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TINY FLUCTUATIONS OF THE AVERAGING PROCESS

AROUND ITS DEGENERATE STEADY STATE

FEDERICO SAU

University of Trieste

Abstract. We analyze nonequilibrium fluctuations of the averaging process on T
d
ε , a

continuous degenerate Gibbs sampler running over the edges of the discrete d-dimensional
torus. We show that, if we start from a smooth deterministic non-flat interface, recenter,
blow-up by a non-standard CLT-scaling factor θε = ε−(d/2+1), and rescale diffusively,
Gaussian fluctuations emerge in the limit ε → 0. These fluctuations are purely dynami-
cal, zero at times t = 0 and t = ∞, and non-trivial for t ∈ (0,∞). We fully determine the
correlation matrix of the limiting noise, non-diagonal as soon as d ≥ 2. The main tech-
nical challenge in this stochastic homogenization procedure lies in a LLN for a weighted
space-time average of squared discrete gradients. We accomplish this through a Poincaré
inequality with respect to the underlying randomness of the edge updates, a tool from
Malliavin calculus in Poisson space. This inequality, combined with sharp gradients’ sec-
ond moment estimates, yields quantitative variance bounds without prior knowledge of
the limiting mean. Our method avoids higher (e.g., fourth) moment bounds, which seem
inaccessible with the present techniques.
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1. Introduction, model and main results

The averaging process on a graph is a continuous-space Markov chain, which is com-
monly interpreted as an opinion dynamics, a distributed algorithm, or an interface moving
through a randomized sequence of deterministic local updates (see, e.g., [BGPS06, AL12,
Ald13, MSW22] and references therein). Its dynamics goes as follows. Attach i.i.d. Poisson
clocks to edges, and assign real values to vertices; at the arrival times of these clocks, up-
date the values with their average. As time runs, the averaging process converges to a flat
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configuration, and one major problem in the field is that of quantifying the speed of con-
vergence to its degenerate equilibrium in terms of characteristic features of the underlying
graph [CDSZ22, QS23, CQS23].

In this paper, we examine scaling limits of the averaging process on the discrete d-
dimensional torus Tdε, d ≥ 1, subjected to a diffusive space-time rescaling. In this setting,

the averaging process, say uεt ∈ R
Td
ε , evolves by replacing, at rate ε−2 for each nearest

neighbor pair x, y ∈ T
d
ε, the values (uεt−(x), u

ε
t−(y)) with

(uεt (x), u
ε
t (y)) := (12 (u

ε
t−(x) + uεt−(y)) ,

1
2 (u

ε
t−(x) + uεt−(y))) .

Alternatively, in the language of stochastic homogenization, uεt is the solution to the dis-
crete parabolic problem ∂tu

ε
t = ∇ε

∗ ·
(

aε(t, · )∇
εuεt−

)

on T
d
ε, in which the coefficient field

aε = (aε(t, x))t≥0, x∈Td
ε
is random, time-dependent, and formally given by

aε(t, x) =
ε2

2







dN ε,1
t (x)

. . .

dN ε,d
t (x)






, t ≥ 0 , x ∈ T

d
ε . (1.1)

Here, dN ε,i
t (x) stands for the increments of the Poisson process of intensity ε−2 attached

to the pair x, x+ εei ∈ T
d
ε. This homogenization problem is then degenerate, in the sense

that the coefficient field aε is a linear combination of Dirac deltas and, thus, does not
satisfy any ellipticity conditions: there is no C > 0 satisfying neither aε ≥ C, nor aε ≤ C
(in the matrix sense).

The first ergodic theorems in stochastic homogenization for linear elliptic and parabolic
problems date back to the seminal works of Kozlov [Koz79] and Papanicolau and Varadhan
[PV81]. Since then, there has been an intense activity in considerably extending these
qualitative results. In fact, even quantitative features of the solutions, such as regularity
and fluctuations limit theorems, are by now well understood in the uniform ellipticity
context (see, e.g., [AKM19, JO22], [GM16, DGO20], and references therein), while the
only degenerate examples are limited to supercritical percolation clusters [AD18, Dar21],
rigid inclusions [DG22] and log-normal coefficient fields [GQ24, CGQ24].

In this article, we move one step forward by investigating dynamical fluctuations of the
random uεt in this time-dependent degenerate setting (cf. (1.1)). This result is the content
of Theorem 1, which could be regarded as the functional central limit theorem (FCLT)
after the (quantitative) law of large numbers (LLNs) established in [Sau23]. As recently
worked out in some examples of random walks in time-dependent random environment
(see, e.g., [Rho08, BR18], all concerned with LLNs of random walks’ probabilities), our
FCLT also draws upon the fundamental idea that adding a mixing dynamics potentially
tempers spatial degeneracy. In our case, this dynamics consists in having zero conductances
which suddenly take the value +∞ at the occurrence of a Poisson mark. As in most
degenerate instances, this mixing mechanisms plays a crucial role in recovering on large
scales regularity estimates which would deterministically hold true in the uniform ellipticity
setting.

Our approach is probabilistic, based on martingales, as developed by Holley and Stroock
[HS78] and successfully exploited within the context of interacting particle systems (see,
e.g., the monographs [DMP91, KL99]). Nonetheless, in contrast with most systems studied
in that realm, the averaging process uεt has no truly random ergodic states (they all consist
of deterministic flat configurations). This lack of microscopic fluctuations at equilibrium
prevents us to employ methods based on relative entropy, not having a clear notion of local
equilibrium to compare the law of uεt with (see, e.g., [JM18, JL23] and references therein).
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We overcome this obstacle by combining the aforementioned martingale-based approach
with two main ingredients, typical of infinite-dimensional stochastic analysis. On the one
hand, we control a key quantity — squared discrete gradients of uεt — by expressing its
expected value as an infinite series of iterated integrals. On the other hand, inspired by
a series of recent works in stochastic homogenization, e.g., [DO20, DG20a, DG20b], we
leverage the Poisson nature of the updates by operating with tools from Malliavin calculus
(in Poisson space). These are the two building blocks in the proof of our second main
result, Theorem 2, a LLN for weighted space-time averages of squared discrete gradients.
Theorem 2 is also an essential step in the characterization of the limiting Gaussian process
from Theorem 1, and reveals the smallness of the fluctuations uεt − E

ε[uεt ], as well as the
non-diagonal correlation structure of the limiting driving noise (despite the form of the
coefficient field aε in (1.1) with i.i.d. diagonal entries).

In conclusion, as originally proposed in [AL12, Ald13], the averaging process (together
with a long list of companions “random averages” models, e.g., [FF98, BRAS06, CF11,
Lan12, HH14, BB21, FMZ23], with either site or edge updates) is a natural nonequilib-
rium system of stochastic moving interfaces, whose quantitative features are still largely
unexplored. These include, for instance, a regularity theory and worst-case mixing times
on geometric settings other than the torus. The latter problem becomes particularly inter-
esting in light of the works [CDSZ22, CQS23], which show that on the simplest examples
of expander graphs the averaging process’ degenerate local update rule dramatically af-
fects the timescales relevant to relaxation, if compared to the homogenized dynamics. We
believe the combination of Markov chains’ and stochastic homogenization techniques that
we develop here to be fruitful also in this context.

We now present the model and our main results. Before that, let us introduce some
general notation. All throughout the article, Td := (R/Z)d, with d ≥ 1, is the d-dimensional
torus, while T

d
ε denotes its lattice discretization with mesh size ε ∈ (0, 1). For simplicity,

we always assume ε−1 ∈ N. Moreover, with a slight abuse of notation, we often identify
the set T

d
ε with the undirected graph obtained by connecting vertices of the form x and

y = x ± εei ∈ T
d
ε with an edge, where e1, . . . , ed ∈ R

d denotes the canonical basis of Rd.
Hence, letting | · | denote the usual Euclidean distance on R

d, we will refer to sites x, y ∈ T
d
ε

satisfying |x− y| = ε as nearest neighbor vertices. Finally, we shall implicitly imply “holds
true for all ε ∈ (0, 1) with ε−1 ∈ N” whenever ε appears in a statement without any other
indications.

1.1. Averaging process. The averaging process on T
d
ε is the continuous-time Markov

process (uεt )t≥0 which evolves on R
Td
ε by updating, independently and at rate ε−2, the

values at nearest neighbor vertices with their average value. A possible rigorous description
of the model goes through the introduction of a family of i.i.d. Poisson processes

N ε = (N ε,i
t (x))t≥0, x∈Td

ε , i=1,...,d (1.2)

of intensity ε−2, with the arrivals of N ε,i
· (x) corresponding to an update among the two

nearest neighbor vertices x and x + εei ∈ T
d
ε . We write P

ε and E
ε for the associated

probability law and expectation, respectively. Hence, for every starting configuration uε0 ∈

R
Td
ε , (uεt )t≥0 is defined as the unique càdlàg solution to the following finite system of SDEs

driven by Poisson processes: for every x ∈ T
d
ε and t > 0,

duεt(x) =

d
∑

i=1

dN ε,i
t (x)

[

1
2 (u

ε
t−(x) + uεt−(x+ εei))− uεt−(x)

]
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+

d
∑

i=1

dN ε,i
t (x− εei)

[

1
2 (u

ε
t−(x) + uεt−(x− εei))− uεt−(x)

]

=
d
∑

i=1

dN ε,i
t (x)

[

1
2 (u

ε
t−(x+ εei)− uεt−(x))

]

+

d
∑

i=1

dN ε,i
t (x− εei)

[

1
2 (u

ε
t−(x− εei)− uεt−(x))

]

, (1.3)

with dN ε,i
t (x) = N ε,i

t (x)−N ε,i
t−

(x) denoting the increments of the Poisson process. Further,

note that the spacing ε in T
d
ε and the intensity ε−2 of the Poisson processes correspond to

a diffusive space-time rescaling in (1.3).
Since T

d
ε is a finite graph, it readily follows that, as a strong solution to the system

above, (uεt )t≥0 exists unique for all initial conditions uε0 ∈ R
Td
ε , and is a Markov process.

Moreover, due to the connectedness of Tdε , u
ε
t approaches, as t→ ∞ and for all uε0 ∈ R

Td
ε ,

the flat profile with value 〈uε0〉ε ∈ R, the spatial average of Tdε,

uεt (x)
t→∞
−−−→ 〈uε0〉ε := εd

∑

y∈Td
ε

uε0(y) ,

P
ε-a.s. and uniformly over x ∈ T

d
ε. In particular, we observe that, despite uεt is, generically,

a random element of RTd
ε for all times t > 0, the corresponding unique steady state is

deterministic and identically equal to 〈uε0〉ε. Hence, the averaging dynamics is trivial at
equilibrium, registering, in particular, no fluctuations.

In this work, we analyze asymptotics as ε→ 0 of out-of-equilibrium fluctuations for this
model, which, due to the degeneracy of the steady state, lacks a non-trivial notion of local
equilibrium — a fundamental feature in the theory of hydrodynamic limits for interacting
particle systems (see, e.g., [KL99]). In words, we shall find a scaling factor θε → ∞ as
ε → 0 and a non-trivial process (Yt)t≥0 describing well, in the diffusive regime as ε → 0,
the nonequilibrium fluctuations encoded in the centered fields

Yεt := θε







εd
∑

x∈Td
ε

(uεt (x)− E
ε[uεt (x)]) δx







, (1.4)

after taking spatial averages against suitable test functions. Note that we consider a

deterministic initial configuration uε0 ∈ R
Td
ε , so to observe only dynamical fluctuations.

Maybe surprisingly at first, it turns out that, instead of the most standard CLT-scaling
ε−d/2, the averaging process’ nonequilibrium fluctuations require an extra factor ε−1, thus,

θε = ε−(d/2+1) .

In this sense, fluctuations are unusually small in our context. Next to this, the limiting
fluctuations Yt become Gaussian, have rather explicit space-time correlations, and satisfy
Y0 = limt→∞ Yt = 0.

1.2. Tiny nonequilibrium fluctuations. In order to best describe the limit Yt, let us
further manipulate the equations (1.3) defining uεt . By adopting the standard notation,

for all g ∈ R
Td
ε , x ∈ T

d
ε and i = 1, . . . , d,

∇ε,ig(x) := ε−1 (g(x+ εei)− g(x)) , ∇εg(x) := (∇ε,ig(x))i=1,...,d ,

∇ε,i
∗ g(x) := ε−1 (g(x) − g(x − εei)) , ∇ε

∗g(x) := (∇ε,i
∗ g(x))i=1,...,d ,

(1.5)
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∆εg(x) :=

d
∑

i=1

∇ε,i
∗ ∇ε,ig(x) =

d
∑

i=1

ε−2 (g(x+ εei) + g(x− εei)− 2g(x)) , (1.6)

and letting diag(a) ∈ R
d×d denote the diagonal matrix having a = (ai)i=1,...,d ∈ R

d as
diagonal elements, the system (1.3) reads as

duεt (x) =
ε

2

d
∑

i=1

{

dN ε,i
t (x)∇ε,iuεt−(x)− dN ε,i

t (x− εei)∇
ε,iuεt−(x− εei)

}

=
ε2

2

d
∑

i=1

∇ε,i
∗

(

dN ε,i
t ∇ε,iuεt−

)

(x)

=
ε2

2
∇ε

∗ ·
(

diag(dN ε, ·
t )∇εuεt−

)

(x) ,

or, equivalently, by passing to the compensated Poisson processes

N̄ ε,i
t (x) := N ε,i

t (x)− ε−2t , t ≥ 0 , x ∈ T
d
ε , i = 1, . . . , d , (1.7)

as
duεt(x) =

1
2∆εu

ε
t(x) dt+

ε2

2 ∇
ε
∗ ·
(

diag(dN̄ ε, ·
t )∇uεt−

)

(x) . (1.8)

Hence, next to a smoothening Laplacian term 1
2∆εu

ε
t , the stochastic dynamics is driven

by an i.i.d. diagonal noise which multiplies the discrete gradients ∇εuεt− of the random
averaging process. The gradient ∇ε

∗ accounts for the conservative nature of the noise.
Our main task is to establish, after centering and scaling with θε, a homogenization

principle for this noise term, in which two main effects equally contribute: on the one
side, the random gradients ∇εuεt− get replaced by their deterministic counterparts; on the
other side, the stochasticity lost in the previous step is superseded by the appearance of
a non-diagonal structure of the limiting noise. More precisely, we show that the limiting
fluctuations Yt solve (in a weak sense) the following SPDE on T

d

dYt =
1
2∆Yt −

1
2∇ · (ξ∇ut) , (1.9)

where:

• ∇ut is the gradient of the deterministic solution ut to the heat equation on T
d

∂tu = 1
2∆u ; (1.10)

• ξ = (ξi,j)i,j=1,...,d is a matrix-valued space-time white noise whose covariance is
informally given, for some a = a(d) ∈ (0, 1], by

E
[

ξi,jt (x)ξk,ℓs (y)
]

= δ0(t− s)δ0(x− y)1i=k1j=ℓ

(

(1 + a)1i=j +
1− a

d− 1
1i 6=j

)

, (1.11)

for all x, y ∈ T
d, t, s ≥ 0, and i, j, k, ℓ = 1, . . . , d;

• a weak solution to (1.9) is meant to be a solution to the corresponding martingale
problem (cf. (1.16), (5.2)).

