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Abstract 

One of the major challenges towards understanding and further utilizing the properties and functional 

behaviors of grain boundaries (GB) is the complexity of general GBs with mixed tilt and twist character. Here, 

we demonstrated that the structures and stress fields of mostly mixed GBs could be considered as the 

superposition of their tilt and twist GB components by computationally examining 26.8 million large-scale 

structures of 4964 unique silicon mixed GB characters. The results indicate that low angle mixed GB is formed 

by the dislocation interactions between its decomposed tilt and twist components, while various complex sub-

structures with dislocation stress but without conventional dislocation core structures are discovered on twin 

and structural unit GBs. A universal Read-Shockley model that physically captures the energy trends of the 

mixed GB is proposed, and its superiority, universality and transferability are proven in a variety of GB 

structures across different lattices. The validity of this work is confirmed in the comparison with experimental 

observations and first-principles calculations. Earlier works should now be reassessed in the light of these 

findings. 
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1. Introduction 

What we know about grain boundaries (GBs) is that they are interfaces separating individual crystals 

with unique impacts on the structural and functional performances of crystalline materials, such as strength, 

plasticity, toughness, corrosion resistance and electronic activity [1–6]. Remarkable increments in these 

performances were made by controlling the population of desired GB types, which was an emerging field 

called grain boundary engineering (GBE) [7, 8]. Demands of GBE for silicon materials have been raised due 

to the rapid growth of the semiconductor and photovoltaic industries [9, 10]. Unfortunately, most of our 

knowledge about GBs was focused on FCC metals with low stacking fault energies [11–15]. To enable the 

GBE for silicon materials, the structure-property relationships of various silicon GBs are desired. In other 

words, we need to understand the basic GB structures and energetic properties that determine various GB 

behaviors (e.g., migration, diffusion, solute segregation and defect sink) [16–26]. 

Structures and properties of a given GB are jointly defined by the macroscopic and microscopic degrees 

of freedom (DOFs). The macroscopic DOFs are known as the five GB characters, three of them define the 
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misorientation axis between two crystals and the other two describe the boundary plane normal. For each 

unique macroscopic structural descriptor, numerous microscopic DOFs on the GB atomic arrangements have 

formed a multiplicity of meta-stable structures called GB phases, and their properties play a critical role in the 

material designs [27–29]. For accurately tracing GB structures at the atomic scale, simulations are usually 

considered more insightful than experimental methods [30] because some complex GB structures are very 

difficult for experimental access [31, 32]. Recent trends in this field are relying on the highly transferable 

artificial neural network interatomic potentials trained by first-principles datasets, which combine the 

advantages of both electronic structure methods (e.g., first-principles and tight-binding) and semi-empirical 

interatomic potentials and greatly balance their disadvantages [33–35]. Meanwhile, integrations between GB 

simulations and the growing machine-learning enable the characterization of almost all GB structures and 

their properties, which is known as the machine-learning representation of GB structure-property relationships 

[36–41]. 

Historically in the studies about GBs in silicon and other materials, the misorientation axis was often 

simplified down to the misorientation angle, which was based on simple geometry like symmetric tilt or twist 

[42–45]. Thus, one can define the simplest one-DOF GB on a specific boundary plane normal. The knowledge 

about the one-DOF GBs and their properties is extensive, including the Read-Shockley relationship [46] that 

predicts the GB structures and energies as a function of misorientation angle, the Frank-Bilby equation (FBE) 

[47, 48] predicting dislocation structures of low angle grain boundaries (LAGBs) [49–51], the 

structural/polyhedral unit models [52–54] characterizing high angle grain boundary (HAGB) structures, the 

role of disconnection in shaping GB structures [55, 56], the particularity (e.g., high occurrence of frequency, 

representativeness of entire GB population) of low Σ (reciprocal density) Coincidence Site Lattice (CSL) GBs 

[12, 57], and the universality of GB structures among different FCC metals [58]. Beyond these findings, the 

topological analysis of the symmetry of 5D GB space yields a unique strategy named Fundamental Zone, 

which reveals the role of the boundary plane normal and the misorientation axis [59–62]. The latest 

computational approach [63] is capable of examining nearly the entire 5D GB space due to the rapid 

development of computer resources.  

Although these reviewed studies almost constructed today's understandings of GB, they still lack 

comprehensive coverage of the possible GB characters because an arbitrary GB is not limited to the widely 

studied one-DOF symmetric tilt or twist types. Once geometrically available, the co-existence of symmetric 

tilt and twist DOFs, known as the mixed tilt-twist GB character, appears. Earlier works [64–66] have suggested 

an analytical method for studying this GB type through its decomposition into tilt and twist components with 

the nearest crystallographic distances, and addressing the correlations within. For example, low angle 

symmetric tilt grain boundaries (LASTGBs) are often considered as dislocation arrays that fall in the 

prediction of FBE [67, 68], and low angle twist grain boundaries (LATwGBs) are reported as dislocation 

networks with quadrate, hexagonal or more complex topology [69–73]. Going further, it has been 

experimentally and numerically shown that the low angle mixed grain boundaries (LAMGBs) contain 

dislocation characteristics of its two components [66, 74–77]. Meanwhile, further knowledge about the mixed 

GB character and its structure-property relationships is quite limited [78], and therefore raised some intriguing 
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questions: 1) What is their common structural feature? 2) How does the property (e.g., energy and mobility) 

vary with the two DOFs? 3) Most importantly, can we transfer the knowledge about the one-DOF GBs to 

them? 

