = Ŝ − Tr(Ŝ)
n Î. If the measured observable Ŝ is

an element of iL, then V is the ideal of L generated by
Ŝ. A quantum control system is observable in one step
if an only if

V = su(n). (9)

Note that if L = su(n), then since su(n) is simple (i.e.

contains no non-trivial ideals), Σ is observable for any Ŝ
not proportional to the identity operator. If the system
is not observable, then there exists a decomposition ρ̂ =
ρ̂o + ρ̂u, where ρ̂o ∈ iV and ρ̂u ∈ iV⊥, such that the
measured output depends only on ρ̂o:

y(t) =
1

n
Tr(Ŝ) + ⟨Ŝ, ρ̂o⟩. (10)

The orthogonal complement V⊥ is taken inside of su(n)
with respect to the Hilbert-Schmidt inner product. If
Ŝ ∈ iL then the reachable set splits into a semi-direct
product of Lie groups

eL ≃ eV ⋊ eL/V . (11)

This yields a dynamical decomposition where the action
of quotient group leaves the observed output unaffected.
The condition Ŝ ∈ iL is obtained in all cases where one
is measuring a local observable Ŝ ⊗ Î, on a locally con-
trollable system, meaning a system where su(Ñ)⊗ Î ⊂ L

and Ñ = dim(Ŝ).
To obtain the observability decomposition we project

the density matrix onto each of the basis elements of iV.
Provided the basis is orthogonal, we have

ρ̂o(t) = −
dimV∑
i=1

⟨B̂i, ρ̂(t)⟩
B̂i

||B̂i||2
. (12)

V is not itself necessarily a Lie algebra, but when it is,
which includes the important case when Ŝ ∈ iL, work can
be distinguished into qualitatively different kinds using
any of the known Lie algebra decompositions. Notably,
using the Levi decomposition [21] we can split V into a di-
rect sum Z⊗S, where Z is abelian and S semi-simple. V
then assumes the form of a set of parallel subsystems that
are mutually commuting and orthogonal, plus a classical
subsystem Z consisting of only commuting observables.
In this way we can differentiate ”classical” from ”quan-
tum” work depending on whether the energy goes into
the classical system Z, or any of the simple quantum
systems in S.

Remark 1 The key property which characterizes isolated
thermal states is that observables have expectation values
proportional to the trace of the corresponding Hermitian
operator, i.e. y(t) ∝ Tr(Ŝ). This is referred to as the
microcanonical ensemble. Note that this condition, for a
specified observable Ŝ, is equivalent to the condition that
ρ̂ ∈ iV⊥ by Eq. 10. This implies that the maximally
thermalized state is the maximally unobservable one, and
therefore reveals a new framework for thinking about ther-
malization.

C. Observability and Fisher Information

The Fisher information is a key concept in both clas-
sical and quantum estimation theory which represents
the extent to which measurements on random variables
provides information on some unknown parameter of in-
terest [25, 26]. The Fisher information can be defined
in a variety of ways, but here we’ll focus on a particu-
lar kind defined using symmetric logarithmic derivative
(SLD) operators [27].

Consider a density matrix ρ̂(θ) dependent on r param-
eters (θ1, ..., θr). The matrix components of the Fisher
information are then defined by the equation

Fij ≜
1

2
⟨ρ̂, [L̂θi , L̂θj ]+⟩, (13)

where the SLD operators L̂i, for i ∈ {1, ..., r} are defined
by the equations

∂

∂θi
ρ̂(θ) =

1

2
[L̂θi , ρ̂]+. (14)

A key property of the Fisher information is that it pro-
vides a bound on covariances of unbiased estimators θ̃ of
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θ, a result called the Cramer-Rao inequality:

Cov(θ̃) ≥ F−1. (15)

The Fisher information is typically a complicated time-
dependent function, but when the parameter θ is a com-
ponent of the state along a basis vector B̂j of iV it as-

sumes a particularly simple form. B̂j is then an unbiased
estimator of θj for every j ∈ {1, ...,dimV}.