The precise statement of this convergence result is the content of the following theorem,
before which we need to introduce some notation. For all k ∈ N0 ∪ {∞}, let Ck(Td) be
the space of k-continuous differentiable functions on T

d. We write C(Td) = C0(Td). For
all α ∈ R, Hα(Td) denotes the αth-order fractional Sobolev space on T

d, defined as the
closure of C∞(Td) with respect to the following Hilbertian (semi)norm

‖f‖Hα(Td) :=

(

∑

m∈Zd

(

1 + |m|2
)α

| 〈f |φm〉L2(Td) |
2

)
1
2

, f ∈ C∞(Td) . (1.12)
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Here, φm(x) := e2πim·x, for all x ∈ T
d and m ∈ Z

d. It is well-known that Hα(Td) is a
Hilbert space, and that, for α = k ∈ N0, H

α(Td) coincides with the usual Sobolev space
W 2,k(Td). Moreover, Hα(Td) →֒ Hβ(Td) for all α > β, and Yεt ∈ H−α(Td) for all α > d/2.
For more details and properties, we refer to, e.g., [JM18, Section C]. Finally, we write
D([0,∞);H−α(Td)) (resp. C([0,∞);H−α(Td))) for the space of càdlàg (resp. continuous)
trajectories taking values in H−α(Td) (see, e.g., [Bil99, §2–3]).

Theorem 1 (Nonequilibrium fluctuations). Fix α > 3 + d/2 and u0 ∈ C2(Td). Then,
there exists a = a(d) ∈ (0, 1] such that, when initializing the averaging process (uεt )t≥0 with
uε0 = u0|Td

ε
, the following convergence in law

(Yεt )t≥0
ε→0
===⇒ (Yt)t≥0 , in D([0,∞);H−α(Td)) ,

holds true for the corresponding fluctuation fields (Yεt )t≥0 given in (1.4) with θε = ε−(d/2+1),
where (Yt)t≥0 is the unique process in C([0,∞);H−α(Td)) solving the SPDE (1.9)–(1.11),
with:

• initial condition Y0 = 0;
• (ut)t≥0 therein being the solution to (1.10) with initial condition u0 ∈ C2(Td).

Remark 1.1 (Constant a). Since our proofs do not require it, we did not try to extract
the precise numerical value of the constant a appearing in Theorem 1. We just mention
that

a = 1 for d = 1 , a =
π

3π − 4
for d = 2 ,

while we have some more abstract expressions for d ≥ 3 guaranteeing a ∈ (0, 1). For more
details, see Remark A.2.

1.3. A law of large numbers for the squared gradients. In order to prove Theorem
1, we follow a probabilistic approach, taking advantage of the Markovian nature of the
averaging process uεt . In formulas, recalling (1.8) and that Yε0 = 0, this corresponds to
decompose the fields Yεt in (1.4), when tested against a test function f ∈ C∞(Td), as

Yεt (f) =

∫ t

0
Yεs (

1
2∆εf) ds+Mε

t (f) , t ≥ 0 , (1.13)

where, for θε = ε−(d/2+1),

Mε
t (f) :=

∫ t

0
θε ε

d+2
∑

x∈Td
ε

((

diag(dN̄ ε, ·
s )∇uεs−

)

(x)
)

·
(

1
2∇

εf(x)
)

=

∫ t

0
εd/2+1

d
∑

i=1

∑

x∈Td
ε

(

dN̄ ε,i
s (x)∇ε,iuεs−(x)

) (

1
2∇

ε,if(x)
)

, t ≥ 0 ,

(1.14)

is a square-integrable martingale (with respect to the filtration generated by the process
uεt). The martingale Mε

t(f) has jumps and may be described through its predictable
quadratic variation, referred to as 〈Mε(f)〉t and explicitly given by

〈Mε(f)〉t =

∫ t

0
εd
∑

x∈Td
ε

d
∑

i=1

(

∇ε,iuεs(x)
)2 (1

2∇
ε,if(x)

)2
ds , t ≥ 0 . (1.15)

This derivation uses elementary properties of the compensated Poisson processes in (1.7),

such as E[N̄ ε,i
t (x)] = 0 and 〈N̄ ε,i(x)〉t = ε−2t, as well as their independence.

In view of the decomposition in (1.13), the proof of Theorem 1 boils down to proving
the following three claims:
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(i) the sequence ((Yεt )t≥0)ε is tight in D([0,∞);H−α(Td)), for α > 3 + d/2;
(ii) all limiting processes (Yt)t≥0 are continuous;
(iii) all limiting processes (Yt)t≥0 are solutions to the following martingale problem

Yt(f) =

∫ t

0
Ys(

1
2∆f) ds+Mt(f) , t ≥ 0 , f ∈ C∞(Td) , (1.16)

where (Mt(f))t≥0 is a martingale (with respect to the filtration generated by
(Yt)t≥0) whose predictable quadratic variation is deterministic and compatible with
the noise structure described in (1.9)–(1.11).

By the form of the limiting martingale and standard uniqueness results due to Holley and
Stroock [HS78], (ii) and (iii) together would uniquely characterize the limit as the one
described in Theorem 1.

While the proofs of the steps (i) and (ii) above are not particularly problematic, es-
tablishing the third step on the identification of the limiting martingale represents the
major challenge of the proof of Theorem 1. More specifically, thanks to classical martin-
gale convergence theorems, our main task reduces to prove convergence in probability of
the corresponding predictable quadratic variations. Reading out the explicit expression of
these quadratic variations from the right-hand side of (1.15), this means proving a weak
law of large numbers for weighted space-time averages of squares of discrete gradients of
uεt . Most of our analysis is devoted to the proof of this result, which, for later reference,
we now state in form of a theorem.

Theorem 2 (LLN for squared discrete gradients). Fix u0 ∈ C2(Td), and let (uεt )t≥0 and
(ut)t≥0 denote, respectively, the averaging process and the solution to the heat equation
(1.10), started from uε0 = u0|Td

ε
and u0 ∈ C2(Td). Then, for all g = (gi) ∈ (C([0,∞)×T

d))d

and t ≥ 0, we have

E
ε
[

(Γ εt (g)− Γt(g))
2 ] ε→0

−−−→ 0 ,

where

Γ εt (g) :=
d
∑

i=1

∫ t

0
εd
∑

x∈Td
ε

(

∇ε,iuεs(x)
)2
gis(x) ds , (1.17)

Γt(g) :=

d
∑

i,j=1

(

(1 + a)1i=j +
1− a

d− 1
1i 6=j

)∫ t

0

∫

Td

(

∇jus(x)
)2
gis(x) dxds , (1.18)

and a = a(d) ∈ (0, 1] is the constant in Theorem 1 and Remark 1.1.

1.4. Proof ideas and techniques. The starting point in the proof of the LLN in Theorem
2 is a variance estimate (Theorem 3). We derive this by tools from Malliavin calculus in
Poisson space (see, e.g., [LP11, LP18] and references therein). More specifically, we will
resort to one specific tool in that context: the Poincaré inequality. In words, this inequality
allows to estimate the variance of a functional F = F (N ε) of the underlying Poisson process
in terms of (a norm of) its derivative DF with respect to an infinitesimal variation of N ε.
The functional DF is referred to as the Malliavin derivative.

As we will show, for the averaging process, DF comes with a nice probabilistic dynamical
interpretation in terms of an evolving discrepancy (Section 3.1). We exploit this point of
view to turn this Poincaré inequality into an effective bound. In order to achieve this,
we derive some new second-moment estimates for the discrete gradients of the averaging
process, and combine them with properties of the averaging process earlier developed in
[AL12, QS23, Sau23]. Such improved estimates are key in the proof of Theorem 2, for
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controlling the variance of Γ εt (g), and are sharp enough to determine the limit of its mean
(Theorem 4).

1.4.1. Poincaré inequality in Poisson space. In our setting, this Poincaré inequality may
be rigorously stated as follows. Recall the Poisson process N ε in (1.2) of the edge updates,
which we can describe, more precisely, through its intensity measure γε on Yε := [0,∞)×
T
d
ε × {1, . . . , d} (endowed with the corresponding product Borel σ-field), given by the

product measure

γε = ε−2dt⊗ νTd
ε
⊗ ν{1,...,d} .

Here, dt stands for the Lebesgue measure on [0,∞), whereas, for a discrete set S, νS denotes
the counting measure on S. Letting N(Yε) be the space of integer-valued σ-finite measures
on Yε, we then interpret N ε as a random element in the measurable space N(Yε), endowed
with N ε, the smallest σ-field making the mappings m ∈ N(Yε) 7→ m(A) ∈ R measurable,
for all measurable sets A ⊂ Yε. Now, P

ε and E
ε stand for the law and expectation of N ε,

respectively.
Then, the Poincaré inequality in Poisson space reads, for every measurable function

F : N(Yε) → R, as

Varε(F ) := E
ε
[(

F (N ε)− E
ε[F (N ε)]

)2]
≤

∫

Yε

E
ε
[ (

D(t,x,i)F (N
ε)
)2 ]

dγε(t, x, i)

= ε−(d+2)

∫ ∞

0
εd
∑

x∈Td
ε

d
∑

i=1

E
ε
[ (

D(t,x,i)F (N
ε)
)2 ]

dt . (1.19)

In this formula, for all (t, x, i) ∈ Yε, D(t,x,i) is the difference operator defined, for all
measurable F : N(Yε) → R, as

D(t,x,i)F (m) := F (m+ δ(t,x,i))− F (m) , m ∈ N(Yε) ,

with δ(t,x,i) denoting the Dirac delta at (t, x, i) ∈ Yε. Roughly speaking, D(t,x,i) plays
the role of derivative at the “point” m ∈ N(Yε) in the “direction” (t, x, i) ∈ Yε. In our
context, if we keep in mind the interpretation of N ε as identifying the edge updates for
the averaging process, D(t,x,i)F measures the effect on F of the addition of an update at

time t between the nearest neighbors x and x+ εei ∈ T
d
ε.

1.4.2. Application of Poincaré inequality. In proving Theorem 2, we will apply the Poincaré
inequality (1.19) to functionals F of the form Γ εt (g) given as in (1.17), for some t > 0,

g = (gi)i=1,...,d ∈ (C([0,∞) × T
d))d, and initial condition uε0 ∈ R

Td
ε . This yields

Varε(Γ
ε
t (g)) ≤ ε−(d+2)

∫ ∞

0
εd
∑

x∈Td
ε

d
∑

i=1

E
ε
[ (

D(s,x,i)Γ
ε
t (g)

)2 ]
ds

= ε−(d+2)

∫ t

0
εd
∑

x∈Td
ε

d
∑

i=1

E
ε
[ (

D(s,x,i)Γ
ε
t (g)

)2 ]
ds ,

(1.20)

where the identity uses the fact that Γ εt (g) does not depend on the history after time t.
Moreover, since (Γ εt (g))t≥0 is an additive functional of (uεt )t≥0, D(s,x,i)Γ

ε
t (g) may be further

simplified, for s ≤ t, as

D(s,x,i)Γ
ε
t (g) =

d
∑

j=1

∫ t

s
εd
∑

y∈Td
ε

{

(

∇ε,jE(s,x,i)u
ε
r(y)

)2
−
(

∇ε,juεr(y)
)2
}

gjr(y) dr ,
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where, for r ≥ s, E(s,x,i)u
ε
r is the averaging process following the edge updates N ε, condi-

tioned to be equal, at time r = s, to

y ∈ T
d
ε 7−→ E(s,x,i)u

ε
s(y) :=

{

1
2 (u

ε
s(x) + uεs(x+ εei)) if y = x or y = x+ εei

uεs(y) else .

Analogously to D(s,x,i) (which acts on functionals F ), the operator E(s,x,i) acts on (uεr)r≥0

by imposing an extra averaging-update at vertices x and x + εei ∈ T
d
ε at time s ≥ 0.

Furthermore, by linearity of the averaging process, E(s,x,i)u
ε
r may be further decomposed

as

E(s,x,i)u
ε
r = uεr + wε,(s,x,i)r , r ≥ s , (1.21)

namely, a sum of the original process uεr ∈ R
Td
ε and a “discrepancy” w

ε,(s,x,i)
r ∈ R

Td
ε , both

evolving as two averaging processes with two different initializations, sharing the same
edge updates. In particular, they are not independent. In view of this, we may recast an
estimate of the right-hand side of (1.20) into a bound on the evolution of such a discrepancy,
and a central part of our analysis deals with establishing precise quantitative estimates on
it and its discrete gradients (see Section 3.2 for more details).

1.4.3. Ultracontractivity and gradient estimates for the averaging process. Next to the
Poincaré inequality in Poisson space, our analysis builds on two functional analytic prop-
erties of the averaging flow on the discrete torus: ultracontractivity and second-moment
gradient estimates.

Ultracontractivity. By ultracontractivity we mean a bound of the following form: for all
T > 0 and some C = C(d, T ) > 0,

E
ε
[

‖uεt‖
2
L2(Td

ε)

]

≤ 〈uε0〉
2
ε + C ‖uε0‖

2
L1(Td

ε)

( (

t ∨ ε2
)−d/2

∨ 1
)

, t ∈ (0, T ) . (1.22)

Here, ‖ · ‖Lp(Td
ε)
, p ∈ [1,∞], denotes the Lp-norm on T

d
ε with respect to the uniform measure

εd, i.e., for all g ∈ R
Td
ε ,

‖g‖Lp(Td
ε)

:=

(

εd
∑

x∈Td
ε

|g(x)|p
) 1

p

for p ∈ [1,∞) , ‖g‖L∞(Td
ε)

:= sup
x∈Td

ε

|g(x)| . (1.23)

We write 〈 · | · 〉L2(Td
ε)

for the inner product in L2(Tdε).

Estimates of type (1.22) for parabolic equations are classical, dating back to Nash’s
work ([Nas58], see also [FS86]), and are well-known also in the graph context (see, e.g.,
[DSC96]). For the averaging process, they were first derived only recently in [QS23], and
further refined on T

d
ε, establishing the stronger inequality [Sau23, Theorem 2.1]

E
ε
[

‖uεt‖
2
H1(Td

ε)

]

≤ C ‖uε0‖
2
L1(Td

ε)

(

t ∨ ε2
)−(d/2+1)

, t ≥ 0 . (1.24)

On the left-hand side above, ‖ · ‖H1(Td
ε)

reads, for all g ∈ R
Td
ε , as

‖g‖H1(Td
ε)

:=

(

εd
∑

x∈Td
ε

d
∑

i=1

∣

∣∇ε,ig(x)
∣

∣

2
)

1
2

. (1.25)

In order to see why (1.24) is stronger than (1.22), it suffices to integrate over time the
following identity due to Aldous and Lanoue [AL12, Eq. (2.7)]:

d

dt
E
[

‖uεt‖
2
L2(Td

ε)

]

= −
1

2
E
[

‖uεt‖
2
H1(Td

ε)

]

, t ≥ 0 . (1.26)
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Finally, we observe that the bounds in (1.22) and (1.24) are effective for all t = O(1), as
well as for very small times t ≪ 1. We emphasize that such estimates for t ≪ 1 will play
a key role in Lemma 3.3, when proving Theorem 2.

Gradient estimates. The second important and new ingredient is a thorough analysis of
the dynamics of discrete gradients of the averaging process on the torus on a diffusive
space-time scale. This will be carried out in Sections 2 and 4. In a nutshell, this approach
goes through:

(a) first, solving explicitly the SDEs governing the evolution of (∇ε,iuεt )t≥0 ⊂ R
Td
ε

(Lemma 2.1);
(b) then, reducing asymptotics of the second moments E

[

(∇ε,iuεt(x))
2
]

to the analysis
of infinitely-many iterated integrals (Propositions 2.1, 4.1 and 4.2).

This latter step is what allows us to determine the non-diagonal form of the limiting
correlations (cf. (1.11)). Next to asymptotics, we extract some new pseudo-contractivity
and small-time estimates for gradients’ second moments of independent interest (Lemmas
2.3–2.5).

It is worth to mention that similar estimates were recently obtained in [Sau23, Propo-
sition 2.2], aiming at capturing the correct order of magnitude of E

[

(∇ε,iuεt (x))
2
]

for a
wider time window, including the regime t ≫ 1 as ε → 0. However, while the approach
in the aforementioned work only provides bounds, in the present article, we are able to
determine exact asymptotics by restricting to times t = O(1). Finally, our analysis relies
solely on second moments, not involving higher (e.g., fourth) moment estimates, whose
control seems to be out of reach with the present techniques.