In this atomistic study, we compute silicon mixed GB structures near the common <100>, <110> and 

<111> misorientation axes with classical molecular mechanics. The unique protocol of this study is that the 

mixed GBs are studied by decomposing into the tilt and twist components, which allows us to understand the 

correlations among tilt, twist and mixed tilt-twist GB geometry. Contrary to previous works that typically 

address GBs with only one DOF, we analyzed the mixed GBs within a 2D space and established a universal 

model on the basis of the classical Read-Shockley framework to characterize most of the mixed GB energies.  

2. Methodology 

 

Figure 1. Geometry settings of the mixed tilt-twist GB character. A given mixed GB is generated in the ij plane with 

misorientation axis i and boundary plane normal k, and the rotation matrices of the upper crystal 1 and the lower crystal 2 are 

defined as R1 = [i1 j1 k1] and R2 = [i2 j2 k2]. The mixed GB decomposes into a symmetric tilt grain boundary (STGB) with tilt 

angle θ and a twist grain boundary (TwGB) with twist angle ϕ at ik and ij planes, respectively. The co-existing tilt and twist 

angles create a 2D mixed character space with symmetry drawn in Figure 1. The domain of the mixed character space is [-

180°, 180°] × [-180°, 180°]. The domain center (0°, 0°) and all four domain boundaries are perfect crystals or asymmetric tilt 

grain boundaries (ATGB, depending on the selection of i). LAMGB are found around the domain center (black dashed circle) 

and other positions where the perfect crystals appear (depending on the selection of i and k). STGBs and TwGBs are located 

in the 1D subsets [-180°, 180°] × [0°] and [0°] × [-180°, 180°], respectively. The symmetry of the axes i and k determines the 

perfect crystals and symmetric equivalence in the two mentioned 1D subsets (marked by the × symbol; For example, 90° for 

D4h symmetry and 180° for D2h symmetry). Noting that the co-existing tilt and twist angles would make boundary plane 

normal k1 and k2 varies, and thus the mixed character space is unable to uniquely index a GB character.  

The mixed GB are identified by their boundary plane and misorientation axis. For example, (001)/[100] 

mixed GB denotes that the boundary plane is (001) while the misorientation axis is [100]. Three combinations 

of boundary plane and misorientation axis are considered, including (001)/[100], (011)/[100] and (111)/[110] 
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mixed GBs, resulting in three mixed character spaces. 1024 (32 STGBs and 32 TwGBs), 1536 (48 STGBs and 

32 TwGBs) and 2304 (48 STGBs and 48 TwGBs) mixed GBs are sampled for (001)/[100], (011)/[100] and 

(111)/[110] mixed character spaces, respectively, which guarantee a comprehensive coverage at ~ 3° × 3° 

resolution. Tables S1-S6 in the Supporting Information show the details of sampled tilt and twist GBs, and 

Figure 1 shows the geometry of mixed GB. All details of the sampled GBs, including their metrics in FZ are 

given in the Supporting Information. 

LAMMPS [79] simulations are used to generate GB structures at zero temperature and pressure in a 

periodic box (lz ≈ 2 × max(lx, ly) for LAGBs; lz = 20a for HAGBs) following the sampling method of Homer 

et al. [63]. In total, 26.8 million structures are examined for 5344 GBs (4864 mixed, 256 symmetric tilt and 

224 twist GBs). To the authors' knowledge, this number, as well as the GB size and structural richness that it 

represents have shown an order of magnitude greater than most of the reviewed minimum GB energy datasets 

[11, 14, 28, 30, 32–35, 43–45, 60]. 

Only classical interatomic potentials could minimize so many GB structures within acceptable costs. The 

authors adopted a modified Tersoff potential [80], which not only reproduces the elastic constants and 

generalized stacking fault energies of silicon but is also proven capable of modelling complex atomic bond 

environments and dislocation structures [66]. First-principles calculations and the involved methods [81–84] 

are used for parallel comparisons with atomistic simulations. The details are given in the Supporting 

Information. 

The dislocation analysis tool (DXA) implemented in the software Ovito [85, 86] is used to identify 

dislocations structured LAGBs, setting the trial Burgers circuit length to 9 atom-to-atom steps and a default 

Burgers vector circuit stretchability. 

GB energy ETotal from atomistic simulation and first-principles calculation are defined as the following: 

( )Total Coh

GB

N
i iE E

E
A

−
=  (1) 

Where N is the atom count of a GB in the simulation box (usually half of the box atoms because a box contains 

two GB). Ei is the energy of atom i, ECoh = –4.63eV is the cohesive energy of silicon atoms [87] and AGB is 

the GB area. The Virial stress tensor of each atom is computed to show stress fields. 
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3. Results & Discussions 

3.1. Grain Boundary Energy 

3.1.1. Energy surface 

 

Figure 2. Energy surfaces of the examined mixed GBs as the functions of the tilt and twist angles. (a) (001)/[100] mixed GB; 

(b) (011)/[100] mixed GB; (c) (111)/[110] mixed GB; (d) low angle portion of (011)/[110] mixed GB. The mixed character 

space is non-Euclidean, and thus zone IV of (011)/[100] mixed GB in (b) is the expansion of the counterpart of (011)/[110] 

mixed GB in (d). Even in the LAMGB zones where the dislocation density is proportional to the tilt and twist angles, one 

should notice that the energy trends are not completely smooth and show Read-Shockley cusps.  