Proposition 1 Let Σ be a quantum control system with
{B̂i} the basis of its observability space, and let the esti-

mated parameters be the projections θi = ⟨ρ̂, B̂i⟩. If the
quantum state is pure, then the SLD Fisher information
is the metric tensor of the observability space induced by
the Hilbert-Schmidt inner-product:

Fij = ⟨B̂i, B̂j⟩. (16)

A proof is found in the appendix.

III. QUANTUM DISSIPATION CHANNELS

We define a quantum dissipation channel to be any
component iĤu ∈ V⊥, of an element iĤ ∈ L, such that
[Ĥ, Ĥu] ̸= 0. In the particular case where iŜ ∈ L, when
V is an ideal of L, we have the short exact sequence

V i
↪−→ L

π
−−−↠ L/V, (17)

where i is the inclusion map and π the canonical projec-
tion. Then a set of dissipation channels can be viewed
as a non-abelian Lie algebra extension of V in L. In this
case a quantum system has a dissipation channel if the
observability space is embedded in a strictly larger dy-
namical Lie algebra such that L/V does not commute
with V. This means that energy can be transferred to
and from unobservable degrees of freedom. Once V has
been calculated one can straightforwardly identify the
dissipation channel as that part of the system Hamilto-
nian which lies in iV⊥ and does not commute with the
whole.

Performing the observability decomposition on the
Hamiltonian gives us Ĥ = Ĥu + Ĥo, where Ĥu ∈ iV⊥

and Ĥo ∈ iV. The total energy is then decomposed as

E = O + U , O ≜ ⟨Ĥo, ρ̂⟩, U ≜ ⟨Ĥu, ρ̂⟩. (18)

The main proposal of this paper is that differential heat
and work flows can be identified as

Q̇ ≜
dU
dt
, Ẇ ≜

dO
dt
, (19)

and that the component Ĥu ∈ iV⊥ can be interpreted
as a dissipation channel for the quantum control system
under consideration provided that [Ĥu, Ĥo] ̸= 0.

Consider for a moment the heat flow when the Hamil-
tonian is time-independent,

Q̇ = ⟨Ĥu,
d

dt
ρ̂⟩ = −i⟨Ĥu, [Ĥ, ρ̂]⟩. (20)

Employing a trace identity we obtain

−i⟨[Ĥu, Ĥ], ρ̂⟩ = −i⟨[Ĥu, Ĥo], ρ̂⟩. (21)

If we define the operator

D̂ ≜ i[Ĥo, Ĥu], (22)

then ⟨D̂, ρ̂⟩ = Q̇. In other words, the expectation value

of D̂ is equal to the instantaneous transfer of energy from
the observable to the unobservable component. This jus-
tifies interpreting it as a dissipation operator.
Q̇ can also be calculated from quantities of V, in case

we don’t know D̂. For a pure state we have

Q̇ = −
dimV∑
i=1

dimV∑
j=1

(θ̇ihj + θiḣj)Fij , (23)

where we’ve introduced the notation

hj(t) ≜ ⟨Ĥ(t), B̂j⟩, (24)

and the θis and F are defined as in Proposition 1. If we
define the matrix Hij ≜ θihj we obtain

Q̇ = −⟨Ḣ, F ⟩. (25)

The right-hand side contains fluxes of observable quan-
tities as well as a Fisher information, and the left is a
dissipation measure. This opens up the possibility of us-
ing the Cramer-Rao inequality to obtain results similar
to the Thermodynamic Uncertainty Relations discussed
in the literature [28].

Remark 2 The attentive reader will note that heat and
work are traditionally viewed as path functions, while
here they are functions of state. We believe this depends
on whether the unobservable state component is explicitly
modelled. If it is modelled, then the unobservable energy
can be calculated at any initial and final times tf and ti
to obtain the heat flow Q = U(tf )−U(ti). However, if we
are only modelling the observable part, then the transfer
of energy between iV and iV⊥ have to be accounted for
at each time step, making the heat flow an integral over

the dissipation Q =
∫ tf
ti
⟨D̂⟩dt.

