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Abstract

The multiple testing problem appears when fitting multivariate
generalized linear models for high dimensional data. We show that
the sign-flip test can be combined with permutation-based procedures
for assessing the multiple testing problem

1 Introduction

In high-dimensional data, such as neuroimaging and transcriptomics, it is
common to fit many generalized linear regression models in parallel, each with
a small sample size [Schaarschmidt et al., 2022, Love et al., 2014, Winkler
et al., 2014]. Usually, the goal of the analysis is to perform hypothesis testing
to find relevant associations, usually after adjusting the p-values for multiple
testing.
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This approach comes with several challenges. In the first place, small sam-
ple sizes can make classical tests unreliable, especially in nonlinear models
where exact methods are not available and tests rely on asymptotic argu-
ments. In such cases, the usual normal approximation of the test statistic
can be quite unreliable [Schaarschmidt et al., 2022]. Secondly, the gener-
alized linear model makes some crucial assumptions which are difficult to
check, especially for nonlinear models with small sample size. In particular,
the detection of overdispersion over the assumed models can be quite prob-
lematic, especially since the variance is not constant among the observations
even without overdispersion. Proper model checking is further hampered
by the sheer number of models that need to be checked in high-dimensional
data. Finally, the test statistics of the parallel models are often correlated,
due to correlations in the underlying biological measurements. Classical mul-
tiple testing corrections (such as Bonferroni-Holm) are designed in order to
protect against any correlation structure, but can be very conservative in
the presence of such correlations [Goeman and Solari, 2014, Gao et al., 2010,
Saffari et al., 2018], while taking correlations into account could increase the
power of the test procedure.

In order to address all these issues we propose a permutation-based mul-
tiple testing procedure in combination with the sign-flip score test [Hemerik
et al., 2020, De Santis et al., 2022]. The test shows reliable behavior for
small sample sizes, and has been shown to be robust against general variance
misspecification under minimal assumptions. We start by defining a test for
a global null hypothesis about a multivariate regression parameter, which
guarantees weak control of the familywise error rate (FWER). The global
test statistics can be used to make additional inference through the Closed
Testing approach [Marcus et al., 1976]. Consequently we compute adjusted
p-values for each individual hypothesis through a multiple testing procedure
based on the max-T method of Westfall and Young [1993], which guarantees
strong control of the FWER, that is, it produces valid adjusted p-values for
all possible subsetting hypotheses.

The key point of using a permutation-based solution is that the proposed
method adapts to the unknown correlation structure. It is especially useful
when strong correlation between the individual test statistics is present; in
that situation it guarantees a relevant gain in power over alternative methods,
as we will show in a simulation. Further, the sign-flip test can be applied to
estimate a lower bound for the true discovery proportion (TDP), that is, the
proportion of non-null coefficients over a pre-specified group of hypotheses,
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using a permutation-based framework [Goeman and Solari, 2011, Andreella
et al., 2023, Vesely et al., 2023, Blain et al., 2022].

The paper is organized as follows: Section 2 revisits the sign-flip score test
for univariate testing; Section 3 contains the novel contribution of the paper,
that is, the multivariate testing extension. Section 4 contains a simulation
study.

Code to implement our methods is available in the flipscores R package [R
Core Team, 2023], available from CRAN and in the pyperm python package
[Davenport, 2023]. Code to reproduce the results of this paper is available
at github.com/rds/multiflip.

2 One dependent variable

In this Section we review the derivation of the univariate sign-flip score test
as detailed in Hemerik et al. [2020] and De Santis et al. [2022].

Let Yi be the target variable which belongs to the exponential dispersion
family, i.e., with a density of the form [Agresti, 2015]

fβ,γ,Xi
(yi) = exp

{
yiθi − b(θi)

a(ϕi)
+ c(yi, ϕi)

}
,

where θi and ϕi are respectively the canonical and the dispersion parameter
while a(·), b(·) and c(·) are known functions. Consequently, the mean and
variance of the observed outcome are defined as

µi = E(Yi) = b′(θi); V ar(Yi) = b′′(θi)a(ϕi).