1.5. Structure of the paper. The rest of the paper is organized as follows. In Section
2, we collect some technical results concerning discrete gradients of the averaging process
which will be used all throughout. In Sections 3 and 4 we prove Theorem 2 on the LLN
for Γ εt defined in (1.17). More specifically, in the former section, we prove that variances
vanish as ε→ 0, while in the latter one we establish the convergence of the means. Section
5 is devoted to the proof of Theorem 1. In Appendix A, we prove a few auxiliary results
employed in Sections 3 and 4.

2. Discrete gradients

In this section, we derive a number of technical results on the random discrete gradients
of uεt on T

d
ε, of use for the subsequent sections. Before starting, let us introduce some

notation.
After recalling that N ε is the σ-field associated to N ε (cf. Section 1.4.1), we define

Fε := N ε⊗σ(uε0) as the product σ-field associated to the Poisson process and the averaging
process’ initial conditions. We write (Fε

t )t≥0 for the corresponding filtration, with respect

to which (uεt )t≥0 ⊂ R
Td
ε is adapted. In particular, uε0 ∈ R

Td
ε is Fε

0 -measurable. Furthermore,

recalling the definitions of ∇ε,i, ∇ε,i
∗ , ∇ε, ∇ε

∗ and ∆ε from (1.5)–(1.6), we introduce the
random walk (Xε

t )t≥0 on T
d
ε, with semigroup (P εt )t≥0 and infinitesimal generator 1

2∆ε.
Moreover, we let (pεt(x, y))t≥0, x,y∈Td

ε
denote the corresponding transition probabilities. In

what follows, we will repeatedly use that all discrete gradients commute, namely,

∇ε,i∇ε,j = ∇ε,j∇ε,i , ∇ε,i∇ε,j
∗ = ∇ε,j

∗ ∇ε,i , ∇ε,i
∗ ∇ε,j

∗ = ∇ε,j
∗ ∇ε,i

∗ , (2.1)

for all i, j = 1, . . . , d, from which we readily obtain the following well-known intertwining
relations for the semigroup and the gradients on T

d
ε:

P εt ∇
ε,i = ∇ε,iP εt , P εt ∇

ε,i
∗ = ∇ε,i

∗ P
ε
t , t ≥ 0 , i = 1, . . . , d . (2.2)
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We remark that ∆ε and P εt are symmetric operators on L2(Tdε) (cf. (1.23)) and that,
by translation and rotational invariance of the random walk’s dynamics on T

d
ε, we have

pεt(x, y) = pεt (y, x) = pεt(y − x, 0) = pεt (x − y, 0). Finally, in order to lighten the notation,
we write P = P

ε and E = E
ε all throughout.

2.1. Stochastic dynamics of discrete gradients. As a first step, we write the random
discrete gradients of uεt in a mild-solution form. For this purpose, recall the definition of

compensated Poisson processes N̄ ε = (N̄ ε,i
t (x))t≥0, x∈Td

ε , i=1,...,d, as well as the equations

(1.8) solved by uεt .

Lemma 2.1 (Mild solution). Fix uε0 ∈ R
Td
ε . Then, P-a.s., we have

∇ε,iuεt (x) = P εt
(

∇ε,iuε0
)

(x) +

d
∑

j=1

∑

y∈Td
ε

∫ t

0
bε,i,jt−s (x, y)∇

ε,juεs−(y) dN̄
ε,j
s (y) , (2.3)

for all t > 0, x ∈ T
d
ε and i = 1, . . . , d, where

bεt(x, y) :=
1
2 (p

ε
t (x, y + εei) + pεt(x, y − εej)− pεt(x+ εei − εej , y)− pεt(x, y)) . (2.4)

Proof. Passing to the discrete gradients in (1.8), we obtain

d(∇ε,iuεt)(x) =
1
2∇

ε,i∆εu
ε
t(x) dt+

ε2

2 ∇
ε,i
(

∇ε
∗ ·
(

diag(dN̄ ε, ·
t )∇uεt−

) )

(x)

= 1
2∆ε(∇

ε,iuεt )(x) +
ε2

2

d
∑

j=1

∇ε,j
∗ ∇ε,i

(

dN̄ ε,j
t ∇ε,juεt−

)

(x) ,

where for the second step we used the commutation relations (2.1). Note that the above
finite system of SDEs (with compensated-Poisson noise) has the form dft =

1
2∆εft dt+Ft,

hence, recalling that P εt = exp
(

t
2∆ε

)

, ∇ε,iuεt admits the following explicit form, P-a.s.,

∇ε,iuεt = P εt
(

∇ε,iuε0
)

(x) +

∫ t

0
P εt−s

(

ε2

2

d
∑

j=1

∇ε,j
∗ ∇ε,i

(

dN̄ ε,j
s ∇ε,juεs−

)

)

(x)

= P εt
(

∇ε,iuε0
)

(x) +
d
∑

j=1

ε2

2

∫ t

0
∇ε,j

∗ ∇ε,iP εt−s
(

dN̄ ε,j
s ∇ε,juεs−

)

(x) ,

where the last step employs the intertwinings in (2.2). The desired claim now follows by

recalling (2.4) and observing that, for all g ∈ R
Td
ε , we have

ε2 ∇ε,j
∗ ∇ε,iP εt g(x) = ε

(

∇ε,iP εt g(x)−∇ε,iP εt g(x− εej)
)

= P εt g(x+ εei)− P εt g(x)− P εt g(x− εej + εei) + P εt g(x− εej)

=
∑

y∈Td
ε

2bεt (x, y) g(y) .

This concludes the proof of the lemma. �

2.2. Second moments of discrete gradients. Let us iterate the expression from Lemma
2.1 to obtain formulas for the expectation of ∇ε,iuεt(x)∇

ε,ivεt (x), where (u
ε
t )t≥0 and (vεt )t≥0

are two copies of the averaging process starting from uε0 and vε0 ∈ R
Td
ε , respectively, driven

by the same Poisson noise. For this and subsequent results, the following quantity defined

in terms of bε,i,jt (x, y) (see (2.4))

qε,i,jt (x, y) :=
(

ε−1bε,i,jt (x, y)
)2

, t ≥ 0 , x, y ∈ T
d
ε , i, j = 1, . . . , d , (2.5)
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will play a key role, whose main properties are collected in the next lemma and proved in
Appendix A.

Lemma 2.2. For all t ≥ 0, x, y ∈ T
d
ε and i, j = 1, . . . , d, we have

qε,i,jt (x, y) = qε,i,jt (y, x) . (2.6)

Moreover, the following quantity

Qε(t) :=

d
∑

j=1

∑

y∈Td
ε

qε,i,jt (x, y) (2.7)

depends only on d ≥ 1 and t ≥ 0 (thus, not on x ∈ T
d
ε and i = 1, . . . , d), and satisfies

∫ ∞

0
Qε(t) dt =

1

2
. (2.8)

We state a notational remark.

Remark 2.1 (Notation). Here and all throughout, we adopt the following standard nota-
tion: for all t > 0 and k ∈ N,

[0, t]k> :=
{

(s1, . . . , sk) ∈ [0, t]k : s1 > . . . > sk

}

,

while, for all h ∈ C([0, t]k>),
∫

[0,t]k>

ds1 · · · dsk h( · ) :=

∫ t

0

∫ s1

0
· · ·

∫ sk−1

0
h( · ) dsk · · · ds1 .

Moreover, within this context, we implicitly identify s0 := t and, whenever x ∈ T
d
ε is a

fixed vertex and i = 1, . . . , d a fixed direction, y0 := x and j0 = i. We employ analogous
notations when replacing 0 (resp. t) by −∞ (resp. ∞), in [0, t]k>.

Proposition 2.1. For all uε0, v
ε
0 ∈ R

Td
ε , t > 0, x ∈ T

d
ε and i = 1, . . . , d, we have

E
[

∇ε,iuεt (x)∇
ε,ivεt (x)

]

=
∞
∑

k=0

Πε,i,kt (uε0, v
ε
0)(x) , (2.9)

the above series being absolutely convergent. Here, each summand is defined, for k = 0, as

Πε,i,0t (uε0, v
ε
0)(x) := P εt (∇

ε,iuε0)(x)P
ε
t (∇

ε,ivε0)(x) , (2.10)

while, for k ≥ 1, as (identifying s0 = t, y0 = x and j0 = i, cf. Remark 2.1)

Πε,i,kt (uε0, v
ε
0)(x) (2.11)

:=

∫

[0,t]k>

ds1 · · · dsk
∑

y1,...,yk∈Td
ε

d
∑

j1,...,jk=1

(

k
∏

ℓ=1

q
ε,jℓ−1,jℓ
sℓ−1−sℓ

(yℓ−1, yℓ)

)

Πε,jk,0sk
(uε0, v

ε
0)(yk) ,

where qε is given in (2.5). In particular, for uε0 = vε0, we have

E
[(

∇ε,iuεt (x)
)2]

=

∞
∑

k=0

Πε,i,kt (uε0)(x) , with Πε,i,kt (uε0) := Πε,i,kt (uε0, u
ε
0) . (2.12)

Proof. The two proofs of (2.9) and (2.12) are essentially the same; for notational conve-
nience, let us discuss in detail the one of (2.12), and only quickly comment on that of (2.9).
Recall (2.3) and note that P εt

(

∇ε,iuε0
)

is Fε
0 -measurable, while

E

[
∫ t

0
bε,i,jt−s (x, y)

(

dN̄ ε,j
s ∇ε,juεs−

)

(y)

∣

∣

∣

∣

Fε
0

]

= 0 ,
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because s 7→ bε,i,jt−s (x, y)∇
ε,juεs−(y) is predictable and s 7→ N̄ ε,j

s (y) is a martingale with
respect to (Fε

s )s≥0. Hence, the left-hand side of (2.12) reads as

E
[(

∇ε,iuεt (x)
)2]

=
(

P εt (∇
ε,iuε0)(x)

)2
+ E

[( d
∑

j=1

∑

y∈Td
ε

∫ t

0
bε,i,jt−s (x, y)

(

dN̄ ε,j
s (y)∇ε,juεs−(y)

)

)2]

=
(

P εt (∇
ε,iuε0)(x)

)2
+

d
∑

j=1

∑

y∈Td
ε

∫ t

0

(

bε,i,jt−s (x, y)
)2
ε−2

E
[(

∇ε,juεs(y)
)2]

ds

=
(

P εt (∇
ε,iuε0)(x)

)2
+

d
∑

j=1

∑

y∈Td
ε

∫ t

0
qε,i,jt−s (x, y)E

[(

∇ε,juεs(y)
)2]

ds ,

where for the second step we used the fact that N̄ ε is a family of i.i.d. martingales, each
with predictable quadratic variation given by s 7→ ε−2 s, whereas the third step employs

the definition in (2.5). Hence, letting U ε,it (x) := E
[

(∇ε,iuεt (x))
2
]

and recalling (2.10), we
may rewrite the above identity as

U ε,it (x) = Πε,i,kt (uε0)(x) +

d
∑

j=1

∑

y∈Td
ε

∫ t

0
qε,i,jt−s (x, y)U

ε,j
s (y) ds ,

which, by non-negativity of all three functions involved, may be iterated infinitely often,
yielding (2.12), which a priori may be infinite. However, recalling (2.10) and (2.8), we
first obtain

sup
t≥0

∥

∥Πε,j,0t (uε0)
∥

∥

L∞(Td
ε)

≤
∥

∥∇ε,juε0
∥

∥

2

L∞(Td
ε)
<∞ , j = 1, . . . , d ,

and, then,

E
[

(∇ε,iuε0(x))
2
]

≤ max
j=1,...,d

∥

∥∇ε,juε0
∥

∥

2

L∞(Td
ε)

∞
∑

k=0

2−k = 2 max
j=1,...,d

∥

∥∇ε,juε0
∥

∥

2

L∞(Td
ε)
<∞ .

This proves the desired claim when uε0 = vε0, i.e., (2.12). When uε0 6= vε0, we similarly have

E
[

∇ε,iuεt(x)∇
ε,ivεt (x)

]

= Πε,i,0t (uε0, v
ε
0)(x) +

d
∑

j=1

∑

y∈Td
ε

∫ t

0
qε,i,jt−s (x, y)E

[

∇ε,iuεs(x)∇
ε,ivεs(x)

]

ds ,

which, thanks to

sup
t≥0

∥

∥Πε,j,0t (uε0, v
ε
0)
∥

∥

L∞(Td
ε)

≤
∥

∥∇ε,juε0
∥

∥

L∞(Td
ε)

∥

∥∇ε,jvε0
∥

∥

L∞(Td
ε)
<∞ , j = 1, . . . , d ,

and the identity in (2.8), may be iterated, yielding (2.9). �

2.3. Technical estimates. All lemmas in this section are required for the proof of Lemma
3.2 below. We start with the following upper bound on integrals of second moments of
discrete gradients, which may be thought of as an annealed pseudo-contractivity bound in
H1(Tdε).

Lemma 2.3. Recall the definition of ‖ · ‖H1(Td
ε)

from (1.25). Then, for all uε0 ∈ R
Td
ε and

t > 0, we have

E
[

‖uεt‖
2
H1(Td

ε)

]

≤ 2 ‖uε0‖
2
H1(Td

ε)
. (2.13)
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Proof. By definition of ‖ · ‖H1(Td
ε)

and Proposition 2.1, we have

E
[

‖uεt‖
2
H1(Td

ε)

]

=

∞
∑

k=0

εd
∑

x∈Td
ε

d
∑

i=1

Πε,i,kt (uε0)(x) .

Hence, the desired claim in (2.13) follows from

εd
∑

x∈Td
ε

d
∑

i=1

Πε,i,kt (uε0)(x) ≤ 2−k ‖uε0‖
2
H1(Td

ε)
, k ∈ N0 . (2.14)

We start with the case k = 0. Recalling (2.10), we have

εd
∑

x∈Td
ε

d
∑

i=1

Πε,i,0t (uε0)(x) =
d
∑

i=1

εd
∑

x∈Td
ε

(

P εt (∇
ε,iuε0)(x)

)2

≤
d
∑

i=1

εd
∑

x∈Td
ε

P εt (∇
ε,iuε0)

2(x)

=
d
∑

i=1

εd
∑

x∈Td
ε

(∇ε,iuε0(x))
2 = ‖uε0‖

2
H1(Td

ε)
, (2.15)

where the second step follows by Jensen inequality, while the third step used the symmetry
of P εt in L2(Tdε). This proves (2.14) for k = 0. For the general case k ≥ 1, first recall (2.11).
Then,

εd
∑

x∈Td
ε

d
∑

i=1

Πε,i,kt (uε0)(x)

=

∫

[0,t]k>

ds1 · · · dsk
∑

y0,...,yk−1∈Td
ε

d
∑

j0,...,jk−1=1

(

k
∏

ℓ=1

q
ε,jℓ−1,jℓ
sℓ−1−sℓ

(yℓ−1, yℓ)

)

×



εd
∑

yk∈Td
ε

d
∑

jk=1

Πε,jk,0sk
(uε0)(yk)





=

∫

[0,t]k>

ds1 · · · dsk

(

k
∏

ℓ=1

Qε(sℓ − sℓ−1)

)



εd
∑

yk∈Td
ε

d
∑

jk=1

Πε,jk,0sk
(uε0)(yk)





≤ ‖u0‖
2
H1(Td

ε)

∫

[0,t]k>

ds1 · · · dsk

(

k
∏

ℓ=1

Qε(sℓ − sℓ−1)

)

≤ ‖uε0‖
2
H1(Td

ε)

(
∫ ∞

0
Qε(s) ds

)k

= 2−k ‖uε0‖
2
H1(Td

ε)
,

where the second step follows from (2.6)–(2.7), the third step used the inequality in (2.15),
the fourth step used the non-negativity of Qε, whereas the fifth step follows from (2.8).
This proves (2.14) for k ≥ 1, thus, concludes the proof of the lemma. �

The following lemma presents a second bound on the expectation of discrete gradients.
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Lemma 2.4. For all uε0, v
ε
0 ∈ R

Td
ε and t > 0, we have

d
∑

i=1

E
[ 〈

∇ε,iuεt
∣

∣∇ε,ivεt
〉

L2(Td
ε)

]

≤ 2
(

max
i=1,...,d

∥

∥∇ε,iuε0
∥

∥

L∞(Td
ε)

)

( d
∑

i=1

∥

∥∇ε,ivε0
∥

∥

L1(Td
ε)

)

.

