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We find out the complex geometries corresponding to the semi-classical saddles of three-
dimensional quantum gravity by making use of the known results of dual conformal field theory
(CFT), which is effectively given by Liouville field theory. We examine both the cases with positive
and negative cosmological constants. We determine the set of semi-classical saddles to choose from
the homotopy argument in the Chern-Simons formulation combined with CFT results and provide
strong supports from the mini-superspace approach to the quantum gravity. For the case of positive
cosmological constant, partial results were already obtained in our previous works, and they are
consistent with the current ones. For the case of negative cosmological constant, we identify the ge-
ometry corresponding a semi-classical saddle with three-dimensional Euclidean anti-de Sitter space
dressed with imaginary radius three-dimensional spheres. The geometry is generically unphysical,
but we argue that the fact itself does not lead to any problems.

I. INTRODUCTION

One of the important issues in the path integral for-
mulation of quantum gravity is to determine which ge-
ometries should be integrated over. The path integral
may be written as a sum over non-perturbative saddles
dressed with perturbative corrections. This implies that
the problem can be rephrased as identifying the geome-
tries corresponding to the non-perturbative saddles cho-
sen. We attack this problem in a simple setup, i.e., three-
dimensional pure gravity with positive or negative cos-
mological constant by applying the holographic duality
[1]. We consider the path integral over geometries an-
alytically continued to take complex values for the fol-
lowing reasons. Firstly, the path integral of quantum
gravity over real geometries would give divergent results
and the analytic continuation provides a way to regu-
larize the divergence. Secondly, the holography for the
case with positive cosmological constant may be derived
via an analytic continuation from the case with negative
cosmological constant [2], see also [3, 4].

Gravity theory in three-dimensional anti-de Sitter
(AdS3) space is supposed to be dual to a two-dimensional
conformal field theory (CFT2). We are interested in the
semi-classical saddles with small Newton constant, whose
universal features are supposed to be captured by Liou-
ville field theory with large central charge. We can exam-
ine gravity theory on three-dimensional de Sitter (dS3)
space from dual CFT2 as well. In previous works [5–8], it
was also proposed that classical gravity on dS3 can be ex-
amined by Liouville field theory with large but imaginary
central charge as the result of analytic continuation, see
also [4, 9]. In fact, we have classified semi-classical sad-
dles of gravity theory on dS3 black holes and determined
possible saddles by comparing the exact expressions of
dual CFT at the imaginary large central charge [10, 11].
As an evidence, we have computed Gibbons-Hawking en-
tropy [12–15] from the both sides and find agreements.

In this letter, we continue to investigate these semi-

classical saddles in more systematic ways. The possible
semi-classical saddles in the Chern-Simons formulation
of three-dimensional gravity can be classified by the ho-
motopy group as discussed in [16]. We construct the ge-
ometry corresponding to the semi-classical saddles in the
quantum gravity. We then provide its strong supports by
carefully examining the mini-superspace model of quan-
tum gravity, see, e.g., [17–20] and a review [21] for recent
developments. For the case of positive cosmological con-
stant, we reproduce the previous result in [10, 11]. For
the case of negative cosmological constant, we claim that
the semi-classical saddles are given by Euclidean AdS3 at-
tached with imaginary radius three-spheres (S3’s). Such
geometries are seemingly unphysical but we will argue in
the following that these are indeed relevant ones.

II. NON-PERTURBATIVE SADDLES IN
LIOUVILLE THEORY

We examine the semi-classical saddles in three-
dimensional gravity by making use of the exact results of
Liouville theory obtained in [22, 23]. The CFT consists of
a bosonic field ϕ with background charge Q = b+b−1. Its
central charge is related to the parameter b as c = 1+6Q2

and the large central charge may be realized by the limit
b → 0. We are interested in the correlation functions of
vertex operators of the form exp(2αϕ), where α behaves
as α = η/b with fixed η. These operators are usually
referred as heavy. At this limit, the insertions of vertex
operators can be regarded as a part of action, where the
equation of motion is reduced to

∂

∂z

∂

∂z̄
ϕc = 2λeϕc − 2π

∑
i

ηiδ
2(z − zi) . (1)