A. A Generalized Entropy

Having defined a heat flow as a transfer of energy into
iV⊥, we note that all such transfers are not qualita-
tively equal. Roughly speaking, we want to differenti-
ate between heat flows associated with the state becom-
ing ”more unobservable”, and those associated with a
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change in the occupied unobservable energy levels. This
is essentially the difference between increasing the en-
tropy and temperature respectively. We propose using
the von-Neumann entropy SvN under a substitution to
an output-equivalent state depending only on ρ̂o. This
”effective” state is ρ̂o + 1

n Î, and is the unique density
matrix depending only on ρ̂o which is indistinguishable
from ρ̂ in the sense of Definition 1. Explicitly:

S(ρ̂) ≜ −⟨ρ̂o +
1

n
Î, log (ρ̂o +

1

n
Î)⟩. (26)

It reduces to the ordinary von-Neumann entropy when
V = su(n), and when V ̸= su(n) it converges to the
maximum value of log n as ρ̂o → 0. The difference
S(ρ̂) − SvN (ρ̂) quantifies the information loss incurred
in mapping to the effective state.

Define two operations O and Tt by their actions:

O : ρ̂ 7→ 1

n
Î −

dimV∑
i=1

⟨ρ̂, B̂i⟩
B̂i

||B̂i||2
, (27)

Tt : ρ̂ 7→ Ûtρ̂Û
†
t . (28)

They represent a projection onto the effective state (it is
easy to verify that O2 = O), and unitary time-evolution
respectively. In general

Tt(O(ρ̂)) ̸= O(Tt(ρ̂)). (29)

Since S = SvN (O(ρ̂)), and noting that the von-Neumann
entropy is unitary invariant, it follows that if the com-
mutator is zero then the time derivative of the entropy
is zero as well. To see when this holds, set the commu-
tator to zero and rearrange using the cyclic property of

FIG. 1. An imperfect demon pondering his means for con-
trolling and observing a central spin system. As full knowl-
edge of the state is lacking, energy can leak out into unob-
servable degrees of freedom and thereby become ”degraded”,
or ”entropic”.

the trace to obtain

dimV∑
i=1

⟨ρ̂, B̂i⟩
ÛtB̂iÛ

†
t

||B̂i||2
=

dimV∑
i=1

⟨ρ̂, ÛtB̂iÛ
†
t ⟩

B̂i

||B̂i||2
. (30)

The above equation holds if it does so elementwise, i.e.
if for every i = 1, ...,dimV we have

⟨ρ̂, B̂i⟩Tt(B̂i) = ⟨ρ̂,Tt(B̂i)⟩B̂i. (31)

This is true if [Ĥ, B̂i] = 0 for all Ĥ ∈ iL (which can be

seen by taking the limit t→ 0), or if B̂i is a simultaneous
eigenvector for L. If V ⊂ L, then the existence of such
an eigenvector is guaranteed if L is solvable, by Lie’s the-
orem. So a sufficient condition for the commutativity of
O and Tt is that every basis vector of V either commutes
with the whole of L or is a simultaneous eigenvector.
If we take the time-derivative of the entropy, assuming

unitary dynamics, we get

Ṡ = −⟨ ˙̂ρo, log (ρ̂o +
1

n
Î)⟩ = (32)〈dimV∑

j=1

⟨ρ̂, [Ĥ, B̂j ]⟩
iB̂j

||B̂j ||2
, log (ρ̂o +

1

n
Î))

〉
. (33)

We again see that Ṡ ̸= 0 requires that at least some of
the basis vectors of V are time-varying (i.e. lie outside
the center of L). We can unpack this equation further if

we assume that V is an abelian, in which case [Ĥ, B̂j ] =

[Ĥu, B̂j ] for every j. Split the dissipation operator into
a sum of dissipation operators, one for each basis vector
of V:

D̂ =

dimV∑
j=1

D̂j , D̂j ≜ −ihj
[Ĥu, B̂j ]

||B̂j ||2
, (34)

where hj is defined as in Equation 24. Then we can write
the entropy change as

Ṡ = −
dimV∑
j=1

⟨D̂j⟩
hj

〈
B̂j , log (ρ̂o +

1

n
Î))

〉
, (35)

which clearly illuminates its relation to dissipation, in a
manner reminiscent of Clausius’ theorem.