Proof. Recall (2.10). Since
∣

∣

∣
Πε,i,0t (uε0, v

ε
0)(x)

∣

∣

∣
≤
∥

∥∇ε,iu0
∥

∥

L∞(Td
ε)
P εt
∣

∣∇ε,ivε0
∣

∣ (x) ,

we obtain

εd
∑

x∈Td
ε

d
∑

i=1

∣

∣

∣Π
ε,i,0
t (uε0, v

ε
0)(x)

∣

∣

∣ ≤ max
i=1,...,d

∥

∥∇ε,iuε0
∥

∥

L∞(Td
ε)



εd
d
∑

i=1

∑

x∈Td
ε

P εt
∣

∣∇ε,ivε0
∣

∣ (x)





= max
i=1,...,d

∥

∥∇ε,iuε0
∥

∥

L∞(Td
ε)

(

d
∑

i=1

∥

∥∇ε,ivε0
∥

∥

L1(Td
ε)

)

, (2.16)

where for the last step we used the invariance of P εt , i.e., 〈P
ε
t g〉ε = 〈g〉ε, for all g ∈ T

d
ε.

Finally, recalling (2.9), we get

d
∑

i=1

E
[ 〈

∇ε,iuεt
∣

∣∇ε,ivεt
〉

L2(Td
ε)

]

= εd
∑

x∈Td
ε

d
∑

i=1

∣

∣E
[

∇ε,iuεt (x)∇
ε,ivεt (x)

]∣

∣

≤
∞
∑

k=0

εd
∑

x∈Td
ε

d
∑

i=1

∣

∣

∣Π
ε,i,k
t (uε0, v

ε
0)(x)

∣

∣

∣

≤ max
i=1,...,k

∥

∥∇ε,iuε0
∥

∥

L∞(Td
ε)

(

d
∑

i=1

∥

∥∇ε,ivε0
∥

∥

L1(Td
ε)

)

∞
∑

k=0

2−k ,

where for the last step we first used (2.16) and then (2.8). This concludes the proof of the
lemma. �

The following estimate turns out to be useful for small times and concentrated initial
conditions. In what follows, we let Bσ(x) ⊂ T

d denote the open ball of radius σ ∈ (0, 12)

around x ∈ T
d, and exploit the following classical exit-time estimate for the random walk

(Xε
t )t≥0 (see, e.g., [DSPS21, Eq. (4.4)] and references therein): for all t ∈ (0, 1), x ∈ T

d
ε

and ρ ∈ (0, 12),

∑

y∈Td
ε

|x−y|>ρ

pεt(x, y) ≤ Pε
x

(

sup
s∈[0,t]

|Xε
t − x| > ρ

)

≤ c1 exp
(

−
c2 ρ

t1/2 ∨ ε

)

, (2.17)

for some constants c1, c2 > 0 depending only on d ≥ 1.

Lemma 2.5. Let the initial condition uε0 ∈ R
Td
ε be vanishing outside Bσ(x), for some

σ ∈ (0, 12) and x ∈ T
d
ε. Then, for all t ∈ (0, 1), ρ ∈ (σ + ε, 12) and n ∈ N, we have

d
∑

i=1

E
[

‖1Bc
ρ(x)

∇ε,iuεt‖
2
L2(Td

ε)

]

≤ C ‖uε0‖
2
L∞(Td

ε)
ε−2

{

ε−2 exp

(

−
C ′(ρ− σ)

n(t1/2 ∨ ε)

)

+ 2−n
}

,

(2.18)
for some constants C,C ′ > 0 depending only on d ≥ 1.
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Proof. Recall (2.12). Then, for every integer n ≥ 1, the left-hand side of (2.18) reads as

d
∑

i=1

E
[

‖1Bc
ρ(x)

∇ε,iuεt‖
2
L2(Td

ε)

]

= εd
∑

y∈Td
ε

|x−y|>ρ

d
∑

i=1

E
[ (

∇ε,iuεt (y)
)2 ]

= εd
∑

y∈Td
ε

|x−y|>ρ

d
∑

i=1

n
∑

k=0

Πε,i,kt (uε0)(y) + εd
∑

y∈Td
ε

|x−y|>ρ

d
∑

i=1

∞
∑

k=n+1

Πε,i,kt (uε0)(y)

≤ εd
∑

y∈Td
ε

|x−y|>ρ

d
∑

i=1

n
∑

k=0

Πε,i,kt (uε0)(y) +

∞
∑

k=n+1

(

εd
∑

y∈Td
ε

d
∑

i=1

Πε,i,kt (uε0)(y)

)

≤ εd
∑

y∈Td
ε

|x−y|>ρ

d
∑

i=1

n
∑

k=0

Πε,i,kt (uε0)(y) + 2−n ‖uε0‖
2
H1(Td

ε)
, (2.19)

where the last step used (2.14) to bound the expression in parenthesis, and 2−n =
∑∞

k=n+1 2
−k.

Recall (2.10). By Jensen inequality, supp(uε0) ⊂ Bσ(x), and the crude bound

max
j=1,...,d

‖∇ε,juε0‖L∞(Td
ε)

≤ 2ε−1‖uε0‖L∞(Td
ε)

,

we get, for all s ∈ (0, 1), j = 1, . . . , d, and y ∈ T
d
ε,

Πε,j,0s (uε0)(y) ≤ 2ε−2 ‖uε0‖
2
L∞(Td

ε)

∑

z∈Td
ε

|x−z|<σ+ε

pεs(y, z) . (2.20)

Thanks to the exit-time estimate (2.17), we have, for y ∈ T
d
ε satisfying |x− y| > σ + ε,

Πε,j,0s (uε0)(y) ≤ 2ε−2 ‖uε0‖
2
L∞(Td

ε)

{

c1 exp

(

−
c2 (|x− y| − σ − ε)

s1/2 ∨ ε

)}

. (2.21)

As a consequence, we obtain, for k = 0 and for some C0 = C0(d) > 0,

εd
∑

y∈Td
ε

|x−y|>ρ

d
∑

i=1

Πε,i,0t (uε0)(y) ≤ C0 ε
−2 ‖uε0‖

2
L∞(Td

ε)
exp

(

−
c2 (ρ− σ − ε)

t1/2 ∨ ε

)

. (2.22)

For k = 1, . . . , n, recalling (2.11), we have

εd
∑

y∈Td
ε

|x−y|>ρ

d
∑

i=1

Πε,i,kt (uε0)(y)

= εd
∫

[0,t]k>

ds1 · · · dsk
∑

y0,...,yk∈T
d
ε

|y0−x|>ρ

d
∑

j0,...,jk=1

(

k
∏

ℓ=1

q
ε,jℓ−1,jℓ
sℓ−1−sℓ

(yℓ−1, yℓ)

)

Πε,jk,0sk
(uε0)(yk) .
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By splitting the summation over yk ∈ T
d
ε into

{

yk ∈ T
d
ε : |x− yk| < σ + ρ−σ−ε

2n

}

and its
complement, the estimates in (2.20) and (2.21) yield

∑

y∈Td
ε

|x−y|>ρ

d
∑

i=1

Πε,i,kt (uε0)(y) ≤ 2ε−2 ‖uε0‖
2
L∞(Td

ε)

×

(

Iε,kt (σ + ρ−σ−ε
2n , ρ) + c1 exp

(

−
c2
(ρ−σ−ε

2n − ε
)

t1/2 ∨ ε

)

Jε,kt (σ + ρ−σ−ε
2n , ρ)

)

,

(2.23)

where, for all 0 ≤ ρ1 ≤ ρ2 ≤
1
2 ,

Iε,kt (ρ1, ρ2) :=

∫

[0,t]k>

ds1 · · · dsk
∑

y0,...,yk∈T
d
ε

|y0|≥ρ2, |yk|<ρ1

d
∑

j0,...,jk=1

( k
∏

ℓ=1

q
ε,jℓ−1,jℓ
sℓ−1−sℓ

(yℓ−1, yℓ)

)

, (2.24)

Jε,kt (ρ1, ρ2) :=

∫

[0,t]k>

ds1 · · · dsk
∑

y0,...,yk∈T
d
ε

|y0|≥ρ2, |yk|≥ρ1

d
∑

j0,...,jk=1

( k
∏

ℓ=1

q
ε,jℓ−1,jℓ
sℓ−1,sℓ (yℓ−1, yℓ)

)

. (2.25)

Note that we used the translation invariance of the transition probabilities of (Xε
t )t≥0 to

get rid of the dependence on x ∈ T
d
ε. Let us extend the above definitions to the case k = 0

as follows:

Iε,0t (ρ1, ρ2) := 0 , Jε,0t (ρ1, ρ2) := 1 . (2.26)

We first estimate Jε,kt in (2.25). By (2.8), we readily obtain, for all 0 ≤ ρ1 ≤ ρ2 ≤
1
2 ,

Jε,kt (ρ1, ρ2) ≤ Jε,kt (0, 0) ≤ d ε−d 2−k . (2.27)

We now deal with Iε,kt in (2.24), for all k ≤ n ∈ N. Define

λ = λ(ρ1, ρ2, n) :=
ρ2 − ρ1

2n
.

Recalling the definitions (2.4) and (2.5) and the exit-time estimate (2.17), we have, for all
t ∈ (0, 1) and 0 ≤ ρ1 ≤ ρ2 ≤

1
2 ,

max
i=1,...,d

sup
z∈Td

ε
|x−z|≥ρ2

∫ t

0

∑

y∈Td
ε

|x−y|<ρ1

d
∑

j=1

qε,i,js (z, y) ds ≤ C1 ε
−2 t exp

(

−
c2 (ρ2 − ρ1)

t1/2 ∨ ε

)

, (2.28)

for some C1 = C1(d) > 0. Analogously, by splitting the summation over yk−1 ∈ T
d
ε into

{

yk−1 ∈ T
d
ε : |yk−1| < ρ1 + λ

}

and its complement, we obtain

Iε,kt (ρ1, ρ2) =

∫

[0,t]k−1
>

ds1 · · · dsk−1

∑

y0,...,yk−1∈T
d
ε

|y0|>ρ2

d
∑

j0,...,jk−1=1

(

k−1
∏

ℓ=1

q
ε,jℓ−1,jℓ
sℓ−1−sℓ

(yℓ−1, yℓ)

)

×

∫ sk−1

0

∑

yk∈T
d
ε

|yk|<ρ1

d
∑

jk=1

q
ε,jk−1,jk
sk−1−sk

(yk−1, yk) dsk

≤ 2−1 Iε,k−1
t (ρ1 + λ, ρ2) + C1 ε

−2 t exp

(

−
c2 λ

t1/2 ∨ ε

)

Jε,k−1
t (ρ1 + λ, ρ2)



18 TINY FLUCTUATIONS OF THE AVERAGING PROCESS

≤ 2−1 Iε,k−1
t (ρ1 + λ, ρ2) + C2 2

−k ε−(d+2) t exp

(

−
c2 λ

t1/2 ∨ ε

)

,

where for the first inequality we used (2.8) and (2.28), while for the second one we used
(2.27). Here, C2 = C2(d) > 0. Finally, noting that ρ2−(ρ1 + nλ) > λ and recalling (2.26),
we may iterate the above inequality, so to obtain

Iε,kt (ρ1, ρ2) ≤ C2 k 2
−k ε−(d+2) t exp

(

−
c2 (ρ2 − ρ1)

2n
(

t1/2 ∨ ε
)

)

, for all k ≤ n . (2.29)

By combining the estimates in (2.22), (2.23), (2.27) and (2.29), we get, for some
C3, C4, C5 > 0 depending only on d ≥ 1,

n
∑

k=0

(

εd
∑

y∈Td
ε

|x−y|>ρ

d
∑

i=1

Πε,i,kt (uε0)(y)

)

≤ C4 ε
−2 ‖uε0‖

2
L∞(Td

ε)
exp

(

−
C3 (ρ− σ − ε)

2n
(

t1/2 ∨ ε
)

)(

1 + ε−2 t
n
∑

k=1

k 2−k +
n
∑

k=1

2−k

)

≤ C5 ε
−4 ‖uε0‖

2
L∞(Td

ε)
exp

(

−
C3 (ρ− σ − ε)

2n
(

t1/2 ∨ ε
)

)

,

where for the last step we used t < 1. Inserting this bound into (2.19), and estimating

‖uε0‖
2
H1(Td

ε)
≤ C6 ε

−2 ‖uε0‖
2
L∞(Td

ε)
, for some C6 = C6(d) > 0, we get the desired result. �

3. Proof of Theorem 2. Variance via Poincaré inequality

The main goal of this section is to provide a quantitative control of the right-hand side
of (1.20) — thus, of the variance of Γ εt (g) — and prove that it vanishes as ε → 0. We
fix t > 0, g = (gi)i=1,...,d ∈ (C([0,∞) × T

d))d, and the initial conditions u0 ∈ C(Td) and

uε0 = u0|Td
ε
∈ R

Td
ε all throughout the section. Finally, ‖ · ‖∞ indicates uniform norms, e.g.,

‖g‖∞ := max
i=1,...,d

sup
t≥0

sup
x∈Td

∣

∣gi(t, x)
∣

∣ and ‖u0‖∞ := sup
x∈Td

|u0(x)| . (3.1)

Theorem 3 (Variance). Let Γ εt (g) be given as in (1.17). Then, for all h ∈ (0, 1),

ε−(d+2)

∫ ∞

0
εd
∑

x∈Td
ε

d
∑

i=1

E
[(

D(s,x,i)Γ
ε
t (g)

)2]
ds ≤ C ‖g‖2∞ ‖u0‖

4
∞ (εd/2)(1−h)

d
d+2 , (3.2)

for some C = C(d, h) > 0.

We break the proof of Theorem 3 into steps. We start by estimating a conditional
version of the expectation on the left-hand side of (3.2).

Proposition 3.1. We have, P-a.s., for all s ∈ (0, t), x ∈ T
d
ε, i = 1, . . . , d, and h ∈ (0, 1),

E
[ (

D(s,x,i)Γ
ε
t (g)

)2
| Fε

s

]

≤ C εd+2 ‖g‖2∞ ‖u0‖
2
∞

(

∇ε,iuεs(x)
)2

(εd/2)(1−h)
d

d+2 ,

where C = C(d, h) > 0.

Before presenting the proof of Proposition 3.1, we use it to prove Theorem 3.
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Proof of Theorem 3. The tower property and Proposition 3.1 yield the following bound on
the left-hand side of (3.2):

ε−(d+2)

∫ ∞

0
εd
∑

x∈Td
ε

d
∑

i=1

E
[

E
[(

D(s,x,i)Γ
ε
t (g)

)2
| Fε

s

]]

ds

≤ C ‖g‖2∞ ‖u0‖
2
∞ (εd/2)(1−h)

d
d+2

∫ ∞

0
εd
∑

x∈Td
ε

d
∑

i=1

E
[ (

∇ε,iuεs(x)
)2 ]

ds .

The desired claim now follows by Aldous-Lanoue identity (1.26), which allows to write the
above time integral as

2 ‖uε0‖
2
L2(Td

ε)
≤ 2 ‖uε0‖

2
L∞(Td

ε)
.