Figures 2a, 2b and 2c show the (001)/[100], (011)/[100], (111)/[110] mixed GB energies as a continuous 

function of tilt angle θ and twist angle ϕ, respectively. Inspection of GB structures indicates that all GB energy 

surfaces can be divided into two parts, low angle mixed grain boundaries (LAMGBs) comprised of dislocation 

network structures (also include low angle mixed twin grain boundaries (LAMTGBs, disconnection network 

structures on twin GB) and high angle mixed grain boundaries (HAMGBs) comprised of amorphous structures, 
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which are divided by the black dash line and named as the LAMGB, LAMTGB, and HAMGB zones, 

respectively.  

We first consider the seven unique LAMGB zones I to VII and the three unique LAMTGB zones α, β 

and γ, where the energy trends follow the Read-Shockley relationship. The ten zones are supposed to have 

elliptic shapes and some only show a quarter or a half due to the symmetry. LASTGB, LATwGB and 

disconnection-array-twin (DAT) structures are observed passing through the perfect crystal and twin GBs, and 

they represent the parts of the common 1D symmetric tilt or twist subsets that are frequently reported [11, 13, 

14, 30, 32, 42–45, 69, 70]. The elliptic long and short axes that define the ten LAMGB and LAMTGB zones 

are determined by the core radius of dislocations in these LASTGBs, LATwGBs and DAT structures (i.e., 

dislocation core radius determines the curvature of each elliptic zone), where detailed explanation of such fact 

is referred to the authors' previous work. 

For the HAMGB zones, there are various energy peaks which distributions form band-like landscapes 

(marked as the high energy zones in Figure 2), along with numerous energy cusps that are distributed 

separately. The complexity of the three energy surfaces makes the modern GB energy functions that 

extrapolate from existing 1D subsets [88, 89] very difficult to predict the energy cusps therein. Beyond this, 

the energies of most HAMGBs are very close to the average energy of all examined GBs at around 1340 

mJ/m2, a quite high value because most simple silicon HASTGB energies are located at ~ 800 mJ/m2. One 

may also wish to predict the positions of energy cusps in the energy surface. By decomposing the mixed GBs 

into pure tilt and twist components, a rough correlation could be found between low energy HAMGB and low 

energy HASTGB/HATwGB. However, it is only a kind of preliminary observation while quantitative 

correlation is still difficult to extract. For each energy surface, detailed descriptions are given in the Supporting 

Information. 

3.1.2. First-principles calculation 

 

Figure 3. Comparison of calculated GB energies between atomistic simulation and first-principles calculation. Energy from 
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atomistic simulation ETotal and energy from first-principles calculation EFP follows the linear relationship EFP = 0.692 × ETotal 

+ 105.108. 

To validate the presented energy surface, GBs with low Σ values that fall in the acceptable computational 

range are submitted to the first principles calculation. While the atomistic simulation reports nearly zero 

energy (0.04 mJ/m2), the first principles calculation gives twin GB energy at 119.55 mJ/m2, both of which 

agreed with the published data of silicon and carbon [45]. The simulated energy is in good linear scaling with 

the first-principles calculation (falls in ± 20% error lines), and suggests that the computed energy surface is 

reliable and can be extrapolated to first-principles results via the linear relationship in Figure 3. Also, this fact 

indicates that similar trends of the energy surface will be observed if more accurate (but consuming) 

computational methods are deployed. 

3.2. Grain Boundary Structure 

3.2.1. Dislocation structures  

 

Figure 4. Dislocation structures of low angle symmetric tilt, twist and mixed GBs in the LAMGB zones I to VII of Figure 2. 

(a1) θ = 4.77° (001)/[100] LASTGB; (a2) θ = 4.77°, ϕ = 4.77° (001)/[100] LAMGB; (a3) ϕ = 4.77° (001) LATwGB; (b1) θ = 

3.38° (001)/[110] LASTGB; (b2) θ = 3.38°, ϕ = 4.77° (001)/[110] LAMGB; (b3) ϕ = 4.77° (001) LATwGB; (c1) θ = 2.43° 

(011)/[110] LASTGB; (c2) θ = 2.43°, ϕ = 3.39° (011)/[110] abnormal LAMGB; (c3) ϕ = 3.39° (011) LATwGB; (d1) θ = 2.43° 

(011)/[110] LASTGB; (d2) θ = 2.43°, ϕ = 3.39° (011)/[110] LAMGB; (d3) ϕ = 3.39° (011) LATwGB; (e1) θ = 4.50° (011)/[100] 

LASTGB; (e2) θ = 4.50°, ϕ = 4.50° (011)/[100] LAMGB; (e3) ϕ = 4.50° (011) LATwGB; (f1) θ = 7.91° (112)/[110] LASTGB; 

(f2) θ = 7.91°, ϕ = 6.38° (112)/[110] LAMGB; (f3) θ = 4.51°, ϕ = 6.38° (011)/[110] abnormal LAMGB (mixed GB as the 

twist component); (g1) θ = 5.84° (011)/[100] LASTGB; (g2) θ = 5.84°, ϕ = 8.26° (011)/[100] LAMGB; (g3) ϕ = 8.26° (011) 

shuffle LATwGB (the glide variant is in the small sub-figure); 
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Dislocation structures of seven LAMGBs in the LAMGB zones I to VII are shown in Figure 4, where all 

LASTGBs and LATwGBs are dislocation arrays and dislocation network (the (011) LATwGB is a hybrid 

dislocation and stacking fault network), respectively. Meanwhile, the topology of both the dislocation array 

and network would not change once the ratio between the tilt and twist angles (tilt-twist ratio, TTR) is 

determined. Such two facts depend on the inherent geometry definition of LAGBs (transferable among 

materials), which are acknowledged by these works [67, 68, 74]. Formation mechanisms of the seven 

LAMGBs (Figures 4a2 to 4g2) can be considered as the superposition of their tilt components (Figures 4a1 to 

4g1) and twist components (Figures 4a3 to 4g3) after energetically favorable dislocation glide and reaction. 