Here z, z̄ are complex coordinates and λeϕc with ϕc = 2bϕ
comes from the Liouville interaction. We can easily see
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that

ϕc(n) = ϕc(0) + 2πin (2)

with integer n is a solution to the equation of motion
once ϕc(0) is one of its solutions. This means that there
are saddle points labeled by an integer n.
Several exact results are available in Liouville theory

[22, 23]. From them, we can obtain non-perturbative
saddles of correlation functions by taking the limit men-
tioned above. For instance, the two point function be-
haves as [16]

⟨Vα(z1)Vα(z2)⟩ (3)

∼ δ(0)|z12|−4η(1−η)/b2
(
e−πi(1−2η)/b2 − eπi(1−2η)/b2

)±1

× exp

{
− 2

b2
[(1− 2η) ln(1− 2η)− (1− 2η)]

}
,

where +1 for Re b−2 < 0 and −1 for Re b−2 > 0.
We would like to interpret the expression in terms of

dual gravity theory. We denoteG as the Newton constant
and Λ as the cosmological constant. For a while, we
consider the simplest case with η = 0. We set Λ = ℓ−2

dS or

Λ = −ℓ−2
AdS, where ℓdS and ℓAdS are the radii of dS3 and

AdS3, respectively. Their relations to the central charges
are:

c = −ic(g) = −i
3ℓdS
2G

, c =
3ℓAdS

2G
. (4)

Here we set c(g) as a real value [5, 6, 10]. For Λ = ℓ−2
dS ,

we find b−2 = −ic(g)/6− 13/6+O((c(g))−1), which leads
to Re b−2 < 0. The two point function with η = 0 is
related to the wave functional of universe for de Sitter
holography [2], which behaves as

Ψ ∝ e
πc(g)

6 − e−
πc(g)

6 , (5)

and is given by a sum of two saddles with n = −1, 0 in
our convention. For Λ = −ℓ−2

AdS, we find Re b−2 ∼ c/6 >
0. AdS/CFT correspondence relate the CFT correlation
function and gravity partition function as

Z ∝ e
πic
6

∞∑
n=0

e
2nπic

6 . (6)

Here we have introduced a small cut regulator ϵ as ℓAdS+
iϵ with ϵ → +0. The partition function is thus given by
a sum of saddles with label n = 0, 1, 2, . . ..

III. SEMI-CLASSICAL SADDLES IN
THREE-DIMENSIONAL GRAVITY

We examine three-dimensional gravity in the presence
of cosmological constant. We use the action

I = IEH + IGH + ICT . (7)

The Einstein-Hilbert action and the Gibbons-Hawking
boundary terms are given by

IEH = − 1

16πG

∫
√
g(R− 2Λ) ,

IGH + ICT =
1

8πG

∫ √
h(K +

√
−Λ) ,

(8)

where K is the extrinsic curvature and ICT includes a
counter term. In the first order formulation, it can be
rewritten in terms of Chern-Simons action as [24, 25]

IEH = kICS[A]− kICS[Ã] ,

ICS[A] =
1

4π
tr

[
A ∧ dA+

2

3
A ∧A ∧A

]
(9)

up to boundary contributions. The Chern-Simons level
is related to the gravitational parameters as k = −iκ =
−iℓdS/(4G) or k = ℓAdS/(4G).
We first consider the case with Λ = ℓ−2

dS . As discussed
in [26], we may consider the ansatz for the metric as

ds2 = ℓ2dS

[(
dθ(u)

du

)2

du2 + cos2 θ(u)dΣ2

]
. (10)

We set dΣ2 as the metric of S2 for a while and θ(u) as
a holomorphic function of u. We are interested in the
universe starting from nothing and approaching to dS3.
We thus set θ = (n + 1/2)πi at u = 0 and θ = iu for
u → ∞. This leads to a family of geometry labeled by n.
In order to make the geometry as a solution of Einstein
equation, we may set θ = (n+1/2)πi(1−u) for 0 ≤ u ≤ 1
and θ = i(u − 1) for 1 < u. The wave functional of
universe is given by