The expected value of the vector Y = (Y1, . . . , Yn)
T is assumed to depend

on some covariates through the relation

E(Y ) = g−1(Xβ + Zγ)

where g(·) is the link function, the covariate X is an n × 1 matrix, i.e., a
column vector, such that β ∈ R. Further, the nuisance covariates Z are a
n× (k − 1) matrix.

Throughout the section we are interested in the null hypothesis H0 :
β = β0 against a one or two-sided alternatives. Consequently, the other
parameters γ (and ϕi) are considered as nuisance parameters.
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Let

D = diag

{
∂µi

∂ηi

}
; V = diag{Var(yi)}.

The diagonal matrix of the GLM weights is defined as W = DV −1D with
entries wi = (∂µi/∂ηi)

2/var(Yi) [Agresti, 2015]. Finally,

H = W 1/2Z(Z ′WZ)−1Z ′W 1/2

represents the projection matrix for GLMs.
The test is based on the effective score. The interpretation of the effective

score is that if the true nuisance parameter is plugged in, the effective score
is the residual from the projection of the marginal score for β on the space
spanned by the nuisance scores [Marohn, 2002]. If the estimated nuisance
parameter γ̂ is plugged in, the effective score is

n1/2S∗
γ̂ = X ′W 1/2(I −H)V −1/2(Y − µ̂) =

n∑
i=1

ν∗γ̂,i.

Note that indeed the effective score can be written as a sum of n elements
ν∗γ̂,i, which we call the score contributions.

Regarding the estimator γ̂, we make the same assumptions of De Santis
et al. [2022], in particular that γ̂ is a

√
n-consistent estimate of the true

parameter γ0.
The test is performed by means of random sign flipping of score con-

tributions. Define g1 = (1, . . . , 1) ∈ Rn and for every 2 ≤ j ≤ w let
gj = (gj1, . . . , gjn) be independent and uniformly distributed on {−1, 1}n.
For 1 ≤ j ≤ w, let the superscript j denote that gj has been applied. The
transformed test statistics are defined as

S∗j
γ̂ = n−1/2

n∑
i=1

gjiν
∗
γ̂,i.

The derivation of the flipped effective score statistic in this matrix no-
tation is straightforward. Note that the effective score is the product of an
1 × n and an n × 1 vector. This means that we can write it multiplying
the n× 1 matrix by the n× n sign-flipping matrix Gj, with diagonal entries
gj1, . . . , gjn. The transformed test statistic is therefore

S∗,j
γ̂ = n−1/2X ′W 1/2(I −H)V −1/2Gj(Y − µ̂).
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The test based on sign-flipping effective scores is asymptotically exact,
as the following theorem states. This result coincides with Theorem 2 in
Hemerik et al. [2020].

Theorem 1 (Hemerik et al., 2020). For every 1 ≤ j ≤ w, consider the
statistic T n

j = S∗j
γ̂ and let T n

(1) ≤ ... ≤ T n
(w) be the sorted statistics. Consider

the test that rejects if T n
1 > T n

⌈(1−α)w⌉. As n → ∞, under H0 the rejection

probability converges to ⌊αw⌋/w ≤ α.

We will now recall the definition of the test proposed in De Santis et al.
[2022], which is a recent upgrade of the test above. This recent adaptation
often improves the small-sample performance of the test by standardization
of the effective score. We call the resulting test statistic the standardized
score statistic, defined as

SS
γ̂ = S∗

γ̂/V ar{S∗
γ̂}1/2, (1)

where
V ar{S∗

γ̂} = n−1XTW 1/2(I −H)W 1/2X.

The transformed test statistic, for a generic flip Gj, is defined as

SS,j
γ̂ = S∗,j

γ̂ /V ar{S∗,j
γ̂ }1/2, (2)

where

V ar{S∗,j
γ̂ } = n−1XTW 1/2(I −H)Gj(I −H)Gj(I −H)W 1/2X.

The test based on sign-flipping standardized scores is asymptotically ex-
act, as the following Theorem states (for a discussion about the faster con-
vergence, with respect to the effective scores, see De Santis et al. [2022]).
This result coincides with Proposition 1 in De Santis et al. [2022].