The authors marked the types and Burgers vectors of each dislocation segment to make the glide and reaction 

easily traceable. In most LAMGBs, the dislocation glide and reaction mechanisms are based on ½<110> screw 

dislocation, shown in Figures 4a2, 4b2, 4d2. The ½<110> screw dislocation suffered segmentation from 

½<110> mixed dislocation, and then glide half of the spacing. There are more complex mechanisms involving 

the stacking fault from (011) LATwGB in Figures 4c2, 4d2 and 4e2. ½<110> edge dislocations in Figures 4d1 

and 4e1 separate both stacking fault (equivalent to a <100> Burgers vector) and ½<110> screw dislocation of 

(011) LATwGB in two different orientations, which finally yields two different LAMGBs in Figures 4d2 and 

4e2. Although the mechanisms governing (011) LAMGB structures are complicated and involve stacking fault, 

it indeed follows the same as the (001) LAMGB once the stacking fault is approximately considered as a 

dislocation. Even in the complex (111)/[110] LAMGB of Figure 4g2, the generation of the uncommon ⅙<411> 

mixed and ⅓<221> mixed dislocations are also caused by the dislocation reactions that including ½<110> 

screw dislocation. 

It should be noted that two LAMGB zones are been considered special or abnormal. The first is zone III, 

where all LAMGBs do not contain infinite, straight dislocation lines. The dislocation reaction is the same with 

the LAMGBs in zone IV, but the ½<110> mixed dislocation glides to the edge of the stacking fault area and 

forms a zigzag pattern. LAMGB zone III decomposes exactly into the same tilt and twist components as zone 

IV. However, zone III cannot be indexed by examining the (011)/[110] energy surface in Figure 2, instead, it 

can be indexed by examining the (001)/[100] energy surface. The second zone is VI because its decomposed 

twist component is LAMGB in zone III rather than LATwGB. LAMGBs in zone VI is the superposition of 

(112)/[110] LASTGB and (011)/[110] LAMGB where the LAMGB plays the role of twist component. 
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Figure 5. Disconnection network structures in the LAMTGB zones α, β and γ of Figure 2. (a)-(g) 2D planar view of the 

LAMTGB structures; (h) 3D view of a DAT structure, showing a step of twin layer; (i) Distance to twin GB of (a)-(h). (j) 

Proportions of LAMGB and LAMTGB in the Rodriguez-Frank space. LAMGB and LAMTGB portions of the Rodriguez-

Frank space can be approximated as a spherical pyramid with radius R, where R is determined by the average dislocation core 

radius [66, 69]. Explanations of symbols follow the same in Figure 4. 

Figure 5 shows the disconnection structures of eight LAMTGBs (from zones α, β and γ), which are 

formed by introducing low misorientations on twin GB. A major difference between LAMTGB and LAMGB 

is that the LAMTGB is difficult to decompose into tilt and twist components. For example, if we assume that 
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its tilt component is the twin GB while its twist component is the attached disconnection network, then it will 

contradict the fact that twin GB also plays as a twist component in Figure 2b. Beyond this fact that confuses 

the GB decomposition, the LAMTGBs in the three zones share a common feature with the LAMGB. It is that 

the topology of the dislocation/disconnection network does not vary with the parameter TTR, which is proven 

by comparing LAMTGBs in Figures 5c and 5d that are located on the TTR = 6 lines in Figure 5. In summary, 

it can be seen that the twin GB could also accommodate complex disconnection structures, and the role of the 

twin GB is just like the perfect crystal in the mixed character space, as illustrated in Figure 5i. This is because 

the mixed GB characters near the twin GB are disconnection structures which topology depends on the 

parameter TTR. Although the formation mechanisms and the decomposition criterion of the LAMTGBs should 

be further explored, the authors are still optimistic about these results and conclusions as they show promising 

capability for interface engineering and self-assembled nanostructures. 

3.2.2. Amorphous structures   

Atomic structures of four HAMGBs without dislocation core structures but with typical dislocation stress 

fields are plotted in Figure 6. Figure 6a1 is the atomic structures of a near Σ5 HAMGB generated by 

introducing a low twist angle (ϕ = 4.77°) on the boundary plane normal of the well-known kite-shaped Σ5 

STGB (Figure S1a). The upper view along its boundary plane normal in Figure 6a2 shows a squared shadow 

pattern, which follows the same spacing with the squared dislocation network of a ϕ = 4.77° (001) LATwGB. 