Ψ[h] =

∫
Dg exp(−IEH − IGH − ICT) , (11)

where we have integrated over the metric g such as to
satisfy the boundary condition g = h at the future infin-
ity realized by u = u0 ≫ 1. We set h as the metric of S2
from the ansatz (10). The wave functional is of the form

Ψ[h] ∼
∑
n

exp(S
(n)
GH/2 + iI(n)) , (12)

where the sum is over the family of geometries. Here S
(n)
GH

is real and comes from the Euclidean geometry realized
for 0 ≤ u ≤ 1. On the other hand, the phase factor
exp(iI(n)) comes from the Lorentzian region realized for
1 < u. The quantity SGH is known as Gibbons-Hawking
entropy [12–15] and the contribution from the geometry
labeled by n is

SGH =
(2n+ 1)πℓdS

2G
. (13)

The CFT result can be reproduced when the geometry is
summed over n = −1, 0.
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The label n can be interpreted as a topological number
in the Chern-Simons formulation. As mentioned above,
the contribution to the Gibbons-Hawking entropy comes
from the Euclidean geometry. Therefore, we can set
A, Ã ∈ su(2), see, e.g., [27] and appendix A of [11]. The
Chern-Simons action is invariant under a small gauge
transformation. However, for generic level k, a large
gauge transformation is not a symmetry of the action
anymore. A large gauge transformation generates gauge
configuration where the value of the action has extra in-
teger contribution as ICS → ICS + 2πiZ. In fact, the
Chern-Simons action counts how many times the gauge
configuration wraps S3 (i.e., π3

(
S3

)
= Z, see [6, 28] for

examples). We can see that each geometry labeled by
integer n leads to the same Chern-Simons action. There-
fore, these geometries can be regarded as representatives
of the gauge configurations which are not large gauge
equivalent with each other.

We then move to the case with Λ = −ℓ−2
AdS. Let us

assume the ansatz

ds2 = ℓ2AdS

[(
dθ(u)

du

)2

du2 + sinh2 θ(u)dΣ2

]
. (14)

As before, we set dΣ2 as the metric of S2 and θ(u) as
a holomorphic function of u. We consider the geome-
try which approaches to Euclidean AdS3 as u → ∞ and
truncates at u = 0. Thus we assign θ = nπi with integer
n at u = 0 and θ = u for u → ∞. In order to make the
geometry as a standard solution of Einstein equation, we
may set θ = nπi(1 − u) for 0 ≤ u ≤ 1 and θ = (u − 1)
for 1 < u. For 1 < u, the geometry is Euclidean AdS3,
but for 0 ≤ u ≤ 1, the geometry becomes S3 with an
imaginary radius or with three Lorentzian time direc-
tions. Thus, we may conclude that the geometry labeled
by non-zero n is unphysical.

As mentioned above, the Chern-Simons action counts
how many times gauge configuration representing the ge-
ometry wraps S3. We can describe each of Lorentzian
dS3, Euclidean dS3, Euclidean AdS3 and Lorentzian
AdS3 by a hypersurface in R4 with a flat metric as

ϵ0(X
0)2 + ϵ1(X

1)2 + ϵ2(X
2)2 + ϵ3(X

3)2 = ℓ2dS . (15)

We start from Lorentzian dS3 with −ϵ0 = ϵ1 = ϵ2 =
ϵ3 = 1. We glued this geometry to Euclidean dS3 (or
S3) with replacing ϵ0 = −1 by ϵ0 = 1 at X0 = 0. The
Chern-Simons action equals one for the gauge configura-
tion corresponding to S3. If we wrap n times S3, then
the Chern-Simons action becomes 2πin.
Let us move to the case with AdS3, where we start from

Euclidean AdS3 and we may analytically continue the
Euclidean geometry to Lorentzian one. We may describe
Euclidean AdS3 by a hypersurface

ϵ0(X
0)2 + ϵ1(X

1)2 + ϵ2(X
2)2 + ϵ3(X

3)2 = −ℓ2AdS .
(16)

with ϵ0 = ϵ1 = ϵ2 = −ϵ3 = 1. As before, we may per-
form a Wick rotation by replacing ϵ0 = 1 by ϵ0 = −1,

which leads to the Lorentzian AdS3. The geometry can-
not have non-trivial π3, thus it does not lead to a non-
trivial topological number. In order to have a non-trivial
quantity, we may perform a different Wick rotation by
replacing ϵ3 = −1 by ϵ0 = 1. The geometry is unphysical
as it defines S3 with imaginary radius iℓAdS. However, in
terms of Chern-Simons gauge theory, there is no trouble
to construct such gauge configuration and indeed leads
to non-trivial Chern-Simons action with the value 2πin.