Theorem 2 (De Santis et al., 2022). For every 1 ≤ j ≤ w, consider the
statistic T n

j = SS,j
γ̂ and let T n

(1) ≤ ... ≤ T n
(w) be the sorted statistics. Consider

the test that rejects if T n
1 > T n

⌈(1−α)w⌉. As n → ∞, under H0 the rejection

probability converges to ⌊αw⌋/w ≤ α.

Some robustness properties of this test are discussed in Hemerik et al.
[2020] and in De Santis et al. [2022]. In particular, the proposed test is proven
to be asymptotically exact in case of general variance misspecification under
minimal assumptions.
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3 Multiple responses

Suppose there are m ≥ 2 dependent variables Y 1, . . . , Y m. For each re-
sponse Y l we have n independent observations Y l

1 , . . . , Y
l
n, which follow some

model in the exponential dispersion family. We consider m null hypotheses
H1, . . . , Hm, where Hl is the hypothesis that β

l = βl
0. Like before, we assume

γ̂ l is a
√
n-consistent estimate of γ l

0.
This section introduces the multiple testing procedure. It involves com-

puting the effective score for each of the dependent variable Y 1, . . . , Y m. The
effective score for the l-th response is then

S∗,l
γ̂ = n−1/2X ′(W l)1/2(I −H l)(V l)−1/2(Y l − µ̂l) = n−1/2

n∑
i=1

ν∗lγ̂,i.

Analogously to Section 2, we define the sign-flipped effective score test statis-
tic for a generic flip matrix Gj as

S∗,j,l
γ̂ = n−1/2X ′(W l)1/2(I −H l)(V l)−1/2Gj(Y

l − µ̂l) = n−1/2

n∑
i=1

gjiν
∗l
γ̂,i.

Further, we have

V ar
{
S∗,j,l
γ̂

}
= X ′(W l)1/2(I −H l)Gj(I −H l)Gj(I −H l)(W l)1/2X.

while the standardized score is

SS,j,l
γ̂ = S∗,j,l

γ̂ V ar
{
S∗,j,l
γ̂

}−1/2

.

We can build a multivariate test statistic which takes into account the stan-
dardization of the joint variance-covariance matrix as follows. Let

H0 =
⋂
l∈L

HL : βl = βl
0 (3)

where L is a set containing any combination of the m hypotheses. Note
that H0 can be either a global or a partial null hypothesis for a subset of
parameters. For simplicity, we will derive the procedure for the global null
hypothesis, but it is exactly analogous for partial null hypotheses of any kind.

A first idea to perform the test might be given by a full standardization.
We can indeed build a global test statistic based on the form of a Mahalanobis
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distance as follows. Let S∗,j,L
γ̂ be the vector with element S∗,j,l

γ̂ , 1 ≤ l ≤ m.

Note that by definition it is an m-dimensional vector. Call V ar{S∗,j,L
γ̂ } the

corresponding variance-covariance matrix, which has dimension m ×m and
is assumed (for the moment) known. Let the joint test statistic be

T n
j,L =

(
S∗,j,L
γ̂

)′
V ar

{
S∗,j,L
γ̂

}−1 (
S∗,j,L
γ̂

)
(4)

If we assume the normality of the response we have the following theorem;

Theorem 3. Assume to fit a normal linear regression model. Let T n
j,L, 1 ≤

j ≤ w as defined in (4). Let T n
(1) ≤ ... ≤ T n

(w) be the sorted statistics. Consider
the test that rejects if T n

1 > T n
⌈(1−α)w⌉. Under H0, the test is an exact α level

test.

Proof. Trivially, note that S∗,j,L
γ̂ is normally distributed with zero mean and

that the test statistic is a quadratic form. The expected value of each test
statistic is equal tom for every flip, while the variance is equal to 2m for every
flip. This follows from standard properties of random vectors. It implies that
all the test statistics share the first two moments. Thus we can directly apply
Theorem 1 of Hemerik and Goeman [2018] to show that the test derived is
an α-level test for finite sample size.