Stress fields of the HAMGB in Figure 6a3 are also similar to the dislocation stress fields of the LATwGB in 

Figure 6a5. Figure 6b1 is the atomic structures of a near Σ15 HAMGB generated by introducing a low twist 

angle (ϕ = 4.13°) on the boundary plane normal of a Σ15 STGB. The HAMGB also generates different but 

considerable stress fields in Figure 6b3 as compared with its twist component, a ϕ = 4.13° (111) LATwGB in 

Figure 6b5. The differences in stress fields are from the superposition and mutual perturbation of the stress 

fields of HAMGB components. To verify such an explanation, two HAMGBs and their stress fields are given 

in Figures 6c1 and 6d1, where both tilt components are the θ = 4.77° (001)/[100] LASTGB (Figure 6c5). We 

can see that the stress fields of the two HAMGBs show the same stress characteristics compared with the 

dislocation stress fields in Figure 6c6, although both of them are completely amorphous structures without 

any identifiable dislocation core or SUs (i.e., SU is too big to be applicable, similar to the prediction of the 

very early inter-crystalline amorphous cement theory [90]). However, the dislocation stress fields shown in 

Figure 6c2 are more remarkable than the counterparts shown in Figure 6d2, which is explained by the 

complexity of their twist components. For instance, the (001) TwGB structures corresponding to the two 

HAMGBs are given in Figures 6c3 and 6d3. Obviously, the SU in Figure 6c3 has a lower size than the one in 

Figure 6d3, which simplifies SU stress characteristics and finally results in more remarkable dislocation stress 

fields. 
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Figure 6. Atomic structures and stress fields of HAMGBs in Figure 2. (a1) Side view of atomic structures of a Σ26001 (288 

12 577) HAMGB, which is formed by introducing a 4.77° twist angle on the θ = 53.13° Σ5 (102) STGB; (a2) Upper view of 

atomic structures of the Σ26001 (288 12 577) HAMGB; (a3) Upper view of distribution of stress component σy of the Σ26001 

(288 12 577) HAMGB; (a4) Upper view of atomic structures of the ϕ = 4.77° (001) LATwGB (the same with Figure 4a3); 

(a5) Upper view of distribution of stress component σy of the (001) LATwGB; (b1) Side view of atomic structures of a Σ328363 

(507 5 267) HAMGB, which is formed by introducing a 4.13° twist angle on the θ = 78.46° Σ15 (201) STGB; (b2) Upper 

view of atomic structures of the Σ328363 (507 5 267) HAMGB; (b3) Upper view of distribution of stress component τyz of 

the Σ328363 (507 5 267) HAMGB; (b4) Upper view of atomic structures of the ϕ = 4.13° (111) LATwGB; (b5) Upper view 

of distribution of stress component τyz of the (111) LATwGB; (c1) Side view of atomic structures of a Σ3605 (2 1 60) HAMGB, 

which is formed by introducing a 4.77° tilt angle on the ϕ = 36.87° Σ5 (001) TwGB; (c2) Side view of distribution of stress 
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component σz of the Σ3605 (2 1 60) HAMGB; (c3) Side view of atomic structures of a ϕ = 53.13° Σ5 (012) TwGB; (c4) Side 

view of distribution of stress component σz of the ϕ = 53.13° Σ5 (012) TwGB; (c5) Side view of atomic structures of a θ = 

4.77° (001)/[100] LASTGB; (c6) Side view of distribution of stress component σz of the θ = 4.77° (001)/[100] LASTGB; (d1) 

Side view of atomic structures of a Σ485141 (25 10 696) HAMGB, which is formed by introducing a 4.77° tilt angle on the 

ϕ = 43.60° Σ29 (025) TwGB; (d2) Side view of distribution of stress component σz of the Σ485141 (25 10 696) HAMGB; (d3) 

Side view of atomic structures of a ϕ = 43.60° Σ29 (025) TwGB; (d4) Side view of distribution of stress component σz of the 

ϕ = 43.60° Σ29 (025) TwGB. 

By comparing two cases 1) STGB accommodates a low twist component and 2) TwGB accommodates a 

low tilt component, it is found that the stress fields of any mixed GB with a low angle component are the 

superposition of its tilt and twist component's stress fields. Such superposition also depends on the structural 

complexity of the high angle tilt/twist GB as simpler SUs have higher capability to maintain the dislocation 

stress fields. These findings suggest that the energies of these amorphous GB structures are not completely 

from lattice disorder, the strain energy also plays a critical role, which could be further described in the 

framework of the classical Read-Shockley relationship. 

3.2.3. Comparison with experiments 

 

Figure 7. Comparisons between experimental observations and atomistic simulations. (a1) Experimental observation of a 

(001) LAMGB from Wilhelm et al. [77]; (a2) 1:1 simulation reproduction of the (001) LAMGB structures at the stable state, 

the subfigure indicates a meta-stable state of the (001) LAMGB structures; (b1) Experimental observation of a (011) LAMGB 

from Reiche et al. [91]; (b2) 1:2.66 simulation reproduction of the (011) LAMGB structures at the stable state. The comparison 

mainly focuses on the dislocation network topology as the dislocation spacing is proportional to both θ and ϕ; (c1) 

Experimental observation of a (111) LATwGB from Neily et al. [72]. The hexagonal dislocation network shows partial 

dissociation to triangular hybrid dislocation and stacking fault at the dislocation triple junctions; (c2) 1:7 simulation 

reproduction of the (111) LATwGB structures at the stable state. The stable (111) LATwGB has hexagonal dislocation network 

structures that correspond to the (111) shuffle plane, while the triangular hybrid dislocation and stacking fault structures of 

the (111) glide plane are metastable; (d1) Experimental observation of a (011) HASTGB from Bonnet, et al. [92]; (d2) 1:1 

simulation reproduction of the (011) HASTGB structures at the stable state. The error of each atom position is less than 0.01 

nm. 