IV. THE CENTRAL SPIN MODEL

The central spin model consists of a distinguished spin
1/2 particle, called the central spin, connected to a bath
of N mutually non-interacting spin 1/2 particles. The
interaction is of Heisenberg XXX type with a ferromag-
netic ground state. We have a product Hilbert space
H = H2⊗H2⊗...⊗H2 ofN+1 factors, where the first fac-
tor represents the central spin, and dimH = 2N+1. The
whole system is immersed in a constant magnetic field B
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aligned to the z-axis and interacting equally with the cen-
tral and bath spins, and the system is controlled by a tun-
able magnetic field along the y-axis acting on the central
spin only. The Hamiltonian is a sum Ĥ(t) = Ĥ0 + Ĥc(t)
of drift and control terms

Ĥ0 = −B
(
σ̂z ⊗ Îb + Î2 ⊗

∑
j

σ̂(j)
z

)
+ (36)

N∑
j=1

γj
(
σ̂x ⊗ σ̂(j)

x + σ̂y ⊗ σ̂(j)
y + σ̂z ⊗ σ̂(j)

z

)
, (37)

Ĥc(t) = −u(t)σ̂y ⊗ Îb, (38)

where γj < 0 for all j, and the spin and identity operators
on the bath are

σ̂
(j)
i ≜ Î2 ⊗ ...⊗ Î2︸ ︷︷ ︸

j − 1 of them

⊗σ̂i ⊗ Î2 ⊗ ...⊗ Î2︸ ︷︷ ︸
N − j of them

, (39)

Îb = Î2 ⊗ ...⊗ Î2︸ ︷︷ ︸
N of them

(40)

We are measuring the magnetization of the central spin
in the x-direction:

Ŝ = σ̂x ⊗ Îb. (41)

Controllability, and therefore also observability, is
strongly dependent on the relative values of the coupling
parameters γj . If all of them are distinct the full system is
both operator controllable and observable. We consider
the opposite case where all of them are equal (γj = γk
∀j, k) and the entire bath is behaving like a single col-
lective spin. We refer the reader to [29] for an extensive
analysis of the controllability of the central spin model,
and here just note that for equal coupling the system is
uncontrollable and the dynamical Lie algebra satisfies

dim(L) =

{
1
6 (2 +N)(9 + 4N(4 +N)) for N even
1
6 (1 +N)(3 + 2N)(7 + 2N) for N odd

The central spin, however, is locally controllable, which
together with Ŝ being a local observable, implies that
V ⊂ L is an ideal.

A. Numerical analysis

We let the number of bath spins (N) be equal to 3, giv-
ing us a Hilbert space dimension of 24 = 16. We consider
an initial state with all spins perfectly aligned to the con-
stant magnetic field along the z direction. This is a pure
state, and it will remain pure throughout the simulation.
A control field, here a variable magnetic field along the
y direction applied to the central spin, is obtained using
the pulse-optimizer function available in Qutip [30, 31] to
drive the central spin towards alignment with the x axis
at terminal time τ . In other words, this is an optimal
control problem of Mayer type with target functional

J [u] = ⟨Ŝ, ρ̂(τ)⟩. (42)