The procedure outlined has some issues. First of all, the test is exact
only for normal responses with known variance. Otherwise, we have to follow
asymptotic arguments related to the asymptotic normal distribution of the
effective score statistic [Marohn, 2002]. Another weak point is the fact that
for each flip it is required to invert an m × m matrix for each flip, which
might be unfeasible for large values of m. Further, we have to estimate the
correlation between responses, which must be assumed to be known except for
a limited number of parameters; for instance, we might choose to assume the
correlation of the responses to be equal between different units. Moreover, in
order to perform an overall analysis with post-hoc validity, we might choose
a closed testing approach [Marcus et al., 1976], which requires to perform all
the 2m possible tests, which can be very demanding for growing m.

A fast alternative, which is more appealing for large values of m, consists
of doing marginal standardization of the test statistic. We will start from the
effective scores, showing that we are able to derive a valid procedure for both
the flipscores approaches. Finally, we will see that we still have a remarkable
result for the normal linear model.

7



Let Mn be the w-by-m matrix with (j, l)-th entry equal to S∗j,l
γ̂ . The

following lemma will be fundamental in proving that the proposed multiple
testing methods are asymptotically exact.

Lemma 4. Let Mn as defined above. Then, for n → ∞, Mn converges in
distribution to M , where all rows of M have the same multivariate normal
distribution.

Proof. Let Mn
0 be the w-by-m matrix with (j, l)-th entry equal to S∗,j,l

γ0
.

Note that Mn
0 is based on knowledge of the true nuisance parameters γ0.

The consequence is that each entry of the matrix Mn
0 is the sum of n inde-

pendent (flipped) score contributions. Further, note that each row of Mn
0 is

uncorrelated with the other rows, due to the independence of the flips. Fi-
nally, the correlation structure within each row coincides with the correlation
structure of the contributions ν∗1γ0

, . . . , ν∗mγ0
. Consequently, the multivariate

central limit theorem [Van der Vaart, 1998] implies thatMn
0 converges in dis-

tribution to some matrix M0, which has identically distributed multivariate
normal rows.

Now it is left to show thatM , i.e., the matrix based on estimated nuisance
parameters, also has identically distributed multivariate normal rows. As
shown in the proof of Theorem 2 in Hemerik et al. [2020], we have S∗,j,l

γ̂ =

S∗,j,l
γ0

+ op(1), 1 ≤ j ≤ w, 1 ≤ l ≤ m. This means that M is asymptotically
equivalent to M0. Hence the result holds.

If instead of effective scores we used standardized effective scores to fill
the matrix Mn, then Lemma 4 will still hold, since the standardized effective
scores are asymptotically equivalent to the unstandardized effective scores.
This is detailed in De Santis et al. [2022].

A special case of interest relates to homoscedastic linear regression mod-
els. The matrix of weights becomes an identity matrix, which causes some
simplifications in the formulas; in particular

S∗,j,l
γ̂ = X ′(I −H)Gj(Y

l − µ̂l)

and
V ar

{
S∗,j,l
γ̂

}
= X ′(I −H)Gj(I −H)Gj(I −H)X.

while the standardized score is still

SS,j,l
γ̂ = S∗,j,l

γ̂ V ar
{
S∗,j,l
γ̂

}−1/2

.

8



For the linear regression model, using the standardized scores, we are able to
get finite sample results, as stated in the following Lemma. This reflects that
we still get the second-moment null-invariance property for linear regression
models with normal response, while it is not true in general.

Lemma 5. Assume a multivariate linear regression model with normal re-
sponse, where the covariance between responses is equal among different units,
that is,

E[(Y l − µl)(Y p − µp)′] = σplIn

where In is the n-dimensional identity matrix. Let MS,n be the w-by-m
matrix with (j, l)-entry equal to SS,j,l

γ̂ . Then MS,n has independent rows with
the same multivariate normal distribution.