IV. MINI-SUPERSPACE APPROACH TO
QUANTUM GRAVITY

As found above, the semi-classical saddles for Λ = ℓ−2
dS

are sensible and indeed they are used for no-boundary
proposal by Hartle and Hawking. However, the semi-
classical saddles for Λ = −ℓ−2

AdS may be unphysical. Here
we show that the mini-superspace approach to the quan-
tum gravity leads to the same conclusion.

In order to confirm the validity of the approach, we first
reproduce the previous result in [10, 11] for Λ = ℓ−2

dS . We
use the ansatz for metric as

ds2 = ℓ2dS
[
N(τ)2dτ2 + a(τ)2dΣ2

]
, (17)

which slightly generalize (10). Without loss of generality,
we can set 0 ≤ τ ≤ 1. We would like to evaluate the path
integral (11). The gauge redundancy allows us to fix
N(τ) to be constant N , the path integral can be reduced
to [29]

Ψ =

∫
C
dN

∫
Da(τ)e−I[a;N ]−ICT (18)

with

I[a;N ] = −ℓdS
2G

∫ 1

0

dτ N

[
1

N2

(
da

dτ

)2

− a2 + 1

]
. (19)

The contour over N is denoted by C. Here we set the
boundary conditions

a(0) = 0 , a(1) = a1 (20)

and ICT cancels the divergence proportional to a21. We
may assign the Neumann boundary condition at τ = 0
but there will be no qualitative difference as shown in
[30].
We first integrate a(τ) out. For this, we decompose

a(τ) = ā(N)(τ)+A(τ), where ā(N)(τ) is a solution to the
equation of motion for the action (19) and A(τ) repre-
sents small fluctuations around it. The solution to the
equation of motion d2a/dτ2 +N2a = 0 is given by

ā(N)(τ) =
a1

sinN
sin (Nτ) . (21)

Here we have imposed the boundary conditions (20). Af-
ter integrating the fluctuations A(τ), the wave functional
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(18) becomes (see [30] for the derivation)

Ψ =

∫
C
dN

(
1√

N sinN

) 1
2

e
ℓdS
2G (N+a2

1 cotN)−ICT (22)

up to an irrelevant overall normalization.
Now the problem is to find out a proper contour, C, for

the integration over N . For this, we first find out saddle
points by solving ∂I[ā(N);N ]/∂N = 0. The solutions are

N+
n =

(
n+

1

2

)
π + i ln

(
a1 +

√
a21 − 1

)
,

N−
n =

(
n+

1

2

)
π − i ln

(
a1 +

√
a21 − 1

)
,

(23)

with n ∈ Z, which are represented by red points in the
left panel of fig. 1. We next look for the paths of steepest
descent from the saddles. We find a subtlety that some
of lines for the steepest descent and steepest ascent coin-
cide with each other. In order to avoid this, we introduce
a regulator as ℓdS → ℓdS + iϵ with ϵ > 0. The necessity
of regulator was discussed in [17]. In fact, the signature
of the small imaginary part is highly relevant to the re-
sult. This is a specific feature in three dimensions, which
cannot be observed in four dimensions [31]. As will be
elaborated in [30], the direction of regularization is ap-
propriately determined to the present one after including
the one-loop correction. This can also be expected from
the CFT analyses [10, 11], where theO(1) contribution to
the central charge plays an important role to determine
the relevant saddles.