This concludes the proof of the theorem. �

The rest of this section is devoted to the proof of Proposition 3.1.

3.1. Dynamics of the discrepancy. Let us adopt the following shorthand notation: for
all s ∈ (0, t), x ∈ T

d
ε, and i = 1, . . . , d,

Λε(s,x,i) :=
(

D(s,x,i)Γ
ε
t (g)

)2

=

(
∫ t

s
εd
∑

y∈Td
ε

d
∑

j=1

{

(

∇ε,juεr(y) +∇ε,jwε,(s,x,i)r (y)
)2

−
(

∇ε,juεr(y)
)2
}

gjr(y) dr

)2

,
(3.3)

where we recall from (1.21) that (w
ε,(s,x,i)
r )r≥0 denotes the discrepancy created by the extra

update at time s at the vertices x and x+ εei. From now on, we shall drop (s, x, i) from
the notation, and simply write, e.g.,

Λε = Λε(s,x,i) and wεr = wε,(s,x,i)r .

Next, we split the expression in (3.3) into three terms: for all δ ∈ (ε2, 1),

Λε =

(
∫ t

s
εd
∑

y∈Td
ε

d
∑

j=1

{

(

∇ε,jwε,(s,x,i)r (y)
)2

+ 2∇ε,jwε,(s,x,i)r (y)∇ε,juεr(y)

}

gjr(y) dr

)2

≤ 2

(∫ t

s
εd
∑

y∈Td
ε

d
∑

j=1

(

∇ε,jwεr(y)
)2
gjr(y) dr

)2

+ 16

(
∫ (s+δ)∧t

s
εd
∑

y∈Td
ε

d
∑

j=1

∇ε,jwεr(y)∇
ε,juεr(y) g

j
r(y) dr

)2

+ 16

(∫ t

(s+δ)∧t
εd
∑

y∈Td
ε

d
∑

j=1

∇ε,jwεr(y)∇
ε,juεr(y) g

j
r(y) dr

)2

=: 2Λε1 + 16Λε,δ2 + 16Λε,δ3 , (3.4)

where we used twice the elementary inequality (a+ b)2 ≤ 2a2 + 2b2, a, b ∈ R. Our task is
to analyze the dynamics of the discrepancy (wεr)r≥s, bounding the conditional expectation
of each of these three terms. For this purpose, let us observe that, while wεr ≡ 0 for r < s,
for r = s we have

wεs =
ε

2
∇ε,iuεs(x) (1x − 1x+εei) , (3.5)
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from which we obtain

‖wεs‖
2
L2(Td

ε)
= εd

∑

y∈Td
ε

(wεs(y))
2 =

1

2
εd+2

(

∇ε,iuεs(x)
)2

. (3.6)

3.2. Proof strategy. We estimate the three terms in (3.4) in three separate lemmas in
the subsequent section. As an overview of the proof strategy, we observe that all three
lemmas fundamentally exploit the time integrals. In this way, we avoid to estimate fourth
moments of discrete gradients, for which we are not able to recover convergent recursive
inequalities, as done for the second moments.

In this spirit, the first term Λε1 is handled rather easily by squaring the time integral,
applying Cauchy-Schwarz, and gain L2-norms of wεs from the time integration and Aldous-
Lanoue identity (1.26). The resulting upper bound depends on the discrepancy only via

‖wεs‖
4
L2(Td

ε)
≈ ε2(d+2) ≪ εd+2 (see (3.6)), which therefore suffices. The third term Λε,δ3 ,

although it contains both wεr and uεr, is dealt with analogously. Nevertheless, if we were

to take δ = 0 (as in Λε1), this strategy would yield ‖wεs‖L2(Td
ε)
‖uεs‖

2
L2(Td

ε)
≈ εd+2, which

is too poor for our purposes. This explains the necessity of introducing a small burn-in
time of size ε2 ≪ δ ≪ ε, producing a regularization effect of the Dirac-like discrepancy wεs.
This smoothening is quantified in terms of the ultracontractivity of the averaging process
(1.22).

The second term Λε,δ2 concerns the remaining part of the time integral left over by Λε,δ3 ,
namely, from time r = s to r = s + δ. This term is the most delicate. Instead of relying
on Cauchy-Schwarz inequality, this time we must leverage the fact that, for small times
and when starting from highly concentrated data, L1-norms display a better decay than
L2-norms. In order to turn this observation into effective bounds, we crucially employ:
(i) a localization argument (Lemma 2.5, with δ1/2 ≪ ρ ≪ 1); (ii) pseudo-contractivity
estimates for discrete gradients (Lemmas 2.3 and 2.4).

3.3. Proofs. We split the proof of Proposition 3.1 into three lemmas, one for each term
in (3.4). We start with the first term in (3.4). Here, C1 = C1(d) > 0.

Lemma 3.1 (Estimate of Λε1). We have

E
[

Λε1 | F
ε
s

]

≤ C1 ε
2d+2 ‖g‖2∞ ‖uε0‖

2
L∞(Td

ε)

(

∇ε,iuεs(x)
)2

.

Proof. Since

Λε1 ≤ 2 ‖g‖2∞

∫ t

s
‖wεr‖

2
H1(Td

ε)

∫ t

r
‖wεr′‖

2
H1(Td

ε)
dr′dr ,

the tower property and Aldous-Lanoue identity in (1.26) yield

E
[

Λε1 | F
ε
s

]

≤ 2 ‖g‖2∞

∫ t

s
E

[

‖wεr‖
2
H1(Td

ε)

∫ t

r
−2

d

dr′
E

[

‖wεr′‖
2
L2(Td

ε)
| Fε

r

]

dr′
∣

∣

∣

∣

Fε
s

]

dr

≤ 4 ‖g‖2∞

∫ t

s
E
[

‖wεr‖
2
H1(Td

ε)
‖wεr‖

2
L2(Td

ε)
| Fε

s

]

dr

≤ 4 ‖g‖2∞ ‖wεs‖
2
L2(Td

ε)

∫ t

s
E
[

‖wεr‖
2
H1(Td

ε)
| Fε

s

]

dr

≤ 8 ‖g‖2∞ ‖wεs‖
4
L2(Td

ε)
,

where the third step used that r 7→ ‖wεr‖
2
L2(Td

ε)
is deterministically non-increasing for r ≥ s.

Finally, we obtain the desired inequality by (3.6), which yields

‖wεs‖
4
L2(Td

ε)
= 2−2 ε2(d+2)

(

∇ε,iuεs(x)
)4
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≤ ε2d+2 ‖uεs‖
2
L∞(Td

ε)

(

∇ε,iuεs(x)
)2

≤ ε2d+2 ‖uε0‖
2
L∞(Td

ε)

(

∇ε,iuεs(x)
)2

,

where the last step follows by the P-a.s. monotonicity of L∞(Tdε)-norms for the averaging
process. �

The estimate of the second term in (3.4) is the most involved one. Here, C2, C
′
2 > 0

depend only on d ≥ 1.

Lemma 3.2 (Estimate of Λε2). We have, for all δ ∈ (ε2, 1), ρ ∈ (4ε, 12) and n ∈ N,

E
[

Λε,δ2 | Fε
s

]

≤ C2 T
ε,δ,ρ,n ‖g‖2∞ ‖uε0‖

2
L∞(Td

ε)

(

∇ε,iuεs(x)
)2

,

where

T ε,δ,ρ,n := ε−2δ2
{

(ρε)d + ε−2 exp
(

−C ′
2

ρ

n δ1/2

)

+ 2−n
}

.

Proof. By the tower property and

max
j=1,...,d

‖∇ε,juεr‖L∞(Td
ε)

≤ 2ε−1 ‖uεr‖L∞(Td
ε)

≤ 2ε−1 ‖uε0‖L∞(Td
ε)

, r ≥ 0 ,

we get

E
[

Λε,δ2 | Fε
s

]

≤ 4ε−1 ‖g‖2∞ ‖uε0‖L∞(Td
ε)

∫ s+δ

s

d
∑

j=1

E
[ ∥

∥∇ε,jwεr
∥

∥

L1(Td
ε)
Zε,δr

∣

∣Fε
s

]

dr , (3.7)

where

Zε,δr :=

∫ s+δ

r
εd
∑

y∈Td
ε

d
∑

j=1

∣

∣E
[

∇ε,jwεr′(y)∇
ε,juεr′(y) | F

ε
r

]∣

∣ dr′ , r ∈ (s, s+ δ) . (3.8)

We apply Lemma 2.4 to the integrand in (3.8), so to obtain

Zε,δr ≤ 2δ
(

max
j=1,...,d

∥

∥∇ε,juεr
∥

∥

L∞(Td
ε)

)

( d
∑

j=1

∥

∥∇ε,jwεr
∥

∥

L1(Td
ε)

)

≤ 4δ
(

ε−1 ‖uε0‖L∞(Td
ε)

)

( d
∑

j=1

∥

∥∇ε,jwεr
∥

∥

L1(Td
ε)

)

.

By combining this estimate with (3.7), we get

E
[

Λε,δ2 | Fε
s

]

≤ 16 ε−2δ ‖g‖2∞ ‖uε0‖
2
L∞(Td

ε)

∫ s+δ

s
E

[( d
∑

j=1

∥

∥∇ε,jwεr
∥

∥

L1(Td
ε)

)2∣
∣

∣

∣

Fε
s

]

dr . (3.9)

We now split the L1-norm above as follows: for any ρ ∈ (4ε, 12 ) and j = 1, . . . , d,
∥

∥∇ε,jwεr
∥

∥

L1(Td
ε)

= εd
∑

y∈Td
ε

|x−y|≤ρ

∣

∣∇ε,jwεr(y)
∣

∣+ εd
∑

y∈Td
ε

|x−y|>ρ

∣

∣∇ε,jwεr(y)
∣

∣

= ‖1B̄ρ(x)∇
ε,jwεr‖L1(Td

ε)
+ ‖1Bc

ρ(x)
∇ε,jwεr‖L1(Td

ε)
,

from which we obtain, by Cauchy-Schwarz inequality,
( d
∑

j=1

∥

∥∇ε,jwεr
∥

∥

L1(Td
ε)

)2

≤ C ′
1

d
∑

j=1

{

‖1B̄ρ(x)∇
ε,jwεr‖

2
L1(Td

ε)
+ ‖1Bc

ρ(x)
∇ε,jwεr‖

2
L1(Td

ε)

}



22 TINY FLUCTUATIONS OF THE AVERAGING PROCESS

≤ C ′
1

d
∑

j=1

{

‖1B̄ρ(x)‖
2
L2(Td

ε)
‖∇ε,jwεr‖

2
L2(Td

ε)
+ ‖1Bc

ρ(x)
∇ε,jwεr‖

2
L2(Td

ε)

}

≤ C ′
2

d
∑

j=1

{

ρd ‖∇ε,jwεr‖
2
L2(Td

ε)
+ ‖1Bc

ρ(x)
∇ε,jwεr‖

2
L2(Td

ε)

}

= C ′
2

{

ρd ‖wεr‖
2
H1(Td

ε)
+ εd

∑

y∈Td
ε

|x−y|>ρ

d
∑

j=1

(

∇ε,jwεr(y)
)2
}

,

for some constants C ′
1, C

′
2 > 0 depending only on d ≥ 1. Taking expectations, the above

estimate yields

E

[( d
∑

j=1

∥

∥∇ε,jwεr
∥

∥

L1(Td
ε)

)2∣
∣

∣

∣

Fε
s

]

≤ C ′
2

{

ρdE
[

‖wεr‖
2
H1(Td

ε)
| Fε

s

]

+ εd
∑

y∈Td
ε

|x−y|>ρ

d
∑

j=1

E
[ (

∇ε,jwεr(y)
)2

| Fε
s

]

}

≤ C ′
2

{

2ρd ‖wεs‖
2
H1(Td

ε)
+ εd

∑

y∈Td
ε

|x−y|>ρ

d
∑

j=1

E
[ (

∇ε,jwεr(y)
)2

| Fε
s

]

}

= C ′
2

{

2ρd c εd
(

∇ε,iuεs(x)
)2

+ εd
∑

y∈Td
ε

|x−y|>ρ

d
∑

j=1

E
[ (

∇ε,jwεr(y)
)2

| Fε
s

]

}

, (3.10)

where the second step follows from Lemma 2.3, while the third step used (3.5), which
ensures that, for some c = c(d) > 0,

‖wεs‖
2
H1(Td

ε)
= εd

∑

y∈Td
ε

d
∑

j=1

(

∇ε,jwεs(y)
)2

= c εd
(

∇ε,iuεs(x)
)2

.

Observe that wεs is non-zero only in a 2ε-neighborhood of x ∈ T
d
ε. Moreover, by (3.5),

‖wεs‖
2
L∞(Td

ε)
=
ε2

2

(

∇ε,iuεs(x)
)2

.

Henceforth, Lemma 2.5 applied to (wεr)r≥s yields, for all n ∈ N and r ∈ (s, s+ δ),

d
∑

j=1

E
[

‖1Bc
ρ(x)

∇ε,jwεr‖
2
L2(Td

ε)
| Fε

s

]

≤ C
(

∇ε,iuεs(x)
)2
{

ε−2 exp

(

−
C ′ ρ

n δ1/2

)

+ 2−n
}

. (3.11)

By combining (3.9), (3.10) and (3.11), we get the desired estimate. �

We now bound the third term in (3.4). Here, C3 = C3(d) > 0.

Lemma 3.3 (Estimate of Λε,δ3 ). We have, for all δ ∈ (ε2, 1),

E
[

Λε,δ3 | Fε
s

]

≤ C3 ε
2d+2δ−d/2 ‖g‖2∞ ‖uε0‖

2
L∞(Td

ε)

(

∇ε,iuεs(x)
)2

.
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Proof. Since Λε,δ3 = 0 whenever s + δ ≥ t, let us assume s + δ < t. Then, by repeatedly
applying Cauchy-Schwarz inequality, we get

E
[

Λε,δ3 | Fε
s+δ

]

≤ ‖g‖2∞E

[(∫ t

s+δ
‖wεr‖H1(Td

ε)
‖uεr‖H1(Td

ε)
dr

)2∣
∣

∣

∣

Fε
s+δ

]

≤ ‖g‖2∞E

[(
∫ t

s+δ
‖wεr‖

2
H1(Td

ε)
dr

)(
∫ t

s+δ
‖uεr‖

2
H1(Td

ε)
dr

)∣

∣

∣

∣

Fε
s+δ

]

≤ ‖g‖2∞E

[(∫ t

s+δ
‖wεr‖

2
H1(Td

ε)

)2∣
∣

∣

∣

Fε
s+δ

]
1
2

E

[(∫ t

s+δ
‖uεr‖

2
H1(Td

ε)
dr

)2∣
∣

∣

∣

Fε
s+δ

]

.

By estimating both expectations as already done in the proof of Lemma 3.1, we get

E
[

Λε,δ3 | Fε
s+δ

]

≤ 8 ‖g‖2∞
∥

∥wεs+δ
∥

∥

2

L2(Td
ε)

∥

∥uεs+δ
∥

∥

2

L2(Td
ε)

≤ 8 ‖g‖2∞
∥

∥wεs+δ
∥

∥

2

L2(Td
ε)
‖uε0‖

2
L∞(Td

ε)
.

By the tower property, we obtain

E
[

Λε,δ3 | Fε
s

]

= E
[

E
[

Λε,δ3 | Fε
s+δ

]

| Fε
s

]

≤ 8 ‖g‖2∞ ‖uε0‖
2
L∞(Td

ε)
E
[ ∥

∥wεs+δ
∥

∥

2

L2(Td
ε)

| Fε
s

]

.

Since 〈wεs〉ε = 0 (cf. (3.5)), the last expectation may be further estimated thanks to (1.22):

E
[ ∥

∥wεs+δ
∥

∥

2

L2(Td
ε)

| Fε
s

]

≤ C ‖wεs‖
2
L1(Td

ε)
δ−d/2 .