Proof. The rows of the matrix MS,n are uncorrelated, due to the indepen-
dence of the flips. Within the row the correlation structure is

Cov
{
SS,j,l
γ̂ , SS,j,p

γ̂

}
= V ar

{
S∗,j,l
γ̂

}−1/2

E

[
S∗j,l
γ̂

(
S∗,j,p
γ̂

)′
]
V ar

{
S∗,j,p
γ̂

}−1/2

Using the result
E[(Y l − µl)(Y p − µp)′] = σplIn

we get, after simple computations,

Cov
{
SS,j,l
γ̂ , SS,j,p

γ̂

}
= σpl/(σpσl),

which is independent of the flip, where σl is the variance of the l-th response.
It follows that the matrix MS,n has independent and identically distributed
multivariate normal rows for finite sample size.

From Lemma 4 (or 5) we can build an asymptotically exact local α-level
test for any composite hypothesis as follows. Here we derive the results for
a two-sided alternative. Let H0 as defined in (3). Define ψ : Rk → R as a
function non decreasing in its argument. We can derive a global flipped test
statistic as

T n
j = ψ

(
|SS,j,1

γ̂ |, . . . , |SS,j,L
γ̂ |

)
. (5)

The following theorem shows that from this test statistic we can get an
asymptotic α-level test.
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Theorem 6. For every 1 ≤ j ≤ w, consider the statistic T n
j as defined in (5)

and let T n
(1) ≤ ... ≤ T n

(w) be the sorted statistics. Consider the test that rejects
if T n

1 > T n
⌈(1−α)w⌉. As n → ∞, under H0 the rejection probability converges

to ⌊αw⌋/w ≤ α.

Proof. Lemma 4 implies that the test statistics T n
1 , . . . , T

n
w are asymptotically

independent and identically distributed. Note that, by the definition of ψ,
high values of T1 shows evidence against the null hypothesis H. Hence,
Lemma 1 of Hemerik et al. [2020] directly applies and we derive that we get
an asymptotically α-level test.

Theorem 6 implies that we can build an asymptotic valid local test for
the hypothesis (3), which therefore guarantees weak control of the FWER.
Note that for the linear model we can obtain finite sample results, because
we can directly apply Lemma 5 and it follows that the test has finite sample
size properties.

Theorem 7. Assume to fit a multivariate linear regression model with nor-
mal response. For every 1 ≤ j ≤ w, consider the statistic T n

j as defined in
(5) and let T n

(1) ≤ ... ≤ T n
(w) be the sorted statistics. Consider the test that

rejects if T n
1 > T n

⌈(1−α)w⌉. Under H0 the rejection probability is ≤ α.

Proof. Lemma 5 implies that the test statistics T n
1 , . . . , T

n
w are independent

and identically distributed. Note that, by the definition of ψ, high values
of T1 shows evidence against the null hypothesis H. Hence, Theorem 1 of
Hemerik and Goeman [2018] directly applies and the test derived is an α-level
test for finite sample size.

Multiple choices of the function ψ are available [Pesarin, 2001] and the
choice will influence the power properties in different settings. We can sub-
sequently apply the closed testing approach [Marcus et al., 1976] to build a
procedure which guarantees strong control of the FWER by computing the
2n intersection tests, and this procedure is optimal in the sense that every
multiple testing procedure is equal or can be improved by applying the closed
testing principle [Goeman et al., 2021] .

However, the number of tests might be unfeasible for large values of m. A
dramatic shortcut is given by selecting the maximum of the test statistics as
combining function in the following way. This is called the max-T approach.
For sake of completeness, we will give a direct proof of its validity.
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There are roughly two versions of the max-T method by Westfall and
Young [Westfall and Young, 1993, Westfall and Troendle, 2008, Meinshausen
et al., 2011]: the single-step method and the sequential method. The single-
step method is simpler and faster, while the sequential method is more pow-
erful. The single-step max-T method, based on the matrix Mn of test statis-
tics, is defined as follows. Here we formulate a version that employs two-sided
tests. For every 1 ≤ j ≤ w, let mj be the maximum of the test statistics
|Mn

j,l|, 1 ≤ l ≤ m. Let m(1), . . . ,m(w) be the sorted values m1, . . . ,mw. Then
the multiple testing method rejects all hypotheses with index l for which
|Mn|1,l > m(⌈(1−α)w⌉). The sequential max-T method is defined as follows;
after the first step defined above is completed, the procedure is continued in
a step-down way. We remove from the matrix Mn all rows corresponding
to the hypotheses rejected in the first step, then we apply again the same
procedure described above. The procedure can be continued until we have no
more rejections. Note that the test with standardized test statistic is defined
in the same way.