The contribution of each saddle to the wave functional
(22) are

Ψ±
n ∼ e

(n+1/2)ℓdSπ

2G (2a1)
±iℓdS±ϵ (24)

for large a1. The contributions from the saddles N−
n are

suppressed for large a1, and only the contributions from
the saddles N+

n are relevant. The paths of steepest de-
scent are written down as solid lines in fig. 1. We denote
that the path through N±

n by J±
n and the orientations

of paths are defined to be positive in the positive direc-
tions of the real and imaginary axes. Naively to preserve
future time direction, one would choose the integration
contour for N to be iR+. However, this contour does not
reproduce the CFT partition function (5), so we need
to find another contour to match with the CFT result.
There are infinitely many candidates for such a contour.
Among them, one can find that the proper contour that
reproduces (5) is −J +

0 + J−
0 + J +

−1. Finally we have
identified the proper contour by using dS holography.

The geometry described by the saddle points looks
complicated. However, as in [32], by Cauchy’s theorem,
we can introduce a time coordinate as:

T (τ) = −
(
n+

1

2

)
π(1− τ)q + i ln(2a1)τ

q . (25)

This encodes a deformation of the contour interpolating
between τ = 0 and τ = 1, along which the geometric

-6 -4 -2 0 2 4 6

-4

-2

0

2

4

J+
0 J+

1
J+

−1J+
−2

J−
0 J−

1
J−

−1J−
−2

-4 -2 0 2 4

-4

-2

0

2

4

J+
0

J+
1

J+
−1

J−
0

J−
1

J−
−1

FIG. 1. Saddle points are given by red points and steepest
descent paths are drawn by solid lines. Black dots denote the
singularities of the integrand. Right and left figures are for
Λ = (ℓdS + iϵ)−2 and Λ = −(ℓAdS + iϵ)−2, respectively.

criterion of [33] can be satisfied. When the index q → ∞,
the geometry approaches to the one discussed below (10).
We then move to the case with Λ = −ℓ−2

AdS. As in the
previous case, we consider the ansatz as

ds2 = ℓ2AdS

[
N(r)2dr2 + a(r)2dΣ2

]
(26)

with dΣ2 being the metric of S2. Here r is the radial
coordinate taking a value in 0 < r < 1. As for the
previous case (18), the partition function evaluated by
integrating over the metric can be reduced to

Z =

∫
C
dN

∫
Da(r)e−I[a;N ]−ICT , (27)

where the action is expressed as

I[a;N ] = −ℓAdS

2G

∫ 1

0

dr N

(
1

N2

d2a

dr2
+ a2 + 1

)
. (28)

We assign the Dirichlet boundary conditions a(0) = 0
and a(1) = a1, see [30] for the case where the Neumann
boundary condition is assigned at r = 1.
We first integrate over a(r) = ā(N)(r) + A(r), where

a(N)(r) is the saddle point and A(r) are fluctuations
around it. The equation of motion for a(r) is given by
d2a/dτ2−N2a = 0 and the solution subject to the Dirich-
let boundary conditions is

ā(N)(r) =
a1

sinhN
sinh(Nr) . (29)

We further integrate out the fluctuations, A(r). The par-
tition function is now written as (see [30] for the deriva-
tion)

Z =

∫
C
dN

(
1√

N sinhN

) 1
2

e
ℓdS
2G (N+a2

1 cothN)−ICT (30)

up to an overall factor.
We then determine the contour C for the integration

over N . Following the standard recipe, we first find
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out the stationary points satisfying ∂I[ā(N);N ]/∂N = 0.
They are listed as

N+
n = nπi+ ln

(
a1 +

√
a21 + 1

)
,

N−
n = nπi− ln

(
a1 +

√
a21 + 1

)
,

(31)

with n ∈ Z. The steepest descent lines originating these
saddle points can be obtained. However, as in the previ-
ous case, some of lines for the steepest descent and ascent
coincides with each other, which may require a regular-
ization as, say, ℓAdS → ℓAdS + iϵ. The steepest descent
paths after the shifts are depicted in the right panel of
fig. 1. We denote that the steepest descent path through
N±

n by J±
n and its orientations are defined to be positive

in the positive directions of the real and imaginary axes.
In this case, it is natural to integrate over N along

the positive real line. This integration contour can be
deformed into

∑∞
n=0 J +

n −
∑∞

n=1 J−
n . We thus take the

saddle points N+
n with n = 0, 1, 2 . . . and N−

n with n =
1, 2, . . .. Each contribution from the saddle point to the
partition function is