Afterwards the system evolves freely under a Gaussian
control field for another time period of τ . During both
processes we compute the observability decomposition of
the energy (U ,O), the instantaneous dissipation ⟨D̂⟩, the
entropy S and the measured output ⟨Ŝ⟩.
We are working in Hartree atomic units, and moreover,

calculate the energy in units of Ha
γ , giving time units of

ℏγ
Ha . In these units, we set the magnetic field B equal to 10
and the interaction constant γ equal to −3. The terminal
time τ is set to unity, and the interval is discretized into
1000 timeslots for the optimization procedure and time-
evolution. During the free evolution phase the control
field is set equal to a Gaussian centered at zero with a
standard deviation of 0.1.
The dynamical Lie algebra and the observability space

are calculated numerically using the algorithm presented
in Appendix B. We find that dim(L) = 78, in agreement
with the results in [29], and has a maximum depth of 11.
For the observability space we find dim(V) = 41 with a
maximal depth of 1. The basis of the observability space
is orthogonalized using the Gram-Schmidt procedure.
Figure 2 shows the evolution of the controlled system

in the interval [0, τ ]. The heat, work and entropy changes
are:

Qc = 0.00, Wc = 19.00, ∆Sc = −0.29. (43)

During the controlled phase the entropy begins at its
maximal value, which is to be expected since the system
is initialized in a state with zero output. It oscillates with
the evolution of the system, attaining lower values the
larger the absolute value of the output. Initially there
is no dissipation of energy, but ⟨D̂⟩ increases with the
amplitude of oscillation of the observable output as the
system is controlled towards the desired state. Overall,
O increases substantially during, while U is almost con-
stant.

Figure 3 shows the subsequent free evolution in the
interval [τ, 2τ ], during which energy flows sinusoidially
between the two subspaces. These oscillations may be
interpreted as thermal fluctuations. This behavior is ex-
pected as isolated quantum systems undergo periodic mo-
tion. It also shows the free evolution of the state which
is obtained at t = 0.6 during the controlled phase. The
purpose is to illustrate that when we control the system
to reduce the entropy, the more we reduce the entropy
the greater the amplitude of the oscillations afterwards.
The amplitudes of oscillations of the other quantities are
similarly affected. In conclusion, with external control
we can increase the size of thermal fluctuations.
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FIG. 2. Evolution of the central spin model during the
controlled phase. Top left: generalized entropy S. Top right:
magnetization ⟨M̂x⟩ along the x-axis for the central spin. Bot-
tom left: observable and unobservable energies O and U . Bot-
tom right: instantaneous dissipation ⟨D̂⟩.

FIG. 3. Evolution of the central spin model during the free
evolution phase. The quantities shown are the same as in
Figure 2. For comparison, the dotted lines show a system
that evolves freely from the state obtained at t = 0.6 during
the controlled phase.

V. CONCLUSION

We have proposed a mathematically explicit method
for distinguishing heat from work dependent on the
sensor and control capabilities at hand, based on a
control-theoretic observability decomposition due to D.
D’Alessandro. We also derived a dissipation operator,
and proposed an accompanying entropy function which
for fully controllable and observable systems reduces to
the ordinary von-Neumann entropy, but which can also

yield non-zero values for pure states if the observables
under consideration are informationally incomplete (i.e.
if the state estimation problem is not solvable). And per-
haps more importantly, this entropy can change also for
an isolated system.
Thermodynamics is fundamentally the science of the

difference between heat and work, and the possibilities
of their interconversion. This is the key distinction that
the whole edifice is built around, so a thorough under-
standing of it is of paramount importance for the develop-
ment of the entire field. A proper understanding of the
heat-work decomposition will allow us to extend ther-
modynamics further into the quantum realm, improve
our understanding of dissipation and thermalization, and
shed light on some of the largest conceptual problems in
physics.
The nature of the heat-work decomposition is a major

open problem in quantum thermodynamics whose solu-
tion would have fundamental ramifications for both pure
and applied science. We believe that our proposal pro-
vides the correct answer to the conundrum.
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Appendix A

1. Notation & conventions

• The inner-product is always of Hilbert-Schmidt
type: ⟨A,B⟩ = Tr(A†B).

• We work in Hartree atomic units where ℏ = e =
me = ke = 1.