Recalling (3.5), we have

‖wεs‖
2
L1(Td

ε)
= ε2d+2

(

∇ε,iuεs(x)
)2

,

and, thus, the desired result. �

We conclude this section with the proof of Proposition 3.1.

Proof of Proposition 3.1. We exhibit a choice of δ = δ(ε) ∈ (ε2, 1) yielding

E
[

Λε,δℓ | Fε
s

]

≤ C εd+2 ‖g‖2∞ ‖uε0‖
2
L∞(Td

ε)

(

∇ε,iuεs(x)
)2
V ε
ℓ , ℓ ∈ {1, 2, 3} , (3.12)

for some V ε
ℓ ≤ C ′(εd/2)(1−h)

d
d+2 , for all h ∈ (0, 1) and some C ′ = C ′(d, h) > 0. The

inequality in (3.4) would conclude the proof of the proposition.

For what concerns ℓ = 1, we have Λε,δ1 = Λε1 and, by Lemma 3.1, we obtain (3.12) with

V ε
1 = ε−(d+2)ε2d+2 = εd. Consider the case ℓ = 3. Letting δ = ε2(1−a), a ∈ (0, 1), Lemma

3.3 yields (3.12) with

V ε
3 = ε−(d+2)

(

ε2d+2δ−d/2
)

= ε−d−2+2d+2−d+ad = εad .

By setting a = (1− h) 1
2

d
d+2 for some small h ∈ (0, 1), we obtain the desired claim for

ℓ = 3. Consider ℓ = 2, and let ρ = ε1−b, for b = 1
2

d
d+2 ∈ (a, 1), as well as n = ⌈| log ε|2⌉.

Then, by inserting these choices into the claim of Lemma 3.2, we obtain

V ε
2 = ε−(d+2) ε−2+4−4a

{

ε2d−bd + ε−2 exp

(

−C ′
2

ε−(b−a)

log2 |ε|

)

+ 2− log2|ε|

}

= ε−4a+d−bd + ε−d−2−4a exp

(

−C ′
2

ε−(b−a)

⌈| log ε|2⌉

)

+ 2−⌈log ε|2⌉ . (3.13)
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Since b = 1
2

d
d+2 and a = (1− h) b, the first term in (3.13) is smaller than (εd/2)

d
d+2 ≤ V ε

3 .

Observe that the choices b > a and n = ⌈log ε|2⌉ ensure that the second and third terms
in (3.13) are bounded above, uniformly over ε ∈ (0, 1), by, e.g., C ′′V ε

1 = C ′′εd, for some
C ′′ = C ′′(d, h) > 0. This proves (3.12) for ℓ = 2 and, thus, concludes the proof. �

4. Proof of Theorem 2. Mean

In view of Theorem 3 on the variance of Γ εt (g), the proof of Theorem 2 is complete
as soon as we show convergence of the corresponding means. This fact is summarized
in the following theorem. Also in this section, we fix a test function g = (gi)i=1,...,d ∈
(C([0,∞) × T

d))d, as well as the initial condition u0 ∈ C2(Td), and consider uε0 := u0|Td
ε
.

Theorem 4 (Mean). Let Γ εt (g) and Γt(g) be given as in (1.17) and (1.18), respectively.
Then, for all t > 0, we have

E[Γ εt (g)]
ε→0
−−−→ Γt(g) .

We break the proof of Theorem 4 into two main steps: Propositions 4.1 and 4.2. We
remark that, while the proof of Theorem 3 was crucially exploiting the time integration in
the definition of Γ εt (g), this time we establish a pointwise convergence in both time and

space variables. Here, the series representation in terms of Πε,i,kt (uε0) for expectations of
squared gradients (Proposition 2.1) plays a prominent role. For such expressions, we estab-

lish two claims. First, we introduce an approximation Π̃ε,i,kt (uε0) of Π
ε,i,k
t (uε0) (Proposition

4.1). Then, we prove a limit theorem for these approximations (Proposition 4.2).

Proposition 4.1. Recall (2.11). Then, for all t > 0 and i = 1, . . . , d, we have
∞
∑

k=0

∣

∣

∣
Πε,i,kt (uε0)(x)− Π̃ε,i,kt (uε0)(x)

∣

∣

∣

ε→0
−−−→ 0 , (4.1)

uniformly over x ∈ T
d
ε. Here, Π̃ε,i,kt := Πε,i,kt for k = 0, while, for k ≥ 1,

Π̃ε,i,kt (uε0)(x) (4.2)

:=

d
∑

j=1

Πε,j,0t (uε0)(x)

∫

[0,t]k>

ds1 · · · dsk
∑

y1,...,yk∈Td
ε

d
∑

j1,...,jk=1

(

k
∏

ℓ=1

q
ε,jℓ−1,jℓ
sℓ−1−sℓ

(yℓ−1, yℓ)

)

1jk=j .

Proposition 4.2. Recall (4.2). Then, there exists a = a(d) ∈ (0, 1] such that, for all t > 0
and i = 1, . . . , d, we have

∞
∑

k=0

Π̃ε,i,kt (uε0)(x)
ε→0
−−−→

d
∑

j=1

(

(1 + a)1i=j +
1− a

d− 1
1i 6=j

)

(

∇jut(x)
)2

, (4.3)

uniformly over x ∈ T
d
ε.

We present the proofs of these two propositions in the subsequent section. Before that,
we conclude this part by proving Theorem 4.

Proof of Theorem 4. From (1.17) and Proposition 2.1, we have

E
[

Γ εt (g)
]

=

d
∑

i=1

∫ t

0
εd
∑

x∈Td
ε

E
[ (

∇ε,iuεs(x)
)2 ]

gis(x) ds

=
d
∑

i=1

∫ t

0
εd
∑

x∈Td
ε

{

∞
∑

k=0

Πε,i,ks (uε0)(x)

}

gis(x) ds .
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By the uniform boundedness of g and the estimate in Lemma 2.3, we may apply the
dominated convergence theorem, so that the convergence in Theorem 4 reduces to that
of the term in curly brackets above, for all s > 0 and uniformly over x ∈ T

d
ε. Recalling

the expression of Γt(g) from (1.18), this is precisely the content of Propositions 4.1 and
4.2. �

4.1. Proofs. We start with two lemmas on some additional properties of the functions qε

defined in (2.5). The first of this lemma is a refinement of Lemma 2.2 in the multidimen-
sional case d ≥ 2. We defer the proof of the following lemma to Appendix A.

Lemma 4.1. Fix d ≥ 2. Then, for all x ∈ T
d
ε, t ≥ 0, and i, j = 1, . . . , d, the quantity

Qi,j
ε (t) :=

∑

y∈Td
ε

qε,i,jt (x, y) (4.4)

depends only on d ≥ 2, t ≥ 0 and 1i=j. Moreover, letting
∫ ∞

0
Qi,j
ε (t) dt =:

{

bε if i = j

cε if i 6= j ,
(4.5)

we have bε, cε ∈ (0, 12 ] and the following limits

b := lim
ε→0

bε , c := lim
ε→0

cε (4.6)

exist in (0, 12 ].

Remark 4.1. Comparing Qi,j
ε and Qε given, respectively, in (4.4) and (2.7), we have

d
∑

j=1

Qi,j
ε (t) = Qε(t) , t ≥ 0 , i = 1, . . . , d , (4.7)

which, together with Lemma 4.1 and (2.8), yields

bε + (d− 1) cε =
1

2
, b+ (d− 1) c =

1

2
. (4.8)

The following result refines property (2.8) when the extremes of integration are not t = 0
and t = ∞, but rather t = T > 0 and t = ∞. As already done for Lemmas 2.2 and 4.1, we
postpone its proof to Appendix A.

Lemma 4.2. There exists a constant c3 = c3(d) > 0 satisfying, for all T > 0,
∫ ∞

T
Qε(t) dt ≤ c3 ε

3
(

T ∨ ε2
)−3/2

. (4.9)

We are now ready to prove one of the two propositions of the section. All throughout,
we employ the notation of Lemma 4.1 introduced for the case d ≥ 2; if d = 1, by writing,

e.g., Qi,j
ε , bε, cε, we actually mean Qε,

1
2 , 0, respectively.

Proof of Proposition 4.2. In view of Lemma 4.1, we may adopt the following shorthand
notation for the time integral in (4.2): for all integers k ≥ 1, and for all t ≥ 0 and
i, j = 1, . . . , d,

Rε,i,j,kt :=

∫

[0,t]k>

ds1 · · · dsk

d
∑

j0,j1,...,jk=1

(

k
∏

ℓ=1

Q
jℓ−1,jℓ
ε (sℓ−1 − sℓ)

)

1j0=i1jk=j , (4.10)
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with the usual convention that s0 := t. Similarly, we write

Rε,i,j,k∞ :=
d
∑

j0,...,jk=1

(

k
∏

ℓ=1

∫ ∞

0
Q
jℓ−1,jℓ
ε (s) ds

)

1j0=i1jk=j . (4.11)

Further, set Rε,i,j,kt = Rε,i,j,k∞ = 1i=j for k = 0. With these definitions, we readily obtain

Rε,i,j,kt ≤ Rε,i,j,k∞ , k ≥ 0 . (4.12)

We now claim that, for all t > 0 and some C = C(d) > 0,
(

1− Ct−3/2ε3/2
)k
Rε,i,j,k∞ ≤ Rε,i,j,kt , k ≤ ⌊ε−1⌋ . (4.13)

Indeed, for all k ≤ ⌊ε−1⌋, Rε,i,j,kt is bounded below by

d
∑

j0,...,jk=1

1j0=i1jk=j

∫ t

t−εt
ds1Q

j0,j1
ε (ds1)

∫ s1

s1−εt
ds2 · · ·

∫ sk−1

sk−1−εt
dskQ

jk−1,j
ε (sk−1 − sk) ,

(4.14)

where we used Q
jℓ−1,jℓ
ε ≥ 0 and k ≤ ⌊ε−1⌋ (guaranteeing that sk−1 − εt ≥ 0). Thanks to

Lemma 4.2, we estimate each nested integral as follows: for all ℓ = 1, . . . , k,
∫ sℓ−1

sℓ−1−εt
Q
jℓ−1,jℓ
ε (sℓ−1 − sℓ) dsℓ =

∫ ∞

0
Q
jℓ−1,jℓ
ε (s) ds−

∫ ∞

tε
Q
jℓ−1,jℓ
ε (s) ds

≥

∫ ∞

0
Q
jℓ−1,jℓ
ε (s) ds− c3 t

−3/2ε3/2

≥
(

1− Ct−3/2ε3/2
)

∫ ∞

0
Q
jℓ−1,jℓ
ε (s) ds ,

where the first inequality used Lemma 4.2, whereas for the last inequality we employed the

non-degeneracy of the limits (4.6) (thus, ensuring lim infε→0

∫∞
0 Qi,j

ε (s) ds > 0) and chose
a sufficiently large constant C = C(d) > 0. Inserting these bounds into (4.14), we obtain
(4.13). In conclusion, by combining (4.12) and (4.13), we get

∞
∑

k=0

∣

∣

∣
Rε,i,j,kt −Rε,i,j,k∞

∣

∣

∣
≤

⌊ε−1⌋
∑

k=1

(

1−
(

1− C ′t−3/2ε3/2
)k
)

Rε,i,j,k∞ +

∞
∑

k=⌊ε−1⌋+1

Rε,i,j,k∞

≤ 1−
(

1− C ′t−3/2ε3/2
)⌊ε−1⌋

+ 2−⌊ε−1⌋ ,

where the last inequality used (4.7) and property (2.8). In conclusion, we obtain

∞
∑

k=0

∣

∣

∣R
ε,i,j,k
t −Rε,i,jk∞

∣

∣

∣

ε→0
−−−→ 0 , (4.15)

for all t > 0 and i, j = 1, . . . , d.
We now prove that, for all i, j = 1, . . . , d, we have

∞
∑

k=1

Rε,i,j,k∞
ε→0
−−−→

∞
∑

k=1

Ri,j,k∞ :=
1

1− b+ c
×

{

b+ c if i = j

2c if i 6= j ,
(4.16)

where b, c ∈ (0, 12 ] are the limits in (4.6).

Recall the definition of Rε,i,j,k∞ , k ∈ N, from (4.11). Thanks to Lemma 4.1, Rε,i,j,k∞

may be precisely determined by counting how many times adjacent indices in the se-

quence (j0, j1, . . . , jk−1, jk) ∈ {1, . . . , d}k+1 coincide. For this purpose, let N(j0, . . . , jk) ∈
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{0, 1, . . . , k} denote the number of adjacent indices with the same value, i.e.,

N(j0, . . . , jk) :=
k
∑

ℓ=1

1jℓ−1=jℓ .

Then, by (4.5), we have

Rε,i,j,k∞ =
d
∑

j0,...,jk=1

(

b
N(j0,...,jk)
ε c

k−N(j0,...,jk)
ε

)

1j0=i1jk=j .

Clearly, the above quantity depends on i, j = 1, . . . , d only through 1i=j; therefore, we
may introduce the following shorthand notation: for all k ∈ N,

F εk := Rε,i,j,k∞ if i = j , Gεk := Rε,i,j,k∞ if i 6= j .

When d ≥ 2, such quantities satisfy

F ε1 = bε , Gε1 = cε ,

as well as the following one-step recursive formula: for k ≥ 2,

F εk = bε F
ε
k−1 + (cε + (d− 2) cε)G

ε
k−1 = bε F

ε
k−1 +

(

1
2 − bε

)

Gεk−1

Gεk = cε F
ε
k−1 + (bε + (d− 2) cε)G

ε
k−1 = cε F

ε
k−1 +

(

1
2 − cε

)

Gεk−1 ,

where for the second set of identities we used relation (4.8). In other words, letting

Mε :=

(

bε
1
2 − bε

cε
1
2 − cε

)

, we just obtained

(

F εk
Gεk

)

=Mε

(

F εk−1
Gεk−1

)

= . . . =Mk−1
ε

(

bε

cε

)

,

from which we get

∞
∑

k=1

Mk−1
ε

(

bε

cε

)

= (I−Mε)
−1

(

bε

cε

)

, with I :=

(

1 0
0 1

)

.