Z±
n ∼ e

nπi(ℓAdS+iϵ)

2G (2a1)
± ℓAdS

2G (32)

for large a1. As before, we can neglect the contribu-
tion Z−

n for large a1. Thus the semi-classical limit of
partition function is expressed as the convergent sum of
Z+

n with n = 0, 1, 2, . . ., which actually reproduces the
CFT partition function (6), up to an overall phase factor

e
πic
6 . Therefore we have found that the natural contour

we took is the proper contour that reproduces the CFT
result. The infinitesimal shift ℓAdS → ℓAdS + iϵ, in this
case, corresponds to the similar shift used to perform the
series expansion in (6).

As in the previous dS case, we can introduce a new
radial coordinate:

R(t) = −nπi(1− r)q + ln(2a1)r
q . (33)

Again the geometry approaches to the one discussed be-
low (14) for q → ∞. However in contrast with the dS
case (25), except for n = 0 case, the geometric condition
of [33], [26] remains violated along this contour.

V. DISCUSSION

In this letter we proposed the complex geometries
corresponding to the semi-classical saddles in three-
dimensional quantum gravity with the help of dual CFT.
First we constructed the geometries by using the Chern-
Simons formulation of three-dimensional gravity, and
then we checked that the geometries we constructed can
be indeed derived from the mini-superspace approach to
quantum cosmology. For the case of positive cosmolog-
ical constant, the geometry is given by the one for no-
boundary proposal [34], which reproduces our previous

result [10, 11] and is consistent with the criteria of allow-
able complex geometry in [26, 33, 35]. For the case of
negative cosmological constant, the geometry is claimed
to be given by Euclidean AdS3 attached with imaginary
radius S3’s. The geometry should be unphysical, how-
ever this fact itself does not contradict with the unitarity
of dual CFT. For instance, the partition function is real
after summing over the geometry (and choosing a proper
overall phase factor). Even so, it would be nice if we
can relate the result to the arguments based on the cri-
teria of [26, 33, 35]. The decomposition by semi-classical
saddles could not be unique and a nice decomposition
by physical semi-classical saddles may exist. See [30] for
more arguments. Furthermore, it would be interesting to
investigate the relation with “time-like entanglement en-
tropy” [36, 37], which seems to capture the information
of the similar attached imaginary geometry.
In this letter, we have focused on the case with two-

point functions in the limit η → 0 for simplicity. How-
ever, we can further extend the analysis by dealing with
the correlation functions with heavy operator insertions
satisfying 0 <

∑
i ηi < 1. From the general arguments

on Liouville field theory with large central charge, we can
see that there are saddles labeled by integer n. The exact
results are not available for generic correlation functions,
so we cannot determine which saddles to choose from the
CFT. Even so, the gravity analysis in this letter can be
easily extended to these cases. We have assumed that
dΣ2 in the metric ansatz is given by S2. For generic
cases, we just need to set dΣ2 = eφ(z,z̄)dzdz̄, where a
function φ(z, z̄) satisfies φ ∼ −4ηi ln |z − zi| near the in-
sertion point zi and φ(z, z̄) ∼ −4 ln |z| for large z. For
the topological contribution, we just need to multiply
(1−

∑
i ηi). There is another contribution to the action

(7) localized at the boundary, and the boundary contri-
bution can be shown to reduce to the Liouville action of
the field φ(z, z̄). This was done in [38] for AdS3, and it
is extended for dS3 in [30].
We are planing to apply the current analysis to other

cases as well. It is important to analyze the case with
black holes, see [39, 40] for AdS3. It is also interesting
to examine higher spin extensions as in [5, 6, 10, 11].
We are interested in the cases with higher dimensions
as well. At least, it is straightforward to generalize the
mini-superspace approach to quantum gravity as in [17–
20]. Currently, there are many techniques available for
non-perturbative aspects of quantum field theory, such
as, conformal bootstrap, resurgent theory, supersymmet-
ric localization. We are currently examining the resur-
gent structure of Liouville field theory in [30] in order to
develop a useful technique.
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