The following theorem states that the single-step and sequential max-
T methods provide strong asymptotic FWER control. Write FWERn to
indicate potential dependence of the FWER on n.

Theorem 8. For both the single-step and sequential max-T method,
lim supn→∞(FWERn) ≤ α.

Proof. For both the single-step and the sequential max-T method, the ar-
gument is as follows. Recall that Mn converges in distribution to M . Let
MN be the submatrix of M that only contains the rows corresponding to
the true hypotheses. If the matrix M is used as input for the multiple test-
ing procedure, then strong FWER control follows directly from the fact that
the rows of MN are exchangeable, i.e. swapping rows does not change the
distribution of the matrix.

If instead Mn is used as input, then FWER control follows from the
continuous mapping theorem, since Mn converges to M in distribution.
This finishes the proof.

Finally, note that for the procedure that uses standardized scores for
linear regression model the control of the familywise error rate is obtained
for finite sample size, as the matrix MS,n has an exact multivariate normal
distribution.
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4 Simulation Study

4.1 Univariate

We first show a simulation study for univariate tests in Figure 1. We test
H0 : β = 0 setting the regression parameters (β, γ) = (0, 1). The correla-
tion between covariates is equal to 0.5 while a total of 100 000 simulations
have been run. We compare the Flipscores approach with the three stan-
dard parametric competitors, namely the Wald, Score and Likelihood Ratio
(LRT) tests. The Flipscores test is based on 2 000 random flips (we refer to
Hemerik and Goeman [2018] for a discussion about the use of a limited num-
ber of random flips). The x axis represents the number of hypotheses tested,
while the y axis represents the ratio between the Empirical type I error and
the nominal level α. A Bonferroni correction is applied to the number of
hypotheses tested.

We can observe that the Flipscores is always inside the 95% simulation
confidence bands. The Score test is slightly conservative while the two other
parametric methods are less satisfactory for opposite reasons. More simula-
tions can be find in the appendix for different sample size, value of nuisance
coefficient and correlation.

4.2 Multivariate

Figures 2 and 3 represent a multivariate simulation. We set a total of 1 000
dependent variables. For 20% they have β = 1 and remaining 80 % have
β = 0. We set γ = −1, and the correlation between covariates equal to 0.5.
Again, 2 000 random flips are used.

For controlling the FWER the proposed method is used for the Flipscores
approach, while the other parametric competitors are corrected with the
Bonferroni-Holm procedure.

The x axis of both figures represents the average observed correlation
between the dependent variables. Figure 2 represents the empirical FWER
of the true null hypothesis. The flipscores is closed to the nominal level,
the LRT is anticonservative for low correlation, while the other two methods
are highly conservative. Figure 3 represents the empirical power for the
true alternatives. The flipscores has greater power, especially for higher
correlation, while the other methods do not take advantage of the correlation
structure. We observe similar results for different settings in the appendix.
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Indeed, the proposed method seems to be more satisfactory especially when
high correlation is present.

5 Conclusion

This paper builds on recent state-of-the-art developments in high-
dimensional inference and semi-parametric statistics. We provide the first
permutation-type approach for powerful, robust multiple testing in GLMs
with many responses. This represents an important step in the development
of permutation methods for complex data.

In future work, we aim to zoom in on applications of our approach to
neuroimaging data and RNA-Seq data. Since GLMs are so widely applicable,
we expect there will be many more applications where our approach proves
to be useful.
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Figure 4: Logit model, univariate
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Figure 5: Logit model, univariate
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Figure 6: Logit model, multivariate
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