In conclusion, since

(I−Mε)
−1 =

1

1− bε + cε

(

1 + 2cε 1− 2bε
2cε 2− 2bε

)

,

the left-hand side of (4.16) equals, depending on whether i = j or i 6= j,

1

1− bε + cε
×

{

bε + cε if i = j

2cε if i 6= j .
(4.19)

Taking ε → 0, (4.6) yields (4.16) for d ≥ 2. When d = 1, i 6= j is not possible; hence, we
have F εk = b

k
ε for all k ∈ N. Since bε = 1

2 (see Remark 4.1), the left-hand side of (4.16)

equals
∑∞

k=1 F
ε
k =

∑∞
k=1 2

−k = 1. Since b = 1
2 and c = 0 when d = 1, the right-hand side

of (4.16) equals 1, as desired.
Now, recall that ∇jut = ∇jPtu0 = Pt∇

ju0, for all j = 1, . . . , d, and similarly for
the ε-semigroup and corresponding gradients. By the functional CLT for (Xε

t )t≥0, the
assumptions u0 ∈ C2(Td) with uε0 = u0|Td

ε
ensure

sup
t≥0

sup
x∈Td

ε

∣

∣

∣

(

∇ε,jP εt u
ε
0(x)

)2
−
(

∇jut(x)
)2
∣

∣

∣

ε→0
−−−→ 0 , j = 1, . . . , d . (4.20)
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In view of (4.15), (4.16) and (4.20), the claim in (4.3) follows by a triangle inequality.
Indeed, recalling the definitions (4.2), (4.10), (4.11), (2.10), and the uniform boundedness

of Πε,j,0t (uε0), we have, as ε→ 0,

∞
∑

k=0

Π̃ε,i,kt (uε0)(x) =

d
∑

j=1

Πε,j,0t (uε0)(x)

∞
∑

k=0

Rε,i,j,kt

(4.20) =⇒ ≈
d
∑

j=1

(

∇jut(x)
)2

∞
∑

k=0

Rε,i,j,kt

(4.15) =⇒ ≈
d
∑

j=1

(

∇jut(x)
)2

∞
∑

k=0

Rε,i,j,k∞

(4.16) =⇒ ≈
d
∑

j=1

(

∇jut(x)
)2

∞
∑

k=0

Ri,j,k∞ ,

where we defined Ri,j,k∞ := 1i=j for k = 0. Observe that the above convergences hold for

all t > 0, i = 1, . . . , d, and uniformly over x ∈ T
d
ε. This proves (4.3) with a =

∑∞
k=1R

i,i,k
∞ ,

thus, concluding the proof of the proposition. �

Remark 4.2. The proof of Proposition 4.2 — in particular, relations (4.16) and (4.19) —
allows us to express the value a = a(d) ∈ (0, 12 ] in terms of the limits b, c ∈ (0, 12 ] in (4.6),
combined with the relation (4.8):

a :=
b+ c

1− b+ c
=

1− 2(d− 2) c

1 + 2d c
. (4.21)

Proof of Proposition 4.1. Recalling (2.10), (2.11) and (4.2), we have, for all k ∈ N,

Πε,i,kt (uε0)(x) − Π̃ε,i,kt (uε0)(x)

=

∫

[0,t]k>

ds1 · · · dsk−1

∑

y1,...,yk−1∈Td
ε

d
∑

j1,...,jk−1=1

(

k−1
∏

ℓ=1

q
ε,jℓ−1,jℓ
sℓ−1−sℓ

(yℓ−1, yℓ)

)

×

∫ sk−1

0
dsk

∑

yk∈Td
ε

d
∑

jk=1

q
ε,jk−1,jk
sk−1−sk

(yk−1, yk)
{

Πε,jk,0sk
(uε0)(yk)−Πε,jk,0t (uε0)(x)

}

.

Further, by u0 ∈ C2(Td), uε0 = u0|Td
ε
and the functional CLT in (4.20), we get

∣

∣

∣Πε,j,0sk
(uε0)(yk)−Πε,j,0t (uε0)(x)

∣

∣

∣ ≤ C1

∣

∣Psk∇
ju0(yk)− Pt∇

ju0(x)
∣

∣ ≤ C2 ,

for some C1, C2 > 0 depending only on u0 ∈ C2(Td). Hence, the left-hand side of (4.1) is
bounded above by

C1

∞
∑

k=1

Kε,k
t (u0)(x) ≤



C1

⌈|log ε|⌉2
∑

k=1

Kε,k
t (u0)(x)



 + C2 2
−⌈|log ε|⌉2 , (4.22)

where

Kε,k
t (u0)(x) :=

∫

[−∞,t]k−1
>

ds1 · · · dsk−1

∑

y1,...,yk−1∈Td
ε

d
∑

j0,...,jk−1=1

(

k−1
∏

ℓ=1

q
ε,jℓ−1,jℓ
sℓ−1−sℓ

(yℓ−1, yℓ)

)
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×

∫ sk−1

−∞
dsk

∑

yk∈Td
ε

d
∑

jk=1

q
ε,jk−1,jk
sk−1−sk

(yk−1, yk)
∣

∣Psk∨0∇
jku0(yk)− Pt∇

jku0(x)
∣

∣ . (4.23)

From now on, the proof ingredients are similar to those of Lemma 2.5 and Proposition
4.2. More in detail, we show, as already done in Proposition 4.2, that the integrals appear-

ing in the definition (4.23) of Kε,k
t (u0)(x) may be restricted around their upper extremes,

e.g., integrate sk over [sk−1 − εt, sk] rather than on the whole [0, sk−1]. Then, we con-
clude by exploiting the space-time continuity of Ps∇

ju0(x) and the localization arguments
employed in the proof of Lemma 2.5. We sketch this part of the proof below.

By splitting the domain of integration of the first integral in (4.23) into {s1 < t− εt}
and its complement, we get, for some C3 = C3(u0) > 0,

Kε,k
t (u0)(x) ≤ C3 L

ε,k
t +Kε,k,1

t (u0)(x) , (4.24)

where, for all m = 1, . . . , k,

Kε,k,m
t (u0)(x) :=

∫

[−∞,t]k>

ds1 · · · dsk
∑

y1,...,yk∈Td
ε

d
∑

j0,...,jk=1

(

k
∏

ℓ=1

q
ε,jℓ−1,jℓ
sℓ−1−sℓ

(yℓ−1, yℓ)

)

×
∣

∣Psk∇
jku0(yk)− Pt∇

jku0(x)
∣

∣

(

m
∏

ℓ=1

1[sℓ−1−εt,sℓ−1](sℓ)

)

, (4.25)

and

Lε,kt := d

(∫ ∞

tε
Qε(s) ds

)(∫ ∞

0
Qε(s) ds

)k−1

≤ dc3 t
−3/2ε3/2 2−(k−1) . (4.26)

Note that in (4.26) we used Lemmas 2.2 and 4.2 to obtain the inequality. Moreover, with

the notation in (4.25), we may define Kε,k,0
t := Kε,k

t . Applying this same strategy to

Kε,k,1
t (u0)(x), by splitting the integral with respect to s2 ∈ (−∞, s1) into {s2 < s1 − εt}

and its complement, we get

Kε,k,1
t (u0)(x) ≤ C3 L

ε,k
t +Kε,k,2

t (u0)(x) .

Thus, by iterating k times the above inequality, (4.24) yields

Kε,k
t (u0)(x) ≤ C3 k L

ε,k
t +Kε,k,k

t (u0)(x) . (4.27)

Since k ≤ ⌈|log ε|⌉2, we further get, for all ρ ∈ (0, 12),

Kε,k,k
t (u0)(x) ≤ d2−k

{

max
j=1,...,d

sup
r,s≥0

|r−s|<ε|log ε|2

∥

∥Ps∇
ju0 − Pr∇

ju0
∥

∥

L∞(Td)

}

+ d2−k
{

max
j=1,...,d

sup
s≥0

sup
x,y∈Td

|x−y|≤ρ

∣

∣Ps∇
ju0(y)− Ps∇

ju0(x)
∣

∣

}

+ C4

∫

[0,ε|log ε|2t]k>

ds1 · · · dsk
∑

y1,...,yk∈T
d
ε

|yk−x|>ρ

d
∑

j0,...,jk=1

(

k
∏

ℓ=1

q
ε,jℓ−1,jℓ
sℓ−1−sℓ

(yℓ−1, yℓ)

)

=: d2−k
{

ω(ε |log ε|2) + ϑ(ρ)
}

+ C4 I
ε,k

ε|log ε|2t
(ε, ρ) . (4.28)
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Note that the time integral above coincides with Iε,kt (ρ1, ρ2) introduced in (2.24) — and
estimated in (2.29) — with the following choices:

ρ1 = ε , ρ2 = ρ , t = ε |log ε|2 t , n = ⌈|log ε|⌉2 .

As a consequence, summing over k = 1, . . . , ⌊ε−1/2⌋, (4.27), (4.26), (4.28) and (2.29) yield

⌈|log ε|⌉2
∑

k=1

Kε,k
t (u0)(x)

≤ C5

(

t−3/2ε3/2 + ω(ε |log ε|2) + ϑ(ρ) + ε−(d+2) exp

(

−
C ′ρ

|log ε|3 ε1/2

))

,

for some C5 > 0 depending only on d ≥ 1 and u0 ∈ C2(Td). Taking, e.g., ρ = ε1/3, the
above bound and the space-time continuity of Ps∇

ju0 ensure that the left-hand side above
vanishes as ε→ 0, for all t > 0. The desired claim now follows from (4.22). �

5. Proof of Theorem 1

In this section, we prove the functional CLT for the distribution-valued càdlàg process
(Yεt )t≥0 defined in (1.4). Let us recall from (1.13)–(1.14) the decomposition of (Yεt )t≥0 into
a drift and a martingale term:

Yεt (f) =

∫ t

0
Yεs (

1
2∆εf) ds+Mε

t (f) , t ≥ 0 , f ∈ C∞(Td) . (5.1)

Observe that, by (1.15) and the notation introduced in (1.17), (Uεt )t≥0 defined as

Uεt (f) := Mε
t (f)

2 − Γ εt (
1
2∇

εf) , t ≥ 0 , f ∈ C∞(Td) , (5.2)

is also a distribution-valued martingale (with respect to the natural filtration of (Yεt )t≥0).
Recall that all these fields depend on the initial conditions

u0 ∈ C2(Td) and uε0 ≡ u0|Td
ε
∈ R

Td
ε ,

which we fix all throughout this section.
As already mentioned in Section 1.3, the proof of Theorem 1 may be divided into steps

(i)–(iii): tightness of the sequence, continuity of the limit points, and characterization of
the limit, respectively. As we will see, these three steps build on Theorem 2 and two main
estimates, which we present and prove in the next subsection.

5.1. Main estimates. Define, for all g ∈ R
Tε , ‖g‖Lip(Td

ε)
:= maxi=1,...,d ‖∇

ε,ig‖L∞(Td
ε)
.

This definition naturally extends to functions f ∈ C∞(Td).

Lemma 5.1 (Second moments of fields). For all f ∈ C∞(Td) and t ≥ 0, we have

E
[

Yεt (f)
2
]

≤ ‖f‖2Lip(Td
ε)
‖uε0‖

2
L∞(Td

ε)
(5.3)

E
[

Mε
t (f)

2
]

≤ ‖f‖2Lip(Td
ε)
‖uε0‖

2
L∞(Td

ε)
. (5.4)

Proof. We start with the proof of (5.3). By expanding the square and taking expectation,
we obtain

E
[

Yεt (f)
2
]

= θ2ε ε
2d
∑

x,y∈Td
ε

{

E
[

uεt (x)u
ε
t (y)

]

− E
[

uεt(x)
]

E
[

uεt (y)
]}

f(x)f(y) . (5.5)

Writing uεt (x) as the mild solution of (1.8), we get

uεt (x) = P εt u
ε
0(x) +

d
∑

i=1

ε2

2

∫ t

0
P εt−s∇

ε,i
∗

(

dN̄ ε,i
s ∇ε,iuεs−

)

(x)
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= P εt u
ε
0(x) +

d
∑

i=1

ε2

2

∫ t

0

∑

z∈Td
ε

∇ε,i
∗ p

ε
t−s( · , z)(x)∇

ε,i uεs−(z) dN̄
ε,i
s (z) .

Since N̄ ε = (N̄ ε,i
t (x))t≥0, x∈Td

ε , i=1,...,d is a family of i.i.d. martingales satisfyingE[(N̄ ε,i
t (x))2] =

ε−2 t, we obtain

E
[

uεt (x)u
ε
t (y)

]

= E
[

uεt(x)
]

E
[

uεt (y)
]

+
d
∑

i=1

ε2

4

∫ t

0

∑

z∈Td
ε

E
[ (

∇ε,iuεs(z)
)2 ] (

∇ε,i
∗ p

ε
t−s( · , z)(x)∇

ε,i
∗ p

ε
t−s( · , z)(y)

)

ds .

Inserting this identity into (5.5) and recalling that θε = ε−(d/2+1), we get

E
[

Yεt (f)
2
]

=
εd

4

∑

z∈Td
ε

d
∑

i=1

∫ t

0
E
[ (

∇ε,iuεs(z)
)2 ]





∑

x∈Td
ε

(

∇ε,i
∗ p

ε
t−s( · , z)(x)

)

f(x)





2

ds

= εd
∑

z∈Td
ε

d
∑

i=1

∫ t

0
E
[ (

∇ε,iuεs(z)
)2 ] (1

2P
ε
t−s∇

ε,if(z)
)2

ds . (5.6)

By the estimate ‖P εt−s∇
ε,if‖L∞(Td

ε)
≤ ‖∇ε,if‖L∞(Td

ε)
≤ ‖f‖Lip(Td

ε)
,

E
[

Yεt (f)
2
]

≤
1

2
‖f‖2Lip(Td

ε)

∫ t

0

1

2
E
[

‖uεs‖
2
H1(Td

ε)

]

ds ≤
1

2
‖f‖2Lip(Td

ε)
‖uε0‖

2
L2(Td

ε)
, (5.7)

where the second inequality used Aldous-Lanoue identity (1.26). This yields (5.3).
For what concerns (5.4), since the process in (5.2) is a mean-zero martingale, we get

E
[

Mε
t (f)

2
]

= E
[

Γ εt (
1
2∇

εf)
]

.

Noting Γ εt (
1
2∇f) equals (5.6) with P

ε
t−s∇

ε,if replaced by ∇ε,if (cf. (1.17)), the argument
leading from (5.6) to (5.7) proves (5.4). �

Lemma 5.2 (Size of jumps). For all f ∈ C∞(Td), we have

E
[

sup
t≥0

|Yεt (f)−Yεt−(f)|
]

≤ εd/2 ‖f‖Lip(Td
ε)
‖uε0‖L∞(Td

ε)
.

Proof. By the Poisson nature of the averaging dynamics, there is P-a.s. at most one update
at the time. Suppose to observe an update over the nearest neighbor vertices x and
y = x+ εei ∈ T

d
ε at time t ≥ 0; then,

|Yεt (f)− Yεt−(f)|

= θε ε
d
∣

∣

1
2 (u

ε
t−(x) + ut−(y)) (f(x) + f(y))− uεt−(x) f(x)− uεt−(y) f(y)

∣

∣

= θε ε
d
∣

∣

1
2 (u

ε
t−(x)− uεt−(y)) (f(x)− f(y))

∣

∣

≤ θε ε
d+1 ‖f‖Lip(Td

ε)
‖uεt−‖L∞(Td

ε)

≤ θε ε
d+1 ‖f‖Lip(Td

ε)
‖uε0‖L∞(Td

ε)
,

where the first inequality used |f(x)− f(y)| ≤ ‖f‖Lip(Td
ε)
, while the second one used the

monotonicity ‖uεs‖L∞(Td
ε)

≤ ‖uε0‖L∞(Td
ε)
. Recalling θε = ε−(d/2+1) concludes the proof. �
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5.2. Martingale convergence theorem. In view of the martingale decomposition in
(5.1)–(5.2) and the conclusions of Theorem 2 and Lemma 5.2, the classical martingale
convergence theorem (see, e.g, [EK86, Theorem 7.1.9, p. 339]) applies to our case. For the
reader’s convenience, we collect its consequences in the following proposition.

Proposition 5.1. Recall (1.18). Then, for all f ∈ C∞(Td), there exists a unique (in dis-

tribution) real-valued square-integrable continuous martingale Mf = (Mf
t )t≥0 (with respect

to its natural filtration) with Mf
0 = 0, predictable quadratic variation equal to Γt(

1
2∇f),

and Gaussian independent increments. Moreover, recalling (1.14), (1.15), and (1.17), we
have, for all f ∈ C∞(Td),

(Mε
t (f))t≥0

ε→0
===⇒Mf

t , in D([0,∞);R) . (5.8)

Proof. Since (Γt(
1
2∇f))t≥0 is a continuous deterministic non-negative function, [EK86,

Theorem 7.1.1, p. 338] proves the first assertion on the existence and uniqueness of the

martingale (Mf
t )t≥0.