Figure 7 shows the comparisons between experimental observations and atomistic simulations of four 

silicon GBs. The positions (in the mixed character space) of the simulated GBs 7a2, 7b2, 7c2 and 7d2 used in 



13 

 

comparison have been marked in Figure 2. It is surprising that the simulation shows the unique capability to 

accurately reproduce both dislocation and amorphous silicon GB structures at the atomic level. For example, 

the experiments versus simulation is 1:1 in the length scale for GBs in Figures 7a and 7d. The simulation 

reproduces the complex topology of the dislocation network across the nano-scale, and even the meta-stable 

dislocation network structures partially shown in Figure 8a1 are captured, which is given in the subfigure of 

Figure 7a2. The success demonstrates that the simulated dislocation structures in Figure 4 are reliable. 

Meanwhile, for the LAMGBs shown in Figures 7b1 and 7c1, the comparisons should be addressed on the fact 

that dislocation network topology does not vary with TTR. The fact allows us to reproduce the experimentally 

observed LAMGB structures in a designated scale like 1:2.66 or 1:7, rather than 1:1 reproduction that makes 

the computational resources unbearable. The presented simulation agreed well with the experimentally 

observed (011) LAMGB and the (111) LATwGB, but the atomistic simulation at zero temperature and pressure 

fails to capture the dislocation dissociation at the triple junctions of (111) LATwGB at the finite temperatures. 

It is acceptable as the simulation predicts the (111) shuffle LATwGB (hexagonal ½<110> screw dislocation 

network) is the stable state rather than the (111) glide LATwGB (triangular hybrid ⅙<211> screw dislocation 

and stacking fault network) with slightly higher energy. Detailed understandings of the difference and mutual 

conversion between (111) shuffle and glide planes in silicon and FCC metals are referred to in these works 

[45, 93, 94]. For the structural unit GB shown in Figure 7d1, the simulation in Figure 7d2 gives an unexpected 

excellent agreement, the error of each atom position is sub-angstrom level. In summary, the comparisons 

between experiment and simulation proved that the simulation method and results are reliable for the full 

range of GB structures, and further verifies the conclusion that the LAMGBs are indeed the superposition of 

their tilt and twist components. 

3.3. A universal Read-Shockley model  

3.3.1. Theorization 

On the basis of the presented discussions, a general framework that is universal for the structures and 

energies of mostly GBs spanning the mixed character space is presented. First of all, we summarized a 

qualitative estimation strategy of the structures, energies and stress fields of a given mixed GB from its 

decomposed components in Figure S2, which would be useful in the preliminary analysis. Then, we started 

quantifying the mixed GB energy from the LAMGB, which energy is usually divided into the dislocation core 

and strain energies. As Wan and Tang have mentioned, the dislocation core energy is equal to the sum of the 

dislocation core energy of both LAMGB tilt and twist components minus the loss of dislocation core energy 

from dislocation reactions [66]. For the dislocation strain energy, a mutual perturbation between the stress 

fields of LAMGB tilt and twist components is expected. In that case, LAMGB energy E could be written as 

the function of θ and ϕ following 

( )Total Total Total Core Strain

LAMGB LASTGB LATwGB Loss Loss, ( ) ( )E E E E E   = + + +  (2) 

Where superscript Total, Core and Strain denote the LAMGB excess energy, dislocation core and strain 

energies, respectively. Subscript LAMGB, LASTGB and LATwGB denote the GB type. Subscript Loss 

denotes the energy loss from the dislocation glide and reaction process. Equation (2) is purely a qualitative 
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expression. Read and Shockley have already given the analytical expression of the LASTGB and LATwGB 

energies known as the classical Read-Shockley relationship (θ – θln(θ) and ϕ – ϕln(ϕ)) for the first two terms 

of equation (2), but note that the detailed expressions within the last two terms are still unclear. An empirical 

expression of the last two terms of equation (2) has been proposed by Wan and Tang [66], which is called the 

revised Read-Shockley relationship following: 

( ) ( ) ( )

( )

Total Core Strain Core Strain

LAMGB LASTGB LASTGB LATwGB LATwGB

Core Strain

Loss Loss

, ln ln

ln

E E E E E

E E

     

 

   = − + − +   

 − 

 

(3) 

Where the last two terms 
Core Strain

Loss LossE E+   that follow the Read-Shockley formalism θϕ – θϕln(θϕ) are 

considered to have a good balance of both fitting effects and clarity [66]. It agrees with the prediction of Sutton 

and Balluffi that any LAMGB structure-energy relationships should follow or be similar to the Read-Shockley 

formalism. The compatibility of equation (3) is strong. For example, by replacing θ and ϕ with sin(θ) and 

sin(ϕ), Equation (3) becomes the Wolf's version of the Read-Shockley relationship [95]. Equation (3) can 

accommodate an additional energy term Ei to describe the interaction of the dislocation network of LATwGB, 

as Vitek did [96]. LAMTGBs also follow the same dislocation glide and reaction mechanisms as the authors 

previously described for LAMGBs. Since the LAMTGBs are disconnection structures on the twin GB, an 

additional twin GB energy term ETwin must be appended to equation (3) to capture the energy trends in the 

LAMTGB zone following: 

( ) ( ) ( )

( )

Total Core Strain Core Strain

LAMTGB LASTGB LASTGB LATwGB LATwGB

Core Strain

Loss Loss Twin

, ln ln

ln

E E E E E

E E E

     

 

   = − + − +   

 − + 

 
(4) 