• The anti-commutator is denoted [A,B]+ = AB +
BA.

• The Lie algebra u(n) is the set of skew-Hermitian
matrices of dimension n, and su(n) is the subset of
those which are traceless. The corresponding Lie
groups are U(n), the set of unitary matrices of the
same dimension U(n), and the subset of those with
determinant unity, SU(n).

• Î2 is the two-dimensional identity matrix.

• adA(B) is the set of all commutators [a, b] where

a ∈ A and b ∈ B. If there is a superscript adi it
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represents a set formed by taking i repeated com-
mutators of elements in B with elements in A. For
i = 2 the elements are of the form [a2, [a1, b]].

2. Algorithm for computing L and V

For a bilinear Hamiltonian of the form

Ĥ(t) = Ĥ0 +

k∑
j=1

uj(t)Ĥc,j , (A1)

the dynamical Lie algebra L is defined as the Lie algebra
generated by the set {iĤ1, iĤc,1, ..., iĤc,k}. We denote
the generating set by G. Denote the set of basis elme-
ments of our would be algebra BL. The first step in the
algorithm is to

• Step 0: Add all linearly independent elements of
G to BL. These are the elements L of depth 0.

• Step k: Compute the set of all commutators of
BL with G. Each result which is linearly indepen-
dent of the rest of BL, add it to BL. These are
the basis elements of depth k. If no new linearly
independent elements are obtained, the algorithm
terminates and BL is a basis of L. Otherwise, pro-
ceed to step k + 1.

The algorithm to compute a basis BV of V is identical
to the above, except that the generating set is L and
the depth 0 element(s) the measured observable(s). In
other words, add your measured observable to BV . Then
compute all commutators of depth 1 of L with BV , and
add the linearly independent results to BV . Then just
repeat the procedure until no new linearly independent
elements are generated.

3. Proof of Proposition 1

Assume that dim(V) = r and let ρ be written in the
form

ρ̂(θ) = ρ̂u +

r∑
j=1

θjB̂j ,

where we’ve introduced the notation B̂j for the basis el-

ements of iV, and θj ≜ Tr{B̂j ρ̂}. The r-parameter esti-
mation problem is now formulated as a problem of find-
ing the projections of ρ̂ along every basis operator of iV.
Taking the partial derivative of ρ̂ with respect to one of
the parameters we obtain

∂

∂θj
ρ̂(θ) = B̂j =

1

2
[L̂θj , ρ̂]+ =

1

2
(L̂θj ρ̂+ ρ̂L̂θj ).

Since the basis operators B̂j are traceless, we see that
the expectation values of the SLD operators vanish, i.e.

⟨L̂j⟩ = Tr{L̂θj ρ̂} = Tr{B̂j} = 0.

By employing the cyclic property of the trace, a straight-
forward calculation shows that

Tr{[B̂i, B̂j ]+} = Tr{2L̂θi ρ̂L̂θj ρ̂+ ρ̂2L̂θiL̂θj + ρ̂2L̂θj L̂θi}.

If the quantum state is pure, then the density matrix is
a projector with ρ̂2 = ρ̂ = |ψ⟩⟨ψ|, and

Tr{2L̂θi ρ̂L̂θj ρ̂} = 2Tr{L̂θi |ψ⟩ ⟨ψ|L̂θj |ψ⟩︸ ︷︷ ︸
constant

⟨ψ|} =

2⟨ψ|L̂θj |ψ⟩Tr{L̂θi |ψ⟩⟨ψ|} = 2⟨L̂θj ⟩⟨L̂θi⟩ = 0.

Writing out the Fisher information explicitly

Fi,j =
1

2
Tr{ρ̂L̂θiL̂θj + ρ̂L̂θj L̂θi},

we now see that under the assumption of purity,

Fθi,θj =
1

2
Tr{[B̂i, B̂j ]+}.

By the cyclic property of the trace, and the hermiticity
of the matrices {B̂i}, this is equal to ⟨B̂i, B̂j⟩. □
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