As for the claim in (5.8), it suffices to observe that the hypotheses of [EK86, Theorem
7.1.4, p. 339], as well as conditions (1.16)–(1.19) therein, hold true in our case. Indeed, the
predictable quadratic variations (Γ εt (

1
2∇

εf))t≥0 of (M
ε
t (f))t≥0 are continuous non-negative

processes. Hence, the hypotheses and conditions (1.16) and (1.18) are fulfilled. Condition
(1.17) therein follows from

|Yεt (f)− Yεt−(f)| = |Mε
t (f)−Mε

t−(f)| , (5.9)

which holds because the drift term in (5.1) is continuous, and Lemma 5.2. Finally, condition
(1.19) is a consequence of the triangle inequality
∣

∣Γ εt (
1
2∇

εf)− Γt(
1
2∇f)

∣

∣ ≤
∣

∣Γ εt (
1
2∇

εf)− Γ εt (
1
2∇f)

∣

∣+
∣

∣Γ εt (
1
2∇f)− Γt(

1
2∇f)

∣

∣

≤ ‖f‖Lip(Td
ε)

max
i=1,...,d

‖∇ε,if −∇if‖L∞(Td
ε)

∫ t

0
‖uεs‖

2
H1(Td

ε)
ds+

∣

∣Γ εt (
1
2∇f)− Γt(

1
2∇f)

∣

∣ ,

taking expectation, Aldous-Lanoue identity (1.26), and Theorem 2. This concludes the
proof of the proposition. �

5.3. Tightness and continuity of limits. In view of the decomposition (5.1), tightness
and continuity of the limit points for (Yεt )t≥0 in D([0,∞);H−α(Td)) is equivalent to the
same property for the corresponding drift and martingale terms. Since we already estab-
lished convergence for the martingale when tested against smooth test functions (Propo-
sition 5.1), the tightness proof for this term may be simplified. For this purpose, let us
start by recalling from [Bil99] a useful characterization of tightness with continuous limit
points for general càdlàg processes.

Proposition 5.2 (Tightness & continuous limits). Let (Ξ, ‖ · ‖) be a Banach space. A
sequence of Ξ-valued càdlàg processes ((Y ε

t )t≥0)ε is tight in D([0,∞); Ξ) and such that all
limits are continuous if and only if the following three conditions hold true: for all T > 0
and γ > 0,

lim
ζ→∞

lim sup
ε→0

P

(

sup
t∈[0,T ]

‖Y ε
t ‖ > ζ

)

= 0 , (5.10)

lim
δ→0

lim sup
ε→0

P

(

sup
s,t∈[0,T ]
|t−s|<δ

‖Y ε
t − Y ε

s ‖ > γ

)

= 0 , (5.11)
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and

lim
ε→0

P

(

sup
t∈[0,T ]

‖Y ε
t − Y ε

t−‖ > γ

)

= 0 . (5.12)

Proof. Just combine Theorems 13.2 and 13.4 in [Bil99] with the inequalities in (12.7)–(12.9)
therein. �

Remark 5.1. Thanks to the definition of the norm ‖ · ‖H−α(Td) in (1.12), Proposition

5.2 simplifies if (Ξ, ‖ · ‖) = (H−α(Td), ‖ · ‖H−α(Td)), for some α > 0. Indeed, while the

first condition in Proposition 5.2, namely (5.10), remains unchanged, the second condition
(5.11) may be replaced by

lim
δ→0

lim sup
ε→0

P

(

sup
s,t∈[0,T ]
|t−s|<δ

|Y ε
t (φm)− Y ε

s (φm)| > γ

)

= 0 , m ∈ Z
d .

An analogous simplification holds for the third condition (5.12).

We now have all we need to prove the desired claim for the sequence ((Yεt )t≥0)ε.

Proposition 5.3. The sequence ((Yεt )t≥0)ε is tight in D([0,∞);H−α(Td)), for all α >
3 + d/2, and all limit points are continuous.

Proof. By (5.1), it suffices to verify the conditions in Proposition 5.2 for the drift and
martingale terms separately. Recall (3.1), and fix T > 0, γ > 0 all throughout the proof.

We start with the drift term, for which we adopt the following shorthand notation:

Aε
t (f) :=

∫ t

0
Yεs (

1
2∆εf) ds , t ≥ 0 , f ∈ C∞(Td) .

As for the first condition, namely (5.10), Cauchy-Schwarz inequality yields

lim sup
ε→0

E
[

sup
t∈[0,T ]

‖Aε
t‖

2
H−α(Td)

]

≤ T

∫ T

0

∑

m∈Zd

(1 + |m|2)−α lim sup
ε→0

E
[ ∣

∣Yεs (
1
2∆εφm)

∣

∣

2 ]
ds

≤ (2π)4 T 2 ‖u0‖
2
∞

∑

m∈Zd

(1 + |m|2)−(α−3) ,

where the second inequality used (5.3) in Lemma 5.1 and lim supε→0 ‖∆φm‖
2
Lip(Td

ε)
≤

(2π)4(1 + |m|2)3. Since α > 3 + d/2, the right-hand side above is finite. Therefore,
Markov inequality yields (5.10) for the drift. For the second condition (5.11), a similar
argument yields, for all m ∈ Z

d,

lim sup
ε→0

E
[

sup
s,t∈[0,T ]
|t−s|<δ

|Aε
t(φm)−Aε

s(φm)|
]

≤ δ T (2π)4(1 + |m|2)3 ‖u0‖
2
∞ ,

which vanishes as δ → 0. By Markov inequality and Remark 5.1, this suffices to prove
(5.11). The third condition (5.12) is trivially satisfied since the drift is continuous.

Turning to the martingale term (Mε
t )t≥0, we have

E
[

sup
t∈[0,T ]

‖Mε
t‖

2
H−α(Td)

]

≤
∑

m∈Zd

(1 + |m|2)−αE
[

sup
t∈[0,T ]

|Mε
t (φm)|

2 ]

≤
∑

m∈Zd

(1 + |m|2)−αE
[

|Mε
T (φm)|

2
]

≤ (2π)2 ‖u0‖
2
∞

∑

m∈Zd

(1 + |m|2)−(α−1) ,
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where the second step used Doob inequality, while the third one used (5.4) in Lemma
5.1. The right-hand side above is finite because α > 1 + d/2. This proves the first
condition (5.10). Now observe that Proposition 5.1, (5.9), and Lemma 5.2 ensure that, for
all m ∈ Z

d, the sequence ((Mε
t (φm))t≥0)ε satisfies all three conditions in Proposition 5.2

with (Ξ, ‖ · ‖) = (C, | · |). Remark 5.1 concludes the proof. �

5.4. Final step. We now have all we need to prove Theorem 1. Indeed, the decomposition
of (Yεt )t≥0 in (5.1), and Propositions 5.1 and 5.3 ensure that any limit process, say (Yt)t≥0,
have paths in C([0,∞);H−α(Td)), for all α > 3 + d/2, and solve the martingale problem
(1.16) in C([0,∞);H−α(Td)) with Y0 = 0. Moreover, the martingale (Mt)t≥0 in (1.16)
satisfies

(Mt(f))t≥0 = (Mf
t )t≥0 , f ∈ C∞(Td) ,

where (Mf
t )t≥0 is defined in Proposition 5.1, and the above identity is meant in distribution.

The proof of Theorem 1 ends as soon as we show that such a limit martingale problem has
a unique solution. For this purpose, we introduce S(Td) :=

⋂

α∈RH
α(Td) and S(Td)′ :=

⋃

α∈RH
α(Td). Since the embedding Hα(Td) →֒ Hβ(Td) is Hilbert-Schmidt for all α >

β+d/2, (S(Td), L2(Td),S(Td)′) defines a countably Hilbert nuclear triple. Hence, it suffices
to establish uniqueness of solutions in the larger space C([0,∞);S(Td)′). By the Gaussian
nature of the problem, the latter is precisely covered by Holley-Stroock theory [HS78] (see
also [KL99, §11.4] or [JM18, Section C.5]).

Appendix A. Proofs of Lemmas 2.2, 4.1 and 4.2

In this appendix, we prove all results contained in Lemmas 2.2, 4.1 and 4.2 concerned
with the quantity first introduced in (2.5), which we recall here for the reader’s convenience:
for all t ≥ 0, x, y ∈ T

d
ε and i, j = 1, . . . , d,

qε,i,jt (x, y) :=
ε−2

4

(

pεt(x− εej , y) + pεt (x+ εei, y)− pεt(x+ εei − εej , y)− pεt (x, y)
)2

. (A.1)

All throughout this section, we will exploit the invariance and product structure of the
random walk (Xε

t )t≥0 on T
d
ε: for all t ≥ 0 and x, y ∈ T

d
ε with x = (xi)i=1,...,d,

pεt (x, y) = pεt(y, x) = pεt(0, x− y) , pεt (0, x) =

d
∏

i=1

πεt (x
i) , (A.2)

where πεt denotes the distribution of the continuous-time random walk on Tε (i.e., one-
dimensional), started from the origin and with nearest-neighbor jump rates equal to 1

2ε
−2.

As already mentioned at the beginning of Section 4.1, Lemma 4.1 essentially generalizes
Lemma 2.2. For this reason, we find more convenient to prove these two lemmas together.

Proofs of Lemmas 2.2 and 4.1. We start by expressing qε in (A.1) in terms of πε, intro-
duced in (A.2): for all t ≥ 0, x = (xi)i=1,...,d ∈ T

d
ε, and i, j = 1, . . . , d with i 6= j,

qε,i,jt (0, x) =

(

d
∏

ℓ=1
ℓ 6=i,j

πεt (x
ℓ)

)2
ε−2

4

(

πεt (x
i + ε)− πεt (x

i)
)2 (

πεt (x
j − ε)− πεt (x

j)
)2

=

(

d
∏

ℓ=1
ℓ 6=i,j

πεt (x
ℓ)

)2

ε2
(

1
2∇

επεt (x
i)
)2 (1

2∇
ε
∗π

ε
t (x

j)
)2

,
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while, for i = j = 1, . . . , d,

qε,i,it (0, x) =

(

d
∏

ℓ=1
ℓ 6=i

πεt (x
ℓ)

)2
ε−2

4

(

πεt (x
i + ε) + πεt (x

i − ε)− 2πεt (x
i)
)2

=

(

d
∏

ℓ=1
ℓ 6=i

πεt (x
ℓ)

)2

ε2
(

1
2∆επ

ε
t (x

i)
)2

,

where all ε-gradients and corresponding laplacians here are one-dimensional. Define, for
all t ≥ 0,

Rε(t) := ε−1 ‖πεt ‖
2
L2(Tε)

= πε2t(0) ,

Sε(t) := 2
∥

∥

1
2∇

επεt
∥

∥

2

L2(Tε)
= 2

∥

∥

1
2∇

ε
∗π

ε
t

∥

∥

2

L2(Tε)
,

Tε(t) := ε
∥

∥

1
2∆επ

ε
t

∥

∥

2

L2(Tε)
.

(A.3)

Since ∆ε = ∇ε∇ε
∗ = ∇ε

∗∇
ε and d

dtπ
ε
t =

1
2∆επ

ε
t , we have

Sε(t) = −
ε

2
R′
ε(t) , Tε(t) = −

ε

2
S ′
ε(t) . (A.4)

Now, summing over x ∈ T
d
ε, we obtain

Qi,j
ε (t) :=

∑

x∈Td
ε

qε,i,jt (0, x) =

{

Rε(t)
d−2 Sε(t)

2 if i 6= j (d ≥ 2)

Rε(t)
d−1 Tε(t) if i = j (d ≥ 1) .

(A.5)

The form of the right-hand side above proves the first claim in Lemma 4.1.
Further summing over j = 1, . . . , d, we get

Qε(t) :=

d
∑

j=1

Qi,j
ε (t) = Rε(t)

d−1 Tε(t) + (d− 1)Rε(t)
d−2 Sε(t)

2

= −
ε

2

(

Rε(t)
d−1Sε(t)

)′
,

(A.6)

where the second step follows from (A.4). Hence, since Rε(0) = 1, Sε(0) = ε−1, and
Sε(t) → 0 as t→ ∞, we get

∫ ∞

0
Qε(t) dt = −

ε

2

∫ ∞

0

(

Rε(t)
d−1Sε(t)

)′
dt =

ε

2

(

Rε(0)
d−1Sε(0)

)

=
1

2
. (A.7)

This is precisely the main claim in Lemma 2.2 (see also its reformulation in Remark 4.1).
This settles the analysis when d = 1.

In order to prove the final claim in Lemma 4.1 on

bε =

∫ ∞

0
Rε(t)

d−1 Tε(t) dt , cε =

∫ ∞

0
Rε(t)

d−2 Sε(t)
2 dt , (A.8)

and the existence of their limits (see (4.5)–(4.6)), fix d ≥ 2 and first observe that, since
Rε(t), Sε(t) and Qε(t) are all strictly positive for all t ≥ 0, (A.5) and (A.7) ensure that
bε, cε ∈ (0, 12). Furthermore, by the first identity in (4.8), it suffices to show that either bε
or cε converges to a value in (0, 12). Let us focus on cε.

Recall (A.3). From Laplace inversion formulas (see, e.g., [Cox89, Eq. (2.3)]), we know

Rε(t) = ε

ε−1−1
∑

j=0

exp
{

−2ψ(εj) ε−2 t
}

, with z ∈ T 7→ ψ(z) := 1− cos(2πz) .
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This and the first identity in (A.4) yield

cε =

∫ ∞

0
εd−2

ε−1−1
∑

j1,...,jd=0

ψ(εj1)ψ(εj2) exp
{

−2 (ψ(εj1) + . . . + ψ(εjd)) ε
−2 t
}

dt

=
εd

2

ε−1−1
∑

j1,...,jd

ψ(εj1)ψ(εj2)

ψ(εj1) + . . .+ ψ(εjd)
,

which converges, as ε→ 0, to

c :=
1

2

∫

Td

ψ(x1)ψ(x2)

ψ(x1) + . . .+ ψ(xd)
dx , with x = (xi)i=1,...,d ∈ T

d . (A.9)

Since the above integral is strictly positive, this completes the proof of Lemma 4.1. �

Remark A.1 (Properties of b and c). The above proof also reveals the behaviors of the
coefficients b and c as functions of the dimension d ≥ 1.

(1) Monotonicity. Since Rε(t) ∈ (0, 1) and Sε(t),Tε(t) > 0 for all t > 0, (A.5) and
(A.8) state that both bε and cε — and, thus, their limits b and c, too — are strictly
decreasing with d ≥ 1.

(2) Bounds. By (4.8) and b ≥ 0, we have the upper bound c ≤ 1
2(d−1) . Since ψ(z) ∈

[0, 2] and
∫

T
ψ(z) dz = 1, the integral in (A.9) yields the lower bound c ≥ 1

4d .
(3) 2D. When d = 2, the value of the integral in (A.9) is explicit:

c =
1

2

∫

T

∫

T

ψ(x1)ψ(x2)

ψ(x1) + ψ(x2)
dx1dx2 =

1

2
−

1

π
, b =

1

π
,

where for the second identity we used (4.8).

Remark A.2 (Formula for a). By combining (4.21) and (A.9), we get, for all d ≥ 2,

a = a(d) =
1− (d− 2)

∫

Td
ψ(x1)ψ(x2)

ψ(x1)+...+ψ(xd)
dx

1 + d
∫

Td
ψ(x1)ψ(x2)

ψ(x1)+...+ψ(xd)
dx

, with x = (xi)i=1,...,d ∈ T
d .

We conclude the appendix with the short proof of Lemma 4.2.

Proof of Lemma 4.2. By (A.6) and arguing as for (A.7), we have

∫ ∞

T
Qε(t) dt =

ε

2

(

Rε(T )
d−1 Sε(T )

)

≤
ε

2
Sε(T ) , T > 0 ,

where for the inequality we used Rε ≤ 1. The desired estimate in (4.9) is a consequence of
the fact that Sε(T ) is, up to normalization, the Dirichlet form of the diffusively-rescaled
continuous-time random walk on T

n
ε with n = 1, which is well-known to have the power

law behavior T−(n+1/2) = T−3/2 for T ∈ (ε2, 1). For a simple proof of this fact, see, e.g.,
[BB21, Eq. (5.9)]. �
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