Equation (3) and its variants are not only applicable for dislocation structured and disconnection-twin 

structured GBs but also available for some amorphous mixed GB structures containing a low angle tilt/twist 

component. The mixed GB with typical dislocation stress shown in Figure 4 is a good example. Hence, if we 

introduce a small twist angle ϕ on a HASTGB (θ = θ1) or a small tilt angle θ on a HATwGB (ϕ = ϕ1), then for 

the corresponding HAMGBs, equation (3) varies to 

( ) ( ) ( )

( )

Total Core Strain

HAMGB 1 1 LATwGB LATwGB

Core Strain

1 Loss Loss 1

, ,0 ln

ln

E E E E

E E

    

   

 = + − + 

 − 

 
(5) 

and 

( ) ( ) ( )

( )

Total Core Strain

HAMGB 1 LASTGB LASTGB 1

Core Strain

1 Loss Loss 1

, ln 0,

ln

E E E E

E E

    

 

 = − + + 

 − 

 
(6) 

respectively. Once the known terms are eliminated, the straightforward forms of equations (5) and (6) could 

be written as 

( ) ( ) ( )Total Core Strain

HAMGB 1 1, ,0 lnE E E E     = + − 
 (7) 

and 

( ) ( ) ( )Total Core Strain

HAMGB 1 1, ln 0,E E E E     = − + 
 (8) 

respectively. Where ECore and EStrain are fitting terms in the classical Read-Shockley relationship [46]. 

Equations (7) and (8) have constraints that the GB energies at finite temperatures are incapable of exceeding 
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a maximum value Emax (maximum lattice distortion in the 5D GB space), no matter how the GB macroscopic 

and microscopic DOFs change. 

 

Figure 8. Conceptualization and illustration of the universal Read-Shockley GB energy model in the mixed character space. 

(a) Assumed energy trend in an assumed mixed character space; (b) Definition of the total misorientation angle in the mixed 

character space; (c) Assumed 2D energy surface in an assumed LAMGB zone; (d) Assumed GB energy trends in an assumed 

LAMGB zone as a 2D extension of the 1D Read-Shockley relationship [46]. Note that all data in Figure 10 is not real due to 

the illustration purpose. 

Equations (2) to (8) and the relevant discussions are summarized in Figure 8a as a universal Read-

Shockley model for GB energies spanning the mixed character space. Figure 8b shows the definition of the 

total misorientation angle At in the mixed character space. Unlike the frequently used conventional definition 

of misorientation angles in the Rodriguez-Frank space, At of a mixed GB character is defined as its minimum 

angular distances to the positions of all perfect crystals and twin GBs in a given mixed character space 

following:  
2 2

t min minA  = +  (9) 

Where θmin and ϕmin are defined as the minimum tilt and twist angular distances to the positions of all perfect 

crystals and twin GBs, respectively. Such a definition allows us to adapt the fact that the 

dislocation/disconnection network topology of both LAMGBs and LAMTGBs is governed by the parameter 
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TTR. Also, it guarantees that all dislocation/disconnection-structured GBs have low At values and are 

considered LAGBs.  

Figure 8c shows an assumed energy surface in an assumed LAMTGB zone. The assumed energy surface 

is not smooth, on the contrary, they are full of deep cusps and high peaks, and equation (4) is only valid for 

the deep cusps where the dislocations are assumed with equal spacing and two components satisfy designated 

TTR. To make the explanation impressive, the authors plotted the assumed energy trends along several specific 

trace lines in an assumed LAMGB zone of Figure 8d. For a give trace line (TTR = constant), all LAMGBs 

will share the same dislocation network topology, but unequal dislocation spacing and/or additional 

dislocations would appear in most of them and generate high peaks, as highlighted by Read and Shockley [46] 

and double confirmed by Figure 4g1. However, the role of parameter TTR is beyond the expectation of Read 

and Shockley. For example, when tilt and twist components do not satisfy the designated TTR, excess 

dislocations (and/or stacking faults) are generated and then cause significant peaks between two trace lines 

with designated TTR (where two components are perfectly mixed without excess dislocations). Such a process 

is illustrated in the black energy line on the trace line with the same At value in Figure 8d. We must note that 

the energy contribution of the excess dislocations from the parameter TTR is always greater than the energy 

contribution of the unequal dislocation spacing. In other words, GB energy suffers low and high peaks in the 

1) direction towards the perfect crystal and 2) the direction tangents to 1), respectively. 

3.3.2. Performance & Transferability 

 

Figure 9. Silicon GB energy against the selected scalars. (a) Silicon GB energy against the total misorientation angle At, and 

the fitting from the Read-Shockley (RS) relationship. All fittings only used data within 60°; (b1) Fitting of the mixed GB 

energy from the revised Read-Shockley relationship, plotted by projecting the two-dimensional energy surface of (b2) to one-

dimension; (b2) Two-dimensional energy surface from the revised Read-Shockley relationship. Fitting parameters are given 

in Tables S7 and S8; (c) Silicon GB energy against Σ. It indicates that GB energy is gradually approaching a constant value 
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when Σ is higher than 103. 

The performance of the universal Read-Shockley model is examined on the general characteristics of the 

silicon mixed GB dataset. The starting point is to convert the three energy surfaces to the one-dimensional 

simplification (indexed by parameter At). Figure 9a shows silicon GB energy as a function of At, accompanied 

by the marks of the LAGBs and the three fittings from the classical Read-Shockley relationship (Fittings of 

all GB, LASTGB and LATwGB energies. Fitting parameters are given in Table S9). The fitted trends of the 

mixed GB energy follow the classical Read-Shockley relationship, but are slightly higher than the fitted trends 

of both LASTGB and LATwGB. Figure 9b1 shows the fitting of all GB energies from equation (3), by 

converting the fitted 2D energy surface in Figure 9b2 via the introduced simplification. Compared with the 

classical Read-Shockley relationship, the revised Read-Shockley relationship shows natural superiority to fit 

so massive data as its one-dimensional simplification is a cloud-like distribution showing the range of GB 

energy at any At or misorientation angles. However, such simplification also suffers two obvious shortages: 1) 

The value of At may be higher than the constrain of the Rodriguez-Frank space as the mixed GB characters 

are simplified individually in each energy surface; 2) A given GB character is being indexed multiple times in 

different energy surfaces and no assurance of the uniqueness. 

Figure 9c shows silicon GB energy as a function of Σ. The average Σ is approximately 4.4×105, and most 

of them are higher than 103, both of which imply the fruitfulness of GB atomic environments presented here. 

Note that the energies of high Σ HAMGBs (except for the low energy LAMGBs and LAMTGBs as both can 

be expressed with high Σ) are approaching 1400 mJ/m2. A qualitative explanation is that these high Σ GBs are 

mostly amorphous structures without any SUs and dislocation structures that may contribute to low energy.  

 

Figure 10. (a) 7304 aluminum GB energies versus the misorientation angle [63] (Rodriguez-Frank space definition). The 

purple dash line denotes fitting of the classical Read-Shockley relationship [46], and the green dash line denotes fitting of 

Wolf's version of the Read-Shockley relationship [92]. Fitting parameters are given in the Supporting Information; (b) 7304 

aluminum GB energies versus Σ. Noting that authorization for the reuse of these published data has been obtained. 

 Figure 10 shows the fitting of the revised Read-Shockley relationship on a recently published aluminum 

GB dataset [63]. The fitting effects on aluminum GB are quite good because such relationship almost perfectly 

captures the general trends of aluminum GB energy compared with its original functional. The success of the 

revised Read-Shockley relationship in predicting both silicon and aluminum GB energy trends could also be 

extended to a wide range of materials across the FCC and diamond lattice through a key fact that GB energy 
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is scaling with the elastic modulus in the materials with the same lattice [97]. 

4. Conclusions 

The energies and structures of 4964 silicon GBs with mixed tilt and twist characters, as well as their 

decomposed tilt and twist GB components are studied in this work to confirm whether the mixed GBs follow 

the principles of superposition. There are several conclusions worth noting: 

 Structures and stress fields of a given mixed GB with a low angle tilt and/or twist component follow the 

principles of superposition: 1) Dislocation network structures (and stacking fault) of the LAMGBs are 

complex but predictable because they are formed by energetically favorable dislocation reaction and glide 

between LAMGB tilt and twist components; 2) Twin GB could accommodate complex disconnection 

network structures to form LAMTGB, while some simple SU GBs (e.g., Σ5 “kite” GB) show typical 

dislocation stress characteristics after introducing a low angle component, although they are completely 

amorphous structures. Qualitatively speaking, the principles of superposition are inversely correlated 

with both tilt and twist angles. 

 A universal Read-Shockley model is proposed from a recently revised Read-Shockley relationship of 

Wan and Tang [66] on the basis of these reported structural features. This model accurately captures the 

energy trends of LAMGB and LAMTGB, and shows inherent superiority compared with the classical 

Read-Shockley relationship. Its universality is extracted by extending to those HAMGBs with a low 

angle component, while its transferability is proven by precisely fitting the energy trend of 7304 FCC 

aluminum GBs. As the supplementary of both classical Read-Shockley relationship and this model, we 

also highlighted the role of parameter TTR because the structures and energies of LAMGB and LAMTGB 

are especially sensitive to it. 

 Experimental observed stable/metastable dislocation networks and atomic structures are reproduced by 

the simulation and thus validate the simulated GB structures and the derived conclusions. Notably, our 

work reports a sub-angstrom level error in atom positions while comparing the simulation and an 

experimentally investigated HASTGB, and thus makes the presented massive silicon GB structural 

datasets convincible. First-principles calculation on the energies of low Σ GBs is in good scaling with the 

atomistic simulation, which not only connects both simulation methods but further reinforces the 

reliability of the studied energetic properties.  

In some cases, the principles of superposition on LAMGB structures are expected. However, we proved 

that this basic theory is not only limited to a variety of LAMGBs with different misorientation axes and 

boundary planes, and is even valid for amorphous GB structures in terms of stress fields and strain energies. 

In other words, dislocation and/or disconnection as the bridge connecting GBs that are crystallographic-close. 

Rugged trends of the energy surface formed by thousands of individual GB energy reinforce and extend the 

prediction of Read and Shockley decades ago, meanwhile, implying the unpredictable nature of HAMGB 

energy. The contributions of this work could be quite fundamental, it paved the way for understanding complex 

GB structures and designing interfacial patterns of self-assembled nanostructures. 

Beyond these findings, more intriguing features could be explored further. Our work only addressed the 
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basic structural and energetic features of mixed GBs. It is uncertain whether the other GB properties (e.g., 

mobility, strength and thermal conductivity) follow the same formalism or are just simply non-linear. From 

the fundamental zone description of the presented GB dataset, it should be noted that the principles of 

superposition are only valid for the three GB DOFs associated with the misorientation axis and the 

superposition may work for different GB plane orientation fundamental zones. To fully understand the GB 

structure-property correlation across five macroscopic DOFs, more efforts are desired. 
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